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Open Problem: The Semantic Gap

Isolation can provide security

Isolation makes it hard to see what’s going
on

View exposed by VMM is low-level (physical
memory, CPU state)

Need to reconstruct high-level view using
introspection routines
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Introspection Challenges

® |ntrospection routines are currently built
manually

® Building routines requires detailed
knowledge of OS internals

® Often requires reverse engineering

® OS updates and patches break existing
introspection utilities
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Contributions

® VWe generate introspection routines
automatically

® No knowledge of OS internals or reverse
engineering required

® Routines can be regenerated easily for new
OS versions / patches
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® Generality: generate useful introspection
programs on multiple operating systems

® Reliability: generate working programs using
dynamic analysis

® Security: ensure that programs are
unaffected by guest compromise

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011



Challenges

® Assume no prior knowledge of OS
internals

® Code extraction must be whole-system
® Much of the code we want is in the kernel

® Existing work (BCR, Inspector Gadget) only
extracts small pieces of userland code
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Training

* Write in-guest training program
using system APls

#}define = WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {

EnumProcesses (pids, 256, &outcb);

return O;

}
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Training

* Write in-guest training program
using system APls

fdefine  WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

EnumProcesses (pids, 256, &outcb);

return O;

}
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Training

* Annotate program with start/end
markers

fdefine  WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

vm_mark buf_ in(&pids, 4);
EnumProcesses (pids, 256, &outcb);
vm_mark buf out(pids, 256);
return O;
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Training

® Run program in QEMU to generate
instruction trace

® Traces are in QEMU pOp format

INTERRUPT (0xfb,0x200a94,0x0)

TB_HEAD EIP(0x80108028)

MOVL_TO_ IM(0xO0)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe8,0x8103cfe8,
Oxffffffff,0x215d810,0x920£0,0x0)

OPREG_TEMPL MOVL R A0 (0x4)

MOVL_TO IM(Oxfb)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe4,0x8103cfe4,
Oxffffffff,0x215d810,0x920£0,0x£b)

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011



Whole-System Traces

® |ncludes all instructions between start and
end markers

® |ncludes software and hardware interrupts
and exceptions

® |ncludes concrete addresses of memory
reads/writes
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Trace Analysis

® VVhat subset of this trace is relevant!?
® |nitial preprocessing:
® Remove hardware interrupts

® Replace malloc/realloc/calloc with
summary functions

® Next, executable dynamic slicing (Korel and
Laski, 1988) is done to identify relevant
Instructions
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Executable Dynamic Slicing

|. Follow data def/use chain backward,
starting with output buffer

2. Examine CFG and add necessary control
flow statements to slice (and their
dependencies)

3. Perform slice closure:

* [f any instance of an instruction is
included in the slice, all instances of that

instruction must be marked
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Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

~
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NS
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Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011



Program Translation

® Goal: convert in-guest => out-of-guest

® Generates Python code that runs inside
Volatility memory analysis framework

® Changes:
® Memory reads come from guest VM
® Memory writes are copy-on-write

® CPU registers become local vars
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Translation Example
Original x86 QEMU uOps

[TB @0XC0253368L *]
IFLO TB HEAD EIP(0xc0253368)
IFLO INSN BYTES(0xc0253368, f6451c10')
IFLO OPREG TEMPL MOVL A0 R(0X5)
IFLO ADDL A0 IM(0xlc)
IFLO OPS MEM LDUB TO AO(...)
IFLO MOVL T1 IM(0x10)
IFLO TESTL TO T1 CC()
IFLO INSN BYTES(0xc025336c,'89df’)
IFLO OPREG TEMPL MOVL TO0 R(0x3)
jnz 0xc02533a9 IFLO OPREG TEMPL MOVL R_TO(0x7)
IFLO INSN BYTES(0xc025336e,'7539")
IFLO SET CC OP(0x16)
IFLO OPS _TEMPLATE JZ SUB(0x0,0x1)
IFLO GOTO TB1(0x60afcab8)
IFLO MOVL EIP IM(0xc0253370)
IFLO MOVL TO IM(0x60afcab9)
IFLO EXIT TB()

test byte [ebpt+0Oxlc],0x10
mov edi,ebx
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Translation Example

QEMU pOps Python

[TB @0XC0253368L *]
IFLO TB HEAD EIP(0xc0253368)
IFLO INSN BYTES(0xc0253368, '£6451cl10"')
IFLO OPREG TEMPL MOVL A0 R(0x5) A0 = EBP
IFLO ADDL A0 IM(0xlc)
IFLO OPS MEM LDUB TO AO(...)
IFLO MOVL T1 IM(0x10)
IFLO TESTL TO T1 CC() T1 UInt(0x10)
IFLO INSN BYTES(0xc025336c, '89df') CC DST = TO & T1
IFLO OPREG TEMPL MOVL TO R(0x3) TO = EBX
IFLO OPREG TEMPL MOVL R TO(0x7)
IFLO INSN BYTES(0xc025336e,'7539')
IFLO SET CC OP(0x16)
IFLO OPS TEMPLATE JZ SUB(0x0,0x1) . (Byte(CC_DST) == 0):
IFLO GOTO TBl(0Ox60afcab8) Goto(0xc0253370)
IFLO MOVL EIP IM(0xc0253370) Goto(0xc02533a9)
IFLO MOVL TO0 IM(0x60afcab9)
IFLO EXIT TB()

AQ += UInt(0xlc)
TO ULInt8(mem.read(A0,1))

EDI = T0
CC OP = 0x16
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Results: Generality

® Generated 6 useful introspection programs
on each of 3 operating systems
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Introspection Programs

getpid

pslist
getpsfile

Ismod

getdrvfile

gettime
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Gets the PID of the currently running
process.

Gets a list of PIDs of all running processes.

Gets the name of an executable from its
PID.

Gets the base addresses of all kernel
modules.

Gets the name of a kernel module from its
base address.

Gets the current system time.
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Results: Reliability

® Analysis is dynamic, so programs may be
incomplete

® How many traces are needed to produce
reliable programs!?

® Complicating factors: caching, difficulty of
deciding ground truth for coverage
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Results: Security

Verified that introspection programs are not
affected by in-guest code manipulation

Training program (pslist) generated on clean
system

Resulting introspection program still detects
processes hidden by Hacker Defender

Note: DKOM attacks can still be effective
against Virtuoso
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Limitations

Multiple processes/IPC

Multithreaded code (synchronization)
Code/data relocation (ASLR)
Self-modifying code
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Conclusions

® Programs generated by Virtuoso can be
useful, reliable, and secure

® Uses novel whole-system executable
dynamic slicing and merging

® Virtuoso can greatly reduce time and effort
needed to create introspection programs

- Weeks of reverse engineering vs. minutes
of computation
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