Application and Desktop Sharing

Omer Boyaci and Henning Schulzrinne
Department of Computer Science, Columbia University
{boyaci,hg$@cs.columbia.edu

Abstract sor, browser, CAD/CAM, Power point or movie editor. Also,

Application and desktop sharing allows sharing any a|o|0|ictg_e participants need not have the application installed on their

tion with numerous people over the Internet. The participar??éStems' The only disadvantage of generic application sharing

receive the screen-view of the shared application from 1 ethat its generic nature makes it a bit inefficient as compared

server. Their mouse and keyboard events are delivered %eg'eﬁoapepé'(fgcs)nk')zzzaffnmtggel;nng:iréar':osdcjrlﬁgesf'o\ge Zg;?s
regenerated at the server. Application and desktop shar P 9 ’

enables collaborative work, software tutoring and e-learni a% share any application without requiring the participants to

over the Internet. We have developed an application and de %_/e the application.

top sharing platform called ADS which is efficient, reliable, Windows Vista brings application sharing with the Win-
operating system independent, scales well, supports all app¥s Meeting Space but all the attendees should use Windows

cations and has true application sharing. }ﬁsta. Simil_arly, Mac O_S X Leopard will bring desktop shar-
. ing but again both parties should use Mac OS. These two so-
1 Introduction lutions are operating system dependent and they do not scale

well due to their unicast nature. Sharing an application via
plication with remote users. All participants see the sal ynicast increases the _bandW|dth usage linearly. For example,
|8rosoft suggests Windows Meeting Space for a group of

screen-view and use the same application. There is only .))
copy of the shared application and it runs on the server. IE?ausers or less. TeleTeachingTool [1] and Multicast Applica-

: - : Ign Sharing Tool(MAST) [2] use multicasting in order to built
main challenges of application and desktop sharing are SC%Pscalable sharing system. TeleTeachingTool adds multicast

ility, reliability, tr lication sharin ratin min- o .
bility, reliabilty, true application sharing, operating syste port to VNC servers however, it is developed just for on-

dependence and performance. We believe that an applicall . : .
; : -line teaching so it does not allow participants to use the shared
and desktop sharing system should be operating system ingde-

pendent because participants can use different operating esktop. Also, it does not support real application sharing due

S- .
tems. Also, the system should scale well because some s 3;|rts gnderlylng VNC system. MAST allows remOte users to
rticipate via their keyboard and mouse but its screen cap-

Ing scenarios such as e-learning and software twitoring nﬁ)gye model is based on polling which is very primitive and not
consist of several simultaneous participants. Systems suppc%'rt— poting yp .

) . . - . ~comparable to current state of art the capturing methods like
ing multicasting scales well but participants will end up wit

.mirror drivers which is discussed in the next section. Although
corrupted screen-views if the system is not designed reliabilj

in mind. The sharing system should be efficient in the se sxeth TeleTeachingTool and MAST systems use multicasting

that it should transmit only the changed parts of the screen %rctjscalabmty, they do not provide areal solution to unreliable

it should not consume all the resources while doing this. nature of UDP tran§m|s§|ons. UDP does not guarantee deliv-
- oo . ery of packets and if delivered packets can be out of order. In
Application sharing is different than desktop sharing in .
hich there is onlv one shared apolication for brivacy and s()(:)r_oler to compensate the packet losses the TeleTeachingTool
\évurlit The k:a chgllen eisthat S%Fr)r:e olther a plilz:/atign can%ritd MAST periodically transmit the whole screen which in-
Y- y geist pp . 'creases the bandwidth and CPU usage.
on top of the shared application and the shared application can

open new child windows like options or fonts. tAue appli- We are proposing a mirror driver based efficient, OS inde-

cation sharing system should blank other applications if the§ndent. scalable solution which has true generic application

are on top of the shared one and should transfer all the ctiitging- Not only we come up with a new protocol but also

windows of the shared application. we have developed a running system. We will discuss the ar-
There are two models for application sharing: applicatioﬁbIteCture of the system in next section.

specific and generic. The_ application—speqific quel_ requirgs Architecture

the developers to add this feature to their applications; for

example, the latest version of Microsoft Office has this fe@this proposed system is based on a client-server architec-

ture. Also, in order to have a sharing session all participatise (Figure 1). The server is the machine which runs the

must have a copy of the shared application. In the genesf@ared application. The clients use a very simple and small

model, the application can be anything such as word procéava application for connecting to server and they do not need

