INFORMATION SECURITY CENTER

Virtuoso: Narrowing the
Semantic Gap in Virtual
Machine Introspection

Brendan Dolan-Gavitt', Tim Leekt, Michael Zhivicht, Jonathon
Giffin", and Wenke Lee"

" Georgia Institute of Technology
T MIT Lincoln Laboratory

{brendan,giffin,wenke}@cc.gatech.edu
{tleek,mzhivich}@lIl.mit.edu

This work was sponsored by IARPA under Air Force Contract FA8721-05-C-0002.
Opinions, interpretation, conclusions and recommendations are those of the

authors and are not necessarily endorsed by the United States Government.

Tuesday, May 24, 2011

Virtual Machine Introspection

Security
Apps

-

Introspection

.

Security VM

Guest VM
(insecure)

Hypervisor

Oakland’| |

Tuesday, May 24, 2011

Virtuoso

5/24/201 |

Tuesday, May 24, 2011

Open Problem: The Semantic Gap

Isolation can provide security

Isolation makes it hard to see what’s going
on

View exposed by VMM is low-level (physical
memory, CPU state)

Need to reconstruct high-level view using
introspection routines

Oakland’| | Virtuoso 5/24/201 |

What You VWant...

LU

\ - -

Processes

Drivers

Networking

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Tuesday, May 24, 2011

Ba483a08
Ba483ca:
AB453e0:
aa45400
aa48420:
AB454486
BB43460 :
AB45480 :
AB458400 :
B8454ca:
B8484e0:
Aa43500
BB48520 :
Ba48548
Aa435608
Ba48580
BB485a0
AA485cH
Ba485e8
Ba48600
Aa48620
BB48640
AB43660
AB43680
Ba4860a :
Aa486ca
AB486e0
Ba4570a
Ba48720:
Aa43748
Ba43760
Aa48780
Aa487a0
Ba487ca:
Ba457e0:
Aa43500
Ba48520 :
Ba45840
AB43860

Oakland’| |

What You Get

Virtuoso

X{eeealle tS e unnns $W.8....L$.2.

..Processor driver does not supp
ort IRP_MN_SURPRISE_REMOVAL...U.

A A e xtP...tUHEHHEZHE .Huy. ...
....... O B eV aT e o #7a on)] & Tl Tttt
........ I e 5 5 5 5 O e
..... N e e a ot a utaaats U ¥
(R {1 PR 4 P P DR AP e e 3 |
R et v o I o) Pt
et cafar e tavn e eta s Era s [| afatat] Lts
Modlane, Yesterday e e
ceeandg Yesterday I3
..... Ve ratulaau kW Kbl « fu 57a7a "
] 1 P L e e et e ' |ttt

5/24/201 |

Introspection Challenges

® |ntrospection routines are currently built
manually

® Building routines requires detailed
knowledge of OS internals

® Often requires reverse engineering

® OS updates and patches break existing
introspection utilities

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Contributions

® VWe generate introspection routines
automatically

® No knowledge of OS internals or reverse
engineering required

® Routines can be regenerated easily for new
OS versions / patches

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

|ldea: Code Extraction

Security VM

Hypervisor

Oakland’| |

Tuesday, May 24, 2011

Virtuoso

5/24/201 |

|ldea: Code Extraction

Security VM

Hypervisor

Oakland’| |

Tuesday, May 24, 2011

Virtuoso

5/24/201 |

|ldea: Code Extraction

Security VM

Hypervisor

Oakland’| |

Tuesday, May 24, 2011

Virtuoso

5/24/201 |

|ldea: Code Extraction

|

) I

3 Introspection
\

\

Security VM

Hypervisor

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

|ldea: Code Extraction

|

) | ey

— Introspection
\

\

Security VM

Hypervisor

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

|ldea: Code Extraction

|

) | ey

— Introspection
\

\

Security VM

Hypervisor

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

® Generality: generate useful introspection
programs on multiple operating systems

® Reliability: generate working programs using
dynamic analysis

® Security: ensure that programs are
unaffected by guest compromise

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Challenges

® Assume no prior knowledge of OS
internals

® Code extraction must be whole-system
® Much of the code we want is in the kernel

® Existing work (BCR, Inspector Gadget) only
extracts small pieces of userland code

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Overview

Instruction

ﬂ Training Environment Traces

Trace Logger

Training Phase

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Instruction
Traces

Oakland’| |

Tuesday, May 24, 2011

Overview

Preprocessing

Dynamic Slicing

Merging

Translation

Analysis Phase

-

Introspection
Program

~N

%

Virtuoso 5/24/201 |

Overview

Security VM

Runtime

4])
Introspection

Program

Kernel
Runtime Phase

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Training

* Write in-guest training program
using system APls

#}define = WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {

EnumProcesses (pids, 256, &outcb);

return O;

}

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Training

* Write in-guest training program
using system APls

fdefine WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

EnumProcesses (pids, 256, &outcb);

return O;

}

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Training

* Annotate program with start/end
markers

fdefine WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

vm_mark buf_ in(&pids, 4);
EnumProcesses (pids, 256, &outcb);
vm_mark buf out(pids, 256);
return O;

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Training

® Run program in QEMU to generate
instruction trace

® Traces are in QEMU pOp format

INTERRUPT (0xfb,0x200a94,0x0)

TB_HEAD EIP(0x80108028)

MOVL_TO_ IM(0xO0)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe8,0x8103cfe8,
Oxffffffff,0x215d810,0x920£0,0x0)

