
Real-time Soft Shadows in Dynamic Scenes using
Spherical Harmonic Exponentiation

Zhong Ren1∗ Rui Wang1∗ John Snyder2 Kun Zhou3 Xinguo Liu3

Bo Sun4† Peter-Pike Sloan5 Hujun Bao1 Qunsheng Peng1 Baining Guo3

1 Zhejiang Univ. 2 Microsoft Research 3 Microsoft Research Asia 4 Columbia Univ. 5 Microsoft Corporation

Abstract

Previous methods for soft shadows numerically integrate over many
light directions at each receiver point, testing blocker visibility in
each direction. We introduce a method for real-time soft shad-
ows in dynamic scenes illuminated by large, low-frequency light
sources where such integration is impractical. Our method operates
on vectors representing low-frequency visibility of blockers in the
spherical harmonic basis. Blocking geometry is modeled as a set of
spheres; relatively few spheres capture the low-frequency blocking
effect of complicated geometry. At each receiver point, we com-
pute the product of visibility vectors for these blocker spheres as
seen from the point. Instead of computing an expensive SH prod-
uct per blocker as in previous work, we perform inexpensive vector
sums to accumulate the log of blocker visibility. SH exponentiation
then yields the product visibility vector over all blockers. We show
how the SH exponentiation required can be approximated accu-
rately and efficiently for low-order SH, accelerating previous CPU-
based methods by a factor of 10 or more, depending on blocker
complexity, and allowing real-time GPU implementation.

Keywords: ambient occlusion, lighting environment, Volterra series.

1 Introduction

Soft shadows are critical for realistic image synthesis. While many
real-time techniques generate hard shadows from point or direc-
tional light sources, they can’t be practically extended to large area
light sources. Too many passes are required to properly sample
points on the large sources.

Precomputed radiance transfer (PRT) solves the light integration
problem using an offline tabulation of an object’s response to low-
frequency lighting [Sloan et al. 2002]. Ignoring higher frequencies
of lighting and transfer (in contrast to “all frequency” PRT [Ng et al.
2003]) greatly reduces the dimensionality of transfer vectors or ma-
trices and their spatial sampling rate, making the idea much more
practical. Our method has the same limitation of low-frequency
lighting and relatively matte BRDFs. Unlike our method, PRT is
limited to static objects, precomputed sequences [James and Fata-
halian 2003], or local textural features [Sloan et al. 2005].

Our goal is accurate generation of soft shadows in general, dy-
namic scenes where tabulation is impractical. Our method operates
directly on vectors representing the low-frequency visibility func-
tion of a blocker as seen from a receiver point, expressed using

∗This work was done while Zhong Ren and Rui Wang were interns at

Microsoft Research Asia.
†This work was done while Bo Sun was an intern at Microsoft Research.

the spherical harmonic (SH) basis. A previous method [Zhou et al.
2005] has also taken this approach by rotating each blocker visibil-
ity function into the local coordinate frame and computing the SH
product over all blockers. SH rotations and products are very ex-
pensive, precluding GPU implementation and restricting real-time
CPU implementation to a few precomputed blockers.

Our solution approximates blocker geometry as a collection of
spheres. This simple model is easy to animate. It is also easy to
compute SH visibility: the projection of a sphere as seen from any
receiver point is circularly symmetric and thus can exploit a simple
rotation rule [Sloan et al. 2005]. Rather than computing blocker
products directly, we represent blocker visibility in log space. The
total log blocking vector can then be accumulated as a simple sum
of log vectors over all blockers. For order-n SH vectors, this re-
duces per-blocker computation from O(n5) to O(n2); for order-4
SH vectors, it is less than 1/20 the per-blocker cost. The reduced
per-blocker cost allows us to handle complicated scenes with many
more blockers than in previous work. We call the method SHEXP.

Given the total log of blocker visibility at a receiver point, we
perform SH exponentiation to yield the total blocker visibility. The
result is a low-frequency, spherical visibility function that accounts
for blocker overlap and can be used to modulate lighting before
applying it to any BRDF. Our SH exponentiation approximation is
fast enough to provide large speedups over previous soft shadowing
approaches, and simple enough to map to the GPU.

Ours is the first real-time method for rendering soft shadows
from low-frequency environmental lighting in dynamic scenes with
many blockers. In particular, we handle deformable objects like
articulated characters including their self-shadows. We introduce
two technical contributions to do this. One is to accumulate low-
frequency blocker visibility in log space. The Volterra series, long
used for circuit and signal analysis, forms the mathematical foun-
dation for SH exponentiation. We also describe a series inversion
method for taking SH log to improve accuracy. The second is to ef-
ficiently approximate low-frequency blocker visibility using sets of
bounding spheres. Our novel construction minimizes volume out-
side the blocker geometry. To prevent complete self-shadowing, we
formulate replacement rules for blocker spheres near the receiver
point. We also apply a sphere hierarchy to adapt complexity of the
blocker approximation to its receiver distance.

2 Previous Work

Using triple products of lighting, reflectance, and visibility, [Ng
et al. 2004] presents a method for fast relighting and view changes
in static scenes. Shadow fields [Zhou et al. 2005] extend this
method to account for dynamic visibility changes and form the ba-
sis for our approach of directly manipulating low-frequency visibil-
ity vectors. Using the spherical harmonic basis, this method demon-
strates real-time performance for at most six rigidly-moving blocker
objects because of the expense of SH rotations and products. These
operations are even more expensive with the “all-frequency” basis
(wavelets over cube maps), which typically has an order of magni-
tude more basis components than low-order SH, and a comparable

(a) ray traced (b) SHEXP, n=4 (c) SHEXP, n=6 (d) AO [Bunnell 2004]

Figure 1: Rendering method comparison. The middle two columns use our method, accumulating using SH order n (n=4 in (c), n=6 in (d)) visibility vectors

and applying order n exponentiation. SH lighting order applied is n=4. Column (d) uses software available at http://download.developer.nvidia.com. In the

bottom row, columns (a) and (d) shadow from the actual geometry while (b) and (c) use blocker spheres. SHEXP casts much more realistic shadows than AO.

increase in spatial sampling required at the receiver. Precomputed
shadow fields for rigidly-moving objects can be combined with our
approach by tabulating object visibility in SH log space.

