
1

 1992-2007 Pearson Education, Inc.  All rights reserved.

Programming 
Languages: Java 

Instructor: Omer Boyaci

Lecture 1
Introduction to Java



2

 1992-2007 Pearson Education, Inc.  All rights reserved.

Course Information
History of Java
Introduction
First Program in Java: Printing a Line of Text
Modifying Our First Java Program
Displaying Text with printf
Another Java Application: Adding Integers
Memory Concepts
Arithmetic
Decision Making: Equality and Relational Operators
Introduction to Object-oriented Programming



3

 1992-2007 Pearson Education, Inc.  All rights reserved.

Course Information

• Six Lectures
• Teaches “Java Standart Edition 6”
• No midterm or final
• Six assignments (5,10,15,20,25,25)
• http://www.omerboyaci.com/
• Textbook 

– Java How to Program, 8th Edition, Deitel & Deitel

http://www.omerboyaci.com/


4

 1992-2007 Pearson Education, Inc.  All rights reserved.

Introduction

• Java Standard Edition (Java SE) 6 
• Sun’s implementation called the Java Development Kit 

(JDK)
• Object-Oriented Programming
• Java is language of choice for networked applications
• Open Source
• Write Once Run Everywhere



5

 1992-2007 Pearson Education, Inc.  All rights reserved.

Machine Languages, Assembly 
Languages and High-Level Languages

• Machine language
– “Natural language” of computer component
– Machine dependent

• Assembly language
– English-like abbreviations represent computer operations
– Translator programs (assemblers) convert to machine language

• High-level language
– Allows for writing more “English-like” instructions

• Contains commonly used mathematical operations
– Compiler converts to machine language

• Interpreter
– Execute high-level language programs without compilation



6

 1992-2007 Pearson Education, Inc.  All rights reserved.

History of Java

• Java
– Originally for intelligent consumer-electronic devices
– Then used for creating web pages with dynamic content
– Now also used to:

• Develop large-scale enterprise applications
• Enhance web server functionality
• Provide applications for consumer devices (cell phones, etc.)



7

 1992-2007 Pearson Education, Inc.  All rights reserved.

Java Platform



8

 1992-2007 Pearson Education, Inc.  All rights reserved.

Java Standart Edition (SE)



9

 1992-2007 Pearson Education, Inc.  All rights reserved.

Java Enterprise Edition (EE)

geared toward large-scale distributed applications and web 
applications
• Enterprise JavaBeans (EJB)
• Servlets
• Java Server Pages (JSP)
• Java Server Faces (JSF)
• JavaMail
• Java Transaction API (JTA)



10

 1992-2007 Pearson Education, Inc.  All rights reserved.

Java Micro Edition (ME)

geared toward applications for small, memory constrained 
devices
• Midlets

– Google Maps Mobile
– Opera Mini



11

 1992-2007 Pearson Education, Inc.  All rights reserved.

Java Class Libraries

• Java programs consist of classes
– Include methods that perform tasks

• Return information after task completion

• Java provides class libraries
– Known as Java APIs (Application Programming 

Interfaces)

• To use Java effectively, you must know
– Java programming language
– Extensive class libraries 



12

 1992-2007 Pearson Education, Inc.  All rights reserved.

Use Java API classes

Improve program performance
Shorten program development time
Prevent software bugs 
Improve program portability



13

 1992-2007 Pearson Education, Inc.  All rights reserved.

Typical Java Development Environment

• Java programs go through five phases
– Edit

• Programmer writes program using an editor; stores program on disk with 
the .java file name extension

– Compile
• Use javac (the Java compiler) to create bytecodes from source code program; 

bytecodes stored in .class files
– Load

• Class loader reads bytecodes from .class files into memory
– Verify

• Bytecode verifier examines bytecodes to ensure that they are valid and do not 
violate security restrictions

– Execute
• Java Virtual Machine (JVM) uses a combination of interpretation and just-

in-time compilation to translate bytecodes into machine language



14

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 1.1 | Typical Java development environment.



15

 1992-2007 Pearson Education, Inc.  All rights reserved.

Through the Java VM, the same application is 
capable of running on multiple platforms.



16

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text

• Application
– Executes when you use the java command to launch the 

Java Virtual Machine (JVM)

• Sample program
– Displays a line of text
– Illustrates several important Java language features



17

 1992-2007 Pearson Education, Inc.  All rights reserved.
Welcome1.java

 1 // Fig. 2.1: Welcome1.java 
 2 // Text-printing program. 
 3  
 4 public class Welcome1   
 5 { 
 6    // main method begins execution of Java application 
 7    public static void main( String args[] ) 
 8    { 
 9       System.out.println( "Welcome to Java Programming!" ); 
10  
11    } // end method main 
12  
13 } // end clazss Welcome1 

 
Welcome to Java Programming! 
 

 



18

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Comments start with: //
• Comments ignored during program execution
• Document and describe code
• Provides code readability

– Traditional comments: /* ... */
/* This is a traditional
   comment. It can be 
   split over many lines */

– Another line of comments
– Note: line numbers not part of program, added for reference

1      // Fig. 2.1: Welcome1.java

2      // Text-printing program. 



