2009 11th IEEE International Symposium on Multimedia

Demonstration of vDelay: A Tool to Measure Capture-to-Display Latency and Frame
rate

Omer Boyaci, Andrea Forte, Salman Abdul Baset, and Henning Schulzrinne
Department of Computer Science, Columbia University
{boyaci,andreaf,salman,hgs } @cs.columbia.edu

1. Introduction and related work

We present vDelay [4], a tool for measuring the capture-to-display
latency (CDL) and frame-rate of real-time video applications such
as video chat and conferencing.

Real-time video chat applications have three key software com-
ponents: a video encoder that compresses the video captured from
the camera, a video decoder that decompresses the video received
over the network, and a playout buffer that smooths the playout
of received video due to network delay variations. These soft-
ware components impact capture-to-display latency (CDL) and
frame-rate of the real-time video played at a receiver application.
Capture-to-display latency is the total time to encode and decode a
video frame, playout buffer time, and latency of the network path.
Along with bit-rate, these two metrics provide quick insights into
the performance of a real-time video application.

vDelay has three important properties. First, it does not require
any change in the source code or executable of a real-time video
application. Thus, it can be used to measure the CDL and frame-
rate of closed source video applications. Second, vDelay does not
require any specialized hardware. Third, it is written in Java so it
can be used to measure CDL and frame-rate of a real-time interac-
tive video application on any operating system.

Existing video latency measurement tools involve the use of a
specialized hardware. For example, OmniView [3] is a tool that
uses a specialized PCI card. Our goal is to measure video latency
without the use of any specialized hardware.

Yoshimura et al.designed a module for a video streaming appli-
cation that measures for each frame the deviation from the playout
time. Their approach does not calculate CDL or frame-rate, and
requires changing the video application. Further, their approach is
targeted towards video streaming applications. The adelay [1] tool
can be used to measure mouth-to-ear latency.

2. Measuring CDL and frame-rate

The key to measuring CDL and frame-rate lies in embedding a
timestamp in the caller’s video, and retrieving that timestamp at
the callee. The timestamp is the current system time at the ma-
chine running the caller user agent. Assuming that the machines
running the caller and callee user agents are time synchronized
within an acceptable error, the capture-to-display latency is the
difference between the timestamp retrieved from the caller’s video
and current system time at the machine running the callee user
agent. This difference can also be used to calculate the inter-frame

978-0-7695-3890-7/09 $26.00 © 2009 IEEE
DOI 10.1109/ISM.2009.129

444

@
Webcam%

Caller

Callee

Figure 1: vDelay setup.

display time at the callee user agent. Further, since every new
frame must have an increasing value of a timestamp, the number
of frames within a time period can be used to calculate the frame-
rate of the received video.

We use a trick to embed the timestamp in the caller’s video that
does not require any change to the video chat application. The
timestamp, i.e., the current system time at the machine running
the caller user agent, is displayed at the monitor of the machine
running the caller user agent every ¢ time units. A webcam is at-
tached to the machine running the caller user agent and faces the
LCD monitor. Thus, it captures the current image on the LCD
monitor which includes the timestamp. The caller user agent then
encodes this captured frame including the timestamp, and sends it
over the network to the callee user agent which decodes the frame
and displays it on its attached LCD monitor. An application run-
ning on the same machine as the callee user agent grabs the times-
tamp from the received frame, and calculates the time difference
between the timestamp grabbed from the received frame and lo-
cal system time. The timestamps are processed to calculate CDL
and frame-rate. Figure 1 shows the setup for measuring CDL and
frame-rate. The novelty of this approach lies in the fact that no
additional hardware is needed and no modification to the software
of any real-time video application is required.

We considered three approaches for displaying the timestamp
at the caller user agent: as (1) an EAN-8 barcode [2], (2) nu-
meric characters, and (3) a progress bar. From experimentation,
we found that displaying timestamp as a barcode was the most
attractive option. Since barcodes such as EAN-8 have a built in
checksum mechanism and because barcode reading is very fast.
Figure 2 shows a screen shot of the receiver side vDelay applica-
tion.

IEEE
computer
psouety

PS:21 CDL:242ms =)

Sype Contacts Conversation Cal iew Tools Heip

FRR:99%

- intestt omerhoyaci + iidd people)

Add viden ot

Personalze -

B ake vour fre calltosn o,
£ Now ~

Contacts = Conversations

2 Echo / Sound Test Service:
‘4 ododod

B Call phones
(4 Directory
& Shop

R ——

= End call

Figure 2: Screen shot of the receiver side vDelay application. FPS, CDL,
and FRR statistics are shown at the top of the image. The barcode received
from the caller user agent is also visible.

