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Frequency Domain Normal Map Filtering

Abstract
Filtering is critical for representing image-based detail, such as tex-
tures or normal maps, across a variety of scales. While mipmapping
textures is commonplace, accurate normal map filtering remains
a challenging problem because of nonlinearities in shading—we
cannot simply average nearby surface normals. In this paper, we
show analytically that normal map filtering can be formalized as
a spherical convolution of the normal distribution function (NDF)
and the BRDF, for a large class of common BRDFs such as Lamber-
tian, microfacet and factored measurements. This theoretical result
explains many previous filtering techniques as special cases, and
leads to a generalization to a broader class of measured and ana-
lytic BRDFs. Our practical algorithms leverage a significant body
of previous work that has studied lighting-BRDF convolution. We
show how spherical harmonics can be used to filter the NDF for
Lambertian and low-frequency specular BRDFs, while spherical
von Mises-Fisher distributions can be used for high-frequency ma-
terials.

1 Introduction
Representing image-based surface detail at a variety of scales re-
quires good filtering algorithms. For texture mapping, aliasing
is reduced by mipmapping [Williams 1983] or summed-area ta-
bles [Crow 1984]. Normal mapping (also known as bump map-
ping [Blinn 1978] or normal perturbation) is a simple and widely
used analogue to texture mapping, that specifies the surface normal
at each texel. Unfortunately, normal map filtering is very difficult
because shading is not linear in the normal.

For example, consider the simple V-groove like structure or sur-
face geometry in Fig. 1a. Initially, this spans two pixels, each of
which has distinct normals (b). As we zoom out (c), the average
normal of the two sides (e) corresponds simply to a flat surface,
where the shading is likely to be very different. By contrast, our
method preserves the full normal distribution (d), showing how to
convolve it with the BRDF (f) to get an accurate result.

A more complex example is Fig. 2. Initially (top row), minimal
filtering is required, and all methods perform identically. However,
as we zoom out (middle and especially bottom rows), we quickly
obtain radically different results, depending on if we use standard
mipmap filtering or our method—which is close to ground truth.1

We develop a comprehensive framework for normal map filter-
ing, in the context of real-time GPU rendering of normal maps,
significantly generalizing the state of the art [Tan et al. 2005].
Theory of Filtering as Convolution of BRDF and NDF: Our
most important contribution is theoretical. In Sec. 4, we derive an
analytic formula, showing that filtering can be formally represented
as a spherical convolution of the BRDF of the material, and the
normal distribution function2 or NDF for that texel. The NDF is
a weighted mapping of surface normals onto the unit sphere; more
formally, it is the extended Gaussian Image [Horn 1984] of the ge-
ometry within a texel. The theory applies equally to the conven-
tional discrete normal maps shown in all our examples, as well as
analytically-specified normal distributions.

This mathematical form holds for a large class of common
BRDFs (including Lambertian, microfacet models and factored
half-angle measurements), and immediately connects geometrical
normal map filtering with the older lighting-BRDF convolution re-
sult for appearance [Basri and Jacobs 2001; Ramamoorthi and Han-
rahan 2001b]. Our result also unifies many previous normal map

1Ground truth is obtained by offline averaging or antialiasing of multiple
(hundreds of) images created by jittering the camera, while rendering with
normal maps at their finest resolution.

2Our normal distribution function is not to be confused with the
similarly-named function from statistics.
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Figure 1: Consider a simple V-groove. Initially (a), each face is a sin-
gle pixel. As we zoom out, and average into a single pixel (c), standard
mipmapping averages the normal to an effectively flat surface (e). However,
our method computes a normal distribution function or NDF (d), that pre-
serves the original normals. This NDF can be linearly convolved with the
BRDF (right panel (f)) to obtain an effective BRDF, accurate for shading.

Figure 2: Top: Closeups of the base normal map, which has different col-
ors in flat regions and bumps to aid in comparison/visualization. All other
methods are identical at this scale, and are not shown. Middle: When we
zoom out, differences emerge between our (6-lobe) spherical vMF method,
the Toksvig approach (rightmost), and a normalized mipmap. (Using unnor-
malized mipmap averaging of normals produces an essentially black image.)
Bottom: Zooming out even further, our method is clearly more accurate
than Toksvig’s model (effectively single-lobe), and compares favorably with
ground truth. (The reader may zoom into the PDF to compare images.)

filtering approaches, that can be viewed as special cases. Moreover,
we can immediately apply a host of mathematical representations
originally developed for lighting-BRDF convolution. In particular,
we develop the following new practical algorithms:

Spherical Harmonics: Spherical harmonic coefficients can be
used to filter the NDF for Lambertian and low-frequency specular
BRDFs (Sec. 5). We simply linearly average spherical harmonic
coefficients at finer texels, as in mipmapping. To our knowledge,
this is the first effective linear filtering algorithm for normal maps.

Spherical vMF Distributions: For rendering high-frequency
materials, we use spherical expectation maximization [Banerjee
et al. 2005] to fit von Mises-Fisher (vMF) spherical distribu-
tions [Fisher 1953] to the NDF, enabling a compact representation
(Sec. 7). To our knowlege, this use of vMFs and EM for spherical
distributions is new in graphics, and may have broader relevance.

Complex BRDFs and Lighting: Our framework allows us to
handle complex BRDFs, including measured materials, as well as
dynamically changing reflectance, lighting and view. We are also
able to incorporate dynamic low-frequency environment maps.
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2 Previous Work
The closest previous work is [Tan et al. 2005], which uses EM to fit
Gaussian lobes at each texel. We introduce a new theoretical result
in terms of the analysis of normal map filtering as convolution—
it is easy to understand [Tan et al. 2005] as an important special
case in this framework. Our formulation also allows spherical har-
monic methods for low-frequency materials and Lambertian ob-
jects, which do not even require non-linear fitting of lobes. For
high-frequency materials, by using vMFs and spherical EM, we use
the natural spherical domain of surface normals—distorted planar
or Euclidean projections, as in the planar Gaussian fits of [Tan et al.
2005], have been shown to considerably reduce accuracy, both in
our work (Fig. 7), and in other contexts [Strehl et al. 2000]).