19

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Blank line
• Makes program more readable
• Blank lines, spaces, and tabs are white-space characters

– Ignored by compiler

– Begins class declaration for class Welcome1
• Every Java program has at least one user-defined class
• Keyword: words reserved for use by Java

– class keyword followed by class name
• Naming classes: capitalize every word

– SampleClassName

3 

4      public class Welcome1  



20

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Java identifier
• Series of characters consisting of letters, digits,   

underscores ( _ ) and dollar signs ( $ )
• Does not begin with a digit, has no spaces
• Examples: Welcome1, $value, _value, button7

– 7button is invalid
• Java is case sensitive (capitalization matters) 

– a1 and A1 are different

4      public class Welcome1  



21

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Saving files
• File name must be class name with .java extension
• Welcome1.java

– Left brace {
• Begins body of every class
• Right brace ends declarations (line 13)

4      public class Welcome1  

5      {  



22

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Part of every Java application
• Applications begin executing at main

– Parentheses indicate main is a method 
– Java applications contain one or more methods

• Exactly one method must be called main
– Methods can perform tasks and return information

• void means main returns no information
• For now, mimic main's first line

– Left brace begins body of method declaration
• Ended by right brace } (line 11)

7         public static void main( String args[] )

8         { 



23

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Instructs computer to perform an action
• Prints string of characters 

– String – series of characters inside double quotes
• White-spaces in strings are not ignored by compiler

– System.out
• Standard output object
• Print to command window (i.e., MS-DOS prompt)

– Method System.out.println 
• Displays line of text

– This line known as a statement
• Statements must end with semicolon ;

9            System.out.println( "Welcome to Java Programming!" );



24

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

– Ends method declaration

– Ends class declaration
– Can add comments to keep track of ending braces

11       } // end method main

13    } // end class Welcome1



25

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

• Compiling a program
– Open a command prompt window, go to directory where 

program is stored
– Type javac Welcome1.java
– If no syntax errors, Welcome1.class created

• Has bytecodes that represent application
• Bytecodes passed to JVM

• system’s PATH environment variable for java and javac



26

 1992-2007 Pearson Education, Inc.  All rights reserved.

First Program in Java: Printing a Line of 
Text (Cont.)

• Executing a program
– Type java Welcome1

• Launches JVM
• JVM loads .class file for class Welcome1
• .class extension omitted from command
• JVM calls method main



27

 1992-2007 Pearson Education, Inc.  All rights reserved.

Executing Welcome1 in a Microsoft Windows XP Command Prompt window.

You type this command to execute
 the application

The program outputs

Welcome to Java Programming!



28

 1992-2007 Pearson Education, Inc.  All rights reserved.

Modifying Our First Java Program

• Modify example in Fig. 2.1 to print same contents 
using different code



29

 1992-2007 Pearson Education, Inc.  All rights reserved.

Modifying Our First Java Program (Cont.)

• Modifying programs
– Welcome2.java (Fig. 2.3) produces same output as 
Welcome1.java (Fig. 2.1)

– Using different code

– Line 9 displays “Welcome to ” with cursor remaining on 
printed line

– Line 10 displays “Java Programming! ” on same line with 
cursor on next line

9            System.out.print( "Welcome to " );        
10          System.out.println( "Java Programming!" );



30

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Welcome2.java

1. Comments

2. Blank line

3. Begin class 
Welcome2

3.1 Method  main

4. Method 
System.out.print

4.1 Method 
System.out.print
ln

5. end main, 
Welcome2

Program Output

 1 // Fig. 2.3: Welcome2.java 
 2 // Printing a line of text with multiple statements. 
 3  
 4 public class Welcome2  
 5 { 
 6    // main method begins execution of Java application 
 7    public static void main( String args[] ) 
 8    { 
 9       System.out.print( "Welcome to " );         
10       System.out.println( "Java Programming!" ); 
11  
12    } // end method main 
13  
14 } // end class Welcome2 
 
Welcome to Java Programming! 
 

 

System.out.print keeps the cursor on 
the same line, so System.out.println 
continues on the same line. 



31

 1992-2007 Pearson Education, Inc.  All rights reserved.

Modifying Our First Java Program (Cont.)

• Escape characters
– Backslash ( \ )
– Indicates special characters to be output

• Newline characters (\n)
– Interpreted as “special characters” by methods 
System.out.print and System.out.println

– Indicates cursor should be at the beginning of the next line
– Welcome3.java (Fig. 2.4)

– Line breaks at \n
9            System.out.println( "Welcome\nto\nJava\nProgramming!" );



32

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Welcome3.java

1. main

2. 
System.out.println 
(uses \n for new 
line)

Program Output

 1 // Fig. 2.4: Welcome3.java 
 2 // Printing multiple lines of text with a single statement. 
 3  
 4 public class Welcome3  
 5 { 
 6    // main method begins execution of Java application 
 7    public static void main( String args[] ) 
 8    { 
 9       System.out.println( "Welcome\nto\nJava\nProgramming!" ); 
10  
11    } // end method main 
12  
13 } // end class Welcome3 

Welcome 
to 
Java 
Programming! 

 

A new line begins after each \n escape 
sequence is output.



33

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.5 | Some common escape sequences.