As noted in the introduction, most PRT methods rely on static
or precomputed objects. Local, deformable PRT (LDPRT) [Sloan
et al. 2005] precomputes transfer on local features like bumps or
wrinkles, but can reorient them on a deforming object without
knowing the object’s motion in advance. We apply its idea of zonal
harmonics (ZH) to simplify SH rotation, using spherical blockers
whose logs require only a single-lobe ZH model. Our method han-
dles global shadowing such as from one character to another or a
character’s arm onto his body rather than reorienting fine-scale de-
tails as in LDPRT.

Ambient occlusion (AO) [Bunnell 2004; Kontkanen and Laine
2005; Malmer et al. 2005] defines a simple cone by the average vis-
ibility direction and its total spherical area. Shadows are produced,
but maximally soft ones determined mostly by occluder proxim-
ity rather than lighting direction. Our method generalizes AO by
computing true low-frequency blocker visibility rather than simple
averages, and so is able to generate recognizable shadows that trail
behind bright lighting directions (see Figure 1). While other AO
approaches tabulate over rigid components, [Bunnell 2004] handles
deformable geometry. It organizes simple approximating elements
for blockers into a hierarchy. We borrow this idea but distribute
spheres over the blocker’s volume rather than discs over its surface.

Several methods [Kautz et al. 2004; Bunnell 2004; Zhou et al.
2005] including ours may be termed blocker accumulation meth-
ods because they process a list of blocker geometry at each receiver
point. Other methods employ multiple shadow buffers [Segal et al.
1992; Agarwala et al. 2000; Mei et al. 2004] and so entail slow in-
tegration over lighting directions when rendering large lights. In
fact, [Kautz et al. 2004] is a blocker accumulation method that
also uses the directional lighting basis by rasterizing blockers into
hemispherical bitmaps. Real-time rendering is limited only to very
simple scenes. On the other hand, soft shadow volumes [Assars-
son and Akenine-Möller 2003] can handle greater scene complexity
but only small area light sources. Convolution can also be used to
shadow [Soler and Sillion 1998], but it produces a scalar modula-
tion rather than true hemispherical radiance and is difficult to apply
in general scenes with non-planar receivers and large-depth block-
ers. We solve the problem of light integration over large sources by
accumulating over coarsely-approximated, low-frequency blockers
representing large subtended angles rather than individual direc-
tions. Our approach is efficient for moderate numbers of blocker
primitives (we can handle several hundred) which are made more
effective by our use of a blocker hierarchy.

Homomorphic factorization [McCool et al. 2001] uses log space

to factor high-dimensional BRDFs into a sum of positive, lower-
dimensional functions. Only scalar exponentiation is required at
run-time; our method “pushes” entire SH vectors through nonlinear
log or exp operators based on the Volterra series.

3 Overview and Terminology

We use math italic for scalars and 3d points or vectors (e.g., x, s),
boldface italic for SH vectors (e.g., fff , ggg), and sans serif for matrices
and higher-order tensors (e.g., Γ, M, D).

Spherical Harmonics are useful to represent low-frequency
spherical functions such as radiance incident at a point, as well as
blocker visibility functions which modulate distant radiance. Given
a spherical function f (s), we can project this function to determine
a vector fff representing its low-frequency behavior via

fff =
∫

S
f (s)yyy(s)ds (1)

where yyy(s) is the vector of SH basis functions. The SH basis func-
tions are orthogonal polynomials in s = (x,y,z) restricted to the

sphere s ∈ S. An order n SH projection has n2 vector coefficients.
Conversely, given an SH vector fff we can reconstruct a continuous,
low-frequency spherical function f̃ (s) approximating f (s) via

f̃ (s) =
n2−1

∑
i=0

fff i yi(s) = fff · yyy(s). (2)

SH Products and the Triple Product Tensor are useful
for computing the combined shadowing effect of multiple block-
ers directly in the SH basis, without resorting to numerical inte-
gration over directions [Kautz et al. 2004; Mei et al. 2004] or per-
forming complicated geometric clipping operations [Assarsson and
Akenine-Möller 2003; Laine et al. 2005]. The SH product, denoted
fff ∗ ggg, represents the order-n projected result of multiplying the re-
construction of two order-n vectors, fff times ggg, or

fff ∗ggg =
∫

S
f (s)g(s)yyy(s)ds ⇒ (fff ∗ggg)i = ∑

jk

Γi jk fff j gggk (3)

where the SH triple product tensor, Γi jk, is defined by

Γi jk =
∫

S
yyyi(s)yyy j(s)yyyk(s)ds. (4)

Γ is a symmetric, sparse, order-3 tensor. This definition incurs trun-
cation error because the product of two order-n vectors is actually
order 2n−1.

Figure 2: Shadowing from multiple blockers at receiver point p.

Order-n SH products are O(n5) [Ng et al. 2004]. The following
table records the number of nonzero entries in Γ as function of n:

n 1 2 3 4 5 6 7 8

coefs 1 10 83 369 1164 2961 6586 13018

Even at low orders, SH product is an expensive operation. Efficient
evaluation uses code generation and factoring [Snyder 2006].

We can also define the SH product matrix, M f , given an SH vec-
tor fff . The product matrix is a symmetric matrix which encapsulates
SH product with fff ; in other words, fff ∗ ggg = M f ggg for an arbitrary
vector ggg. M f is defined by

(M f)i j = ∑
k

Γi jk fff k. (5)

Shadowing using SH Products [Zhou et al. 2005] computes
the product of a collection of m blockers ggg[1],ggg[2], . . . ,ggg[m], via

ggg = ggg[1]∗ggg[2]∗ · · · ∗ggg[m] (6)

where each ggg[i] is the SH projection of the corresponding blocker
visibility function (Figure 2):

g[i](s) =

{
0, if object i blocks in direction s;
1, otherwise.

