
Application and Desktop Sharing

Omer Boyaci and Henning Schulzrinne
Department of Computer Science

Columbia University
{boyaci,hgs}@cs.columbia.edu

November 28, 2007

Abstract

Application and desktop sharing allows sharing any
application with one or more people over the In-
ternet. The participants receive the screen-view of
the shared application from the server. Their mouse
and keyboard events are delivered and regenerated at
the server. Application and desktop sharing enables
collaborative work, software tutoring and e-learning
over the Internet. We have developed an applica-
tion and desktop sharing platform called ADS which
is efficient, reliable, operating system independent,
scales well, supports all applications and features
true application sharing. With ADS the users can
share any application from their desktop and the par-
ticipants do not need to have the application installed
on their systems. 1

1 Introduction

Application and desktop sharing allows two or more
people to collaboratively work on a single document,
drawing or project in real-time. They do not need to
email the file back and forth for modifications and
corrections. Similarly instructors can give a lecture

1This research was supported by FirstHand Technologies.

over the Internet using ADS. Students or instruc-
tor can record the session and this recording can be
played back locally or from a streaming server to
multiple users. Application sharing can be enriched
with audio and video for online lectures. Moreover
ADS can be used for software tutoring where an in-
structor teaches a particular software like photoshop,
dreamweaver, office suites, autocad and visual stu-
dio. Students can see what the instructor does and
they can participate to the sharing session by re-
motely using mouse and keyboard. Instructors can
request from students to repeat their actions after
showing a feature.

Section 2 gives some background information on
different application sharing models. Section 3 dis-
cusses the related work and why they are inade-
quate. System architecture is discussed in Section
4, whereas the details of the ADS protocol is dis-
cusses in Section 5. Client and server architectures
are explained in Sections 6 and 7 respectively. Sec-
tion 8 gives information about the performance of the
system in terms of bandwidth and processing power
requirements. Section 9 talks about future work and
finally Section 10 summarizes our work.

1



2 Background

Application and desktop sharing (ADS) allows shar-
ing an application with remote users. All participants
see the same screen-view and use the same applica-
tion. There is only one copy of the shared application
and it runs on the server. The main challenges of ap-
plication and desktop sharing are scalability, reliabil-
ity, true application sharing, operating system inde-
pendence and performance. We believe that an appli-
cation and desktop sharing system should be operat-
ing system independent because participants can use
different operating systems. Also, the system should
scale well because some sharing scenarios such as e-
learning and software tutoring may consist of several
simultaneous participants. Systems supporting mul-
ticasting scale well but participants will end up with
corrupted screen-views if the system is not designed
reliability in mind. The sharing system should be ef-
ficient in the sense that it should transmit only the
changed parts of the screen and it should not con-
sume all the resources while doing this.

Application sharing differs from desktop sharing
in which there is only one shared application for pri-
vacy and security. The key challenge is that some
other application can sit on top of the shared appli-
cation and the shared application can open new child
windows like options or fonts. A true application
sharing system should blank all the other applica-
tions if they are on top of the shared one and should
transfer all the child windows of the shared applica-
tion. For example, if the user wants to share only the
Windows Internet Explorer application which has
the title “Windows Live Hotmail - Windows Internet
Explorer” from the desktop seen in (Figure ??) then
the participants should only see the main and the “In-
ternet Options” windows. ADS (Figure ??) displays
only these two windows with a correct size while
blocking the desktop background and the non-shared
application. Whereas another application sharing

client Mast, which will be discussed later, could not
display the shared application in correct size and also
could not block the non-shared application and desk-
top background (Figure ??).

There are two models for application sharing:
application-specific and generic. The application-
specific model requires the developers to add this
feature to their applications; for example, the latest
version of Microsoft Office has this feature. Also,
in order to participate a sharing session, all partici-
pants must have a copy of the shared application. In
the generic model, the application can be anything
such as word processor, browser, CAD/CAM, Power
point or movie editor. Also, the participants need
not have the application installed on their systems.
The only disadvantage of generic application shar-
ing is that its generic nature makes it a bit inefficient
as compared to the application-specific model in cer-
tain scenarios. We have developed ADS based on the
generic model therefore, users can share any appli-
cation without requiring the participants to have the
application.