Note that [Tan et al. 2005] treat the BRDF itself as a pre-baked
distribution of normals at fine-scale texels. We support and discuss
this multi-scale tradeoff between BRDF and geometry (Sec. 6.2).
However, our spherical representation enables us to derive a for-
mal convolution result of the NDF with the BRDF, and allows us to
separate or factor the two. The same NDF can be used with differ-
ent, possibly non-Gaussian BRDFs, easily. We can also change the
BRDF at runtime, and support dynamic complex lighting.
Normal Map Filtering: Earlier techniques based on lobe or
peak-fitting include Schilling [1997] who uses a covariance matrix,
and [Olano and North 1997] who map normal distributions consist-
ing of a single 3D Gaussian. A simple recent GPU method is by
Toksvig [2004]. In our framework, these techniques can retrospec-
tively be considered similar to using a single vMF lobe. As seen in
Figs. 2 and 7, a single lobe is not sufficient for complex NDFs.

An early inspiration is [Fournier 1992], who uses up to seven
Phong peaks per texel, but needs up to 56 at the coarsest scales.
As with [Tan et al. 2005], this is a special case of our frame-
work, with some similarities to our spherical vMF algorithm. Note
that [Fournier 1992] uses nonlinear least-squares optimization to
fit peaks. In our experience, this is unstable and slow, especially
considering the number of peaks and texels in a normal map.
Multi-Scale Representations: The idea of multiple scales, with
bump or normal maps transitioning to BRDFs, is explored by
[Becker and Max 1993], but they do not focus on normal map fil-
tering as in our work. Similarly, appearance-preserving simplifica-
tion methods replace fine-scale geometry with normal and texture
maps [Cohen et al. 1998]. It is likely that our approach could en-
able continuous level of detail and antialiasing in these methods.
Separately, our formulation allows one to understand the tradeoff
between a normal distribution and the BRDF, since the final image
is given by a convolution of the NDF and BRDF.
Displacement Maps: The power of modern GPUs has enabled
more complex representations, like displacement maps with sphere
tracing [Donnelly 2005]. A more data and compute-intensive
approach is view-dependent displacement mapping [Wang et al.
2003]. However, these methods are more complicated, and an-
tialiasing has not yet received significant attention, making filtered
normal maps still the method of choice for many applications.
Convolution and Precomputed Radiance Transfer (PRT):
Many of our mathematical representations derive from previous
convolution and PRT methods. We utilize spherical harmonics [Ra-
mamoorthi and Hanrahan 2001b; Sloan et al. 2002], including the 9
parameter formula for Lambertian reflectance [Ramamoorthi and
Hanrahan 2001a; Basri and Jacobs 2001]. Our spherical vMF
method extends zonal harmonic [Sloan et al. 2005] and spheri-
cal radial basis functions [Tsai and Shih 2006]. We also consid-
ered wavelet methods (introduced for reflectance in [Lalonde and
Fournier 1997]), but found the number of terms for an artifact-free
solution too large for practical use, even with smoother wavelets.3

We emphasize however, that ours is not a PRT algorithm, requir-
ing minimal precomputation and working with conventional real-
time rendering techniques. It is different from normal mapping in

3PRT methods can use a coarse wavelet approximation of the lighting,
since it is not visualized directly, but we directly visualize NDF and BRDF.

PRT [Sloan 2006], which presents a simple approximation and does
not address filtering. Moreover, our method rests on an explicit ana-
lytic convolution formula, and uses the representations above solely
for normal map filtering, not PRT.

3 Preliminaries
The reflected light B at a spatial point x is

B(x,ωωωo) =
∫

S2
L(x,ωωω i)ρ(ωωω ′i,ωωω

′
o)dωωω i, (1)

where L is the lighting and ρ is the BRDF (actually, the transfer
function including the cosine of the incident angle). L will generally
be assumed to be from a small number of point lights (so equation 1
can be replaced by a summation over discrete ωωω i). ωωω ′i and ωωω ′o are
the local directions in the surface coordinate frame. To find them,
we must rotate by R, that converts global directions (ωωω i and ωωωo) to
the local frame [Ramamoorthi and Hanrahan 2001b],

ωωω ′i = R(n)ωωω i ωωω ′o = R(n)ωωωo. (2)

3.1 BRDF Representation and Parameterization

Effective BRDF: Therefore, we can consider an effective BRDF
or transfer function that depends on the surface normal,

ρeff(ωωω i,ωωωo,n) = ρ(R(n)ωωω i,R(n)ωωωo), (3)

with

B(x,ωωωo) =
∫

S2
L(x,ωωω i)ρ

eff(ωωω i,ωωωo,n(x))dωωω i. (4)

BRDF Parameterizations: Many BRDFs can be written as

ρeff(ωωω i,ωωωo,n) = ρ(ωωω ·n), (5)

where the BRDF is a 1D function of a single variable or parameteri-
zation ωωω . In this paper, we focus most of our effort on these types of
BRDFs, which encompass Lambertian, Blinn-Phong or microfacet
half angle, and factored and measured BRDFs.

A very common example is Lambertian reflection, where the
transfer function is simply the cosine of the incident angle, so that
ωωω = ωωω i, and ρ = max(ωωω ·n,0). The Blinn-Phong specular model
with exponent s uses a transfer function of the form ρ = (ωωωh ·n)s,
with the half-angle parameterization, ωωω = ωωωh. Measured or proce-
dural BRDF functions ρ(ωωωh ·n) can also be used.

A number of recent papers have proposed factored BRDFs for
measured reflectance. [Lawrence et al. 2006] uses a factorization
f (θh)g(θd), in terms of half and difference angles. The f (θh) term
clearly fits into the framework of equation 5, but the BRDF now
also includes a product with g(θd). However, θd does not depend
on n (and g does not need to be filtered), so we extend equation 5

ρeff(ωωω i,ωωωo,n) = ρ(ωωω ·n)g(ωωω i,ωωωo), (6)

where the g factor does not depend directly on n.