Escape 
sequence 

Description 

\n Newline. Position the screen cursor at the beginning of the next line. 
\t Horizontal tab. Move the screen cursor to the next tab stop. 
\r Carriage return. Position the screen cursor at the beginning of the 

current line—do not advance to the next line. Any characters output 
after the carriage return overwrite the characters previously output 
on that line. 

\\ Backslash. Used to print a backslash character. 
\" Double quote. Used to print a double-quote character. For example, 

System.out.println( "\"in quotes\"" ); 

displays 
"in quotes" 

 



34

 1992-2007 Pearson Education, Inc.  All rights reserved.

Displaying Text with printf

•System.out.printf
– Feature added in Java SE 5.0
– Displays formatted data

– Format string
• Fixed text
• Format specifier – placeholder for a value

– Format specifier %s – placeholder for a string

9            System.out.printf( "%s\n%s\n",        
10                        "Welcome to", "Java Programming!" );



35

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Welcome4.java

main

printf

Program output

 1 // Fig. 2.6: Welcome4.java 
 2 // Printing multiple lines in a dialog box. 
 3  
 4 public class Welcome4  
 5 { 
 6    // main method begins execution of Java application 
 7    public static void main( String args[] ) 
 8    { 
 9       System.out.printf( "%s\n%s\n",          
10          "Welcome to", "Java Programming!" ); 
11  
12    } // end method main 
13  
14 } // end class Welcome4 
 
Welcome to 
Java Programming! 
 

 

System.out.printf 
displays formatted data. 



36

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers

• Upcoming program
– Use Scanner to read two integers from user
– Use printf to display sum of the two values
– Use packages



37

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Addition.java

(1 of 2)

import declaration

Scanner

nextInt

 1 // Fig. 2.7: Addition.java 
 2 // Addition program that displays the sum of two numbers. 
 3 import java.util.Scanner; // program uses class Scanner 
 4  

 5 public class Addition  

 6 { 

 7    // main method begins execution of Java application 
 8    public static void main( String args[] ) 

 9    { 

10       // create Scanner to obtain input from command window 
11       Scanner input = new Scanner( System.in );             

12  

13       int number1; // first number to add    

14       int number2; // second number to add   
15       int sum; // sum of number1 and number2 
16  

17       System.out.print( "Enter first integer: " ); // prompt    
18       number1 = input.nextInt(); // read first number from user 
19  

 

import declaration imports class 
Scanner from package java.util. 

Declare and initialize variable 
input, which is a Scanner. 

Declare variables number1, 
number2 and sum. 

Read an integer from the user 
and assign it to number1. 



38

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Addition.java

(2 of 2)

4. Addition

5. printf

20       System.out.print( "Enter second integer: " ); // prompt  
21       number2 = input.nextInt(); // read second number from user 
22  

23       sum = number1 + number2; // add numbers 
24  

25       System.out.printf( "Sum is %d\n", sum ); // display sum 
26  

27    } // end method main 
28  

29 } // end class Addition 
 
Enter first integer: 45 
Enter second integer: 72 
Sum is 117 

 
 

Read an integer from the user 
and assign it to number2. 

Calculate the sum of the 
variables number1 and 
number2, assign result to sum.

Display the sum using 
formatted output. 

Two integers entered by the user. 



39

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– import declarations 
• Used by compiler to identify and locate classes used in Java 

programs
• Tells compiler to load class Scanner from java.util 

package

– Begins public class Addition
• Recall that file name must be Addition.java

– Lines 8-9: begin main

3      import java.util.Scanner;  // program uses class Scanner

5   public class Addition 
6    {



40

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– Variable Declaration Statement
– Variables

• Location in memory that stores a value
– Declare with name and type before use

• Input is of type Scanner 
– Enables a program to read data for use 

• Variable name: any valid identifier
– Declarations end with semicolons ;
– Initialize variable in its declaration

• Equal sign
• Standard input object

– System.in

10      // create Scanner to obtain input from command window
11      Scanner input = new Scanner( System.in );



41

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– Declare variable number1, number2 and sum of type int
• int holds integer values (whole numbers): i.e., 0, -4, 97
• Types float and double can hold decimal numbers
• Type char can hold a single character: i.e., x, $, \n, 7
• int, float, double and char are primitive types

– Can add comments to describe purpose of variables

– Can declare multiple variables of the same type in one 
declaration

– Use comma-separated list

13          int number1; // first number to add
14        int number2; // second number to add
15                  int sum; // sum of number 1 and number 2

         int number1, // first number to add 
             number2, // second number to add
             sum; // sum of number1 and number2



42

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– Message called a prompt - directs user to perform an 
action

– Package java.lang

– Result of call to nextInt given to number1 using 
assignment operator =

• Assignment statement
• = binary operator - takes two operands

– Expression on right evaluated and assigned to variable 
on left

• Read as: number1 gets the value of input.nextInt()

17            System.out.print( "Enter first integer: " ); // prompt

18            number1 = input.nextInt(); // read first number from user



43

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– Similar to previous statement
• Prompts the user to input the second integer

– Similar to previous statement
• Assign variable number2 to second integer input

– Assignment statement
• Calculates sum of number1 and number2 (right hand side)
• Uses assignment operator = to assign result to variable sum
• Read as: sum gets the value of number1 + number2
• number1 and number2 are operands

20            System.out.print( "Enter second integer: " ); // prompt

21            number2 = input.nextInt(); // read second number from user

23            sum = number1 + number2; // add numbers



44

 1992-2007 Pearson Education, Inc.  All rights reserved.