3 Related Work

As we have mentioned in the previous section, ap-
plication and desktop sharing is a very useful fea-
ture therefore, operating system providers, commer-
cial companies and several open source teams try to
come up with a solution. Microsoft has Windows
Meeting Space for Windows Vista and Netmeeting
for Windows XP and older versions. Netmeeting was
released in 1999 for Windows 98 and in our tests it
fails to display pop-ups and menus. Windows Vista
brings application sharing feature with the Windows
Meeting Space but all the attendees must use Win-
dows Vista. Apple introduced desktop sharing (no
application sharing) with Mac OS X Leopard but
again both parties should use Mac OS. These two

2



Figure 1: A screenshot of a desktop with overlapped windows

Figure 2: Mast client view

3



Figure 3: ADS client view

Figure 4: UltraVNC client view

solutions are operating system dependent. VNC [?]
is a cross-platform open source desktop sharing sys-
tem but it does not have application sharing feature
too. UltraVNC [?] claims to support the application
sharing feature but it has failed in our tests due to fol-
lowing problems: the cursor position did not match,
there is no privacy, new windows belonging to same
application are not included and long menus are not
shown properly.

Table 1: Comparison of Related Work
OS S AS RC R

VNC + - - + +
Windows Meeting Space - - + + -
Leopard Screen Sharing - - - + -
TeleTeachingTool + + - - +
Mast + + - + -
ADS + + + + +

Legend
OS Is it operating system independent?
S Is it scalable?
AS Does it support application sharing?
RC Does it support remote control?
R Does it support recording?

VNC, Netmeeting, Windows Meeting Space and
Leopard Screen Sharing all rely on unicast only so,
they do not scale well. Sharing an application via
unicast increases the bandwidth usage linearly with
the number of participants. For example, Microsoft
suggests Windows Meeting Space for a group of 10
users or less. TeleTeachingTool [?] and Multicast
Application Sharing Tool (MAST) [?] use multicas-
ting to overcome this limitation. TeleTeachingTool
adds multicast support to VNC servers however, it is
developed just for online teaching so it does not al-
low participants to control the shared desktop. Also,
it does not support true application sharing due to
its underlying VNC system. MAST allows remote

4



users to participate via their keyboard and mouse but
its screen capture model is based on polling which is
very primitive and not comparable to current state of
art the capturing methods like mirror drivers which
will be discussed in Section 3.1. Also MAST does
not support true application sharing due to problems
which we have mentioned in the previous section
(Figure ??). Although both TeleTeachingTool and
MAST use multicasting for scalability, they do not
address the unreliable nature of UDP transmissions.
UDP does not guarantee delivery of packets and if
delivered packets can be out of order. In order to
compensate for packet loss, the TeleTeachingTool
and MAST periodically transmit the whole screen
which increases the bandwidth and CPU usage. Ta-
ble ?? compares the sharing systems discussed so far.

4 System Architecture

This proposed system is based on a client-server ar-
chitecture (Figure ??). The server is the machine
which runs the shared application. The participants
use a lightweight Java client application for connect-
ing to server and they do not need the shared applica-
tion. Clients receive screen updates from the server
and send keyboard and mouse events to the server.

We have developed a Java client which works in
almost every operating system. The server could not
be written with Java due to lack of Java’s low level
support. Therefore, there should be a server for each
operating system and we have developed a Windows
XP server and mirror driver. Mirror driver is the best
known technique for capturing screen update events
and will be discussed in detail at Section 7.1. Win-
dows XP calls the same drawing functions on both
real graphic driver and mirror driver. This mecha-
nism allows the server to learn the updated screen
regions without polling. Therefore, the overhead of
application sharing is minimum on the server. With-

Figure 5: System Architecture of ADS

out the mirror driver sharing server should poll the
screen state in order to detect the changed regions.
The mirror driver runs in kernel mode and notifies
the user mode server when it detects changes in the
GUI of the shared application. The server then pre-
pares a packet which consists of a RTP [?] header
and a PNG [?] or JPEG [?] image of the updated
region. RTP allows the clients to re-order the pack-
ets, recognize missing packets and synchronize ap-
plication sharing with other media types like audio
and video. The screen updates are distributed as
PNG or JPEG images according to their character-
istics. PNG is an open image format which uses a
lossless compression algorithm zlib and suitable for
computer generated images. JPEG is lossy but suit-
able for photographic images likes photos or movies.