3.2 Normal Map Representation and Filtering
Normal Map Input Representation: There are many equiv-
alent normal map representations, including bump maps [Blinn
1978] and normal offsets. For simplicity, we use normal maps, pa-
rameterized on a plane, that directly specify the normal.

For rendering complex curved 3D geometry, the normal map n j
is rotated onto the surface using the geometric surface normal, i.e.
n̂ j = R(n̂)n j , where n̂ j is the new normal, and n̂ is the geometric
normal. The actual implementation is even simpler—we just per-
form all computations in the local frame of the geometric surface.
Lighting and view are projected into this local frame, after which
the planar normal map4 is used directly, without explicit rotation.

4In practice, available normal maps do not usually use much higer reso-
lutions than 512×512 or 1024×1024 for memory and practicality reasons.
To obtain effectively higher or finer resolutions, we therefore often tile the
base normal map multiple times over the surface. In rare cases, this intro-
duces minor artifacts at tile boundaries that are unrelated to our algorithm.
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For simplicity in the discussion below, the reader can therefore
assume a planar underlying surface, while understanding that the
extension to curved 3D geometry is straightforward.
Normal Map Filtering: Under standard linear filtering, coarser
scales should represent the average radiance at the corresponding
finer-level texels,

B(x,ωωωo) =
1
N

N

∑
j=1

∫

S2
L(x,ωωω i)ρ

eff(ωωω i,ωωωo,n j)dωωω i

=
∫

S2
L(x,ωωω i)

(

1
N

N

∑
j=1

ρeff(ωωω i,ωωωo,n j)

)

dωωω i. (7)

This formulation allows us to define a new effective BRDF,

ρeff(ωωω i,ωωωo) =
1
N

N

∑
j=1

ρ(R(n j)ωωω i,R(n j)ωωωo). (8)

Once we have the effective BRDFs at each texel in the mipmap,
we simply look up the effective BRDF at the appropriate scale,
and use equation 4. However, explicitly tabulating an effective 4D
BRDF at each texel involves very large storage costs. Moreover, the
result depends on the BRDF ρ , which is often unknown a-priori.

This paper is about efficiently computing and representing ρ eff.
The next section shows how to explicitly factor ρ eff as a convolution
of the original BRDF and the NDF.

4 Theory of Normal Mapping as Convolution
In this section, we introduce our theoretical framework for normal
map filtering as convolution. The next sections describe mathemat-
ical representations that can be used for practical implementation.

4.1 Normal Distribution Function (NDF)

Our first step is to convert equation 8 into continuous form, defining

ρeff(ωωω i,ωωωo) =
∫

S2
γ(n)ρ(R(n)ωωω i,R(n)ωωωo)dn, (9)

where γ(n) is a normal distribution function, and the integral is over
the sphere S2 of surface orientations. For a discrete normal map,
γ(n) would simply be a sum of (spherical) delta distributions at n j ,
the fine-scale normals corresponding to that texel of the mipmap,
i.e. γ(n) = 1

N ∑N
j=1 δ (n−n j), as seen in Fig. 1d. For some proce-

durally generated normal maps, γ(n) may be available analytically.

4.2 Frequency Domain Analysis in 2D

We now proceed to analyze equation 9 in the frequency domain.
Many insights can be gained by starting in the simpler flatland or
2D case. In 2D, rotation simply corresponds to adding n,

ρeff(ωi,ωo) =
∫ 2π

0
γ(n)ρ(ωi +n,ωo +n)dn. (10)

We can now consider expanding in Fourier series, by writing out
γ = γkF∗k (n), and ρ = ∑l,m ρlmFl(ωi + n)Fm(ωo + n), where Fl(n)

are the familiar Fourier basis functions (2π)−1/2 exp(iln), and F∗k
are the complex conjugates. Because Fl(ω +n) =

√
2πFl(ω)Fl(n),

ρeff(ωi,ωo) = 2π ∑
k,l,m

γkρlmFl(ωi)Fm(ωo)
∫ 2π

0
F∗k (n)Fl(n)Fm(n)dn.

(11)
We have grouped terms not depending on n away from those that
do. The integral above involves a triple integral of Fourier se-
ries, and we denote the corresponding tripling coefficients Cklm.
These tripling coefficients have recently been studied [Ng et al.
2004], and for Fourier series, they vanish unless k = l + m, when
Cklm = 1/

√
2π . Noting that ρeff above is expressed in terms of

Fl(ωi)Fm(ωo), we can write a formula for its Fourier coefficients as

ρeff
lm =

√
2πγl+mρlm. (12)

Discussion and Analogy with Convolution: This is a very sim-
ple product formula for the frequency coefficients of the effective
BRDF, very similar to a convolution of the BRDF with the NDF.
However, the convolution analogy is not exact, since equation 11
involves a triple integral (and n appears thrice in equation 10). In
3D, the formulae and sparsity for triple integals in the frequency
domain (especially those involving rotations) are much more com-
plicated [Ng et al. 2004]. Fortunately, many BRDFs are primarily
functions of a single variable, ρ(ωωω · n) as in equation 5. In these
cases, we will obtain a spherical convolution of the NDF and BRDF.

4.3 Frequency Domain Analysis in 3D

Plugging equation 5 into equation 9, we obtain

ρeff(ωωω) =
∫

S2
γ(n)ρ(ωωω ·n)dn. (13)

Note that the initial BRDF ρ(ωωω ·n) is symmetric about n, but the
final result ρeff(ωωω) is a general function on the sphere.

Equation 13 expresses a spherical convolution of the NDF γ(n)
with the BRDF filter ρ . It is in fact exactly the same form of equa-
tion as derived for lighting-BRDF convolution (in the Lambertian
or radially symmetric case) by [Basri and Jacobs 2001] and [Ra-
mamoorthi and Hanrahan 2001b]. We simply have the NDF instead
of the lighting. We now expand γ and ρ in spherical harmonics Ylm,

γ(n) = ∑∞
l=0 ∑l

m=−l γlmYlm(n) ρ(ωωω ·n) =
∞

∑
l=0

ρlYl0(ωωω ·n) (14)

ρeff(ωωω) =
∞

∑
l=0

l

∑
m=−l

ρeff
lm Ylm(ωωω).

