
BASS Application Sharing System∗

Omer Boyaci and Henning Schulzrinne
Department of Computer Science

Columbia University
{boyaci,hgs}@cs.columbia.edu

Abstract

Application and desktop sharing allows sharing of any
application with one or more people over the Internet. The
participants receive the screen-view of the shared applica-
tion from the server. Their mouse and keyboard events are
delivered and regenerated at the server. Application and
desktop sharing enables collaborative work, software tu-
toring, and e-learning over the Internet. We have devel-
oped an application and desktop sharing platform called
BASS which is efficient, reliable, independent of operating
system, scales well via heterogenous multicast, supports all
applications, and features true application sharing.

1. Introduction

Application and desktop sharing allows two or more peo-
ple to collaboratively work on a single document, draw-
ing or project in real-time. Some applications like Net-
beans and Google Docs are collaboration-aware and allow
more than one person to work on the same document at
the same time [5, 3]. However, most of the other appli-
cations are not collaboration-aware. Fortunately, collabo-
ration features can be added to these applications transpar-
ently. There are two models for collaboration-transparent
application sharing: application-specific and generic. An
application-specific solution allows to share a specific ap-
plication such as Microsoft Word [24], while a generic one
allows to share any application. Application-specific solu-
tions are expensive in terms of engineering cost and they
may not allow to use all features of the application [24].
Also, to participate in a sharing session, all participants
must have a copy of the shared application. In the generic
model, the application can be anything such as word pro-
cessor, browser, CAD/CAM, Power point or movie editor.
Also, the participants do not need to install the application.
One disadvantage of generic application sharing is that its

∗This work was supported in part by a grant from FirstHand Technolo-
gies.

generic nature makes it less efficient as compared to the
application-specific model in certain scenarios. We have de-
veloped an application and desktop sharing system, BASS,
based on the generic model.

The main challenges of application and desktop sharing
are scalability, reliability, true application sharing, operat-
ing system independence, and performance. We believe
that an application and desktop sharing system should be
operating system independent because participants may use
different operating systems. BASS protocol is very sim-
ple to implement on any system, and we have developed
a Java client for the participants. Scalability is very im-
portant because sharing sessions may involve many partic-
ipants. BASS scales quite well because it supports multi-
casting. Systems which support multicasting scale well, but
participants will end up with corrupted screen-views if the
system is not designed reliability in mind. Multicast sup-
port of BASS is developed reliability in mind. The sharing
system should be efficient in the sense that it should trans-
mit only the changed parts of the screen, and it should not
consume all the bandwidth and CPU resources while do-
ing this. BASS uses the most efficient technique, a mirror
driver, to detect changed regions of the screen.

Application sharing differs from desktop sharing. In
desktop sharing, server distributes any screen update. In
application sharing, server distributes screen updates if
and only if they belong to the shared application’s win-
dows. Some sharing systems such as UltraVNC [11] and
MAST [20] claims application sharing support. However,
they consider only the boundary of the shared window
which is not enough. Other non-shared windows may cover
the shared window or shared application may open new
child windows such as those for selecting options or font.
A true application sharing system must blank all the non-
shared windows and must transfer all the child windows of
the shared application. For example, if a user wants to share
only the “Internet Explorer” application, which has the ti-
tle “Windows Live Hotmail - Windows Internet Explorer”,
from the desktop seen in (Figure 1), then the participants
should only see the main and the “Internet Options” win-



dows. BASS (Figure 3) displays only these two windows
with a correct size while blocking the desktop background
and the non-shared windows. MAST, discussed in the fol-
lowing section, could not display the shared application in
correct size and could not block the non-shared application
and desktop background (Figure 2). Similarly, UltraVNC
could not block non-shared windows and could not trans-
mit the child windows correctly (Figure 4).

Current sharing solutions perform poor if the user wants
to share photos or movies. They use the same encoding
for texts, computer-generated images, movies, and photo-
graphic images. Lossless encodings give poor performance
for movies and photographic images. Lossy encodings gen-
erate visual artifacts around texts and computer-generated
images such as straight lines. THINC and RDP can play full
motion movies if the bandwidth between the user and par-
ticipant is tens of Mbps [11, 9]. Due to their high bandwidth
requirements, they do not scale well, and they do not per-
form well under realistic bandwidths such as a few Mbps.
BASS is the only system which uses different encodings for
different regions of the screen. BASS uses Theora video
codec to stream movies [10], JPEG to transmit images, and
PNG for the rest.