Another Java Application: Adding 
Integers (Cont.)

– Use System.out.printf to display results
– Format specifier %d

• Placeholder for an int value

– Calculations can also be performed inside printf
– Parentheses around the expression number1 + number2 

are not required

25            System.out.printf( "Sum is %d\n " , sum ); // display sum

              System.out.printf( "Sum is %d\n " , ( number1 + number2 ) ); 



45

 1992-2007 Pearson Education, Inc.  All rights reserved.

Memory Concepts

• Variables 
– Every variable has a name, a type, a size and a value

• Name corresponds to location in memory

– When new value is placed into a variable, replaces (and 
destroys) previous value 

– Reading variables from memory does not change them



46

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.8 |  Memory location showing the name and value of variable number1.



47

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.9 |  Memory locations after storing values for number1 and number2.



48

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.10 | Memory locations after calculating and storing the sum of number1 and 
number2. 



49

 1992-2007 Pearson Education, Inc.  All rights reserved.

Arithmetic

• Arithmetic calculations used in most programs
– Usage 

• * for multiplication 
• / for division
• % for remainder
• +, -

– Integer division truncates remainder

7 / 5 evaluates to 1
– Remainder operator % returns the remainder 

7 % 5 evaluates to 2



50

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.11 | Arithmetic operators.

Java 
operation 

Arithmetic 
operator 

Algebraic 
expression 

Java 
expression 

Addition + f + 7 f + 7 
Subtraction – p – c p - c 
Multiplication * bm b * m 
Division / x / y  or      or  x ÷ y 

 
x / y 

 



51

 1992-2007 Pearson Education, Inc.  All rights reserved.

Arithmetic (Cont.)

• Operator precedence 
– Some arithmetic operators act before others (i.e., 

multiplication before addition)
• Use parenthesis when needed

– Example: Find the average of three variables a, b and c
• Do not use:   a + b + c / 3 
• Use:  ( a + b + c ) / 3



52

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.12 | Precedence of arithmetic operators.

Operator(s) Operation(s) Order of evaluation 
(precedence) 

* 

/ 

% 

Multiplication 

Division  

Remainder 

Evaluated first. If there are 
several operators of this type, 
they are evaluated from left to 
right.  

+ 

- 

Addition 

Subtraction 

Evaluated next. If there are 
several operators of this type, 
they are evaluated from left to 
right. 

 



53

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.13 | Order in which a second-degree polynomial is evaluated.



54

 1992-2007 Pearson Education, Inc.  All rights reserved.

Decision Making: Equality and Relational 
Operators

• Condition
– Expression can be either true or false

•if statement
– Simple version in this section, more detail later
– If a condition is true, then the body of the if statement 

executed
– Control always resumes after the if statement
– Conditions in if statements can be formed using equality 

or relational operators (next slide)



55

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.14 | Equality and relational operators. 

Standard algebraic 
equality or relational 
operator 

Java equality  
or relational 
operator 

Sample 
Java 
condition 

 
Meaning of  
Java condition 

Equality operators    
=  == x == y x is equal to y 
≠  != x != y x is not equal to y 
Relational operators    
>  > x > y x is greater than y 
<  < x < y x is less than y 
≥  >= x >= y x is greater than or equal to y 
≤  <= x <= y x is less than or equal to y 

 



56

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Comparison.java

(1 of 2)

1. Class 
Comparison

1.1 main

1.2 Declarations

1.3 Input data 
(nextInt)

1.4 Compare two 
inputs using if 
statements

 1 // Fig. 2.15: Comparison.java 
 2 // Compare integers using if statements, relational operators  
 3 // and equality operators. 
 4 import java.util.Scanner; // program uses class Scanner 
 5  
 6 public class Comparison  

 7 { 

 8    // main method begins execution of Java application 
 9    public static void main( String args[] ) 

10    { 
11       // create Scanner to obtain input from command window 
12       Scanner input = new Scanner( System.in ); 
13  
14       int number1; // first number to compare 
15       int number2; // second number to compare 
16  
17       System.out.print( "Enter first integer: " ); // prompt  
18       number1 = input.nextInt(); // read first number from user  
19  
20       System.out.print( "Enter second integer: " ); // prompt  
21       number2 = input.nextInt(); // read second number from user  
22        
23       if ( number1 == number2 )                               
24          System.out.printf( "%d == %d\n", number1, number2 ); 
25  
26       if ( number1 != number2 )                               
27          System.out.printf( "%d != %d\n", number1, number2 ); 
28  
29       if ( number1 < number2 )                               
30          System.out.printf( "%d < %d\n", number1, number2 ); 

 

Test for equality, display 
result using printf.

Compares two numbers 
using relational operator <.



