
Application and Desktop Sharing

Omer Boyaci and Henning Schulzrinne
Department of Computer Science, Columbia University

{boyaci,hgs}@cs.columbia.edu

Abstract

Application and desktop sharing allows sharing any applica-
tion with numerous people over the Internet. The participants
receive the screen-view of the shared application from the
server. Their mouse and keyboard events are delivered and
regenerated at the server. Application and desktop sharing
enables collaborative work, software tutoring and e-learning
over the Internet. We have developed an application and desk-
top sharing platform called ADS which is efficient, reliable,
operating system independent, scales well, supports all appli-
cations and has true application sharing.

1 Introduction

Application and desktop sharing (ADS) allows sharing an ap-
plication with remote users. All participants see the same
screen-view and use the same application. There is only one
copy of the shared application and it runs on the server. The
main challenges of application and desktop sharing are scala-
bility, reliability, true application sharing, operating system in-
dependence and performance. We believe that an application
and desktop sharing system should be operating system inde-
pendent because participants can use different operating sys-
tems. Also, the system should scale well because some shar-
ing scenarios such as e-learning and software tutoring may
consist of several simultaneous participants. Systems support-
ing multicasting scales well but participants will end up with
corrupted screen-views if the system is not designed reliability
in mind. The sharing system should be efficient in the sense
that it should transmit only the changed parts of the screen and
it should not consume all the resources while doing this.

Application sharing is different than desktop sharing in
which there is only one shared application for privacy and se-
curity. The key challenge is that some other application can sit
on top of the shared application and the shared application can
open new child windows like options or fonts. Atrue appli-
cation sharing system should blank other applications if they
are on top of the shared one and should transfer all the child
windows of the shared application.

There are two models for application sharing: application-
specific and generic. The application-specific model requires
the developers to add this feature to their applications; for
example, the latest version of Microsoft Office has this fea-
ture. Also, in order to have a sharing session all participants
must have a copy of the shared application. In the generic
model, the application can be anything such as word proces-

sor, browser, CAD/CAM, Power point or movie editor. Also,
the participants need not have the application installed on their
systems. The only disadvantage of generic application sharing
is that its generic nature makes it a bit inefficient as compared
to the application-specific model in certain scenarios. We have
developed ADS based on the generic model therefore, users
can share any application without requiring the participants to
have the application.

Windows Vista brings application sharing with the Win-
dows Meeting Space but all the attendees should use Windows
Vista. Similarly, Mac OS X Leopard will bring desktop shar-
ing but again both parties should use Mac OS. These two so-
lutions are operating system dependent and they do not scale
well due to their unicast nature. Sharing an application via
unicast increases the bandwidth usage linearly. For example,
Microsoft suggests Windows Meeting Space for a group of
10 users or less. TeleTeachingTool [1] and Multicast Applica-
tion Sharing Tool(MAST) [2] use multicasting in order to built
a scalable sharing system. TeleTeachingTool adds multicast
support to VNC servers however, it is developed just for on-
line teaching so it does not allow participants to use the shared
desktop. Also, it does not support real application sharing due
to its underlying VNC system. MAST allows remote users to
participate via their keyboard and mouse but its screen cap-
ture model is based on polling which is very primitive and not
comparable to current state of art the capturing methods like
mirror drivers which is discussed in the next section. Although
both TeleTeachingTool and MAST systems use multicasting
for scalability, they do not provide a real solution to unreliable
nature of UDP transmissions. UDP does not guarantee deliv-
ery of packets and if delivered packets can be out of order. In
order to compensate the packet losses the TeleTeachingTool
and MAST periodically transmit the whole screen which in-
creases the bandwidth and CPU usage.

We are proposing a mirror driver based efficient, OS inde-
pendent, scalable solution which has true generic application
sharing. Not only we come up with a new protocol but also
we have developed a running system. We will discuss the ar-
chitecture of the system in next section.

2 Architecture

This proposed system is based on a client-server architec-
ture (Figure 1). The server is the machine which runs the
shared application. The clients use a very simple and small
Java application for connecting to server and they do not need

1



the shared application. They receive screen updates from the
server and send keyboard and mouse events to the server.