Figure 1. Desktop with overlapping windows

Figure 2. Mast client view

Figure 3. BASS Figure 4. UVNC

Section 2 discusses the related work and why they are in-
adequate. System architecture is discussed in Section 3, and
the details of the BASS protocol are discussed in Section 4.
Client and server architectures are explained in Sections 5
and 6 respectively. Section 7 compares the performance of
BASS to other systems in terms of bandwidth and frame
rate. Finally Section 8 summarizes our work.

2. Related Work

The X Window System is a network-transparent window
system. Several X protocol multiplexors such as SharedX,
DMX, XMX, and CCFX have been developed [14]. X
Window System relies on heavy X servers on the client
side. Therefore, multiplexors fail to support heterogeneous
X servers and late joiners.

Microsoft has Windows Meeting Space for Windows
Vista and Netmeeting for Windows XP. Netmeeting was re-
leased in 1999 for Windows 98; in our tests it fails to dis-
play pop-ups and menus. Windows Vista introduces appli-
cation sharing feature as part of Windows Meeting Space,
but all the attendees must use Windows Vista. VNC [22] is
a cross-platform open source desktop sharing system, but
it also does not have application sharing feature. Ultra-
VNC [11] claims to support the application sharing feature,
but it has failed in our tests due to following problems: the
cursor position did not match, there is no privacy, new win-
dows belonging to same application are not included and
long menus are not shown properly. VNC uses a client-
pull based transmission mechanism which performs poor
compare with server-push based transmissions under high
round-trip time (RTT). SharedAppVnc [23] supports true
application sharing, but the delay is unacceptable. It uses a
lossy codec and does not support multicasting.

VNC, Netmeeting, Windows Meeting Space and Mac
OS X Leopard Screen Sharing all rely on unicast only, so
they do not scale well. Sharing an application via uni-



OS Independent Scalable Application Sharing Remote Control Recording
VNC + - - + +
Windows Meeting Space - - + + -
Leopard Screen Sharing - - - + -
TeleTeachingTool + + - - +
Mast + + - + -
BASS + + + + +

Table 1. Comparison of Related Work

cast increases the bandwidth usage linearly with the number
of participants. For instance, Microsoft suggests Windows
Meeting Space for groups of no more than 10 users. The
TeleTeachingTool [25] and Multicast Application Sharing
Tool (MAST) [20] use multicasting to overcome this lim-
itation. TeleTeachingTool adds multicast support to VNC
servers; however, it is developed just for online teaching, so
it does not allow participants to control the shared desktop.
Also, it does not support true application sharing due to its
underlying VNC system. MAST allows remote users to par-
ticipate in via their keyboard and mouse, but its screen cap-
ture model is based on polling which is very primitive and
not comparable to current state of the art capturing methods
like mirror drivers, discussed in Section 6.1. Also, MAST
does not support true application sharing due to problems
which we have mentioned in the previous section (Figure 2).
Although both TeleTeachingTool and MAST use multicas-
ting for scalability, they do not address the unreliable na-
ture of UDP transmissions. UDP does not guarantee de-
livery of packets. Even if the packets are delivered, they
may be out of order. In order to compensate for packet loss,
the TeleTeachingTool and MAST periodically transmit the
whole screen which increases the bandwidth and CPU us-
age. Table 2 compares the sharing systems discussed so far.
Nieh et al compared sharing systems in detail [18].

3. System Architecture

BASS is based on client-server architecture. The server
is the computer which runs the shared application. The par-
ticipants use a lightweight Java [4] client application for
connecting to server, and they do not need the shared ap-
plication. Clients receive screen updates from the server
and send keyboard and mouse events to the server.