57

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

Comparison.java

(2 of 2)

Program output

31  
32       if ( number1 > number2 )                               
33          System.out.printf( "%d > %d\n", number1, number2 ); 
34  

35       if ( number1 <= number2 )                               

36          System.out.printf( "%d <= %d\n", number1, number2 ); 

37  

38       if ( number1 >= number2 )                               

39          System.out.printf( "%d >= %d\n", number1, number2 ); 

40  

41    } // end method main 
42  

43 } // end class Comparison 
 
Enter first integer: 777 
Enter second integer: 777 
777 == 777 
777 <= 777 
777 >= 777 
 
 
Enter first integer: 1000 
Enter second integer: 2000 
1000 != 2000 
1000 < 2000 
1000 <= 2000 
 
 
 
Enter first integer: 2000 
Enter second integer: 1000 
2000 != 1000 
2000 > 1000 
2000 >= 1000 
 

 

Compares two numbers 
using relational operators 
>, <= and >=.



58

 1992-2007 Pearson Education, Inc.  All rights reserved.

Decision Making: Equality and Relational 
Operators (Cont.)

– Line 6: begins class Comparison declaration
– Line 12: declares Scanner variable input and assigns it a 

Scanner that inputs data from the standard input
– Lines 14-15: declare int variables
– Lines 17-18: prompt the user to enter the first integer and 

input the value
– Lines 20-21: prompt the user to enter the second integer 

and input the value



59

 1992-2007 Pearson Education, Inc.  All rights reserved.

Decision Making: Equality and Relational 
Operators (Cont.)

– if statement to test for equality using (==)
• If variables equal (condition true) 

– Line 24 executes
• If variables not equal, statement skipped
• No semicolon at the end of line 23
• Empty statement

– No task is performed
– Lines 26-27, 29-30, 32-33, 35-36 and 38-39

• Compare number1 and number2 with the operators !=, <, 
>, <= and >=, respectively

23          if ( number1 == number2 )                       
24             System.out.printf( "%d == %d\n", number1, number2 );



60

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 2.16 | Precedence and associativity of operations discussed. 

Operators Associativity Type 
*    /    % left to right multiplicative 
+    - left to right additive 
<    <=    >    >= left to right relational 
==   != left to right equality 
=  right to left assignment 

 



61

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• Objects
– Reusable software components that model real-world items
– Look all around you

• People, animals, plants, cars, etc.
– Attributes

• Size, shape, color, weight, etc.
– Behaviors

• Babies cry, crawl, sleep, etc.



62

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• Object-oriented design (OOD)
– Models software in terms similar to those used to describe real-

world objects
– Class relationships
– Inheritance relationships
– Models communication among objects
– Encapsulates attributes and operations (behaviors)

• Information hiding
• Communication through well-defined interfaces

• Object-oriented language
– Programming in object-oriented languages is called object-

oriented programming (OOP)
– Java



63

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• Classes are to objects as blueprints are to houses
• Associations

– Relationships between classes

• Packaging software in classes facilitates reuse



64

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• Object-Oriented Analysis and Design (OOA/D)
– Essential for large programs
– Analyze program requirements, then develop a design
– UML

• Unified Modeling Language
• Standard for designing object-oriented systems



65

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• History of the UML
– Need developed for process with which to approach OOA/

D
– Brainchild of Booch, Rumbaugh and Jacobson
– Object Management Group (OMG) supervised
– Version 2 is current version



66

 1992-2007 Pearson Education, Inc.  All rights reserved.

Object-oriented Programming

• UML
– Graphical representation scheme
– Enables developers to model object-oriented systems
– Flexible and extensible



67

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Statements 



68

 1992-2007 Pearson Education, Inc.  All rights reserved.

Introduction
Algorithms
Pseudocode
Control Structures
if Single-Selection Statement
if…else Double-Selection Statement
while Repetition Statement
Formulating Algorithms: Counter-Controlled Repetition
Formulating Algorithms: Sentinel-Controlled Repetition 
Formulating Algorithms: Nested Control Statements
Compound Assignment Operators
Increment and Decrement Operators
Primitive Types



69

 1992-2007 Pearson Education, Inc.  All rights reserved.

Algorithms 

• Algorithms
– The actions to execute
– The order in which these actions execute

• Program control
– Specifies the order in which actions execute in a 

program



70

 1992-2007 Pearson Education, Inc.  All rights reserved.

Pseudocode 

• Pseudocode
– An informal language similar to English
– Helps programmers develop algorithms
– Does not run on computers
– Should contain input, output and calculation actions
– Should not contain variable declarations



71

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures 

• Sequential execution
– Statements are normally executed one after the other in the 

order in which they are written

• Transfer of control
– Specifying the next statement to execute that is not 

necessarily the next one in order
– Can be performed by the goto statement

• Structured programming eliminated goto statements



72

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

• Bohm and Jacopini’s research
– Demonstrated that goto statements were unnecessary
– Demonstrated that all programs could be written with 

three control structures
• The sequence structure,
• The selection structure and
• The repetition structure



73

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

• UML activity diagram (www.uml.org)
– Models the workflow (or activity) of a part of a software 

system
– Action-state symbols (rectangles with their sides replaced 

with outward-curving arcs)
• represent action expressions specifying actions to perform

– Diamonds
• Decision symbols 
• Merge symbols 

http://www.uml.org/


74

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

– Small circles
• Solid circle represents the activity’s initial state
• Solid circle surrounded by a hollow circle represents the 

activity’s final state
– Transition arrows

• Indicate the order in which actions are performed
– Notes (rectangles with the upper-right corners folded over)

• Explain the purposes of symbols (like comments in Java)
• Are connected to the symbols they describe by dotted lines



75

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.1 | Sequence structure activity diagram. 



