Application and Desktop Sharing

Omer Boyaci and Henning Schulzrinne
Department of Computer Science
Columbia University
{boyaci,hgs} @cs.columbia.edu
November 28, 2007

Abstract

Application and desktop sharing allows sharing any application with one
or more people over the Internet. The participants receive the screen-view
of the shared application from the server. Their mouse and keyboard events
are delivered and regenerated at the server. Application and desktop sharing
enables collaborative work, software tutoring and e-learning over the Inter-
net. We have developed an application and desktop sharing platform called
ADS which is efficient, reliable, operating system independent, scales well,
supports all applications and features true application sharing. With ADS the
users can share any application from their desktop and the participants do not
need to have the application installed on their systems. !

1 Introduction

Application and desktop sharing allows two or more people to collaboratively work
on a single document, drawing or project in real-time. They do not need to email
the file back and forth for modifications and corrections. Similarly instructors can
give a lecture over the Internet using ADS. Students or instructor can record the
session and this recording can be played back locally or from a streaming server to
multiple users. Application sharing can be enriched with audio and video for online
lectures. Moreover ADS can be used for software tutoring where an instructor
teaches a particular software like photoshop, dreamweaver, office suites, autocad
and visual studio. Students can see what the instructor does and they can participate
to the sharing session by remotely using mouse and keyboard. Instructors can
request from students to repeat their actions after showing a feature.

!This research was supported by FirstHand Technologies.

Section 2 gives some background information on different application sharing
models. Section 3 discusses the related work and why they are inadequate. System
architecture is discussed in Section 4, whereas the details of the ADS protocol is
discusses in Section 5. Client and server architectures are explained in Sections
6 and 7 respectively. Section 8 gives information about the performance of the
system in terms of bandwidth and processing power requirements. Section 9 talks
about future work and finally Section 10 summarizes our work.

2 Background

Application and desktop sharing (ADS) allows sharing an application with remote
users. All participants see the same screen-view and use the same application.
There is only one copy of the shared application and it runs on the server. The main
challenges of application and desktop sharing are scalability, reliability, true appli-
cation sharing, operating system independence and performance. We believe that
an application and desktop sharing system should be operating system independent
because participants can use different operating systems. Also, the system should
scale well because some sharing scenarios such as e-learning and software tutoring
may consist of several simultaneous participants. Systems supporting multicasting
scale well but participants will end up with corrupted screen-views if the system
is not designed reliability in mind. The sharing system should be efficient in the
sense that it should transmit only the changed parts of the screen and it should not
consume all the resources while doing this.

Application sharing differs from desktop sharing in which there is only one
shared application for privacy and security. The key challenge is that some other
application can sit on top of the shared application and the shared application can
open new child windows like options or fonts. A true application sharing system
should blank all the other applications if they are on top of the shared one and
should transfer all the child windows of the shared application. For example, if
the user wants to share only the Windows Internet Explorer application which has
the title “Windows Live Hotmail - Windows Internet Explorer” from the desktop
seen in (Figure 1) then the participants should only see the main and the “Internet
Options” windows. ADS (Figure 3) displays only these two windows with a cor-
rect size while blocking the desktop background and the non-shared application.
Whereas another application sharing client Mast, which will be discussed later,
could not display the shared application in correct size and also could not block the
non-shared application and desktop background (Figure 2).

There are two models for application sharing: application-specific and generic.
The application-specific model requires the developers to add this feature to their

@T"/ - |.t'http:;;nynaw.haynzvl (X | |ea
I oS e ; |

Internet Options

General ISecurity I Privacy I Content | Connections I Programs I Advanced |

Haome page Ele Edit Search Wew Insert Math Format

To create home page tabs, type each address on its own line. Project Buid Tools Window Help
hittp v .google.comnf ;I
-]
Use curren ke default | Use blank |

L Opti
Browsing history I

SH'F K § T Ea

’1 \ Delete temporary files, history, cookies, saved passwords,
¥

i x
and web Form information. Inessa/il J ("C:\Program Files\MiKTeX ia

Delete... | Settings | conten o @) Underfull ‘hhox (badness 655

Search & [140T1/ prw/m/n/ 10 There are 1
eard ion = Underfull ‘vhox [badness 393¢_|

p Change search defaults. Settings map}] <arch.png, id=17, 633.7

(PNG copy)=>] [3] (Z2pagepaper.
-

Tahs tark af il f~=n=»=|rh= rranscrint file F.—.:
= Zhange how webpages are displayed in Settings # 4 ¢ w4 Build AFind1 £ Find 2 £ Farse
1 tabs,