The Java client works in almost every operating system.
The server could not be written with Java due to lack of
Java’s low level support. For example, Java does not have
OS level windowing information and can not learn screen
updates from the OS. Therefore, there should be a server
for each operating system and we have developed a Win-
dows XP server and mirror driver. Mirror driver is the
best known technique for capturing screen update events

and will be discussed in detail at Section 7.1. The mirror
driver runs in kernel mode and notifies the user mode server
when it detects changes in the GUI of the shared applica-
tion. The server then prepares a RTP packet containing en-
coded image of the updated region. RTP allows the clients
to re-order the packets, recognize missing packets and syn-
chronize application sharing with other media types like au-
dio and video. The screen updates can be encoded with
PNG [8], JPEG [12] or Theora according to their character-
istics. PNG is an open image format which uses a lossless
compression algorithm [17, 16] and more suitable for com-
puter generated images. JPEG is lossy, but more suitable
for photographic images. Theora is an open video codec
comparable to H.264 and suitable for movie encoding.

The server supports both multicast and unicast transmis-
sions. For unicast connections, either UDP or TCP can
be used. TCP provides reliable communication and flow
control. Therefore, it is more suitable for unicast sessions.
TCP clients may have different bandwidths, so we have de-
veloped an algorithm which sends the updates at the link
speed of each client. For UDP clients, the server controls
the transmission rate because UDP does not provide flow
and congestion control. Several simultaneous multicast ses-
sions with different transmission rates can be created at the
server. Briefly, the server can share an application to TCP
clients, UDP clients, and several multicast addresses in the
same sharing session.

Participants of a sharing session can join in anytime, and
they need the full screen buffer before receiving partial up-
dates. Therefore, they send a RCTP-based feedback mes-
sage, Full Intra-frame Request (FIR) [21], after joining in
the session. The server prepares and transmits the image
of the whole shared region after receiving a FIR message.
Preparing a full screen update is costly in terms of CPU, so
the sharing server stores the generated image for some time.

Although multiple users could receive the screen updates
simultaneously, clearly only one of them can manipulate the
application via keyboard and mouse events. BASS uses the
Binary Floor Control Protocol (BFCP) [15] to restrict the
control of the application to a single user. BFCP receives
floor request and floor release messages from clients; and
then it grants the floor to the appropriate client for a pe-



riod of time while keeping the requests from other clients
in a FIFO queue. All BFCP messages, keyboard and mouse
events are transmitted directly to the server using TCP. For
mouse and keyboard events Java’s own key-codes are used
because these events are captured from a Java client and
regenerated by a Java component at the server. These key-
codes are publicly available because Java is an open-source
project.

We have also added a recording feature to BASS. Par-
ticipants can record the sharing session to a file. This file
may be used for watching the session locally or streaming
to multiple receivers simultaneously. This feature is very
useful for preparing lectures or software tutorials for future
use.

4. The BASS Protocol

BASS clients and servers communicate using the BASS
protocol which defines the packet structures and message
types. The protocol defines five messages from server to
client and two messages in the reverse direction (Table 4).
Each new client needs one “open new window” message
for each shared window. For TCP clients server transmits
this message right after the connection establishment. UDP-
based clients send a “full intra-frame request” to the server
when they join in the session. Receiving this FIR message,
the server first transmits “open new window” message for
each shared window. Then, it transmits complete image of
each shared window via “region update” messages.

Messages from server to client
Open New Window
Close Window
Window Size Update
Region Update
Move Rectangle

Messages from client to server
Full Intra-frame Request (FIR)
NACK request

Table 2. BASS Message Types

RTP Header Message Type Window ID MS Payload

Table 3. BASS Message Structure

Each protocol message consists of a RTP header, mes-
sage type identifier, window identifier, and message specific
payload (Table 4). The message specific payload structure
and length are determined by the message type. Neither
TCP nor RTP declares the length of the RTP packet. There-

fore, RTP framing [19] is used to split RTP packets for TCP
clients.

5. Client Architecture

The BASS client is very simple and lightweight compare
with the server. It receives screen updates from the server
and displays them to the participant. It is completely state-
less in the sense that it can disconnect and reconnect to the
server. Due to its simplicity, clients for different platforms
can be easily developed. A Java BASS client has been de-
veloped in our lab. BASS clients can listen for or initiate
connections. Participants of a sharing session can be view-
only or they can request input control from the server. To re-
quest input control from server, a user presses the “control”
button in the GUI of the client application (Figure 3). The
client sends a floor request message, and then the server re-
sponds with a ”granted” or ”request queued” message. The
server grants the floor immediately if nobody else currently
controls the floor. Otherwise, the request will be queued in a
FIFO queue, and the floor will be granted to the requesters
one-by-one automatically. Users can release the floor by
pressing the “control” button again. After the server grants
the floor, the client captures all keyboard and mouse events
locally and transmits them to the server via RTP messages.