The server supports both multicast and unicast
transmissions. For unicast connections, either UDP
or TCP can be used. TCP provides reliable commu-
nication and flow control therefore, it is more suit-
able for unicast sessions. TCP clients may have dif-
ferent bandwidths so we have developed an algo-
rithm which sends the updates at the link speed of
each client. For UDP clients, the server controls
the transmission rate because UDP does not provide

5



flow and congestion control. Several simultaneous
multicast sessions with different transmission rates
can be created at the server. ADS has a NACK
based retransmission mechanism for UDP clients.
The UDP based clients request the missing packets
from the server while storing the received out-of-
order packets in a receive buffer. Multicast clients
listen the NACK messages from other clients in or-
der not to send multiple NACK requests for the same
lost packet. Briefly, the server can share an applica-
tion to TCP clients, UDP clients and to several mul-
ticast addresses in the same sharing session.

Late-joiners should be handled carefully other-
wise they can degrade the systems performance.
ADS generates a full-screen update for the late-
joiners. But if more than one participant join lately
within a minute, ADS generates only one full-screen
update for the first one and starts all the others from
this full-screen update. They will receive the full-
screen update first and then all the other partial up-
dates up to current status of the screen.

Although multiple users could receive the screen
updates simultaneously, clearly only one of them can
manipulate the application via keyboard and mouse
events. ADS uses the Binary Floor Control Pro-
tocol (BFCP) [?] to restrict the control of the ap-
plication to a single user. BFCP receives floor re-
quest and floor release messages from clients and
grants the floor to the appropriate client for a pe-
riod of time while keeping the requests from other
clients in a FIFO queue. All BFCP messages, key-
board and mouse events are transmitted directly to
the server using TCP. For mouse and keyboard events
Java’s own key-codes are used because these events
are captured from a Java client and regenerated by a
Java component at the server.

We have also added a recording feature to the
ADS. Participants can record the sharing session to a
file. This file can be used to watch the session locally
or to stream it to multiple receivers simultaneously.

This feature is very useful for preparing lectures or
software tutorials for future use.

5 ADS Protocol

ADS Clients and servers communicates using the
ADS protocol which defines the packet structures
and message types. The protocol defines five mes-
sages from server to client and two messages in the
reverse direction (Table ??). Each new client needs
one “open new window” message for each shared
window. For TCP clients server transmits this mes-
sage right after the connection establishment. UDP
based clients send a “full intra-frame request” to the
server when they join the session. Receiving this FIR
message server first transmits “open new window”
messages and then the whole screen image via “re-
gion update” messages.

Table 2: ADS Message Types
Server Messages
Open New Window
Close Window
Window Size Update
Region Update
Move Rectangle

Client Messages
Full Intra-frame Request (FIR)
NACK request

Table 3: ADS Message Structure
RTP Header

Message Type
Window ID

Type Specific Payload

Each protocol message consists of a RTP header,

6



message type identifier, window identifier and mes-
sage specific payload (Table ??). Message specific
payload structure and length are determined by the
message type. “Close window” message does not
have a message specific payload whereas “window
size update” message carries new size information in
this part. These messages are carried on UDP pack-
ets for UDP clients. Neither TCP nor RTP declares
the length of the RTP packet therefore, RTP fram-
ing [?] is used to split RTP packets for TCP clients.
Server and clients should ignore messages with an
unknown message type. New message types can be
easily added to the protocol.