The convolution product formula in spherical harmonics is

ρeff
lm =

√

4π
2l +1

ρlγlm. (15)

By defining Al =
√

4π
2l+1 ρl , we obtain

ρeff
lm (q) = Alγlm(q), (16)

where we make explicit that the NDF and effective BRDF are func-
tions of a texel q in the mipmap. The NDF considers all normals
covered by that texel. Also note that this formulation works with ar-
bitrary NDFs, and is not tied to mipmap-based filtering—we show
an example with anisotropic filtering in Fig. 3.

Generality and Supported BRDFs: The form above is accu-
rate for all BRDFs described by equation 5, including Lambertian,
Blinn-Phong and measured microfacet distributions.5 Moreover, it
can be used even when the BRDF has an additional Fresnel or g(θd)
factor, as per equation 6, since g need not be filtered.

5 Spherical Harmonics

We now discuss mathematical representations and algorithms that
can be used for normal map filtering. The simplest approach is
to work directly in spherical harmonics, using equation 16, as dis-
cussed in this section. Later, Sec. 7 discusses spherical vMFs.

5.1 Algorithm

At the finest level, the distribution function γ(q) is a delta distribu-
tion at n(q), with6 γlm(q) =Ylm(n(q)). An important insight is that,

5For some specular BRDFs, we also need to multiply by the cosine of
the incident angle for a full transfer function. For the Spherical vMF method
in Sec. 7, we simply multiply for each lobe by the cosine of the angle be-
tween light and lobe center (or effective normal). For the spherical harmonic
method in Sec. 5, we simply use the mipmapped normals for the cosine term,
since it is a relatively low-frequency effect.

6We use the real spherical harmonics. Otherwise, γlm(q) = Y ∗lm(n(q)).

3



Online Submission ID: 0046

Our method

Standard anisotropic

filtering

Ground truth

Figure 3: Spherical harmonic anisotropic filtering for Lambertian reflec-
tion. Note the behavior for far regions of the plane. With standard normal
filtering, these regions are averaged to a nearly flat surface. By contrast,
our method is quite accurate in distant regions.

unlike the original normals, these spherical harmonic NDF coeffi-
cients can now be linearly filtered or averaged. Hence, we can sim-
ply mipmap the spherical harmonic coefficients γlm in the standard
way. Unlike previous approaches, no non-linear fitting is required.

At the time of rendering, we know the BRDF coefficients Al .
For many analytic models like Blinn-Phong, formulae for Al are
known [Ramamoorthi and Hanrahan 2001b]. For measured re-
flectance, Al is obtained directly by a spherical harmonic transform
of ρ(ωωω ·n). The effective BRDF is then given by equation 16 as

ρeff(ωωω,q) =
l∗

∑
l=0

l

∑
m=−l

Alγlm(q)Ylm(ωωω). (17)

For shading, assume a single point light source for now. At each
surface location, we know the incident and outgoing directions, so
it is easy to find the half-angle ωωωh or other parameterization ωωω , and
then simply use the BRDF formula above directly for rendering.

We implement equation 17 in a pixel shader using GLSL. The
spherical harmonics Ylm are stored in floating point textures for ta-
ble lookup, as are the mipmapped NDF coefficients γlm(q). At run-
time, we simply sum the coefficients, directly as per equation 17.
Real-time frame rates are achieved comfortably for up to 64 spher-
ical harmonic terms (l∗ ≤ 7, corresponding to a Blinn-Phong expo-
nent s≤ 12 or a surface roughness σ ≥ 0.2).

5.2 Results

Lambertian Reflection: In the Lambertian case, using only nine
spherical harmonic coefficients (l ≤ 2) suffices. An example is
shown in Fig. 3, where (for this figure only) we also use GPU-
based anisotropic filtering, instead of mipmapping, to show gen-
erality. Note the more accurate results for far away regions of the
tile, where standard averaging of the normal produces an almost flat
surface that is much darker than the actual (as illustrated in Fig. 1e).

Low-Frequency Specularities and Measured Reflectance: For
specular materials with BRDF ρ(ωωωh · n), the same approach can
be applied. The BRDF can also be changed at run-time, since the
NDF is independent of it. We have factored all of the materials in
the database of [Matusik et al. 2003], using the f (θh)g(θd) factor-
ization in [Lawrence et al. 2006]. Figure 4 shows two examples of
different materials, which we can switch between at runtime.

Figure 5 shows closeup views from an animation sequence of
cloth draping over a sphere, using the blue fabric material from
the Matusik database. Note the accuracy of our method (compare
(b) with the ground truth in (c)). Also note the smooth transition
between close (unfiltered) and distant (fully filtered) regions in (a)
and (b), as well as the filtered zoomed out view in (d).

“Leather” “Violet Rubber”

Figure 4: The spherical harmonic method for normal mapping, with two of
the materials in the Matusik database—we can support general measured
BRDFs and change reflectance or material in real time. Notice also the
correct filtering of the zoomed out view, shown at the bottom right.

Discussion and Limitations: The spherical harmonic method
is a simple practical approach for low-frequency materials. Unlike
previous techniques, all operations are linear—no nonlinear fitting
is required, and we can handle arbitrary lobe shapes (or functions
ρ(ωωωh ·n)). Moreover, the BRDF is decoupled from the NDF, en-
abling simultaneous changes of BRDF, lighting and viewpoint.

As with all low-frequency approaches, the spherical harmonic
method requires many terms for high-frequency specularities (a
Blinn-Phong exponent of s = 50 needs about 300 coefficients). The
following sections provide more practical solutions in these cases.