6. Windows Server Architecture

Windows server allows Windows XP users to share an
application with other participants. Windows server has
two main compenents: kernel-mode mirror driver and user-
mode sharing server. These two components work together
and communicate via shared memory. Basically, the mirror
driver tracks the updated regions of the screen, and notifies
the user-mode sharing server about these updates. The user-
mode sharing server learns the updated regions, prepares
region updates, and transmits these updates to the partici-
pants(Figure 5). The sharing server also receives and regen-
erates mouse and keyboard events from participants. These
two components are examined in detail in the following sec-
tions.

6.1. Mirror Driver

Mirror driver is a display driver that mirrors the draw-
ing operations of a physical display driver. Windows calls
the physical and mirror display drivers with the same GDI
(graphics device interface) commands. It is the most effi-
cient way of learning screen updates because operating sys-
tem tells the exact coordinates of screen updates. We had
to develop our own mirror driver for the sharing server be-
cause there is no free and open source mirror driver. Re-



mote Desktop Connection and VNC also use their own mir-
ror drivers to efficiently learn the screen updates. Stability
and correctness are very important for kernel-mode compo-
nents because they may easily cause restart or blue screen
of death. Our mirror driver is completely stable such that
we have not observed any crashes at all for last two years.

We have used the shared memory approach to establish a
communication channel between mirror driver and the shar-
ing server. Both mirror driver and the sharing server map
the same region of the memory to their own address spaces.
The shared memory consists of a frame buffer to keep the
screen state and a ring buffer which is used by the mirror
driver to insert update commands and coordinates. There
are two types of commands BitBlt and MoveRect. Win-
dows notifies the mirror driver for an update, and then mir-
ror driver inserts this update to the ring buffer with com-
mand type and the coordinates of the region. In case of
application sharing, the server computes the bounding rect-
angle of the shared application windows and informs the
mirror driver about the tracking region. The mirror driver
only tracks this specific region instead of the whole desktop
which decreases CPU overhead.

6.2. Server Architecture

Figure 5. Windows XP server architecture

The Windows XP sharing server is a user-mode process
which complements the mirror driver. Mirror driver keeps
track of the frame buffer and the list of updated regions. The
sharing server does rest of the duties. It handles connec-
tion establishment. It optimizes, compresses and transmits
screen updates. Keyboard and mouse events are also han-
dled by the sharing server (Figure 5). The multi-threaded

sharing server can serve multiple clients simultaneously.
The server can wait for incoming connections and it can
also connect to clients directly if instructed by the user. The
sharing server has been designed considering the following
challenges. Participants may have different bandwidths and
they can join in anytime. UDP-based multicast and uni-
cast sessions should be reliable even though UDP does not
provide reliability. Some regions or windows may require
different encoding for better performance.

The sharing server has one main thread, one manager
thread, and a number of client threads. The main thread pe-
riodically checks for updated regions and prepares encoded
images of these regions. These images are inserted to the
image ring buffer which stores them until they are transmit-
ted by client threads.

6.3. Serving window updates to different
bandwidth users

Encoding screen updates are CPU-intensive operations,
so there is no point in generating lots of updates if the clients
do not have enough bandwidth. The manager thread ob-
serves each clients bandwidths and throttles the main thread
according to the highest bandwidth client. This technique
can be easily explained with a movie playing example. As-
sume that the user shares a movie with remote participants.
The same region of the screen is updated 24-30 times per
second. Initially, the server tries to generate as many up-
dates per second as possible. If at least one of the clients
has enough bandwidth to receive these updates, the man-
ager thread allows the main thread to continue this pace.
But if none of the clients has enough bandwidth to deal
with that update rate, then the manager thread slows the
main thread by forcing it to sleep between update gener-
ations. Therefore, the main thread will generate a single
update by combining several updates into one. The man-
ager thread tries to equalize the update generation rate to the
fastest client’s bandwidth speed. This technique prevents
unnecessary CPU usage in the sharing server. The effective
bandwidths of clients may change during the sharing ses-
sion, this is properly handled by the manager thread because
it checks clients’ effective bandwidths periodically. Briefly,
the main thread combines several updates into one update in
order to decrease the bandwidth requirement. Similar tech-
nique is utilized by the low bandwidth client threads. The
fastest one transmits the generated updates in order, how-
ever other clients may not transmit all the generated updates
due to their low bandwidths. These low bandwidth clients
skip some of the updates if they are obsoleted by the newer
updates. Going back to video player example, the fastest
may transmit 12 frames per second, whereas the others may
transmit some of these generated frames permitted by their
bandwidths.