Application and desktop sharindD9 allows sharing an ap-

the shared application. They receive screen updates fromrthétiple NACK requests for the same lost packet. We will
server and send keyboard and mouse events to the server.do some measurements to compute the estimated overhead of
NACK protocol. Briefly, the server can share an application
@ to TCP clients, UDP clients and to several multicast addresses
in the same sharing session.
o (Java)\\\ et (ava) Late-joiners should be handled carefully otherwise they can
A degrade the systems performance. ADS generates a full-
@- e screen update for the late-joiners. But if more than one par-
\3 ticipant join lately within a minute, ADS generates only one
" server full-screen update for the first one and starts all the others from
A Shared Applcaton this full-screen update. They will receive the full-screen up-
date first and then all the other partial updates up to current
status of the screen.
Client (Java) Although multiple users could receive the screen updates
simultaneously, clearly only one of them can manipulate the
Figure 1: System Architecture of ADS application via keyboard and mouse events. ADS uses the Bi-
nary Floor Control Protocol (BFCP) [3] to restrict the control
We have developed a client which has been written in Jayahe application to a single user. BFCP receives floor request
and naturally works in almost every operating system. Thad floor release messages from clients and grants the floor to
server could not be written with Java due to lack of Java’s lawe appropriate client for a period of time while keeping the
level support. Therefore, there should be a server for each ggyuests from other clients in a FIFO queue. All BFCP mes-
erating system and we have developed a windows XP seryggies, keyboard and mouse events are transmitted directly to
and mirror driver. Mirror driver is the best known techniqughe server using TCP. For mouse and keyboard events Java’s
for capturing screen update events. Windows XP calls #&n key-codes are used because these events are captured
same drawing functions on both real graphic driver and mirfpom a Java client and regenerated by a Java component at
driver. This mechanism allows the server to learn the updatid server.
screen regions without polling. Therefore, the overhead of apwe have added recording feature to the ADS. Participants
plication sharing is minimal on the server. Without the mirrgfan record the sharing session to a file. This file can be used to
driver sharing server should poll the screen state in ordensatch the session locally or to stream it to multiple receivers
detect the changed regions. The mirror driver runs in the keiimultaneously. This feature is very useful for preparing lec-
nel mode and notifies the user mode server when it detagies or software tutorials for future use.
some changes in the GUI of the shared application. Seryer .
then prepares a packet which consists of a RTP [3] header &nd Conclusion
a PNG image of the updated region. RTP allows the clients\W have developed an operating system independent, scalable
re-order the packets, recognize missing packets and synchra efficient application and desktop sharing platform. ADS
nize application sharing with other media types like audio asdpports all applications due to its generic model and trans-
video. PNG is an open standard for images and it uses a losiis only the shared application and its child windows. We
less compression algorithm zlib which is necessary to havbave used industry standards like RTP, BFCP and PNG. The
clear and undistorted image of the shared application on U usage of ADS is very low thanks to the mirror driver.
clients. Our initial measurements shows that the bandwidthe bandwidth usage of ADS is similar to other solutions like
usage of the ADS is comparable to the current sharing sydNC. ADS allows collaborative working on a single docu-
tems like VNC. We will conduct more measurements to obtaiment or project. It can also be used for e-learning and software
more detailed comparison results. tutoring. People can develop clients and servers compatible
The server supports both multicast and unicast transmigth ADS by implementing its open protocol.
sions. For unlcgst con_nectlons, elth_er L_JDP or TCP can ﬁ%ferences
used. TCP provides reliable communication and flow control
therefore, it is more suitable for unicast sessions. The banbl P. Ziewer et al., Transparent TeleTeaching. ASCILITE
widths of TCP clients can be different so we have developed 2002, Auckland, NZ, December 2002.

an algorithm which sends the updates at the link speed of ea[:i] M. Hasan et al., Multicast Application Sharing Tool for
client. UDP does not provide flow control therefore, server the Access Grid Toolkit. UK e-Science All Hands Meet-
transmits for a particular bandwidth. Several simultaneous ing, Nottingham, UK, 2005.

multicast sessions with different transmission speeds can be _ _
created at the server. ADS has a NACK based retransmissibl G. Camarrillo et al., The Binary Floor Control Protocol
mechanism for UDP clients. The UDP based clients request (BFCP). RFC 4582, IETF, November 2006.

the missing packets from the server while storing the receivetq] H. Schulzrinne et al., RTP: A Transport Protocol for

out-of-order packets in a receive buff_er. M_ulticast clients lis- Real-Time Applications. RFC 3550, IETF, July 2003.
ten the NACK messages from other clients in order not to send