6 Spherically Symmetric Distributions
Spherical harmonics are general functions. To compactly represent
high frequencies, we will instead use spherical distributions sym-
metric about a central direction (the average normal). These func-
tions depend only on the radial distance from that center, and are
not general 2D NDFs. However, by summing four to six such lobes,
we can approximate general high-frequency NDFs (see Fig. 7). We
now introduce a basic framework, followed in Sec. 7 by the algo-
rithm with von Mises-Fisher (vMF) distributions [Fisher 1953].

6.1 Basic Theoretical Framework for using SRBFs

Consider a single basis function γ for the NDF, symmetric about
some orientation or “normal” µµµ . For now, γ is a general Spherical
Radial Basis Function (SRBF), of which vMFs are a special form
(to be introduced later in Sec. 7). Equation 13 now becomes

ρeff(ωωω ·µµµ) =
∫

S2
γ(n ·µµµ)ρ(ωωω ·n)dn. (18)

It can be shown (for example, see [Tsai and Shih 2006]) that ρ eff

is itself radially symmetric about µµµ (hence the form ρeff(ωωω · µµµ)
above), and its spherical harmonic coefficients are given by

ρeff
l = Alγl . (19)

Compared to equation 16, this is essentially a simpler 1D convo-
lution, since all functions are radially symmetric.

For rendering, we need to expand the effective BRDF in spher-
ical harmonics, analogous to equation 17, but using only the Yl0
terms. Considering the summation of multiple lobes j, we obtain

ρeff(ωωω,q) =
J

∑
j=1

∞

∑
l=0

Alγl, j(q)Yl0(ωωω ·µµµ j), (20)

where we again make clear that the NDF γl, j is a function of the
texel q. This equation can be used directly for shading, after we
find ωωω for the light source and view direction. Our actual imple-
mentation is given in Sec. 7, in terms of the vMF distributions.
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(a) Our method, f rame 1 (b) Our method, f rame 2 (c) Ground truth, f rame 2 (d) Our method, zoomed out

Figure 5: Stills from a sequence of cloth draping over a sphere, with closeups indicating correct normal filtering (the full movie is shown in the video). Note
the smooth transition from the center (almost no filtering) to the corners (fully filtered) in (b)—compare also with ground truth in (c). (d) is a zoomed out view
that also filters correctly. We use a blue fabric material from the Matusik database as the BRDF.

Figure 6: Illustration of multiscale filtering of the BRDF/NDF. (a) shows
a zoom into the sphere, where we see the individual facets and a sharp
NDF/effective BRDF (sphere in inset). (b) zooms out to show the full sphere.
The geometry now appears smoother, although roughness is still clearly vis-
ible. The effective BRDF, or convolution of NDF and BRDF, is now blurred,
incorporating no-longer visible fine-scale geometry. As we zoom further out
in (c) and (d), the geometry appears even smoother (with a smooth high-
light), while the BRDF is further filtered (note wider lobes in (c) and (d)).

6.2 Discussion: Unifying Framework and Multiscale

Our theoretical framework above unifies many normal filtering al-
gorithms. Previous “peak or lobe-fitting” methods can be seen as
special cases. For instance, [Schilling 1997; Toksvig 2004] effec-
tively use a single lobe (J = 1), while [Fournier 1992] uses multiple
Phong lobes for γ . These methods have generally adopted simple
heuristics in terms of the BRDF. By developing a general convolu-
tion framework, we show how to separate the NDF from the BRDF,
and properly account for general BRDFs Al , which can even be
changed on the fly—in contrast, even [Tan et al. 2005] is limited to
Gaussian Torrance-Sparrow BRDFs that are predetermined.

Equation 19 also has an interesting multi-scale interpretation, as
depicted in Fig. 6 for zooming out of a rough surface (using a single
vMF lobe). At the finest scale (a), the geometry µµµ is the original
highest-resolution normal map n. The NDF γ is a delta distribution
at each texel, and the effective BRDF ρeff

l = ρl (sharpest highlight
on sphere in bottom right). At coarser scales, the geometry µµµ is ef-
fectively a filtered or average version of the fine-scale normal map,
with the geometry becoming smoother from (b)-(d). Note that (c)
and (d) even have smooth highlights, without significant roughness.
The effective BRDF is filtered by the NDF, essentially replacing the
fine-scale geometry with a blurring of the BRDF.

Also note the symmetry between the BRDF and NDF in equa-
tion 19. While the common fine-scale interpretation is for a delta
function NDF and the original BRDF, we can also view it as a delta
function BRDF and an NDF given by Al . These interpretations
are consistent with most microfacet BRDF models, that start by as-
suming a mirror-like BRDF (delta function) and a complex micro-
geometry or NDF (microscopic V-grooves), and derive a net glossy
BRDF on a smooth macro surface (delta function NDF).

7 Spherical vMF Algorithm
We now describe our algorithm to determine the central directions
µµµ j , and compute a sum of lobes to represent the NDF. A number of
approaches have been proposed for PRT, but are not suitable here.

One method is to use zonal harmonics [Sloan et al. 2005]. How-
ever, our NDFs are not low-frequency, making fitting difficult, and
storage inefficient since l is large. An alternative is to use Gaussian
RBFs for γ [Tan et al. 2005], with parameters chosen using expec-
tation maximization (EM) [Dempster et al. 1977; Bilmes 1997]. In
this case, we simply need to store 3 parameters, for the amplitude,
width and central direction. Whereas [Tan et al. 2005] pursued this
approach using Euclidean (and therefore distorted) RBFs, we con-
sider NDFs represented on their natural spherical domain, which
also enables us to derive a simple convolution formula.

Indeed, spherical Gaussian RBFs, such as in [Tsai and Shih
2006] are most appropriate. However, nonlinear minimization for
fitting is inefficient, given that we need to do so at each texel. In-
stead, we use a spherical variant [Banerjee et al. 2005] of EM, with
the von Mises-Fisher7 (vMF) distribution [Fisher 1953]. We also
extend the basic spherical EM algorithm to handle color and differ-
ent materials, create coherent lobes for hardware interpolation, and
enable fast spherical harmonic convolution for rendering.

