

Application Sharing

Omer Boyaci September 11, 2007

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Application Sharing Models

- Application specific
 - + Efficient
 - Participants need application
 - Application has to be modified
- Generic
 - Inefficient (sometimes)
 - Participants don't need application
 - All applications are supported

Use Cases

- Multiple Party working on the same document
- Classroom
 - Show something to remote or local users
 - Request them to repeat the same thing
 - All participants can watch and participate

Application Sharing Models

- Application specific
 - + Efficient
 - Participants need application
 - Application has to be modified
- Generic
 - Inefficient (sometimes)
 - + Participants don't need application
 - All applications are supported

Application Sharing

- Sharing an application with multiple users
- There is only one copy of the application
- Participants do not need application itself
- Briefly, participants
 - receive screen updates
 - send keyboard and mouse events
- Desktop sharing is also supported.

Screenshot

Screenshot (2)

Supported Platforms/OS

	Server	Client*
Windows 🧦	+	+
*nix	-+	+
Mac OS X X		+

^{*}Client is Java based.

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

System Architecture

Client/Server Software Architecture

System Architecture

Client/Server Software Architecture

System Architecture

Client/Server Software Architecture

Client (Viewer) Architecture

- Client can
 - Connect to server
 - Wait for incoming connections
- Client supports
 - TCP
 - UDP (+Multicast)

Client (Viewer) Architecture

- Client receives these commands
 - Open new window
 - Window size changed
 - Pixel update
 - Close window
- Client sends
 - BFCP (Binary Floor Control Protocol) commands
 - Keyboard and mouse events

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Recording

- Clients can record the whole/part session
- Anybody can play these files locally
- These files can be streamed to receivers via streaming server
- Streaming server supports multiple receivers
 - Also late joiners

Listening Client

- Client waits for incoming connections
- It can display windows from multiple user
- Can be used for RGB cable replacement

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Conclusion

- Application sharing allows users to share a single application with multiple participants.
- Participants don't need the application.
- It is not specific to a single application.
- Extra features like recording, ...

• Questions?

Overview

- Introduction
- Architecture
- Challenges
- Features
- Conclusion

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

- Possible Solutions
 - Slowest one
 - Average speed
 - Fastest one

- Possible Solutions
 - Slowest one
 - Problem: Penalize everybody except the slowest
 - Average speed
 - Fastest one

- Possible Solutions
 - Slowest one
 - Problem: Penalize everybody except the slowest
 - Average speed
 - Possible solution
 - Fastest one

- Possible Solutions
 - Slowest one
 - Problem: Penalize everybody except the slowest
 - Average speed
 - Possible solution (Can we do better?)
 - Fastest one

- Possible Solutions
 - Slowest one
 - Problem: Penalize everybody except the slowest
 - Average speed
 - Possible solution (Can we do better?)
 - Fastest one
 - The best solution
 - Client bandwidths are fully utilized

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

Late Joiner

Force server to generate full screen update

Late Joiner

- Force server to generate full screen update
 - Problems
 - Misbehaving clients can degrade performance
 - If Join/Leave rate is high, too much burden on server
 - Solution
 - Generate full screen updates if really necessary
 - Otherwise start the new client from last full screen update

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

- This problem applies to
 - Multicast
 - UDP
- The PNG images can be large
 - Regular desktop can be ~1MB
 - ~600 Ethernet packets
 - One packet loss wastes the whole PNG image

- Solution
 - Small PNG images
 - Around ~1500 bytes
 - Consist of a few scanlines
 - Disadvantages
 - Increased CPU usage (client&server)
 - Lower compression ratio (%20 lower)
 - Advantages
 - One packet loss = no update for a few scanlines

Challenges

- Different client bandwidths/speeds
- Late Joiner
- The effects of packet loss
- Reliable multicast

Reliable Multicast

- RTP Library stores last N rtp packets
- Clients send NACK for lost packets
- RTP Library resend the requested packets