Press Fi to get help

Appearance

Colors | Languages | Fants | Accessibility |

(=4 | Cancel | Apgly |

Figure 1: A screenshot of a desktop with overlapped windows

M viewed Application

@,\._‘:v A http My 1 3w bay1: v | ¥4 K| G0

o e, |-
General ISecur\ty | Privacy | Zantent I Connectlonsl Programs I Advanced I _o ﬁl
Home page File Edit Search View Inserk Math Format

/? To create home page tabs, type each address on its own line. Project Buld Tools Wwindow Help
hittp: [fwoww.google. comf ;I = u ﬁ % E -
[-| LsTei == FOF - :
Use curren se default Use blank | @ 26l
Browsing history
B g T S VS PR

Figure 2: Mast client view

applications; for example, the latest version of Microsoft Office has this feature.
Also, in order to participate a sharing session, all participants must have a copy
of the shared application. In the generic model, the application can be anything
such as word processor, browser, CAD/CAM, Power point or movie editor. Also,
the participants need not have the application installed on their systems. The only
disadvantage of generic application sharing is that its generic nature makes it a bit
inefficient as compared to the application-specific model in certain scenarios. We
have developed ADS based on the generic model therefore, users can share any
application without requiring the participants to have the application.

3 Related Work

As we have mentioned in the previous section, application and desktop sharing is
a very useful feature therefore, operating system providers, commercial compa-
nies and several open source teams try to come up with a solution. Microsoft has
Windows Meeting Space for Windows Vista and Netmeeting for Windows XP and
older versions. Netmeeting was released in 1999 for Windows 98 and in our tests
it fails to display pop-ups and menus. Windows Vista brings application sharing
feature with the Windows Meeting Space but all the attendees must use Windows
Vista. Apple introduced desktop sharing (no application sharing) with Mac OS
X Leopard but again both parties should use Mac OS. These two solutions are
operating system dependent. VNC [1] is a cross-platform open source desktop
sharing system but it does not have application sharing feature too. UltraVNC [2]
claims to support the application sharing feature but it has failed in our tests due
to following problems: the cursor position did not match, there is no privacy, new
windows belonging to same application are not included and long menus are not
shown properly.

VNC, Netmeeting, Windows Meeting Space and Leopard Screen Sharing all
rely on unicast only so, they do not scale well. Sharing an application via uni-
cast increases the bandwidth usage linearly with the number of participants. For
example, Microsoft suggests Windows Meeting Space for a group of 10 users or
less. TeleTeachingTool [6] and Multicast Application Sharing Tool (MAST) [7]
use multicasting to overcome this limitation. TeleTeachingTool adds multicast sup-
port to VNC servers however, it is developed just for online teaching so it does not
allow participants to control the shared desktop. Also, it does not support true ap-
plication sharing due to its underlying VNC system. MAST allows remote users
to participate via their keyboard and mouse but its screen capture model is based
on polling which is very primitive and not comparable to current state of art the
capturing methods like mirror drivers which will be discussed in Section 3.1. Also

jows Internet Explor

G‘S < [& hepe by ombay 11 =] | 7| | [

I A [

| e [e [
Home page
Use blark
Options +
Browsing history E ®
£7 D , history, cookies,
IL,‘ and web form information.
nessage
Delets Settings content
Search L
card lon
p Change search defaults. Settings
Tabs iark 5=
" Change how webpages are displayedin Settings
I
Appesrance
Coors | tangweges | Fonts | Accesshity |
o
L0o% -
Border | Full screen Mouse and keyboard actions are altowe [control

Figure 3: ADS client view

=10/ x|

%0ePAD@TLERE _i[localhost

ows Live Hot indows Internet Expl _[ol x|

y- |& =i«
o) 4 by 113w bart L |42 || x| 0o
o (RN e »
Internet Options 21 x|

General | security | Prvacy | content | Connections | Programs | advanced |

Home page
/} To create home page tabs, type each address an it own e,
hitps frws, google com =

Use curren e default Use bank |

Browsing history.