7.1 Estimation of Mixture of vMFs

First, we must estimate the mixture of vMF lobes for each texel
using EM. The vMF probability distribution function is

γ(n ·µµµ;θ) =
κ

4π sinh(κ)
exp[κ(n ·µµµ)], (21)

where the parameters θ = {κ,µµµ} are the inverse width κ and cen-
tral direction µµµ . A mixture of vMFs (movMF) is defined as an affine
combination of vMF lobes θ j , with amplitude α j , where ∑ j α j = 1,

γ(n;Θ) =
J

∑
j=1

α jγ j(n ·µµµ j;θ j). (22)

We use spherical EM (algorithm 1) to fit a movMF to the nor-
mals covered at each texel in the mipmap. Line 5 of algorithm 1
shows the E-step. For all normals ni in a given texel, we compute
the expected likelihood 〈zi j〉 that ni corresponds to lobe j. Lines 9-
14 execute the M-step, which computes maximum likelihood esti-
mates of the parameters. In practice, we seldom need more than

7For the unit 3D sphere, this function is also known as the Fisher distri-
bution, while for the unit 2D sphere (circle), it is known as the von Mises
distribution. We use the more general term von Mises-Fisher distribution or
vMF, that also applies to arbitrary dimension hyperspheres.
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Figure 7: Fitting of a spherical NDF from one of the texels in the mipmap with increasing numbers of vMF lobes (middle row). With 3-4 lobes, we already
get excellent agreement in the rendered image. Note that each vMF lobe is symmetric about some central direction, and is fit on the natural spherical domain
(which is why we show both a top and side view in the middle row). By contrast, a planar Gaussian fit (top row), as in Tan et al., must remain symmetric in
the distorted planar space, and therefore has considerable errors at the boundaries of the hemisphere. Because no explicit convolution formula exists in the
planar case, we only show renderings with our method (bottom row), which accurately match ground truth for a small number of vMF lobes.

10 iterations, so the full EM algorithm for a 512×512 normal map
converges in under 2 minutes. Note that this is an offline computa-
tion that needs to be done only once per normal map—unlike most
previous work, it is also independent of the BRDF (and lighting).

Note the use of auxiliary variable r j in line 11, which represents
〈x j〉
α j

, where 〈x j〉 is the expected value of a random vector gener-

ated according to the scaled vMF distribution γ(x;θ j). The central
normal µµµ j and the concentration parameter κ j are related to r j by

r = A(κ)µµµ,

where A(κ) = coth(κ)− 1
κ

. (23)

The direction µµµ is found simply by normalizing r (line 13), while
κ is given by A−1(‖r‖); since no closed-form expression exists for
A−1, line 12 uses the approximation in [Banerjee et al. 2005].

Since EM is an iterative method, good initialization is important.
For normal map filtering, we can proceed from the finest texels to
coarser levels. At the finest level, we have only a single normal at
each texel8, so we need only a single lobe and directly set α = 1,
µµµ = n, and κ to a large initial value. Assume we fit J lobes. At each
coarser level of the mipmap, we will be combining normals from 4
finer level texels (a total of 4J lobes) to obtain J new lobes. A good
initialization would be to choose the furthest J lobes of the finer
level 4J vMFs. This is achieved using Hochbaum-Shmoys cluster-
ing [Hochbaum and Shmoys 1985; Agarwal et al. 2003] which is
simple and nearly optimal. Note that the finer level lobes are used
only for initialization—the actual fitting uses all normals covered
by that texel in the mipmap.

The accuracy of our method is shown in Fig. 7, where we see
that about four lobes suffices in most cases, with excellent agree-
ment with six lobes. We also compare with the planar Gaussian EM
fits of [Tan et al. 2005]. Because they work on a distorted planar
projection of the hemisphere (top row), they have a significant loss
of accuracy near the boundaries. Our method (middle row) works
on the natural spherical domain (hence the side view shown), and
is able to correctly create undistorted symmetric lobes anywhere on
the sphere. Also note that [Tan et al. 2005] do not have an explicit

8Our framework also supports analytic functions, in which case a fine-
scale texel would have a continuous normal distribution instead of a discrete
normal. This distribution can be sampled and used directly for EM.

Algorithm 1 The Spherical EM algorithm
1: repeat
2: {The E-step}
3: for all samples ni do
4: for j = 1 to J do

5: 〈zi j〉 ←
γ j(ni;θ j)

∑J
k=1 γk(ni;θk)

{Expected likelihood of ni in lobe j}

6: end for
7: end for
8: {The M-step}
9: for j = 1 to J do

10: α j←
∑N

i=1〈zi j〉
N

11: r j ←
∑N

i=1〈zi j〉ni

∑N
i=1〈zi j〉

{Auxiliary variable for κ,µµµ in equation 23}

12: κ j ←
3‖r j‖−‖r j‖3

1−‖r j‖2

13: µµµ j ← normalize(r j)

14: end for
15: until convergence

convolution formula, while our method can be combined with any
BRDF to produce accurate rendered images (bottom row).

7.2 Spherical Harmonic Coefficients for Rendering

For rendering, we will need the spherical harmonic coefficients γl
of a normalized vMF lobe. These coefficients do not appear easy
to find in the literature, so we derive them here based on reasonable
approximations. First, for large κ , sinh(κ)≈ exp[κ]/2. In practice,
this approximation is accurate as long as κ > 2, which is almost
always the case. Hence, the vMF in equation 21 becomes

γ(n ·µµµ;θ)≈ κ
2π

exp[−κ(1−n ·µµµ)]. (24)

Let β be the angle between n and µµµ . Then, 1−n ·µµµ = 1−cosβ .
For moderate κ , β must be small for the exponential to be nonzero.
In these cases, 1− cosβ ≈ β 2/2, and we get a Gaussian form,

γ(n ·µµµ;θ)≈ κ
2π

exp[−κ
2

β 2]. (25)

In [Ramamoorthi and Hanrahan 2001b], the spherical harmonic
coefficients of a Torrance-Sparrow model of a similar form are com-
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puted. For notational simplicity, let Λl =
√

4π/(2l +1). Then,

γ =
exp[−β 2/(4σ2)]

4πσ2 ⇒ Λlγl = exp[−(σ l)2]. (26)

Comparing with equation 25, we obtain

σ2 =
1

2κ

Λlγl = exp[−σ 2l2] = exp[− l2

2κ
]. (27)

Since each vMF lobe is treated independently, and the constants
α j and BRDF coefficients can be multiplied separately, we focus
on convolving the normalized BRDF with a single normalized vMF
lobe. It is possible to directly use equation 27 for the vMF coeffi-
cients and equation 20 for rendering with general BRDFs.