(7)

Although SH product is commutative, it is not associative, so the
ordering in which the above products are performed matters.

Shadowing in Log Space instead accumulates the log of
blocker visibilities, denoted by fff [1], fff [2], . . . , fff [m] where fff [i] =
log(ggg[i]). Thus

ggg = exp(fff) = exp(fff [1]+ fff [2]+ · · ·+ fff [m]) . (8)

Accumulating the log now involves vector sums which are indepen-
dent of the blocker ordering and much cheaper than SH products.
Section 4 discusses how the SH exponential is computed while SH
log is discussed in Section 5.

Shading then makes use of the total visibilty vector ggg. For dif-
fuse surfaces, the computation is (HHH(N),LLL,ggg) where LLL is the light
vector, ggg is the total blocker visibility vector, and HHH(N) is the irradi-
ance weighting function given the surface normal N [Ramamoorthi
and Hanrahan 2001]:

HHH(N) =
1

π

∫

s
max(s ·N,0)yyy(s)ds (9)

(aaa,bbb,ccc) for three SH vectors aaa, bbb, and ccc denotes the integral of the
product of the three reconstructed functions and is given by

(aaa,bbb,ccc) = (aaa∗bbb) · ccc = (bbb∗ ccc) ·aaa = (ccc∗aaa) ·bbb = ∑
i jk

Γi jk aaai bbb j ccck

The total visibility vector can also be used to shade other types of
BRDFs [Kautz et al. 2002] or textural detail [Sloan et al. 2003;
Sloan et al. 2005]: the vector ggg ∗ LLL represents shadowed incident
radiance to apply to the receiver.

4 SH Exponential

Let fff be an SH vector to be exponentiated, and ggg be the result of
this exponentiation. The Volterra series [Schetzen 1980] allows any
analytic, univariate, scalar function h(x) (e.g. h(x) = exp(x)) to be
applied to an SH vector, or indeed any discrete function basis. We
begin with the integral formulation

h(fff) =
∫

S
h(f (s)) yyy(s)ds =

∫

S
h

(

∑
i

fff i yi(s)

)

yyy(s)ds (10)

which applies h to the reconstructed function f (s) at each spherical
point s and then projects the result to the vector h(fff). Substituting
the Taylor expansion of the function h(x)

h(x) = h0 +h1 x+h2 x2 +h3 x3 + · · · , (11)

we obtain the SH power series

h(fff) = h0 111+h1 fff 1 +h2 fff 2 +h3 fff 3 + · · · (12)

where

111 = (
√

4π,0,0, . . . ,0)

fff p =
∫

f p(s)yyy(s)ds =
∫
(

∑
i

fff i yyyi(s)

)p

yyy(s)ds.

The vector 111 corresponds to a constant value of 1 over the sphere,
and satisfies 111 ∗ fff = fff for any fff . Degree p powers of fff can be
written in terms of order-(p+1) tensors Γ, via

(fff p)i = ∑
i1,i2,...,ip

Γi,i1,i2,...,ip
fff i1

fff i2
. . . fff ip

(13)

where the tensor Γ represents the Volterra kernel (when scaled by
hi) and generalizes the triple product tensor we encountered before:

Γi,i1,i2,...,ip
=
∫

S
yyyi(s)yyyi1

(s)yyyi2
(s) . . . yyyip

(s)ds (14)

Numerical integration (10) or high-order tensors (12) are too ex-
pensive to evaluate on-the-fly. The result can be approximated by
substituting repeated SH products for true SH powers in the series.
This incurs approximation error because it truncates after each bi-

nary product. For example, fff 3 ≈ (fff ∗ fff)∗ fff because the result of the
first square fff ∗ fff is truncated back to an order-n SH vector before
multiplying by fff again. Errors are typically small for bandlimited
visibility, since the original functions are bounded in [0,1], and can
be further reduced by accumulating products at higher order than
the input vectors. Using repeated SH products, we obtain the fol-
lowing approximation called the SH product series, more practical
for real-time evaluation:

h∗(fff) = h0 111+h1 fff +h2 fff ∗ fff +h3 fff ∗ fff ∗ fff + · · ·
= h0 111+h1 fff +h2 fff 2∗ +h3 fff 3∗ + · · · (15)

We use the notation

fff p∗ = fff ∗ fff ∗ · · · ∗ fff
︸ ︷︷ ︸

repeated p times

and note that fff p ≈ fff p∗. For p > 3, product order matters; we as-
sume the product is amassed from left to right.

Now applying the Volterra series using the Taylor expansion for
h(x) = exp(x) in (15), we obtain the product series

exp(x) = 1+ x+
x2

2
+

x3

3!
+ · · · (16)

exp∗(fff) = 111+ fff +
fff 2∗

2
+

fff 3∗

3!
+ · · · (17)

4.1 Product Series Approximation
For a finite number of terms in (17), approximation error increases
as ‖ fff‖ increases, just as it does in (16) as |x| increases. For this rea-
son, evaluation techniques try to reduce the magnitude of the input
vector fff and thereby increase accuracy for a fixed number of terms.
Another technique factors the series to reduce the number of SH
products. These techniques are analogous to ones used for the ma-
trix exponential [Higham 2005]. In fact, computing the exponential
of an SH vector and a matrix are related since

M f p∗ ≈ (M f)
p ⇒ Mexp∗(f) ≈ exp

(
M f

)
. (18)

The left relation in (18) is only an approximate equality because of
the non-associativity of SH product: M f 2∗ ggg = (fff ∗ fff)∗ggg 6= fff ∗ (fff ∗
ggg) = M f M f ggg = (M f)

2 ggg.

DC Isolation We express fff as the sum of its DC component (fff 0,
representing the average value of f (s)) plus its remaining compo-

nents, or fff = f̂ff +
fff 0√
4π

111. f̂ff simply zeroes out the DC component of

fff , i.e.,

f̂ff = (0, fff 1, fff 2, . . . , fff n2−1). (19)

Then (17) becomes

exp∗(fff) = exp

(
fff 0√
4π

)

exp∗(f̂ff) (20)

which is easily derived since fff ∗111 = fff .
Eq. (20) analytically computes the exponential of the DC com-

ponent, reducing the magnitude of the residual vector f̂ff . This vector
is then exponentiated using the series method augmented by addi-
tional techniques described in the following.

