
Science, Sharing,and
Repeatability in

Memory Forensics

Brendan Dolan-Gavitt
Columbia University

whoami
• @moyix

• Did some early work in memory
forensics:

• VAD, registry in memory,
GDI, VMI

• Other software: pdbparse,
PANDA

• Currently postdoc researcher at
Columbia

Memory Forensics as a
Scientific Field

• Still very young

• First DFRWS memory forensics challenge less
than a decade ago!

• The gap between research and practice is not
very large

Scientific Method

• In developing memory forensic tools:

• Form some hypothesis about software artifacts

• Investigate target – run experiments,
disassemble, etc. to confirm/disprove

• New understanding becomes crystallized into
tools, plugins, etc. that practitioners use

Reproducibility

“The first principle is that
you must not fool

yourself–and you are the
easiest person to fool.”

Reproducibility
• Correctness is critical

• Forensics moves fast, however

• ~1.5 years between OS versions

• Just describing results (without code) is very
slow

• Validation needs to move quickly too

Sharing
• Note that this is the Open Memory Forensics

Workshop

• Making code available is critical!

• Redeveloping from scratch takes too long

• Direct examination of code is better

• Sharing data is also necessary (i.e., memory
images for testing)

Reproducibility in
Memory Forensics

• Standard reference images

• NIST CFReDS, DFRWS challenge images

• Tool testing (NIST)

• Work on validating acquisition (Vömel &
Stüttgen, 2013)

A Missing Piece

• Many investigations involve dynamic analyses of
executing programs

• Particularly malware

• What does it mean to reproduce a malware
analysis?

Challenges

• Dynamic analyses depend on a runtime
environment

• Network servers may go down

• Behavior dependent on software & library
versions

• May trigger on certain dates/times

Record / Replay

• We want to instead share a specific execution of
a program

• Observation: if we record all the
nondeterministic inputs to the system, we can
then replay the exact execution later

• Technique has been around ~20 years, used
mainly for debugging (i.e. reverse execution)

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record / Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record Log

Record / Replay

Time

rdtsc interrupt DMA

Reproducible Dynamic
Analysis with PANDA

• PANDA - Platform for Architecture Neutral
Dynamic Analysis

• Supports shareable recordings of whole-system
execution

• Write plugins to analyze replays as they execute

PANDA Model

Record Whole
System

Execution
Write Analysis

Plugins
Run Replay
and Analyze Understanding

• Record / replay critical:

• Heavy analyses don’t disrupt execution

• Analyses don’t have to worry about memory layout
changing between runs

www.rrshare.org

http://www.rrshare.org

Log Size

Replay Instructions Log Size Instr/Byte

freebsdboot 9.3 billion 533 MB 17

spotify 12 billion 229 MB 52

haikuurl 8.6 billion 119 MB 72

carberp1 9.1 billion 43 MB 212

win7iessl 8.6 billion 9.4 MB 915

Starcraft 60 million 1.8 MB 33

Other PANDA Features

• Android emulation

• Lifting binary code to LLVM

• Taint analysis

• System call tracing

Plugin Architecture
• Extend PANDA by writing plugins (C/C++)

• Implement functions that take action at various
instrumentation points

• Can also instrument generated code in LLVM
mode

• Plugin-plugin interaction: compose simple tools
for complex functionality

Android Emulation
• Supports Android 2.x – 4.2

• Can make phone calls, send
SMS, run native apps

• Record/replay

• Introspection into Android
apps (Dalvik-level) for Android
2.3 (from DroidScope)

• System-level introspection
supported on all Android
versions

Memory Forensics on
Replays

• In some ways, best of both worlds between
debugging and memory image analysis

• All memory accessible throughout entire lifetime
of

• Can pause, dump memory, run Volatility, etc.

• But can still be triggered by things happening in
execution

Conclusions

• Reproducibility is critical to achieving valid
forensic results

• For some areas we have decent solutions –
 code sharing, testing, standard images

• For ephemera such as software execution, we
propose record and replay, and a system,
PANDA

Credits
• PANDA devs

• Tim Leek (MIT Lincoln Lab)

• Patrick Hulin (MIT Lincoln Lab)

• Josh Hodosh (MIT Lincoln Lab)

• Ryan Whelan (MIT Lincoln Lab)

• Sam Coe (Northeastern University)

• Andy Davis (MIT Lincoln Lab)

Contact

• Get in touch! @moyix on Twitter
brendan@cs.columbia.edu

• Join the mailing list: panda-users@mit.edu

• IRC Channel: #panda-re on Freenode

• Contribute code: 
https://github.com/moyix/panda

mailto:brendan@cc.gatech.edu?subject=
mailto:panda-users@mit.edu
https://github.com/moyix/panda