76

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

• Selection Statements
– if statement

• Single-selection statement
– if…else statement

• Double-selection statement
– switch statement

• Multiple-selection statement



77

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

• Repetition statements
– Also known as looping statements
– Repeatedly performs an action while its loop-continuation 

condition remains true
– while statement

• Performs the actions in its body zero or more times
– do…while statement

• Performs the actions in its body one or more times
– for statement

• Performs the actions in its body zero or more times



78

 1992-2007 Pearson Education, Inc.  All rights reserved.

Control Structures (Cont.)

• Java has three kinds of control structures
– Sequence statement,
– Selection statements (three types) and
– Repetition statements (three types)
– All programs are composed of these control statements

• Control-statement stacking
– All control statements are single-entry/single-exit

• Control-statement nesting



79

 1992-2007 Pearson Education, Inc.  All rights reserved.

if Single-Selection Statement 

•if statements
– Execute an action if the specified condition is true
– Can be represented by a decision symbol (diamond) in a 

UML activity diagram
• Transition arrows out of a decision symbol have guard 

conditions
– Workflow follows the transition arrow whose guard 

condition is true



80

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.2 | if single-selection statement UML activity diagram.  



81

 1992-2007 Pearson Education, Inc.  All rights reserved.

if…else Double-Selection Statement 

•if…else statement
– Executes one action if the specified condition is true or a 

different action if the specified condition is false
• Conditional Operator ( ? : )

– Java’s only ternary operator (takes three operands)
– ? : and its three operands form a conditional expression

• Entire conditional expression evaluates to the second 
operand if the first operand is true

• Entire conditional expression evaluates to the third operand 
if the first operand is false



82

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.3 | if…else double-selection statement UML activity diagram. 



83

 1992-2007 Pearson Education, Inc.  All rights reserved.

if…else Double-Selection Statement 
(Cont.)

• Nested if…else statements
– if…else statements can be put inside other if…else 

statements

• Dangling-else problem
– elses are always associated with the immediately 

preceding if unless otherwise specified by braces { }
• Blocks

– Braces { } associate statements into blocks
– Blocks can replace individual statements as an if body



84

 1992-2007 Pearson Education, Inc.  All rights reserved.

if…else Double-Selection Statement 
(Cont.)

• Logic errors
– Fatal logic errors cause a program to fail and terminate 

prematurely
– Nonfatal logic errors cause a program to produce incorrect 

results

• Empty statements
– Represented by placing a semicolon ( ; ) where a statement 

would normally be
– Can be used as an if body



85

 1992-2007 Pearson Education, Inc.  All rights reserved.

Good Programming Practice 4.4

Always using braces in an if...else (or 
other) statement helps prevent their 
accidental omission, especially when 
adding statements to the if-part or the 
else-part at a later time. To avoid omitting 
one or both of the braces, some 
programmers type the beginning and 
ending braces of blocks before typing the 
individual statements within the braces.



86

 1992-2007 Pearson Education, Inc.  All rights reserved.

while Repetition Statement 

•while statement
– Repeats an action while its loop-continuation condition 

remains true
– Uses a merge symbol in its UML activity diagram

• Merges two or more workflows
• Represented by a diamond (like decision symbols) but has:

– Multiple incoming transition arrows,
– Only one outgoing transition arrow and
– No guard conditions on any transition arrows



87

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.4 | while repetition statement UML activity diagram. 



88

 1992-2007 Pearson Education, Inc.  All rights reserved.

Formulating Algorithms: Counter-
Controlled Repetition 

• Counter-controlled repetition
– Use a counter variable to count the number of times a loop 

is iterated

• Integer division
– The fractional part of an integer division calculation is 

truncated (thrown away)



89

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the 
class-average problem. 

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Prompt the user to enter the next grade
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9
10 Set the class average to the total divided by ten
11 Print the class average 



90

 1992-2007 Pearson Education, Inc.  All rights reserved.

•GradeBook.java



91

 1992-2007 Pearson Education, Inc.  All rights reserved.

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>java GradeBook
Enter grade: 12
Enter grade: 8
Enter grade: 12
Enter grade: 12
Enter grade: 3
Enter grade: 5
Enter grade: 6
Enter grade: 8
Enter grade: 9
Enter grade: 6

Total of all 10 grades is 81
Class average is 8

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>



92

 1992-2007 Pearson Education, Inc.  All rights reserved.

Common Programming Error 4.5

Assuming that integer division rounds 
(rather than truncates) can lead to 
incorrect results. For example, 7 ÷ 4, 
which yields 1.75 in conventional 
arithmetic, truncates to 1 in integer 
arithmetic, rather than rounding to 2.



93

 1992-2007 Pearson Education, Inc.  All rights reserved.