6.4. Encodings

The updates are distributed as PNG images except for
movies or photos. PNG is very suitable and efficient
for computer-generated images. However, its lossless na-
ture results large increase in compressed size of photo-
graphic images with negligible gain in quality, compare
with JPEG and Theora which are specifically designed for
photographic images. Therefore, using JPEG or Theora for
photographic images and PNG for the others is the best so-
lution. But the server does not know whether an updated re-
gion contains photographic or computer generated content;
because, mirror driver runs at the frame buffer level and at
this level there is only bits and no metadata. Fortunately de-
tecting movie playing is very easy due to its specific char-
acteristics. Different from other applications, movies gen-
erate 24-30 updates per second in a specific region of the
screen. Benefitting from this characteristic, we have de-
veloped an algorithm to detect movie playing in order to
use JPEG/Theora encoding for this region. Consecutive up-
dates to a specific region trigger the detection. Detection
algorithm uses the JPEG encoding on the region and com-
pares the compressed image size between JPEG and PNG.
If the JPEG size is less than a quarter of the PNG size, the
server switches the default algorithm for this region to The-
ora and stores this result in a lookup table for subsequent
updates. Theora is the default encoding for movies because
it is four times more bandwidth efficient than JPEG. How-
ever, encoding Theora is costlier than JPEG especially for
high resolution movies. JPEG uses four times more band-
width but gives fifty percent more frames. User can switch
the server’s default encoding for movies to JPEG if all the
participants have enough bandwidths. If the compression
ratio of JPEG/Theora regions drops below 12:1 during the
session, the server deletes the stored encoding information
for this region from the lookup table. Similarly regions
which are marked as PNG regions periodically rechecked.
Periodic rechecking allows the server to adapt the dynamic
nature of the content.

6.5. Minimizing the effect of packet loss for
UDP clients

UDP is not a reliable transmission mechanism and pack-
ets can get lost. Region updates may require several kilo-
bytes or even megabytes. Unless designed carefully, a sin-
gle packet loss may destroy the region update completely.
Region updates are compressed and they cannot be decom-
pressed without complete data. In order to minimize the ef-
fect of packet loss, we have developed an algorithm which
generates several small PNG images for a given update re-
gion. Blindly generating a PNG image for each scan line
may increase the bandwidth usage because a new zlib com-

pressor object should be created for each new PNG. Creat-
ing a new zlib compressor decreases the compression ratio,
so the bandwidth usage increases. The developed algorithm
tries to maximize the number of scan lines included in a sin-
gle UDP packet while trying to keep the packet size below
1500 bytes, which the MTU for ethernet. Due to its adaptive
nature, it may feed tens of lines for a text document whereas
it may feed only a single line for a photographic image. We
have observed an increase of approximately twenty percent
in bandwidth due to small PNGs.

Transmitting self-contained UDP packets minimizes the
effect of packet loss. Instead of losing the complete region
update, participants may lose only a few scan lines in case of
a packet loss. They may end up with imperfect frame buffer
due to packet losses, but they can continue to participate to
the session. The retransmission mechanism discussed in the
next section helps to restore the frame buffer state.

6.6. Reliable multicast

In the previous section, we described our algorithm
which minimizes the effect of packet loss. In this section,
we explain another supplementary technique which retrans-
mits missing packets [13]. When a packet loss occurs, the
participant views the rest of the image except missing scan-
lines. The client application sends a negative acknowledge-
ment (NACK) for this missing packet [21]. Receiving this
NACK, server retransmits the requested packet. We have
modified the oRTP library [7] which is used in the server
side and extended our own Java RTP library on the client
side to support this feature. The client/server applications
do not deal with retransmission and buffering of packets,
these are handled by the RTP libraries.