However, a much simpler method is available for the important
special forms of Blinn-Phong and Torrance-Sparrow like BRDFs.
First, consider a normalized Blinn-Phong9 model of the form,

ρ(ωωωh ·n) =
s+1
2π

(ωωωh ·n)s, (28)

where s is the specular exponent or shininess. It can be shown [Ra-
mamoorthi and Hanrahan 2001b] that the spherical harmonic coeffi-
cients are Al ≈ exp[−l2/2s]. Therefore, the result after convolution
with the vMF is still approximately a Blinn-Phong shape, with

1
2s′

=
1
2s

+
1

2κ
=⇒ s′ =

κs
κ + s

ρeff(ωωωh ·µµµ) =
s′+1

2π
(ωωωh ·µµµ)s′ . (29)

For a Torrance-Sparrow like BRDF of the form of equation 26,
we obtain a similar form for ρeff, only with

σ ′ =
√

σ2 +(2κ)−1. (30)

The simplicity of these results mean it is trivial to change BRDF
parameters on the fly, and to consider very high-frequency BRDFs.

7.3 Extensions
Different Materials/Colors: It is often the case that one would
like to associate additional spatially varying properties (such as
color, material blending weights, etc.) to a normal map. For exam-
ple, the normal map in Fig. 2 contains regions of different colors.
We represent these properties in a feature vector yi associated with
each normal ni, and also extend the EM algorithm accordingly.

For each vMF lobe, we would now like to find a y j that best
describes the yi of all its underlying texels. In the appendix, we
augment the EM likelihood function with an additional term, that
can be maximized to yield an extra line in the M-step,

y j ←
∑N

i=1〈zi j〉yi

∑N
i=1〈zi j〉

(31)

Note that since y j does not affect the E-step, the preceding can
simply be run as a postprocess to the vanilla EM algorithm.

Coherent Lobes for Hardware Interpolation: One approach to
trilinear mipmap filtering is simply to consider all 8 relevant texels,
averaging the shading for each. Greater efficiency (usually a 2×
to 4× speedup) is obtained if we first use hardware mipmapping
to interpolate the parameters of each vMF lobe from all K neigh-
bors. We can then simply run our GPU pixel shader once on the
interpolated parameters. This requires that corresponding lobes of
adjacent texels be similarly aligned, and that a new parameteriza-
tion be chosen for accurate linear interpolation.

9Note that the diffuse component can also be handled in a very similar
way, simply setting s = 1 and ωωω = ωωω i.

For alignment, we introduce a new term in our EM likelihood
function, and maximize (the details are in the appendix). The final
result replaces line 13 in the M-step of algorithm 1 with

µµµ j ← normalize

(

r j +C
K

∑
k=1

α jkµµµ jk

)

. (32)

C is a parameter that modulates the strength of the alignment term
(which seeks to move µµµ j closer to the central directions µµµ jk of the
K neighbors, preferring neighbors with large amplitudes α jk.).

As in the planar Gaussian EM method of [Tan et al. 2005], we
build our aligned movMFs starting at the topmost (that is, most fil-
tered) mipmap level and proceed downward, following scanline or-
dering within each individual level. In the interest of performance,
we use only previously computed texels as neighbors.

We next consider trilinear interpolation of the variables. Unfor-
tunately, the customary vMF parameters {κ,µµµ} control non-linear
aspects of the vMF lobe, and do not interpolate linearly. To solve
this problem, we recall from Sec. 7.1 that µµµ and κ can be inferred

from the scaled Euclidean mean r =
〈x〉
α of a given vMF distribu-

tion. By linearity of expectation, we can interpolate αr = 〈x〉 lin-
early, as well as the amplitude α ,

α̃ j = T (α)

r̃ j = T (α jr j)/T (α), (33)

where T (·) denotes hardware interpolation (or trilinear filtering),
and {κ̃ j , µ̃µµ j} can be easily found in a fragment shader using lines 12
and 13 of algorithm 1. For implementation, we store the jth lobe
θ j of each movMF in a standard texture mipmap using one chan-
nel for α j and one channel each for the three components of α jr j .
Color/material properties y j are stored in corresponding textures.

7.4 Results

Figure 2 shows the accuracy of our method, and makes comparisons
to ground truth and alternative techniques. It also shows our ability
to use different materials for different parts of the normal map.

Our formulation allows for general and even dynamically chang-
ing BRDFs. Figure 8 shows a complex scene, where the reflectance
changes over time, decreasing in shininess (intended to simulate
drying using the model in [Gu et al. 2006]). Although not shown,
the lighting and view can also vary—the bottom row shows close-
ups with different illumination. Note the correct filtering for di-
nosaurs in the background, and for further regions along the neck
and body of the foreground dinosaur. Even where individual bumps
are not visible, the overall change in appearance as the reflectance
changes is clear. This complex scene has 14,898 triangles for the
dinosaurs, 139,392 triangles for the terrain and 6 textures for the
normal maps and dinosaur skins. It renders at 75 frames per second
at a resolution of 800x600 on an NVIDIA 8800 graphics card. In
this example, we used six unaligned vMF lobes, with both diffuse
and specular shading implemented as a simple fragment shader.