Figure 1: System Architecture of ADS

We have developed a client which has been written in Java
and naturally works in almost every operating system. The
server could not be written with Java due to lack of Java’s low
level support. Therefore, there should be a server for each op-
erating system and we have developed a windows XP server
and mirror driver. Mirror driver is the best known technique
for capturing screen update events. Windows XP calls the
same drawing functions on both real graphic driver and mirror
driver. This mechanism allows the server to learn the updated
screen regions without polling. Therefore, the overhead of ap-
plication sharing is minimal on the server. Without the mirror
driver sharing server should poll the screen state in order to
detect the changed regions. The mirror driver runs in the ker-
nel mode and notifies the user mode server when it detects
some changes in the GUI of the shared application. Server
then prepares a packet which consists of a RTP [3] header and
a PNG image of the updated region. RTP allows the clients to
re-order the packets, recognize missing packets and synchro-
nize application sharing with other media types like audio and
video. PNG is an open standard for images and it uses a loss-
less compression algorithm zlib which is necessary to have a
clear and undistorted image of the shared application on the
clients. Our initial measurements shows that the bandwidth
usage of the ADS is comparable to the current sharing sys-
tems like VNC. We will conduct more measurements to obtain
more detailed comparison results.

The server supports both multicast and unicast transmis-
sions. For unicast connections, either UDP or TCP can be
used. TCP provides reliable communication and flow control
therefore, it is more suitable for unicast sessions. The band-
widths of TCP clients can be different so we have developed
an algorithm which sends the updates at the link speed of each
client. UDP does not provide flow control therefore, server
transmits for a particular bandwidth. Several simultaneous
multicast sessions with different transmission speeds can be
created at the server. ADS has a NACK based retransmission
mechanism for UDP clients. The UDP based clients request
the missing packets from the server while storing the received
out-of-order packets in a receive buffer. Multicast clients lis-
ten the NACK messages from other clients in order not to send

multiple NACK requests for the same lost packet. We will
do some measurements to compute the estimated overhead of
NACK protocol. Briefly, the server can share an application
to TCP clients, UDP clients and to several multicast addresses
in the same sharing session.

Late-joiners should be handled carefully otherwise they can
degrade the systems performance. ADS generates a full-
screen update for the late-joiners. But if more than one par-
ticipant join lately within a minute, ADS generates only one
full-screen update for the first one and starts all the others from
this full-screen update. They will receive the full-screen up-
date first and then all the other partial updates up to current
status of the screen.

Although multiple users could receive the screen updates
simultaneously, clearly only one of them can manipulate the
application via keyboard and mouse events. ADS uses the Bi-
nary Floor Control Protocol (BFCP) [3] to restrict the control
of the application to a single user. BFCP receives floor request
and floor release messages from clients and grants the floor to
the appropriate client for a period of time while keeping the
requests from other clients in a FIFO queue. All BFCP mes-
sages, keyboard and mouse events are transmitted directly to
the server using TCP. For mouse and keyboard events Java’s
own key-codes are used because these events are captured
from a Java client and regenerated by a Java component at
the server.

We have added recording feature to the ADS. Participants
can record the sharing session to a file. This file can be used to
watch the session locally or to stream it to multiple receivers
simultaneously. This feature is very useful for preparing lec-
tures or software tutorials for future use.

3 Conclusion
We have developed an operating system independent, scalable
and efficient application and desktop sharing platform. ADS
supports all applications due to its generic model and trans-
mits only the shared application and its child windows. We
have used industry standards like RTP, BFCP and PNG. The
CPU usage of ADS is very low thanks to the mirror driver.
The bandwidth usage of ADS is similar to other solutions like
VNC. ADS allows collaborative working on a single docu-
ment or project. It can also be used for e-learning and software
tutoring. People can develop clients and servers compatible
with ADS by implementing its open protocol.

References
[1] P. Ziewer et al., Transparent TeleTeaching. ASCILITE

2002, Auckland, NZ, December 2002.

[2] M. Hasan et al., Multicast Application Sharing Tool for
the Access Grid Toolkit. UK e-Science All Hands Meet-
ing, Nottingham, UK, 2005.

[3] G. Camarillo et al., The Binary Floor Control Protocol
(BFCP). RFC 4582, IETF, November 2006.

[4] H. Schulzrinne et al., RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, IETF, July 2003.

2