Scaling/Squaring We also make use of a technique used in eval-
uating scalar (and matrix) exponentials, which observes that

exp(x) =
(

exp
(x

2p

))2p

⇒ exp∗(fff) ≈
(

exp∗

(
fff

2p

))2p∗
(21)

where p is a positive integer. In other words, to compute exp(x) we
first divide the input x by a power of 2, compute the exponential
of this scaled input, and finally repeatedly square the result p times.
The same idea can be applied to SH exponentiation using p repeated

squarings via the recurrence fff 2p∗= fff 2p−1∗ ∗ fff 2p−1∗.
Eq. (21) only approximates the product series in (17), but typi-

cally reduces error relative to the power series in (12). SH squares
are also cheaper than general SH products, making this approx-
imation more useful. We choose p as a function of ‖ fff‖ using
p = max(0,⌊log2 ‖ fff‖+3⌋). At most p=3 squarings are needed for
low-order (n ≤ 6) SH vectors in our examples.

Factoring Eq. (17) can be evaluated by accumulating succes-

sively higher powers of fff via fff (p+1)∗ = fff p∗ ∗ fff . This requires p-1
SH products for a degree p expansion. The number of SH products
can be reduced by segregating even and odd powers. (15) becomes

h∗(fff) ≈
(

h0 111+h2 fff 2∗ +h4 fff 4∗ + · · ·
)

+

fff ∗
(

h1 111+h3 fff 2∗ +h5 fff 4∗ + · · ·
)

(22)

improving to only (p+1)/2 products for degree p expansion. Fur-
thermore, fewer products implies smaller truncation error and thus
a better approximation to (12). Powers of fff should be computed so

as to minimize the number of products in each term: fff 2∗ = fff ∗ fff ,

fff 4∗ = fff 2∗ ∗ fff 2∗, fff 6∗ = fff 4∗ ∗ fff 2∗, and so on. Even better factorings
can be obtained for series degree p > 12 [Higham 2005].

Figure 3: Optimal linear coefficients for 4-th order SH. The curves match,

and thus accuracy is obtained, only for ‖ f̂ff‖< 4.8. For bigger input vectors,

scaling/squaring can be used to divide the input by a power of 2, and so

reduce its magnitude to lie within this range.

4.2 Optimal Linear Approximation
For SH order-4 or lower, an extension of the simple two-term se-
ries exp∗(fff) ≈ 111 + fff from (17) provides good accuracy without
the need for even a single SH product. Given an input vector fff to

be exponentiated, we first apply DC isolation (20) to obtain f̂ff and

compute its magnitude ‖ f̂ff‖, followed by

exp∗(fff) ≈ exp

(
fff 0√
4π

)(

a(‖ f̂ff‖)111+b(‖ f̂ff‖) f̂ff
)

. (23)

The coefficients a and b are determined using the following pre-
process. We generate a set of SH vector pairs representing cir-
cles of increasing angular radius; one vector in the pair is the
visibility function ggg and the other is its corresponding log vector
fff . To account for DC isolation we then zero out the DC com-

ponent of fff to obtain f̂ff and correspondingly scale ggg to obtain

ĝgg = exp(− fff 0/
√

4π)ggg. Finally, we find the least-squares best pro-

jection of ĝgg onto the orthogonal vectors 111 and f̂ff via

a =
ĝgg ·111
111 ·111 =

ĝgg0√
4π

, b =
ĝgg · f̂ff

f̂ff · f̂ff
(24)

providing the minimum error ‖ĝgg− (a111 + b f̂ff)‖. Least-squares pro-
jection is performed for each circle of a different angular radius,

and the resulting a and b coefficients tabulated as a function of ‖ f̂ff‖,
which increases with angular radius.

Remarkably, for order-4 SH we have found that models agree on
their a and b curves over a substantial part of the domain: roughly

‖ f̂ff‖ < 4.8, corresponding to a blocker of angular radius less than
50◦ (see Figure 3). The approximation is also much more accurate

than the simple two-term series within this domain. For bigger ‖ f̂ff‖
there is “baseline” agreement: the curves follow an initial baseline
curve until they suddenly diverge, allowing us to derive plausible
asymptotic behavior for a and b though it is not accurate for all ge-
ometry. Scaling/squaring from the previous section can optionally
be applied to reduce the magnitude of the input vector and so extend
the domain over which we obtain accurate results.

4.3 Combining Techniques into Algorithms
We define and compare a number of algorithms for evaluating the
SH exponential, using the techniques discussed above. PS-p uses
the simple product series evaluation of degree p from (17). PS*-
p uses DC isolation (20) and scaling/squaring (21) applied to a
factored degree-p product series from (22). OL applies the opti-
mal linear method from Section 4.2. We extend the accuracy of
this method via a hybrid method, called HYB, which applies scal-
ing/squaring in (21) to OL. HYB simply divides the input by a
power of 2, applies OL, and then repeatedly squares the result. The
different algorithms for SHEXP are compared in Figure 9.

5 SH Logarithm

A naive method for SH log applies (10):

fff = log(ggg) =
∫

S
log(max(g(s),ε)) yyy(s)ds (25)

where we clip evaluations of g(s) that are close to 0 or negative
using a small threshold ε . This method works poorly for two rea-
sons. First, it neglects how truncation error from taking log affects
the subsequent exponential. Substantial error ‖exp∗(log(ggg))− ggg‖
can be produced, which typically attenuates frequencies near the
Nyquist band. Second, clipping to a constant introduces artificial
high frequencies and so suboptimally picks a signal that’s close to
the original, g(s), but avoids places where log is undefined.

We address both these problems by approximately inverting the
exponential using an eigenanalysis of the product matrix Mg. In-
verting the exp∗ operator takes truncation into account, reducing
high-frequency attenuation after the final exponential. Clipping in
the space of eigenvalues of Mg rather than sampled spherical values
g(s) eliminates artificially-introduced high frequencies.