8 Complex Lighting

Our vMF-based normal map filtering technique can also be ex-
tended to complex environment map lighting.10 Equation 4 is a
convolution that becomes a simple dot product in spherical harmon-
ics,

B(µµµ) =
∫

S2
L(ωωω i)ρ

eff(ωωω ·µµµ)dωωω i, (34)

where the effective BRDF ρeff is the convolution of the vMF lobe
with the BRDF, and µµµ is the central direction of the vMF lobe (ef-
fective “normal”) as usual. For the diffuse component ωωω = ωωω i,

10The direct spherical harmonic method in Sec. 5 is more difficult to ap-
ply, since general spherical harmonics cannot be rotated as easily as radially
symmetric functions between local and global frames.

7



Online Submission ID: 0046

Figure 8: Our framework can handle complex scenes, allowing for general
reflectance, which can even be changed at run-time. Here, the BRDF be-
comes less shiny over time. Note the correct filtering and overall changes
in appearance for further regions of the foreground dinosaur, and those in
background. The bottom row shows closeups (when the material is shiny)
with a different lighting condition. This example also shows that we can
combine normal maps with standard texture mapping.

and the spherical harmonic coefficients can simply be multiplied
according the convolution formula, Blm = Λlρ

eff
l Llm, so that

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l LlmYlm(µµµ). (35)

For the specular component however, the BRDF is expressed in
terms of ωωω = ωωωh, and we need to change the variable of integration
in equation 34 to ωωωh (which leads to a factor 4(ωωω i ·ωωωh)),

B(µµµ) =
∫

S2

[

L(ωωω i(ωωωh,ωωωo)) ·4(ωωω i ·ωωωh)
]

ρeff(ωωωh ·µµµ)dωωωh

=
∫

S2
L′(ωωωh)ρ

eff(ωωωh ·µµµ)dωωωh. (36)

Thus, we simply need to consider a new reparameterized lighting
L′(ωωωh) = L(ωωω i(ωωωh,ωωωo)) ·4(ωωω i ·ωωωh). As the half angle depends on

Figure 9: Armadillo model with 350,000 polygons rendered in real time
with normal maps in dynamic environment lighting. We use 6 vMF lobes,
and spherical harmonics up to order 8 for the specular component.

both viewing and lighting angles (ωωωo and ωωω i), the above integra-
tion implicitly limits us to a fixed view with respect to the lighting.
To interactively rotate the lighting, we precompute a sparse set of
rotated lighting coefficients and interpolate the shading.

Finally, in analogy with equation 35,

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l L′lmYlm(µµµ). (37)

Figure 9 shows an image of an armadillo, with approximately
350,000 polygons and a normal map, rendered at real-time rates in
dynamic environment lighting. We are able to render interactively
with up to 6 vMF lobes and l∗ = 8 in equation 37.

9 Conclusions and Future Work
We have developed a comprehensive theoretical framework for nor-
mal map filtering with many common types of reflectance models.
Our method is based on a new analytic formulation of normal map
filtering as a convolution of the NDF and BRDF. This leads to prac-
tical algorithms using spherical harmonics and spherical vMFs, that
enable general reflectance functions. The methods are implemented
in real-time rates in graphics hardware as simple GPU shaders.

We believe this paper also makes broader contributions to many
areas of rendering, and beyond. The convolution result unifies a
geometric problem (normal mapping) with understanding of light-
ing and BRDF interaction in appearance. The connection between
spherical harmonics and spherical vMFs may also allow a better
understanding of, and new practical algorithms even for PRT.

Moreover, we introduce spherical EM and vMF distributions into
computer graphics, where they will likely find many other applica-
tions. For instance, vMF lobes are radially symmetric functions that
are well suited for BRDF importance sampling [Lawrence et al.
2004] for global illumination of normal mapped objects—our ex-
periments indicate they produce sharper and higher-quality results
than standard mipmap filtering even for offline rendering.

8
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In summary, normal mapping is an old technique, but correct fil-
tering has been a challenging problem, because shading is nonlinear
in the surface normal. In this paper, we have show how advanced
mathematical analysis can shed important new insight, and take a
significant step towards addressing this long-standing problem.
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Appendix: Spherical EM Extensions
In this appendix, we briefly describe the likelihood function for spherical
EM, and how we augment it for colors/materials and coherent lobes. The
net likelihood function is a product of 3 terms,

P(X ,Z|Θ)P(Y,Z|Θ))P(Θ|N(Θ)),

where X are the samples (in this case input normals), Z are the hidden vari-
ables (in this case which vMF lobe a sample X is drawn from), Θ are pa-
rameters for all vMF lobes and N(Θ) are parameters for neighbors. The first
factor corresponds to standard spherical EM, the second factor corresponds
to the colors/materials Y ,

P(Y,Z|Θ) =
N

∏
i=1

exp[−‖yzi
−yi‖2], (38)

and the final factor to coherent lobes for interpolation,

P(N(Θ)|Θ) =
J

∏
j=1

K

∏
k=1

exp[C′α jk(µµµ j ·µµµ jk)]. (39)

In EM, we seek to maximize the log likelihood,

ln [P(X ,Z|Θ)P(Y,Z|Θ))P(Θ|N(Θ))] =

N

∑
i=1

lnγ(ni|θzi
)+

N

∑
i=1
−‖yi−yzi

‖2 +
J

∑
j=1

K

∑
k=1

C′α jk(µµµ j ·µµµ jk). (40)

Considering all J lobes and hidden variables 〈zi j〉, we seek to maximize

J

∑
j=1

[

N

∑
i=1

lnγ(ni|θ j)〈zi j〉+
N

∑
i=1
−‖yi−yzi

‖2〈zi j〉+
K

∑
k=1

C′α jk(µµµ j ·µµµ jk)

]

with respect to all parameters. Maximizing with respect to y j , we directly
obtain equation 31. The maximization with respect to µµµ j is more complex,

µµµ j = normalize

(

κ j

N

∑
i=1

ni〈zi j〉+C′
K

∑
k=1

α jkµµµ jk

)

. (41)

Finally, redefining C = C′/κ j , we obtain equation 32.

9