7, Delete tenporsry files, history, cookies, saved passwords, B
&) 2
) and web form information,

Delete... Settings
Search
p Change ssarch defaults. Settings

Tabs
| Change how webages are dplayed in Settings
=
Appearance
Press Fl oo
Cors | Languages Fonts | accessiity | 5
i
I - - w0 -

Figure 4: UltraVNC client view

Table 1: Comparison of Related Work

OS | S| AS |RC | R
VNC + | -] - + |+
Windows Meeting Space | - | - | + + | -
Leopard Screen Sharing - - - + | -
TeleTeachingTool + |+ - - |+
Mast + |+ | - + | -
ADS + |+ | + + |+

Legend

OS | Is it operating system independent?
S Is it scalable?

AS | Does it support application sharing?
RC | Does it support remote control?

R | Does it support recording?

MAST does not support true application sharing due to problems which we have
mentioned in the previous section (Figure 2). Although both TeleTeachingTool and
MAST use multicasting for scalability, they do not address the unreliable nature of
UDP transmissions. UDP does not guarantee delivery of packets and if delivered
packets can be out of order. In order to compensate for packet loss, the TeleTeach-
ingTool and MAST periodically transmit the whole screen which increases the
bandwidth and CPU usage. Table 1 compares the sharing systems discussed so far.

4 System Architecture

This proposed system is based on a client-server architecture (Figure 5). The
server is the machine which runs the shared application. The participants use a
lightweight Java client application for connecting to server and they do not need
the shared application. Clients receive screen updates from the server and send
keyboard and mouse events to the server.

We have developed a Java client which works in almost every operating sys-
tem. The server could not be written with Java due to lack of Java’s low level
support. Therefore, there should be a server for each operating system and we
have developed a Windows XP server and mirror driver. Mirror driver is the best
known technique for capturing screen update events and will be discussed in detail
at Section 7.1. Windows XP calls the same drawing functions on both real graphic
driver and mirror driver. This mechanism allows the server to learn the updated
screen regions without polling. Therefore, the overhead of application sharing is

\ @

Client (Java) // Client (Java)

NS
A7

/// Server
1/~ Shared Application
AV
AV
A

Client (Java)

Figure 5: System Architecture of ADS

minimum on the server. Without the mirror driver sharing server should poll the
screen state in order to detect the changed regions. The mirror driver runs in kernel
mode and notifies the user mode server when it detects changes in the GUI of the
shared application. The server then prepares a packet which consists of a RTP [8]
header and a PNG [3] or JPEG [4] image of the updated region. RTP allows the
clients to re-order the packets, recognize missing packets and synchronize applica-
tion sharing with other media types like audio and video. The screen updates are
distributed as PNG or JPEG images according to their characteristics. PNG is an
open image format which uses a lossless compression algorithm zlib and suitable
for computer generated images. JPEG is lossy but suitable for photographic images
likes photos or movies.

The server supports both multicast and unicast transmissions. For unicast con-
nections, either UDP or TCP can be used. TCP provides reliable communication
and flow control therefore, it is more suitable for unicast sessions. TCP clients
may have different bandwidths so we have developed an algorithm which sends
the updates at the link speed of each client. For UDP clients, the server controls
the transmission rate because UDP does not provide flow and congestion control.
Several simultaneous multicast sessions with different transmission rates can be
created at the server. ADS has a NACK based retransmission mechanism for UDP
clients. The UDP based clients request the missing packets from the server while
storing the received out-of-order packets in a receive buffer. Multicast clients lis-
ten the NACK messages from other clients in order not to send multiple NACK
requests for the same lost packet. Briefly, the server can share an application to
TCP clients, UDP clients and to several multicast addresses in the same sharing
session.

Late-joiners should be handled carefully otherwise they can degrade the sys-
tems performance. ADS generates a full-screen update for the late-joiners. But if
more than one participant join lately within a minute, ADS generates only one full-

screen update for the first one and starts all the others from this full-screen update.
They will receive the full-screen update first and then all the other partial updates
up to current status of the screen.

Although multiple users could receive the screen updates simultaneously, clearly
only one of them can manipulate the application via keyboard and mouse events.
ADS uses the Binary Floor Control Protocol (BFCP) [8] to restrict the control of
the application to a single user. BFCP receives floor request and floor release mes-
sages from clients and grants the floor to the appropriate client for a period of
time while keeping the requests from other clients in a FIFO queue. All BFCP
messages, keyboard and mouse events are transmitted directly to the server using
TCP. For mouse and keyboard events Java’s own key-codes are used because these
events are captured from a Java client and regenerated by a Java component at the
server.