OPREG_TEMPL MOVL R A0 (0x4)

MOVL_TO IM(Oxfb)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe4,0x8103cfe4,
Oxffffffff,0x215d810,0x920£0,0x£b)

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Whole-System Traces

® |ncludes all instructions between start and
end markers

® |ncludes software and hardware interrupts
and exceptions

® |ncludes concrete addresses of memory
reads/writes

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Trace Analysis

® VVhat subset of this trace is relevant!?
® |nitial preprocessing:
® Remove hardware interrupts

® Replace malloc/realloc/calloc with
summary functions

® Next, executable dynamic slicing (Korel and
Laski, 1988) is done to identify relevant
Instructions

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Executable Dynamic Slicing

|. Follow data def/use chain backward,
starting with output buffer

2. Examine CFG and add necessary control
flow statements to slice (and their
dependencies)

3. Perform slice closure:

* [f any instance of an instruction is
included in the slice, all instances of that

instruction must be marked

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

~
PN
NS

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Program Translation

® Goal: convert in-guest => out-of-guest

® Generates Python code that runs inside
Volatility memory analysis framework

® Changes:
® Memory reads come from guest VM
® Memory writes are copy-on-write

® CPU registers become local vars

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Translation Example
Original x86 QEMU uOps

[TB @0XC0253368L *]
IFLO TB HEAD EIP(0xc0253368)
IFLO INSN BYTES(0xc0253368, f6451c10')
IFLO OPREG TEMPL MOVL A0 R(0X5)
IFLO ADDL A0 IM(0xlc)
IFLO OPS MEM LDUB TO AO(...)
IFLO MOVL T1 IM(0x10)
IFLO TESTL TO T1 CC()
IFLO INSN BYTES(0xc025336c,'89df’)
IFLO OPREG TEMPL MOVL TO0 R(0x3)
jnz 0xc02533a9 IFLO OPREG TEMPL MOVL R_TO(0x7)
IFLO INSN BYTES(0xc025336e,'7539")
IFLO SET CC OP(0x16)
IFLO OPS _TEMPLATE JZ SUB(0x0,0x1)
IFLO GOTO TB1(0x60afcab8)
IFLO MOVL EIP IM(0xc0253370)
IFLO MOVL TO IM(0x60afcab9)
IFLO EXIT TB()

test byte [ebpt+0Oxlc],0x10
mov edi,ebx

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Translation Example

QEMU pOps Python

[TB @0XC0253368L *]
IFLO TB HEAD EIP(0xc0253368)
IFLO INSN BYTES(0xc0253368, '£6451cl10"')
IFLO OPREG TEMPL MOVL A0 R(0x5) A0 = EBP
IFLO ADDL A0 IM(0xlc)
IFLO OPS MEM LDUB TO AO(...)
IFLO MOVL T1 IM(0x10)
IFLO TESTL TO T1 CC() T1 UInt(0x10)
IFLO INSN BYTES(0xc025336c, '89df') CC DST = TO & T1
IFLO OPREG TEMPL MOVL TO R(0x3) TO = EBX
IFLO OPREG TEMPL MOVL R TO(0x7)
IFLO INSN BYTES(0xc025336e,'7539')
IFLO SET CC OP(0x16)
IFLO OPS TEMPLATE JZ SUB(0x0,0x1) . (Byte(CC_DST) == 0):
IFLO GOTO TBl(0Ox60afcab8) Goto(0xc0253370)
IFLO MOVL EIP IM(0xc0253370) Goto(0xc02533a9)
IFLO MOVL TO0 IM(0x60afcab9)
IFLO EXIT TB()

AQ += UInt(0xlc)
TO ULInt8(mem.read(A0,1))

EDI = T0
CC OP = 0x16

Oakland 'l | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Results: Generality

® Generated 6 useful introspection programs
on each of 3 operating systems

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Introspection Programs

getpid

pslist
getpsfile

Ismod

getdrvfile

gettime

Oakland’| |

Tuesday, May 24, 2011

Gets the PID of the currently running
process.

Gets a list of PIDs of all running processes.

Gets the name of an executable from its
PID.

Gets the base addresses of all kernel
modules.

Gets the name of a kernel module from its
base address.

Gets the current system time.

Virtuoso 5/24/201 |

Results: Reliability

® Analysis is dynamic, so programs may be
incomplete

® How many traces are needed to produce
reliable programs!?

® Complicating factors: caching, difficulty of
deciding ground truth for coverage

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Windows pslist Reliability

Generated Program Reliability

Pt

Success Rate

6 8

Number of Traces

Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Tuesday, May 24, 2011

Results: Security

Verified that introspection programs are not
affected by in-guest code manipulation

Training program (pslist) generated on clean
system

Resulting introspection program still detects
processes hidden by Hacker Defender

Note: DKOM attacks can still be effective
against Virtuoso

Oakland’| | Virtuoso 5/24/201 |

Limitations

Multiple processes/IPC

Multithreaded code (synchronization)
Code/data relocation (ASLR)
Self-modifying code

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

Conclusions

® Programs generated by Virtuoso can be
useful, reliable, and secure

® Uses novel whole-system executable
dynamic slicing and merging

® Virtuoso can greatly reduce time and effort
needed to create introspection programs

- Weeks of reverse engineering vs. minutes
of computation

Oakland’| | Virtuoso 5/24/201 |

Tuesday, May 24, 2011