The retransmission mechanism has been developed con-
sidering the two issues: malicious or corrupted client be-
havior and NACK storms. In order to protect itself from
malicious clients, the server does not retransmit a packet
more than three times. If a packet can not reach to sev-
eral multicast clients, they all send a NACK back to the
server causing a NACK storm. Instead of sending a NACK
right after detecting a packet loss; clients wait for a random
amount of time (0-100 ms). If a client observes a multicast
NACK from another client while waiting, it suppresses its
own multicast NACK request.

6.7. Exclusive movie support

BASS is able to detect the regions of screen where a
movie is playing, and it uses Theora or JPEG encoding
for these regions. Encoding in real-time is computation-
ally expensive. Although a Pentium 4 can encode 426x320
movie in full motion, it can only encode 6-10 frames for
852x480 movie. Therefore, we implemented another fea-



ture into BASS which enables to stream full motion movies
to participants regardless of the resolution. The user of the
BASS copies the movie file into BASS directory. BASS au-
tomatically detects the movie and displays it in the GUI. If
the movie is not encoded in Theora, BASS transcodes the
movie into Theora using ffmpeg2theora [2]. This prepro-
cessing takes 30 seconds for a 20 seconds 852x480 MPEG-
4 movie. After the transcoding user can stream the movie
to participants using negligible CPU power.

7. Performance Results

We compared sharing systems for web browsing in terms
of bandwidth usage. We also compared them for playing
movies in terms of both bandwidth usage and frame rate.
All sharing systems use 24-bit per pixel except RDP which
uses 16-bit per pixel. If RDP used 24-bit, it would con-
sume fifty percent more bandwidth. For all tests, we used a
Pentium 4 3GHz CPU and 1GB memory as the server and
a Athlon XP 2600+ CPU and 1GB memory as the client.
Server and client are connected over an 100Mbps LAN.
For the movie playing comparison over a low bandwidth
measurement, we restricted the bandwidth of the client to
3 Mbps using NetLimiter [6]. To count the frame rate, we
used a Canopus TwinPact100 scan-line converter. This box
takes the RGB output of the client as input, and it outputs
a digital movie stream via firewire cable. We recorded this
movie stream using the iMovie application of a macbook
pro. We then counted the individual frames one by one to
find the actual frame rate.

Figure 7. Web browsing performance

Figure 7 compares RDP, VNC and BASS for web brows-
ing. During the measurement, server automatically visited
the home-pages of twenty most popular webpages (accord-
ing to alexa.com). We developed and used a Java-based
automated testing application, available at [1], which vis-
its each website for ten seconds. Some of these websites
have animations and advertisements. Therefore, the band-
width usage depends on how eagerly a particular sharing
system transmits updates. We can say that all systems con-
sume almost the same bandwidth which is around 1 Mbps.
Although VNC and BASS use similar compression tech-
niques, VNC consumes less bandwidth because it uses a

single compressor during the session, while BASS uses a
separate compressor for each update. Using a new a com-
pressor for each update allows BASS to compress each up-
date only once regardless of the number of participants.
However, VNC has to compress the same update for each
participant because each participant has a different com-
pressor. In case of more than one participant, VNC con-
sumes more CPU, while CPU usage of BASS remains con-
stant.

We measured the multimedia performances of sharing
systems by playing a movie over both an unlimited band-
width link and a 3-Mbps bandwidth link. The movie is a 20
seconds soundless 852x480 24-fps MPEG-4 encoded trailer
of Warren Miller’s Higher Ground. The BASS server can be
configured by the user to use JPEG or Theora for movies.
BASS-T and BASS-J represent BASS systems which use
Theora and JPEG for movies, respectively. BASS-M repre-
sents BASS’s exclusive Theora streaming feature, discussed
in section 6.7, instead of playing them in default media
player. Figure 6 compares sharing systems over an unlim-
ited bandwidth link. BASS-M and THINC are able to play
the movie in full motion, however THINC consumes 112
Mbps, while BASS-M consumes only 1.6 Mbps. RDP gives
the second high frame rate, but consumes 45 Mbps. BASS-
J gives 9-fps consuming just 2-Mbps, and BASS-T gives
6-fps consuming less than 1-Mbps. VNC is the worst per-
former in terms of frame rate. In conclusion, BASS gives
acceptable frame rate while using less than 2-Mbps.