Diagonalizing SH Exp Rewriting (17) in terms of the product
matrix M f , we obtain

ggg = exp∗(fff) = 111+ fff +
M f fff

2!
+

M2
f fff

3!
+ · · · . (26)

Then eigenanalysis on the symmetric product matrix yields

M f = R
T
f D f R f ⇒ (M f)

p = R
T
f D

p
f R f (27)

where R f is a rotation matrix, D f is a diagonal matrix, and powers
of D are taken with respect to each of its diagonal components.
Substituting these powers, (26) becomes

ggg = exp∗(fff) = 111+R
T
f q(D f)R f fff (28)

q(x) = 1+
x

2!
+

x2

3!
+ · · · = exp(x)−1

x
(29)

where q is applied to each diagonal element of D f . Note that
(28) represents an alternative method of evaluating SH exponen-
tial which avoids error from truncating to a finite series. However,
it is not practical to compute the required eigenanalysis on-the-fly,
and we use this formulation only to derive a method for SH log,
which is computed as a preprocess.

Inverting SH Exp We begin with an eigenanalysis of the prod-
uct matrix of ggg, Mg = RT

g Dg Rg. (18) then implies that Mlog(g) ≈
RT

g log(Dg)Rg for positive definite product matrices Mg. (28) can
therefore be approximately inverted using

log(ggg) = R
T
g q′(Dg)Rg (ggg−111) (30)

q′(x) = 1/q(log(x)) = log(x)/(x−1) (31)

E=4.1, nS=575 E=0.52, nS=64 E=0.35, nS=64

original octree medial axis our method

Figure 4: Sphere set approximation. E is outside volume divided by the

object’s total volume.

where the function q′ is applied to each diagonal component.

To avoid applying log to values that are negative or close to 0,
we clip the eigenvalues of Mg via

D̃g = max(Dg,ε), M̃g = R
T
g D̃g Rg (32)

and apply (30) to D̃g rather than Dg. Eigenvalue clipping yields

smaller error ‖Mg − M̃g‖ compared with clipping values of g(s)
over the sphere as in (25). In practice, we have found that setting
the threshold ε to 0.02 times the largest eigenvalue works well for
low-order SH vectors.

6 Approximating Blocker Geometry

6.1 Single Sphere Visibility

As a preprocess, we tabulate the SH visibility function for circles
of angular radius θ centered around the z axis, given by

g(s,θ) =

{
0, if s · (0,0,1) ≥ cos(θ);
1, otherwise.

(33)

Projecting g yields many zero components because of its circular
symmetry around z. Using doubly-indexed SH notation, ggglm where
l = 0,1, . . . ,n−1, is the band index and m indexes the 2l+1 compo-
nents of band l, only the gggl0 are non-zero. So g’s projection can be

represented with n rather than n2 components, via the vector gggl(θ),
which we compute using numerical integration in (1).

Define a scaled version of this vector’s components, via ggg∗l (θ) =

gggl(θ)
√

4π
2l+1 and assemble its components into a diagonal matrix

G(θ) in which ggg∗l is repeated 2l + 1 times in band l. Using these
definitions, the visibility function can be rotated from z to an arbi-
trary axis z′ via the rotation rule [Sloan et al. 2005]

gggz′(θ) = G(θ)yyy(z′) = diag(ggg∗0(θ),ggg∗1(θ),ggg∗1(θ),ggg∗1(θ), . . .)yyy(z′).

Visibility vectors for circles of any angular radius and around any
axis can therefore be defined using a 1D table of n projection co-
efficients, ggg∗(θ), and a 2D table of n2 SH basis functions, yyy(s).
In fact, we tabulate the logs of circle visibility vectors fff = log(ggg)
rather than their direct projections, using (30) in Section 5. But the
logs are also circularly symmetric and so obey the same rotation
rule. Only the projection coefficients change, which we denote by
the vector fff ∗(θ) and its corresponding diagonal matrix F(θ).

At run-time, assume receiver point p is shadowed by a sphere of
radius r centered at P. We can now define the log visibility vector,
fff (p,P,r), for this single sphere blocker used in (8):

θ(p,P,r) = sin−1(r/‖P− p‖)
s(p,P) = (P− p)/‖P− p‖

fff (p,P,r) = F(θ(p,P,r)) yyy(s(p,P)) (34)

6.2 Sphere Sets
Construction We bound geometry within a set of spheres us-
ing a variational approach [Wang et al. 2006] which we briefly re-
view here. Specifically, the algorithm seeks a set of nS spheres
Si = (Pi,ri) bounding the shadowing geometry T but having mini-
mal outside volume E, defined as

E({Si},T) =
nS

∑
i=1

V (Si −T) (35)

where V is volume and subtraction represents set difference. Vol-
ume within T ’s interior is neglected regardless of how many spheres
overlap there. This is appropriate for shadowing since it does not
matter how many times light is blocked by a solid object. The
sphere set’s bounding property eliminates gaps that would other-
wise let light leak through solid objects. Figure 4 compares our
approach to octrees [Hubbard 1995] and the medial axis [Bradshaw
and O’Sullivan 2004].

Our algorithm applies a variant of the Lloyd clustering algorithm
[Lloyd 1982]. We first discretize T into a set of points including
points on the surface (triangle midpoints) and points in the interior
(grid corners from a mesh voxelization). The spheres Si are initial-
ized using a randomly-picked center point, Pi, and radius ri=0. We
then iteratively apply three steps: point clustering, cluster sphere
update, and cluster teleportation, until error converges.

Point clustering is performed using a “flood fill” (stack-based)
order away from the sphere centers. The next point is repeatedly
popped from the stack and inserted into the cluster having mini-
mal error. Its neighbors are then inserted onto the stack if not al-
ready there. Error from adding a point is measured by extending
the cluster sphere’s radius ri so as to include the new point and then
measuring the outside volume of the new sphere with respect to T .