Chat application | Version Video Resolu- [Bitratel Fps | CDL [Std. dev|
codec ‘ tion (kb/s)e‘ ‘ (ms) | (ms)
Live Messenger 14.0.8064 H.264 640x480 | 600 23 69 16
Gtalk v1.0.8.0 H.264 512x300 |1000| 27 99 16
X-Lite 3.0.47546 H.263+ | 320x240 | 400 27 102 15
Yahoo 9.0.0.2152 N/A 320x240 72 3 113 23
eyeBeam 1.5.19.5 H.264 640x480 | 400 27 129 16
AIM 6.8.14.6 N/A 240x180 | 120 9 147 57
Tokbox (LL) 2.01 2351 N/A 270x200 | 320 24 148 72
Skype (HQ) 4.0.0.215 VP7 640x480 | 560 20 238 22
Tokbox (HL) 2.01 2351 N/A 270x200 | 320 23 342 69

Table 1: Comparison of video chat applications. The results are sorted by
capture-to-display latency (CDL). LL, HL and HQ are abbreviations for
low latency, high latency, and high quality.

3. Results

For all the video chat applications (listed in Table 1), we ran the ex-
periment for ten minutes and repeated it twice. The Tokbox appli-
cation completely runs in browser and only depends on the avail-
ability of a Adobe Flash player. In Tokbox, the caller user agent
sends packet over TCP to a Flash server maintained by Tokbox
which forwards these packets to the callee user agent over TCP
and vice versa. With the exception of Tokbox, the caller user agent
sends packets directly to the callee user agent. Other than Tokbox
and Yahoo Messenger, all the video applications send packets over
UDP. For Skype, the video session was of high quality (HQ) as in-
dicated by an icon in the received video.

The sender and receiver are synchronized through NTP. We also
measured the synchronization manually before each experiment
by sending a ping packet which is captured via wireshark on both
sides. We observed a difference of 6ms at most. The monitor
refresh time may also effect our measurements because the frame
buffer is synched to monitor in every 16ms, which may explain the
standard deviation of 16ms.

Table 1 shows the delay performance of these video applica-
tions. The results are sorted by capture-to-display latency. As
mentioned before, Tokbox forwards packets from a caller user

445

agent to a callee user agent through servers which are based in
different geographical locations. The use of a server in different
location impacts the CDL. Therefore, we report the minimum and
maximum observed CDL for Tokbox which are abbreviated as LL
(low latency) and HL (high latency) in Table 1.

Our results indicate that amongst all video chat applications,
Windows Live Messenger has the best CDL value. For Tokbox
(LL), Tokbox (HL), and AIM, the standard deviation of CDL is
more than 50 ms. We conjecture that Tokbox has a high standard
deviation for CDL due to the packet scheduling at the server re-
laying media packets. For AIM, we attribute the high standard
deviation to the video encoding function.

X-Lite and eyeBeam achieved the highest frame-rate per second
(fps). Except for Yahoo Messenger and AIM, the frame-rate of all
video chat applications is above 20 frames per second. As for the
CPU utilization of the machine running the caller user agent, we
measured that Skype uses 44% of the CPU, the maximum amongst
all applications. Gtalk tops the bit-rate comparison at 1,000 kb/s.

1400 30
—¥—CDL
- -~ Bandwidth 3

< L. ——l
g Teon L o i 50 %
[+ —— a0
S, ° ym=dd
400 L - pm— 30
. Y 2
200 L
R U e 10
0 © « wom> © © o o 0

211
seconds

Figure 3: CDL, fps, and FRR for Skype as a function of time when the
available bandwidth is adjusted as a step function.

vDelay can be used to measure CDL and frame-rate of a video
chat application under controlled network conditions. Such use
provides a powerful testing mechanism for application developers.
One instance is shown in Figure 3, which shows the performance
of Skype when the available bandwidth of a video session is ad-
justed as a step function. The figure shows that Skype suffers from
a high jitter in frame-rate as the available bandwidth is gradually
decreased. With the decrease in available bandwidth, CDL starts
to increase indicating the impact of network queuing and play-
out buffer adjustments. The CDL graph shows large spikes when
available bandwidth is below 400 kb/s.

References

[1] adelay. A tool to measure mouth-to-ear
http://www.cs.columbia.edu/irt/software/adelay/.

[2] EAN barcode. http://en.wikipedia.org/wiki/European_Article_Number.

[3] OmniView. http://www.omnitek.tv/admin/old_support/AVdelay1[1].pdf.

[4] O. Boyaci, A. Forte, S. Baset, and H. Schulzrinne. vdelay: A tool
to measure capture-to-display latency and frame rate. In Multimedia,
2009. ISM 2009. Eleventh IEEE International Symposium on.

latency.