Formulating Algorithms: Sentinel-
Controlled Repetition 

• Sentinel-controlled repetition
– Also known as indefinite repetition
– Use a sentinel value (also known as a signal, dummy or flag 

value)
• A sentinel value cannot also be a valid input value



94

 1992-2007 Pearson Education, Inc.  All rights reserved.

Common Programming Error 4.6

Choosing a sentinel value that is also a 
legitimate data value is a logic error.



95

 1992-2007 Pearson Education, Inc.  All rights reserved.

Error-Prevention Tip 4.2

When performing division by an 
expression whose value could be zero, 
explicitly test for this possibility and 
handle it appropriately in your program 
(e.g., by printing an error message) 
rather than allow the error to occur



96

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.8 | Class-average problem pseudocode algorithm with sentinel-controlled repetition. 

1 Initialize total to zero
2 Initialize counter to zero
3
4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter
10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 else
17 Print “No grades were entered” 



97

 1992-2007 Pearson Education, Inc.  All rights reserved.



98

 1992-2007 Pearson Education, Inc.  All rights reserved.

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>java GradeBookWhile
Enter grade or -1 to quit: 34
Enter grade or -1 to quit: 16
Enter grade or -1 to quit: 5
Enter grade or -1 to quit: -1

Total of all 10 grades is 55
Class average is 18.33

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>



99

 1992-2007 Pearson Education, Inc.  All rights reserved.

Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Unary cast operator
– Creates a temporary copy of its operand with a different 

data type
• example: (double) will create a temporary floating-point 

copy of its operand
– Explicit conversion

• Promotion
– Converting a value (e.g. int) to another data type (e.g. 
double) to perform a calculation

– Implicit conversion



100

 1992-2007 Pearson Education, Inc.  All rights reserved.

Formulating Algorithms: Nested Control 
Statements 

• Control statements can be nested within one 
another

– Place one control statement inside the body of the other



101

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.11 | Pseudocode for examination-results problem.

1 Initialize passes to zero 
2 Initialize failures to zero 
3 Initialize student counter to one 
4  
5 While student counter is less than or equal to 10 
6  Prompt the user to enter the next exam result 
7  Input the next exam result 
8  
9  If the student passed 
10   Add one to passes 
11  Else 
12   Add one to failures 
13  
14  Add one to student counter 
15  
16 Print the number of passes 
17 Print the number of failures 
18  
19 If more than eight students passed  
20  Print “Raise tuition” 

 



102

 1992-2007 Pearson Education, Inc.  All rights reserved.



103

 1992-2007 Pearson Education, Inc.  All rights reserved.

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>java Analysis
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Hardworking class.

C:\Documents and Settings\Omer\Desktop\Java Course\Lecture1>



104

 1992-2007 Pearson Education, Inc.  All rights reserved.

Compound Assignment Operators 

• Compound assignment operators
– An assignment statement of the form:

variable = variable operator expression;
where operator is +, -, *, / or % can be written as:
variable operator= expression;

– example: c = c + 3; can be written as c += 3;
• This statement adds 3 to the value in variable c and stores 

the result in variable c



105

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.14 | Arithmetic compound assignment operators.  

Assignment 
operator 

Sample 
expression Explanation Assigns 

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12; 
+= c += 7 C = c + 7 10 to c 
-= d -= 4 d = d - 4 1 to d 
*= e *= 5  e = e * 5 20 to e 
/= f /= 3 f = f / 3 2 to f 
%= g %= 9 g = g % 9 3 to g 
 



106

 1992-2007 Pearson Education, Inc.  All rights reserved.

Increment and Decrement Operators 

• Unary increment and decrement operators
– Unary increment operator (++) adds one to its operand
– Unary decrement operator (--) subtracts one from its 

operand
– Prefix increment (and decrement) operator

• Changes the value of its operand, then uses the new value of 
the operand in the expression in which the operation appears

– Postfix increment (and decrement) operator
• Uses the current value of its operand in the expression in 

which the operation appears, then changes the value of the 
operand



107

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.15 | Increment and decrement operators.  

Operator Called Sample 
expression Explanation 

++ prefix 
increment ++a  Increment a by 1, then use the new value of a in the 

expression in which a resides. 

++ postfix 
increment a++ Use the current value of a in the expression in which a resides, 

then increment a by 1. 

-- prefix 
decrement --b  Decrement b by 1, then use the new value of b in the 

expression in which b resides. 

-- postfix 
decrement b-- Use the current value of b in the expression in which b resides, 

then decrement b by 1. 
 



108

 1992-2007 Pearson Education, Inc.  All rights reserved.

Outline

•Increment.ja
va

 1 // Fig. 4.16: Increment.java 

 2 // Prefix increment and postfix increment operators. 