After all points have been clustered, the set of cluster spheres
bounds the set of points. We then independently update each cluster
sphere center Pi in order to minimize outside volume V (Si − T)
while constraining ri to continue bounding the cluster’s points. The
minimal Pi is found using Powell’s method [Press et al. 1992].

Cluster teleportation [Cohen-Steiner et al. 2004] is applied when
iterations of the above two steps fail to significantly reduce E. The
idea is to subdivide the cluster of maximal error into two by finding
its farthest-apart pair of points. The cluster of maximal overlap,
defined as volume it shares with other cluster spheres divided by
its own volume, is chosen for deletion. After teleporting the cluster
centers we again perform clustering and cluster sphere updates. If
E is reduced we accept the teleported perturbation and otherwise
revert to the previous state.

Outside volume of a sphere S, V (S−T), is computed via a sum
over each triangle of T of its signed outside volume with respect to
S. See [Wang et al. 2006] for more details.

Animation Our models are animated using “skinning” which ap-
plies a weighted combination of transformations, attached to bones
in an articulated skeleton, to the mesh vertices. As the model
moves, we must also update its bounding spheres. We do this by
finding the mean value coordinates (MVCs) [Tao et al. 2005] of
each sphere center Pi with respect to the rest pose of the mesh,
which expresses Pi as a weighted combination of the vertices. Ap-
plying the same weights to vertices in a deformed pose yields the
corresponding deformed sphere center P′

i . We keep the original
sphere radius ri, which remains a bound assuming typical artic-
ulated motion. To speed up the weighting calculations, we pre-
muliply the vector of vertex MVCs by a matrix of bone weights per
vertex to express the sphere center transformation as a weighted
combination over a few bones rather than many vertices.

Avoiding Problems with Self-Shadowing A bounding sphere
set implies that every point on an object is completely self-

Figure 5: Self-shadowing with blocker spheres. Spheres (purple) behind

the tangent plane Tp at receiver p are eliminated. Spheres straddling Tp

are eliminated if p is inside but the sphere center is behind Tp (blue), or

are replaced with spheres tangent to Tp otherwise (red, orange). Spheres

(yellow) that are entirely in front of Tp are unaltered.

shadowed. We therefore need to distinguish a blocker representing
the same local geometry as the receiver which casts incorrect self-
shadows, e.g., the blue sphere in Figure 5, from a blocker represent-
ing non-local geometry which casts shadows we want to preserve,
e.g., the orange sphere in Figure 5. Denote a receiver point as p
and its outward-facing normal as Np, together defining the tangent
plane Tp. If a blocker sphere S contains p, we use the relationship
of S’s center to Tp as the local/non-local proxy. We eliminate S if
its center is behind Tp and reduce its radius until it becomes tangent
to Tp if its center is in front.

When p is outside S, it is simplest to accumulate the blocker re-
gardless of its position relative to Tp. This method produces objec-
tionable banding because we obtain different shadows depending
on whether the receiver is inside one or more local blockers. On
the other hand, entirely eliminating local spheres fails to capture
important local self-shadowing effects.

We instead remove a blocking sphere S outside p only if it is
entirely behind Tp. If it partially pokes through, we replace it with
a sphere S′ tangent to and in front of Tp. S′ is determined by the
point of maximal distance of S in front of Tp, q0, as well as the
projection of q0 onto Tp, q1. q0 and q1 form a diameter of S′ and
their midpoint forms its center.

By itself, this replacement rule causes a spatial discontinuity as p
moves from inside S to outside. We solve this problem by gradually
scaling up the radius of S′ as a function of p’s distance to S along
the tangent plane, using the scale factor α

α = max(1,(‖p−q1‖−d)/d) , d =
√

r2 − (r−‖q1 −q0‖)2

where r is the radius of S and d represents the distance of q1 to the
outside of S along the tangent plane.

6.3 Sphere Hierarchies
As a blocker gets close to a receiver point, accurate shadows require
detailed knowledge of the blocker’s shape. But as the blocker re-
cedes, it can be approximated more coarsely. We exploit this obser-
vation using a blocker sphere hierarchy and clustering over receiver
points (Figure 6a). For each receiver point cluster, we assemble
a cut or list of blocker spheres from appropriate levels of the hi-
erarchy. They are selected conservatively based on the angle they
subtend over the cluster, using an angular radius threshold θmax be-
tween 20 and 30 degrees. We then accumulate the log visibility
vector at each receiver vertex p in the cluster using a simple ap-
proximation that exploits spatial coherence and based on detailed
information computed at a single point p∗ centered in the cluster.
This eliminates artifacts from inconsistent blocker approximations
used in different clusters (Figure 6bc).

(a) blocker hierarchy adaptation

(b) without ratio vectors (c) with ratio vectors

Figure 6: Blocker hierarchy adaptation and receiver clustering. In (a), the

blocker approximation adapts to the receiver cluster in red. Brightness of

clusters on the ground corresponds to the number of spheres processed in its

cut. Artifacts due to inconsistencies in the blocker approximation from one

cluster to the next (b) are eliminated using ratio vectors based on detailed

blocker information at a single cluster point (c).

Construction and Animation The sphere set from Section 6.2
forms the leaf nodes in a blocker hierarchy. Hierarchy levels are
constructed one at a time from the leaves up to the root, using a
clustering technique based on [Lloyd 1982]. Each cluster stores its
current bounding sphere. Clustering iteratively assigns spheres to
the closest cluster, based on the distance from the sphere center to
the cluster’s. The cluster’s bounding sphere is then updated. Its cen-
ter is initially taken as the average center over all spheres assigned
to it, and then optimized using Powell’s method to minimize the
bounding sphere’s radius. After convergence, each cluster is made
a parent node in the hierarchy; the spheres assigned to it become
its children. The number of clusters is chosen so as to make the
average branching ratio in the hierarchy equal to 4.

During the animation, bounding spheres at each parent node are
updated bottom-up in the hierarchy by applying a sphere pair bound
to successively merge in each child node.

Receiver point clusters are computed using simple Lloyd clus-
tering into a manually-specified number of clusters. Our examples
typically contain several hundred vertices per receiver cluster.