We have also added a recording feature to the ADS. Participants can record
the sharing session to a file. This file can be used to watch the session locally or
to stream it to multiple receivers simultaneously. This feature is very useful for
preparing lectures or software tutorials for future use.

5 ADS Protocol

ADS Clients and servers communicates using the ADS protocol which defines the
packet structures and message types. The protocol defines five messages from
server to client and two messages in the reverse direction (Table 2). Each new client
needs one “open new window” message for each shared window. For TCP clients
server transmits this message right after the connection establishment. UDP based
clients send a “full intra-frame request” to the server when they join the session.
Receiving this FIR message server first transmits “open new window” messages
and then the whole screen image via “region update” messages.

Each protocol message consists of a RTP header, message type identifier, win-
dow identifier and message specific payload (Table 3). Message specific payload
structure and length are determined by the message type. “Close window” message
does not have a message specific payload whereas “window size update” message
carries new size information in this part. These messages are carried on UDP pack-
ets for UDP clients. Neither TCP nor RTP declares the length of the RTP packet
therefore, RTP framing [10] is used to split RTP packets for TCP clients. Server
and clients should ignore messages with an unknown message type. New message
types can be easily added to the protocol.

Table 2: ADS Message Types
Server Messages
Open New Window
Close Window
Window Size Update
Region Update
Move Rectangle

Client Messages
Full Intra-frame Request (FIR)
NACK request

Table 3: ADS Message Structure

RTP Header
Message Type
Window ID
Type Specific Payload

6 Client Architecture

The ADS client is very simple compare to the server, receiving screen updates from
the server and displaying them to the user. It is completely stateless in the sense
that it can disconnect and reconnect to the server. Due to its simplicity, client for
different platforms can be developed easily. A Java ADS client has been developed
in our lab and can run on any Java supported system.

ADS clients can be passive or active. In active mode, they connect to ADS
servers whereas in passive mode they wait for incoming connections. The passive
mode can be used as a RGB cable replacement for presentations. Basically, the
client becomes a network projector which waits for incoming connections. Pre-
senters can connect to this client and share their applications. A computer can be
dedicated as a network projector and only this machine should physically attached
to a real projector. The presenters do not need to attach their laptops with an RGB
cable to a projector. They just stream their application view to the network projec-
tor.

All participants of a sharing session can be view-only or they can request the
control from the server. In order to request the control from server, user should
press the “control” button in the GUI of the client application (Figure 3). The client
will send a floor request message and then the server will reply with a granted or

request queued message. The server grants the floor immediately if nobody else
currently controls the floor. Otherwise, the request will be queued in a FIFO queue
and floor will be granted to the requesters one-by-one automatically. Users can
release the floor whenever they want by pressing the “control” button again. After
the server grants the floor the client captures all keyboard and mouse events locally
and transmits them to the server.

7 Windows Server Architecture

Windows server allows Windows XP users to share an application with other par-
ticipants. Windows server has two main compenents: kernel-mode mirror driver
and user-mode sharing server. These two components works together and commu-
nicates via shared memory. Basically, the mirror driver tracks the updated regions
of the screen and notifies the user-mode sharing server about these updates. The
user-mode sharing server application learns the updated regions, prepare region up-
dates and transmit these updates to the participants(Figure 7). The sharing server
also receives mouse and keyboard events from participants and executes these re-
quests. These two components are examined in detail in the following sections.

7.1 Mirror Driver

Mirror driver is a display driver that mirrors the drawing operations of a physical
display driver. It is the most efficient way to learn screen updates because it learns
the exact coordinates of the screen updates automatically from the operating sys-
tem. We had to develop our own mirror driver for the sharing server because there
is no standard, free and open mirror driver. Remote Desktop Connection and VNC
also use their own mirror drivers to efficiently learn the screen updates. Stability
and correctness is very important for kernel-mode components because they can
easily cause restart or blue screen of death. Our mirror driver is completely stable
such that we observe no crashes at all in the last two years.

We have used the shared memory approach to establish a communication chan-
nel between mirror driver and the sharing server. Both mirror driver and the sharing
server maps the same region of the memory to their own address spaces. There are
four different regions in this shared memory (Figure 6).