6 Client Architecture

The ADS client is very simple compare to the server,
receiving screen updates from the server and display-
ing them to the user. It is completely stateless in
the sense that it can disconnect and reconnect to the
server. Due to its simplicity, client for different plat-
forms can be developed easily. A Java ADS client
has been developed in our lab and can run on any
Java supported system.

ADS clients can be passive or active. In active
mode, they connect to ADS servers whereas in pas-
sive mode they wait for incoming connections. The
passive mode can be used as a RGB cable replace-
ment for presentations. Basically, the client becomes
a network projector which waits for incoming con-
nections. Presenters can connect to this client and
share their applications. A computer can be dedi-
cated as a network projector and only this machine
should physically attached to a real projector. The
presenters do not need to attach their laptops with
an RGB cable to a projector. They just stream their
application view to the network projector.

All participants of a sharing session can be view-
only or they can request the control from the server.

In order to request the control from server, user
should press the “control” button in the GUI of the
client application (Figure ??). The client will send
a floor request message and then the server will
reply with a granted or request queued message.
The server grants the floor immediately if nobody
else currently controls the floor. Otherwise, the re-
quest will be queued in a FIFO queue and floor will
be granted to the requesters one-by-one automati-
cally. Users can release the floor whenever they want
by pressing the “control” button again. After the
server grants the floor the client captures all key-
board and mouse events locally and transmits them
to the server.

7 Windows Server Architecture

Windows server allows Windows XP users to share
an application with other participants. Windows
server has two main compenents: kernel-mode mir-
ror driver and user-mode sharing server. These two
components works together and communicates via
shared memory. Basically, the mirror driver tracks
the updated regions of the screen and notifies the
user-mode sharing server about these updates. The
user-mode sharing server application learns the up-
dated regions, prepare region updates and transmit
these updates to the participants(Figure ??). The
sharing server also receives mouse and keyboard
events from participants and executes these requests.
These two components are examined in detail in the
following sections.

7.1 Mirror Driver

Mirror driver is a display driver that mirrors the
drawing operations of a physical display driver. It
is the most efficient way to learn screen updates be-
cause it learns the exact coordinates of the screen up-

7



dates automatically from the operating system. We
had to develop our own mirror driver for the sharing
server because there is no standard, free and open
mirror driver. Remote Desktop Connection and VNC
also use their own mirror drivers to efficiently learn
the screen updates. Stability and correctness is very
important for kernel-mode components because they
can easily cause restart or blue screen of death. Our
mirror driver is completely stable such that we ob-
serve no crashes at all in the last two years.

Figure 6: Shared memory regions

We have used the shared memory approach to
establish a communication channel between mirror
driver and the sharing server. Both mirror driver and
the sharing server maps the same region of the mem-
ory to their own address spaces. There are four dif-
ferent regions in this shared memory (Figure ??).

• Frame Buffer
• Ring buffer for update records
• Update records current index
• Coordinates of tracking region

Windows calls the physical and mirror display
drivers with the same GDI [?] (graphics device in-
terface) commands. Display devices need a frame
buffer to keep the screen state. Some display devices
have dedicated frame buffers on the physical device
itself. Mirror drivers are software only drivers so,
they do not have dedicated hardware for graphic ac-
celeration and frame buffer. Therefore we have used
some portion the memory as a frame buffer. The
memory requirement of the frame buffer is resolu-
tions times bytes per pixel. In our implementation
we have used 24 bits per pixel therefore frame buffer
uses almost four megabytes for a 1280x1024 shared
region.

The second region is a ring buffer which is used by
the mirror driver to insert update commands and co-
ordinates. There are two types of commands BitBlt
and Moverect. Windows notifies the mirror driver
for an update and then mirror driver inserts this up-
date to the ring buffer with command type and the
coordinates of the region.

The third region of the shared memory holds a
pointer to the last inserted update. Sharing server pe-
riodically checks this pointer in order to see whether
there is a new update or not.