Per-Cluster Computation We first assemble bounding sphere
nodes, Si, with centers at Pi and radii ri, which are appropriate for
shadowing the cluster. To do this, assume the receiver cluster is
bounded by a sphere with center pR and radius rR. Then the blocker
sphere subtends an angle less than θmax if

ri < sin(θmax)(||Pi − pR||− rR). (36)

If Si = (Pi,ri) satisfies the above test, it is inserted into the sphere
blocker list; otherwise, we recurse to the node’s children.

For each Si in the list just assembled, we compute two visibil-
ity vectors at a central cluster point p∗. The bounding log visibil-
ity vector fff b[i](p∗,Pi,ri) applies (34) to the bounding sphere Si.
The detailed log visibility vector fff d [i] sums log visibility over all

leaf node spheres below Si. To accelerate this computation, we can
prune detailed spheres using a minimum angular radius θmin.

We then compute a ratio vector, www[i], representing the least-
squares best per-band scaling of fff b[i] to match fff d [i]:

wwwl [i] =

(
+l

∑
m=−l

(fff b[i])lm (fff d [i])lm

)

/

(
+l

∑
m=−l

(fff b[i])
2
lm

)

(37)

A diagonal matrix W[i] is derived from www[i] by repeating its com-
ponent 2l +1 times along the diagonal, as for F in Section 6.1.

Per-Point Computation For each receiver point p in the clus-
ter, we use the information computed previously at the cluster cen-
ter p∗ to accumulate a log visibility vector at p. We apply a mod-
ified version of (34) to each sphere i in the cluster’s blocker list,
which multiplies by the ratio vector W[i]:

fff [i](p,Pi,ri) = (W[i] F(θ(p,Pi,ri))) yyy(s(p,Pi)) . (38)

Finally, we sum vectors over i and apply exp∗ using (8).

Rationale Cluster artifacts arise because different cuts are used
in different clusters to approximate the same leaf node blocker
spheres. These artifacts are greatly reduced by ratio vectors,
which modulate the “overblocking” visibility function of a bound-
ing sphere to provide a better approximation to the visibility of its
actual leaf nodes. Cost is minimal: just an additional scaling by a
diagonal matrix. In fact, the cost is even less since the n per-band
weights from F and W can be multiplied before they are repeated
and used to scale yyy. The approximation works because the blocker
has been restricted to a small solid angle. Intuitively, as we get fur-
ther from a blocker its log visibility function approaches a circularly
symmetric delta function. When the receiver point moves from p∗

to p, we account for visibility change based on how the bound-
ing sphere’s projection rotates (from s(p∗,Pi) to s(p,Pi)) and scales
(from θ(p∗,Pi,ri) to θ(p,Pi,ri)). This is a good approximation as-
suming there is little parallax between individual leaf spheres. But
this should be true because we have limited the solid angle sub-
tended by a bounding sphere on the group, which therefore limits
the group’s depth extent.

7 Shading

For diffuse surfaces in lighting environments, we tabulate LLLH(N) =
LLL∗HHH(N) as a cube map, where LLL represents the lighting and HHH(N)
is defined in (9). At run-time we index LLLH at the receiver normal Np

to obtain cosine-weighted incident radiance at p. The result is then
dotted with the exponentiated blocker vector ggg from (8) to produce
the shadowed result, LLLH(Np) ·ggg.

If the lighting changes every frame, tabulating LLLH is difficult.
Shading can instead be calculated by forming the light’s product
matrix ML and computing (ML g) ·HHH(Np) on-the-fly. Our examples
and video results use rotations of fixed lighting and so use the faster
method of tabulating LLLH .

For static receiver points, local shadowing effects can be “baked
in” by dotting with the precomputed vector HHH(Np) ∗ gggp where gggp

represents local visibility due to static occluders. Blocker accumu-
lation in (9) then needs to take place only over blockers from the
dynamic geometry. LLL can be multiplied into gggp as well if the light-
ing is static. For receiver points on dynamic geometry, both static
and dynamic blockers must be accumulated every frame.

Analytic Lights We can also handle circular/spherical light
sources, which we define in terms of LLL(θ ,d) where θ is the an-
gular radius of the light circle, and d is its central direction. To
handle local light sources, we allow θ and d to vary as a function
of the receiver point p. We support this by tabulating LLLH(θ ,φ) =

HHH ((0,0,1))∗LLL(θ ,φ) where θ is the light’s angular radius and φ is
the angle the central light direction makes with the normal N. This
2D table uses a canonical orientation aligning the normal N with z
and the light direction in the xz plane, making an angle of φ with
z. This canonical configuration must then be rotated into its actual
orientation at each receiver point before computing the dot product
with ggg. We accelerate this rotation by fitting a single-lobe ZH model
[Sloan et al. 2005] to the 2-parameter family of vectors LLLH(θ ,φ).
Rotation then uses the same rule discussed in Section 6.1.

Windowing Frequency bases like SH induce “ringing” artifacts
(Gibbs oscillation) when reconstructed. The standard remedy is
to attenuate the higher frequencies via a windowing function. We
window lighting and visibility functions via a cosine filter in fre-
quency space, which scales SH coefficents in band l by αl =
cos(π/2(l/h)). For order-n SH, a window size h = 2n works well.
Some HDR lighting environments may need greater windowing
(smaller h), depending on their frequency content.

8 GPU Implementation

Soft shadows from low-frequency lighting do not require dense spa-
tial sampling – sampling at vertex rather than pixel rates typically
suffices. Our GPU implementation takes advantage of this fact to
accelerate the rendering. Unfortunately, current graphics hardware
such as the Nvidia 6800/7800 makes available much less computa-
tional power in the vertex compared to the pixel processors.1 We
therefore resort to a stopgap device: using pixel processors to do
per-vertex shading. Future hardware, such as Xbox360 and Di-
rect3D 10 [Blythe 2006], will better balance processing power and
so enable the straightforward use of vertex shaders.