Comparing sharing systems in unlimited bandwidth en-
vironments is not very realistic because some participants
may have low bandwidths. We repeated the same exper-
iments over a 3-Mbps link (Figure 8). Frame rates of all
sharing systems dropped less than a frame per second ex-
cept BASS whose frame rate remained the same. BASS-M
is able to play full motion movies over an 1.6-Mbps link. In
conclusion, over low bandwidth links all three BASS con-
figurations give at least six times more frame rate than the
other sharing systems.

8. Conclusion

We have developed an application and desktop sharing
system which is scalable, efficient, and independent of op-
erating system. BASS supports all applications due to its
generic model, and transmits only the shared application
and its child windows. We have used industry standards like
RTP, BFCP, and PNG. BASS uses very little CPU thanks to
the mirror driver. BASS, VNC and RDP consume roughly
the same bandwidth for web browsing. However, BASS
uses several times less bandwidth than the others for playing
movies. Others can develop clients and servers compatible
with BASS by implementing its open protocol.



Figure 6. Comparison of sharing systems in terms of movie performance (unlimited bandwidth)

Figure 8. Movie performance (3Mbps)

References

[1] Bass. http://www.cs.columbia.edu/˜boyaci/.
[2] ffmpeg2theora. http://v2v.cc/˜j/

ffmpeg2theora.
[3] Google docs. http://docs.google.com.
[4] Java technology. http://java.sun.com/.
[5] Netbeans. http://www.netbeans.org/.
[6] Netlimiter. http://www.netlimiter.com/.
[7] ortp. http://freshmeat.net/projects/ortp/.
[8] Png. http://www.libpng.org/pub/png/.
[9] Rdp. http://www.microsoft.com/

windowsserver2003/techinfo/overview/
termserv.mspx.

[10] Theora open video codec. http://www.theora.org/.
[11] Ultravnc. http://www.ultravnc.com.
[12] Joint photographic experts group. http://www.jpeg.

org, 1992. ISO 10918-1.
[13] B. Adamson, C. Bormann, M. Handley, and J. Macker.

Negative-acknowledgment (NACK)-Oriented Reliable Mul-
ticast (NORM) Protocol. RFC 3940, Nov. 2004.

[14] J. E. Baldeschwieler, T. Gutekunst, and B. Plattner. A survey
of x protocol multiplexors. SIGCOMM Comput. Commun.
Rev., 23(2):16–24, 1993.

[15] G. Camarillo, J. Ott, and K. Drage. The Binary Floor Con-
trol Protocol (BFCP). RFC 4582, Nov. 2006.

[16] P. Deutsch. DEFLATE Compressed Data Format Specifica-
tion version 1.3. RFC 1951, May 1996.

[17] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format
Specification version 3.3. RFC 1950, May 1996.

[18] A. M. Lai and J. Nieh. On the performance of wide-
area thin-client computing. ACM Trans. Comput. Syst.,
24(2):175–209, 2006.

[19] J. Lazzaro. Framing Real-time Transport Protocol (RTP)
and RTP Control Protocol (RTCP) Packets over Connection-
Oriented Transport. RFC 4571, July 2006.

[20] G. Lewis, S. M. Hasan, V. N. Alexandrov, and M. T. Dove.
Facilitating collaboration and application sharing with mast
and the access grid development infrastructures. In E-
SCIENCE ’06: Proceedings of the Second IEEE Interna-
tional Conference on e-Science and Grid Computing, 2006.

[21] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. Ex-
tended RTP Profile for Real-time Transport Control Proto-
col (RTCP)-Based Feedback (RTP/AVPF). RFC 4585, July
2006.

[22] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
02(1):33–38, 1998.

[23] G. Wallace and K. Li. Virtually shared displays and user
input devices. In ATC’07: 2007 USENIX Annual Technical
Conference on Proceedings of the USENIX Annual Techni-
cal Conference, 2007.

[24] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leverag-
ing single-user applications for multi-user collaboration: the
coword approach. In CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work,
2004.

[25] P. Ziewer and H. Seidl. Transparent teleteaching. In AS-
CILITE, pages 749–758. UNITEC Institute of Technology,
Auckland, New Zealand, 2002.