Frame Buffer

Ring buffer for update records

Update records current index

Coordinates of tracking region

10

U Frame Buffer

‘ ‘ ‘ ‘ Update Records

‘ ./ ‘ Record Index

V]

‘ ‘ Tracking Region

Figure 6: Shared memory regions

Windows calls the physical and mirror display drivers with the same GDI [11]
(graphics device interface) commands. Display devices need a frame buffer to
keep the screen state. Some display devices have dedicated frame buffers on the
physical device itself. Mirror drivers are software only drivers so, they do not have
dedicated hardware for graphic acceleration and frame buffer. Therefore we have
used some portion the memory as a frame buffer. The memory requirement of
the frame buffer is resolutions times bytes per pixel. In our implementation we
have used 24 bits per pixel therefore frame buffer uses almost four megabytes for
a 1280x1024 shared region.

The second region is a ring buffer which is used by the mirror driver to insert
update commands and coordinates. There are two types of commands BitBlt and
Moverect. Windows notifies the mirror driver for an update and then mirror driver
inserts this update to the ring buffer with command type and the coordinates of the
region.

The third region of the shared memory holds a pointer to the last inserted up-
date. Sharing server periodically checks this pointer in order to see whether there
is a new update or not.

The last region stores the tracking region and is updated by the sharing server.
The sharing server computes the bounding rectangle of the shared application win-
dows and informs the mirror driver about the tracking region. The mirror driver
only tracks this specific region instead of the whole desktop. Among these four
regions the first three are maintained by the mirror driver and the tracking region is
updated by the sharing server.

11

7.2 Server Architecture

The Windows XP sharing server is a user-mode process which complements the
mirror driver. Mirror driver keeps track of the frame buffer and the list of updated
regions. The sharing server does rest of the duties including connection establish-
ment, update optimization and compression and transmission and keyboard and
mouse events handling(Figure 7). The multi-threaded sharing server can serve
multiple clients simultaneously. The server can wait for incoming connections and
also it can connect to clients directly if instructed by the user. The sharing server
has designed considering the following challenges:

Client

Client

Client

— / Thread

User
space

Client
Thread

Client

+—— 7| Thread

Client

FB

Update records

Update

In%ms

Server
Main
Thread

Kernel
space

Mirror Driver

Windows XP server

Figure 7: Windows XP server architecture

e Participants may have different bandwidths.

e Some participants may join lately.
o The effects of packet losses

12

e Reliable multicasting
e Some regions require different encoding

7.2.1 The main algorithm of the server

The sharing server has one main thread, one manager thread and a number of client
threads. The main thread periodically checks the updated regions and prepares
compressed images of these regions. These images are inserted to the image ring
buffer which stores them until they are transmitted by client threads. The algorithm
of the main thread is given below(Algorithm 1).

while Sharing session continues do

if There are new updates then
Find shared process windows;

Find the overlapping windows of the unshared processes;
Combine the overlapping or repeating updates into one update;
Clip the regions considering overlapping unshared windows;
Prepare a compressed image for each update region;

sleep x ms (determined by manager thread) before starting again;

end

else
| sleep 5 ms and then check again

end

end
Algorithm 1: The algorithm of the main thread

7.2.2 Serving to different bandwidth users

The most CPU intensive part of the server is the image compression which may
take up to 500 ms depending on the size of the updated region. Therefore, the main
thread tries to optimize the updated regions by combining overlapping regions and
ignoring repeated regions. There is no point in generating lots of updates if the
clients do not have enough bandwidth. The manager thread observes each clients
bandwidths and throttles the main thread according to the highest bandwidth client.
This technique can be easily explained with a movie playing example. Assume that
the user shares a movie with the remote participants. The same region of the screen
is updated 24-30 times per second depending on the movie type. Initially the server
tries to generate as many updates as possible. If at least one of the clients has
enough bandwidth to receive these updates, manager thread allows the main thread
to continue with this pace. But if none of the clients can have enough bandwidth to
receive these many updates then manager thread slows the main thread by forcing

13

it to sleep between update image generations. Therefore, the main thread will
generate a single update by combining several updates into one. The manager
thread tries to equalize the update generation rate to the fastest client’s bandwidth
speed. This technique prevents unnecessary CPU usage in the sharing server. The
effective bandwidths of clients may change during the sharing session and this
is properly handled by the manager thread. Briefly, the main thread combines
several updates into one update in order to decrease the bandwidth requirement.
Similar technique is utilized by the low bandwidth client threads. The fastest one
transmits the generated updates in order, however other clients may not transmit all
the generated updates due to their low bandwidths. These low bandwidth clients
use an algorithm which skip some of the updates if they are obsoleted by the newer
updates. Returning to video player example, the fastest may transmit 12 frames per
second whereas the others may transmit some of these generated frames permitted
by their bandwidths.