The last region stores the tracking region and is
updated by the sharing server. The sharing server
computes the bounding rectangle of the shared appli-
cation windows and informs the mirror driver about
the tracking region. The mirror driver only tracks
this specific region instead of the whole desktop.
Among these four regions the first three are main-
tained by the mirror driver and the tracking region is
updated by the sharing server.

7.2 Server Architecture

The Windows XP sharing server is a user-mode pro-
cess which complements the mirror driver. Mirror
driver keeps track of the frame buffer and the list

8



of updated regions. The sharing server does rest of
the duties including connection establishment, up-
date optimization and compression and transmission
and keyboard and mouse events handling(Figure ??).
The multi-threaded sharing server can serve multiple
clients simultaneously. The server can wait for in-
coming connections and also it can connect to clients
directly if instructed by the user. The sharing server
has designed considering the following challenges:

Figure 7: Windows XP server architecture

• Participants may have different bandwidths.
• Some participants may join lately.
• The effects of packet losses
• Reliable multicasting
• Some regions require different encoding

7.2.1 The main algorithm of the server

The sharing server has one main thread, one man-
ager thread and a number of client threads. The
main thread periodically checks the updated regions

and prepares compressed images of these regions.
These images are inserted to the image ring buffer
which stores them until they are transmitted by client
threads. The algorithm of the main thread is given
below(Algorithm ??).

while Sharing session continues do
if There are new updates then

Find shared process windows;
Find the overlapping windows of the
unshared processes;
Combine the overlapping or repeating
updates into one update;
Clip the regions considering overlapping
unshared windows;
Prepare a compressed image for each
update region;
sleep x ms (determined by manager
thread) before starting again;

end
else

sleep 5 ms and then check again
end

end
Algorithm 1: The algorithm of the main thread

7.2.2 Serving to different bandwidth users

The most CPU intensive part of the server is the im-
age compression which may take up to 500 ms de-
pending on the size of the updated region. Therefore,
the main thread tries to optimize the updated regions
by combining overlapping regions and ignoring re-
peated regions. There is no point in generating lots
of updates if the clients do not have enough band-
width. The manager thread observes each clients
bandwidths and throttles the main thread according
to the highest bandwidth client. This technique can
be easily explained with a movie playing example.
Assume that the user shares a movie with the re-
mote participants. The same region of the screen

9



is updated 24-30 times per second depending on the
movie type. Initially the server tries to generate as
many updates as possible. If at least one of the clients
has enough bandwidth to receive these updates, man-
ager thread allows the main thread to continue with
this pace. But if none of the clients can have enough
bandwidth to receive these many updates then man-
ager thread slows the main thread by forcing it to
sleep between update image generations. Therefore,
the main thread will generate a single update by com-
bining several updates into one. The manager thread
tries to equalize the update generation rate to the
fastest client’s bandwidth speed. This technique pre-
vents unnecessary CPU usage in the sharing server.
The effective bandwidths of clients may change dur-
ing the sharing session and this is properly handled
by the manager thread. Briefly, the main thread com-
bines several updates into one update in order to de-
crease the bandwidth requirement. Similar technique
is utilized by the low bandwidth client threads. The
fastest one transmits the generated updates in order,
however other clients may not transmit all the gener-
ated updates due to their low bandwidths. These low
bandwidth clients use an algorithm which skip some
of the updates if they are obsoleted by the newer up-
dates. Returning to video player example, the fastest
may transmit 12 frames per second whereas the oth-
ers may transmit some of these generated frames per-
mitted by their bandwidths.

7.2.3 Encodings

The updates are distributed as PNG images except
for movies. PNG is very suitable and efficient for
computer generated images. However, it’s lossless
nature results large increase in compressed image
size for photographic images with negligible gain
in quality compare to JPEG which is specifically
designed for photographic image data. Therefore,
using JPEG for photographic images and PNG for