 3  
 4 public class Increment  

 5 { 

 6    public static void main( String args[] ) 

 7    { 

 8       int c; 

 9     
10       // demonstrate postfix increment operator 
11       c = 5; // assign 5 to c 
12       System.out.println( c );   // print 5 
13       System.out.println( c++ ); // print 5 then postincrement 
14       System.out.println( c );   // print 6                    
15  
16       System.out.println(); // skip a line 
17  
18       // demonstrate prefix increment operator 
19       c = 5; // assign 5 to c 
20       System.out.println( c );   // print 5 
21       System.out.println( ++c ); // preincrement then print 6 
22       System.out.println( c );   // print 6                   
23  
24    } // end main 
25  
26 } // end class Increment 
 
5 
5 
6 
 
5 
6 
6 
 

 

Postincrementing the c variable

Preincrementing the c variable



109

 1992-2007 Pearson Education, Inc.  All rights reserved.

Fig. 4.17 | Precedence and associativity of the operators discussed so far.   

Operators Associativity Type 
++    -- right to left unary postfix 
++    --    +     -     ( type ) right to left unary prefix 
*     /     % left to right Multiplicative 
+     - left to right Additive 
<     <=    >     >= left to right Relational 
==    != left to right Equality 
?: right to left Conditional 
=     +=    -=    *=    /=    %= right to left assignment 
 



110

 1992-2007 Pearson Education, Inc.  All rights reserved.

Primitive Types 

• Java is a strongly typed language
– All variables have a type

• Primitive types in Java are portable across all 
platforms that support Java



111

 1992-2007 Pearson Education, Inc.  All rights reserved.

Portability Tip 4.1

Unlike C and C++, the primitive types in 
Java are portable across all computer 
platforms that support Java. Thanks to this 
and Java's many other portability features, 
a programmer can write a program once 
and be certain that it will execute on any 
computer platform that supports Java. This 
capability is sometimes referred to as WORA 
(Write Once, Run Anywhere).


	Slide 1
	Slide 2
	Slide 3
	1.1 Introduction
	1.7 Machine Languages, Assembly Languages and High-Level Languages
	1.9 History of Java
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	1.10 Java Class Libraries
	Slide 12
	1.13 Typical Java Development Environment
	Fig. 1.1 | Typical Java development environment.
	Slide 15
	2.2 First Program in Java: Printing a Line of Text
	Outline
	2.2 First Program in Java: Printing a Line of Text (Cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Fig. 2.2 | Executing Welcome1 in a Microsoft Windows XP Command Prompt window.
	2.3 Modifying Our First Java Program
	2.3 Modifying Our First Java Program (Cont.)
	Slide 30
	Slide 31
	Slide 32
	Fig. 2.5 | Some common escape sequences.
	2.4 Displaying Text with printf
	Slide 35
	2.5 Another Java Application: Adding Integers
	Slide 37
	Slide 38
	2.5 Another Java Application: Adding Integers (Cont.)
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	2.6 Memory Concepts
	Fig. 2.8 |  Memory location showing the name and value of variable number1.
	Fig. 2.9 |  Memory locations after storing values for number1 and number2.
	Fig. 2.10 | Memory locations after calculating and storing the sum of number1 and number2. 
	2.7 Arithmetic
	Fig. 2.11 | Arithmetic operators.
	2.7 Arithmetic (Cont.)
	Fig. 2.12 | Precedence of arithmetic operators.
	Fig. 2.13 | Order in which a second-degree polynomial is evaluated.
	2.8 Decision Making: Equality and Relational Operators
	Fig. 2.14 | Equality and relational operators. 
	Slide 56
	Slide 57
	2.8 Decision Making: Equality and Relational Operators (Cont.)
	Slide 59
	Fig. 2.16 | Precedence and associativity of operations discussed. 
	1.16 Software Engineering Case Study (Cont.)
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	4
	Slide 68
	4.2  Algorithms 
	4.3  Pseudocode 
	4.4  Control Structures 
	4.4  Control Structures (Cont.)
	Slide 73
	Slide 74
	Fig. 4.1 | Sequence structure activity diagram. 
	Slide 76
	Slide 77
	Slide 78
	4.5  if Single-Selection Statement 
	Fig. 4.2 | if single-selection statement UML activity diagram.  
	4.6  if…else Double-Selection Statement 
	Fig. 4.3 | if…else double-selection statement UML activity diagram. 
	4.6  if…else Double-Selection Statement (Cont.)
	Slide 84
	Good Programming Practice 4.4
	4.7  while Repetition Statement 
	Fig. 4.4 | while repetition statement UML activity diagram. 
	4.8  Formulating Algorithms: Counter-Controlled Repetition 
	Fig. 4.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-average problem. 
	Slide 90
	Slide 91
	Common Programming Error 4.5
	4.9  Formulating Algorithms: Sentinel-Controlled Repetition 
	Common Programming Error 4.6
	Error-Prevention Tip 4.2
	Fig. 4.8 | Class-average problem pseudocode algorithm with sentinel-controlled repetition. 
	Slide 97
	Slide 98
	Slide 99
	4.10  Formulating Algorithms: Nested Control Statements 
	Fig. 4.11 | Pseudocode for examination-results problem.
	Slide 102
	Slide 103
	4.11  Compound Assignment Operators 
	Fig. 4.14 | Arithmetic compound assignment operators.  
	4.12  Increment and Decrement Operators 
	Fig. 4.15 | Increment and decrement operators.  
	Slide 108
	Fig. 4.17 | Precedence and associativity of the operators discussed so far.   
	4.13  Primitive Types 
	Portability Tip 4.1