7.2.3 Encodings

The updates are distributed as PNG images except for movies. PNG is very suitable
and efficient for computer generated images. However, it’s lossless nature results
large increase in compressed image size for photographic images with negligible
gain in quality compare to JPEG which is specifically designed for photographic
image data. Therefore, using JPEG for photographic images and PNG for the
others is the best solution. But the server does not know whether an updated re-
gion contains photographic or computer generated content. Because mirror driver
runs at the frame buffer level and at this level there is only bits and no metadata.
Fortunately detecting movie playing is very easy due to its special characteristic.
Different from other applications, movies generate 24-30 updates per second in a
specific region of the screen. Benefitting from this characteristic we have devel-
oped an algorithm to detect movie playing in order to use JPEG encoding for this
region. Consecutive updates to a specific region trigger the detection. Detection
algorithm uses the JPEG encoding on the region and compares the compressed
image size between JPEG and PNG. If JPEG size is less than quarter of the PNG
size, the server switches the default algorithm for this region to JPEG and stores
this result in a lookup table for subsequent updates. If the compression ratio of
JPEG regions drops below 12:1, the server deletes the stored encoding information
for this region from the lookup table. Similarly regions which are marked as PNG
regions periodically rechecked. Periodic rechecking allows the server to adapt the
dynamic nature of the content. For example, we have played a movie which starts
with a black screen and then displays some texts on this background and then con-
tinues with the movie itself. In this specific case, the server first used PNG and

14

then automatically switched to JPEG after the actual movie starts.

7.2.4 Late joiners

Participants of a sharing session can join anytime and they need the full screen
buffer before receiving partial updates. Therefore, the sharing server prepares and
transmits the image of the whole shared region for late joiners [12]. Preparing the
image of the whole shared session is costly in terms of CPU so, the sharing server
stores the generated image for some time. When a participant joins, the server
sends the stored image if available and then transmits all the subsequent partial
updates. The stored image obsoleted after some period. This also protects the
server from malicious or misbehaving clients.

7.2.5 Minimizing the effect of packet loss for UDP clients

UDRP is not a reliable transmission mechanism therefore, packets can get lost. Re-
gion updates may require several kilobytes or even megabytes and unless designed
carefully a single packet loss may destroy the region update completely because re-
gion updates are compressed and they cannot be decompressed without complete
data. In order to minimize the effect of packet loss we have developed an algorithm
which generates several small PNG images for a given update region. Blindly gen-
erating a PNG image for each scan line may increase the bandwidth usage because
a new zlib compressor object should be created for each new PNG. And creating
a new zlib compressor decreases the compression ratio so, the bandwidth usage
increases. The developed algorithm tries to maximize the number of scan lines
included in a single screen update while trying to keep the generated image size
below 1500 bytes which the maximum MTU for ethernet. Due to its adaptive na-
ture it may feed tens of lines for a text document whereas it may feed only a single
line for a photographic image. We have observed approximately twenty percent
increase in bandwidth due to small PNGs.

Transmitting self-contained UDP packets minimize the effect of packet loss.
Instead of losing the complete region update, participants may lose only a few
scan lines in case of a packet loss. They may end up with imperfect frame buffer
due to packet losses but they may continue to participate to the session. Figure 8
demonstrates the effect of a single packet loss where the image is displayed with a
few missing scan lines. The retransmission mechanism which will be discussed in
the next session helps to restore the frame buffer state.

15

s aus][]

Figure 8: Minimizing the effect of packet loss

7.2.6 Reliable multicast

In the previous section, we described our algorithm which minimizes the effect of
packet loss. In this section, we explain another supplementary technique which
retransmit missing packets. When a packet loss occurs, the participant views the
rest of the image except missing scan lines(Figure 8). The client application sends
a negative acknowledgement (NACK) for this missing packet [12]. Receiving this
NACK, server retransmits the requested packet. We have modified the oRTP library
which is used in the server side and extended our own Java RTP library in client side
to support this feature. The server and the clients do not deal with retransmission
and buffering of packets, these are handled by the RTP libraries.