the others is the best solution. But the server does
not know whether an updated region contains pho-
tographic or computer generated content. Because
mirror driver runs at the frame buffer level and at
this level there is only bits and no metadata. Fortu-
nately detecting movie playing is very easy due to
its special characteristic. Different from other ap-
plications, movies generate 24-30 updates per sec-
ond in a specific region of the screen. Benefitting
from this characteristic we have developed an algo-
rithm to detect movie playing in order to use JPEG
encoding for this region. Consecutive updates to a
specific region trigger the detection. Detection al-
gorithm uses the JPEG encoding on the region and
compares the compressed image size between JPEG
and PNG. If JPEG size is less than quarter of the
PNG size, the server switches the default algorithm
for this region to JPEG and stores this result in a
lookup table for subsequent updates. If the com-
pression ratio of JPEG regions drops below 12:1,
the server deletes the stored encoding information
for this region from the lookup table. Similarly re-
gions which are marked as PNG regions periodically
rechecked. Periodic rechecking allows the server to
adapt the dynamic nature of the content. For ex-
ample, we have played a movie which starts with
a black screen and then displays some texts on this
background and then continues with the movie itself.
In this specific case, the server first used PNG and
then automatically switched to JPEG after the actual
movie starts.

7.2.4 Late joiners

Participants of a sharing session can join anytime and
they need the full screen buffer before receiving par-
tial updates. Therefore, the sharing server prepares
and transmits the image of the whole shared region
for late joiners [?]. Preparing the image of the whole
shared session is costly in terms of CPU so, the shar-

10



ing server stores the generated image for some time.
When a participant joins, the server sends the stored
image if available and then transmits all the subse-
quent partial updates. The stored image obsoleted
after some period. This also protects the server from
malicious or misbehaving clients.

7.2.5 Minimizing the effect of packet loss for
UDP clients

UDP is not a reliable transmission mechanism there-
fore, packets can get lost. Region updates may re-
quire several kilobytes or even megabytes and un-
less designed carefully a single packet loss may de-
stroy the region update completely because region
updates are compressed and they cannot be decom-
pressed without complete data. In order to minimize
the effect of packet loss we have developed an al-
gorithm which generates several small PNG images
for a given update region. Blindly generating a PNG
image for each scan line may increase the bandwidth
usage because a new zlib compressor object should
be created for each new PNG. And creating a new
zlib compressor decreases the compression ratio so,
the bandwidth usage increases. The developed algo-
rithm tries to maximize the number of scan lines in-
cluded in a single screen update while trying to keep
the generated image size below 1500 bytes which the
maximum MTU for ethernet. Due to its adaptive na-
ture it may feed tens of lines for a text document
whereas it may feed only a single line for a pho-
tographic image. We have observed approximately
twenty percent increase in bandwidth due to small
PNGs.

Transmitting self-contained UDP packets mini-
mize the effect of packet loss. Instead of losing the
complete region update, participants may lose only a
few scan lines in case of a packet loss. They may end
up with imperfect frame buffer due to packet losses
but they may continue to participate to the session.

Figure 8: Minimizing the effect of packet loss

Figure ?? demonstrates the effect of a single packet
loss where the image is displayed with a few miss-
ing scan lines. The retransmission mechanism which
will be discussed in the next session helps to restore
the frame buffer state.

7.2.6 Reliable multicast

In the previous section, we described our algorithm
which minimizes the effect of packet loss. In this
section, we explain another supplementary technique
which retransmit missing packets. When a packet
loss occurs, the participant views the rest of the
image except missing scan lines(Figure ??). The
client application sends a negative acknowledgement
(NACK) for this missing packet [?]. Receiving this
NACK, server retransmits the requested packet. We
have modified the oRTP library which is used in the
server side and extended our own Java RTP library in
client side to support this feature. The server and the
clients do not deal with retransmission and buffering
of packets, these are handled by the RTP libraries.

11



The retransmission mechanism has developed
considering the two issues: malicious or corrupted
client behavior and NACK storms. In order to pro-
tect itself from malicious clients, the server does not
retransmit a packet more than three times. NACK
storms happen when a packet could not reach several
multicast clients and they all send NACK requests to
server. To solve this problem, clients do not send
NACK requests immediately after detection instead
they wait for a random amount of time (between 0-
100ms). During the waiting period if the client ob-
serves a NACK request from another client in the
multicast session, it suppresses its NACK request. It
is possible that more than one NACK have transmit-
ted due to very close timeouts but this is better than
having hundreds of NACKs on the network.

7.2.7 Better movie support (Experimental)

As mentioned before we have developed an algo-
rithm to detect movie playing. Server starts using
JPEG encoding for the detected region which in-
creases frame per second and also decreases band-
width usage dramatically without any distinguish-
able loss by eye from the original. This technique
can be improved by bypassing the rendering to frame
buffer.

Figure ?? demonstrates the necessary steps for
each of these techniques. In the regular approach
user plays the movie in the server with any movie
player and the frames are captured from frame buffer
and compressed into JPEG images. In the transcoded
case, the user selects the movie he want to share with
participants and the frames are directly read from in-
put file and transcoded on-the-fly into JPEG images
in real-time. These JPEG images are transmitted into
participants according to their bandwidths such that
low bandwidth users get less fps compare to high
bandwidth users. For on-the-fly transcoding we have
used FFMPEG-Java which is a sub-project of Free-

Figure 9: Better movie support

dom for Media in Java, FMJ in short. FFMPEG-Java
is a Java wrapper around FFMPEG, using JNA. The
architecture of the implemented system is given in
Figure ??. The results with this technique is better
than the regular one due to low overhead on the sys-
tem. The detailed performance results can be found
in the following section.

8 Performance Results

TBD later...

9 Future Work

TBD later...

12



Figure 10: Transcoding a movie into JPEGs

10 Conclusion

We have developed an operating system indepen-
dent, scalable and efficient application and desktop
sharing platform. ADS supports all applications due
to its generic model and transmits only the shared
application and its child windows. We have used in-
dustry standards like RTP, BFCP and PNG. The CPU
usage of ADS is very low thanks to the mirror driver.
The bandwidth usage of ADS is similar to other so-
lutions like VNC. ADS allows collaborative working
on a single document or project. It can also be used
for e-learning and software tutoring. People can de-
velop clients and servers compatible with ADS by
implementing its open protocol.

References

[1] Tristan Richardson , Quentin Stafford-Fraser ,
Kenneth R. Wood , Andy Hopper, Virtual Net-
work Computing, IEEE Internet Computing,
v.2 n.1, p.33-38, January 1998

[2] UltraVNC Win32Server 0.5.2 Release Build
Jun 18 2006 14:56:09

[3] Portable Network Graphics,
http://www.libpng.org/pub/png/

[4] Joint Photographic Experts Group,
http://www.jpeg.org, ISO 10918-1, 1992

[5] Java Technology, http://java.sun.com/

[6] Peter Ziewer and Helmut Seidl. Transparent
TeleTeaching. In Proceedings of ASCILITE
2002, Auckland, NZ, Dec. 2002.

[7] Mehmood Hasan, Gareth Lewis, Vassil
Alexandrov, Dove Martin and Tucker Matt.
Multicast Application Sharing Tool for the
Access Grid Toolkit. In Proceedings of the UK
e-Science All Hands Meeting, Nottingham,
UK, 2005.

[8] G. Camarillo, J. Ott, K. Drage. The Binary
Floor Control Protocol (BFCP). RFC 4582,
IETF, November 2006.

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Ja-
cobson. RTP: A Transport Protocol for Real-
Time Applications. RFC 3550, IETF, July
2003.

[10] J. Lazzaro. Framing Real-time Transport Pro-
tocol (RTP) and RTP Control Protocol (RTCP)
Packets over Connection-Oriented Transport.
RFC 4571, IETF, July 2006.

[11] Microsoft Windows graphics device in-
terface, http://msdn2.microsoft.com/EN-
US/library/ms536795.aspx

[12] J. Ott, S. Wenger, N. Sato, C. Burmeis-
ter, J. Rey. Extended RTP Profile for Real-
time Transport Control Protocol (RTCP)-Based
Feedback (RTP/AVPF). RFC 4585, IETF, July
2006.

13