The retransmission mechanism has developed considering the two issues: mali-
cious or corrupted client behavior and NACK storms. In order to protect itself from
malicious clients, the server does not retransmit a packet more than three times.
NACK storms happen when a packet could not reach several multicast clients and
they all send NACK requests to server. To solve this problem, clients do not send
NACK requests immediately after detection instead they wait for a random amount
of time (between 0-100ms). During the waiting period if the client observes a
NACK request from another client in the multicast session, it suppresses its NACK
request. It is possible that more than one NACK have transmitted due to very close
timeouts but this is better than having hundreds of NACKs on the network.

7.2.7 Better movie support (Experimental)

As mentioned before we have developed an algorithm to detect movie playing.
Server starts using JPEG encoding for the detected region which increases frame

16

per second and also decreases bandwidth usage dramatically without any distin-
guishable loss by eye from the original. This technique can be improved by by-
passing the rendering to frame buffer.

=

Input File f Input File T

Media Player

GHICH

Frame Buffer

Mirror Driver v

JPEG Image [JPEG Image }

\.__Regular _/__Transcoded

Figure 9: Better movie support

o

-

| —

Figure 9 demonstrates the necessary steps for each of these techniques. In the
regular approach user plays the movie in the server with any movie player and
the frames are captured from frame buffer and compressed into JPEG images. In
the transcoded case, the user selects the movie he want to share with participants
and the frames are directly read from input file and transcoded on-the-fly into JPEG
images in real-time. These JPEG images are transmitted into participants according
to their bandwidths such that low bandwidth users get less fps compare to high
bandwidth users. For on-the-fly transcoding we have used FFMPEG-Java which is
a sub-project of Freedom for Media in Java, FMJ in short. FFMPEG-Java is a Java
wrapper around FFMPEG, using JNA. The architecture of the implemented system
is given in Figure 10. The results with this technique is better than the regular one
due to low overhead on the system. The detailed performance results can be found
in the following section.

8 Performance Results

TBD later...

Movie File (wmv,mpg,divx)
decodeNextFrame() FF J
encodeFrameToJPG() mpeg-Java

JPG images
Java
Client

Java
i Java
Streaming UDP/Multicast i
Server Client

Figure 10: Transcoding a movie into JPEGs

9 Future Work

TBD later...

10 Conclusion

We have developed an operating system independent, scalable and efficient ap-
plication and desktop sharing platform. ADS supports all applications due to its
generic model and transmits only the shared application and its child windows. We
have used industry standards like RTP, BFCP and PNG. The CPU usage of ADS
is very low thanks to the mirror driver. The bandwidth usage of ADS is similar
to other solutions like VNC. ADS allows collaborative working on a single docu-
ment or project. It can also be used for e-learning and software tutoring. People
can develop clients and servers compatible with ADS by implementing its open
protocol.

References

[1] Tristan Richardson , Quentin Stafford-Fraser , Kenneth R. Wood , Andy Hop-
per, Virtual Network Computing, IEEE Internet Computing, v.2 n.1, p.33-38,
January 1998

[2] UltraVNC Win32Server 0.5.2 Release Build Jun 18 2006 14:56:09
[3] Portable Network Graphics, http://www.libpng.org/pub/png/
[4] Joint Photographic Experts Group, http://www.jpeg.org, ISO 10918-1, 1992

[5] Java Technology, http://java.sun.com/

18

[6] Peter Ziewer and Helmut Seidl. Transparent TeleTeaching. In Proceedings of
ASCILITE 2002, Auckland, NZ, Dec. 2002.

[71 Mehmood Hasan, Gareth Lewis, Vassil Alexandrov, Dove Martin and Tucker
Matt. Multicast Application Sharing Tool for the Access Grid Toolkit. In Pro-
ceedings of the UK e-Science All Hands Meeting, Nottingham, UK, 2005.

[8] G. Camarillo, J. Ott, K. Drage. The Binary Floor Control Protocol (BFCP).
RFC 4582, IETF, November 2006.

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A Transport Pro-
tocol for Real-Time Applications. RFC 3550, IETF, July 2003.

[10] J. Lazzaro. Framing Real-time Transport Protocol (RTP) and RTP Control
Protocol (RTCP) Packets over Connection-Oriented Transport. RFC 4571,
IETF, July 2006.

[11] Microsoft Windows graphics device interface,
http://msdn2.microsoft.com/EN-US/library/ms536795.aspx

[12] J. Ott, S. Wenger, N. Sato, C. Burmeister, J. Rey. Extended RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF).
RFC 4585, IETF, July 2006.

19