The whole rendering process consists of three passes. The first
pass generates vertex and blocker information on the CPU, the sec-
ond pass does the shadowing and shading on the GPU, and the final
pass renders the resulting shaded vertices to the screen on the GPU.

As a preprocess (computed offline or at program load time), the
log visibility coefficients fff l(θ) and a,b tables of the OL method are
prepared and stored as texture maps. To handle local light sources,
another 2D table of ZH coefficients, LLLH(θ ,φ), is also prepared. At
runtime, the first pass prepares vertex info: position, normal, and
receiver cluster id. For each receiver cluster, it also assembles the
blocker information: center, radius, and weight vector wwwl [i] for each
blocker sphere from the sphere tree cut (see Section 6.3).

The second pass reads from a texture called the vertex info map
which stores the position, normal and receiver cluster id for an ar-
ray of pixels, each representing a vertex. Since each vertex in the
same cluster shares the same sphere cut, the shader uses the cluster
id to locate the corresponding row in the sphere info map, where the
center, radius and weight vector of cut spheres are stored. In a while
loop, each sphere i in the cut list is processed via (38) and the log
visibility vector is accumulated. Dynamic branching is used here to
avoid self-shadow problems, following the rules in Section 6.2. Af-
ter accumulating all the blockers in the cut list, the shader evaluates
the HYB algorithm for exponentiation (Section 4.3), yielding the
visibility vector. A dot product with LLLH(N) then yields the color
for the pixel (really, the vertex).

To indicate when the while loop above should terminate, we store
a terminator sphere at the end of each cut list having a radius of 0.
The row size of the sphere info map specifies the maximum number
of blocker spheres we can store in any cut list. We use space for 128
or 256 blocker spheresa in our examples. Circle log vectors, fff ∗(θ)
from Section 6.1, use 256 samples in θ .

1The NVidia 6800/7800 has 16 fragment processors, compared with 6

vertex processors. Texture fetching in the pixel shader is also much more

efficient than in the vertex shader.

We perform per-vertex shading using the OpenGL pixel buffer
object (PBO) and vertex buffer object (VBO) extensions. These
routines form a video memory management API which in combi-
nation eliminate a read-back from video memory to host memory
between the second and final pass. The result of the second pass is
transferred from the frame buffer to a PBO via a glReadPixels call.
This performs a video-memory to video-memory copy which can
be done very fast, over 300Hz for a 512×512 RGBA frame buffer
on a NVidia 6800GT. The PBO then becomes a VBO to make the
shaded colors available as vertex information.

More implementation details are included in [Ren et al. 2006].

9 Results

Timings in this section were performed on a 3.2Ghz PC with 1GB
of memory and an NVidia 7800GTX graphics card. Screen/image
generation was done at 1280×1024 resolution.

Figure 7 shows three progressive sources of approximation error
in our approach: using a sphere set rather than the actual blocker ge-
ometry (b), truncating to a fixed order after each SH product rather
than performing a numerical integration that samples the actual (bi-
nary) blocker product (c), and accumulating in log space rather than
product space (d). This comparison uses SH order n=4 and PS*-
2 for SH exponentiation; all rendering is done on the CPU. The
main source of visual error is not from our log space approxima-
tion. In fact our method is almost visually identical to the slower
product accumulation method [Zhou et al. 2005]. Most error arises
from truncating visibility after each SH product (causing a general
darkening of shadows), and to a lesser extent, approximating block-
ers as sphere sets (causing slightly enlarged shadows). The second
type of error is unsurprising given our bounding blocker approxima-
tion, subtle in our view, and easily reduced by using more blocker
spheres, though obviously at increased rendering cost. The first
type of error can be reduced by accumulating blockers at higher SH
order. In (e), we accumulate using n=6 blocker vectors, exponen-
tiate, and then truncate to n=4 before shading, resulting in a more
accurate rendering than (c) or (d). The log space method makes
such higher-order accumulation much more tractable, and thus ad-
dresses a previously unidentified problem in [Zhou et al. 2005].

Figure 8 compares shadowing at various SH orders n. In order
to accentuate differences, the lighting applied is as close to a delta
function as is realizable at n; no windowing is used. The factor
below each log space image represents total rendering speedup ob-
served in a CPU implementation, when accumulating blockers in
log space and applying PS*-2 rather than accumulating products.
Approximation error from doing the computation in log space is
difficult to see. The figure includes only the order 6 product result
for conciseness but product images for other orders are available in
[Ren et al. 2006]. Higher-order SH vectors produce “peakier” lights
and sharper shadows, as well as bigger speedups for log compared
to product accumulation.

Figure 9 compares error from various SH exponentiation meth-
ods to the “gold standard” rendering using product accumulation
in (a). SH order n=4 is used without windowing to accentuate dif-
ferences. HYB and OL are computed on the GPU, all other meth-
ods on the CPU. The figure records the number of SH operations
(squares and products) and rendering rate for each method, using
a ground plane shadow receiver with 128×128 vertices. A simple
product series (b), even as high as degree 21, has an incorrect bright
spot in the shadow. (Actually, odd and even degree p exhibit incor-
rect bright and dark spots alternately and converge in this example
only after p=30.) HYB (d) and PS*-2 (e) match very accurately.
Even OL (c) provides a good approximation, though it blurs more
in the heavily shadowed regions. More such comparisons are avail-
able in [Ren et al. 2006].

Figure 10 presents images rendered on the GPU from two, more

complex scenarios. SH order n=4 is used, and lighting and visi-
bility vectors windowed to reduce ringing. HYB is used for SH
exponentiation. Both scenes use a blocker hierarchy, receiver point
clustering, and per-cluster ratio vectors from Section 6.3. The en-
tire sequences, captured in real time, are available in the video re-
sults. We obtain good performance (10-30Hz) and high-quality soft
shadows, including self-shadows, from the moving characters. Ad-
ditional snapshots, including comparisons with shadowing turned
on and off, are available in [Ren et al. 2006].

The battle scene involves two characters (troll and wizard) and
contains 65k vertices (41k static and 24k dynamic) and 244 leaf
node sphere blockers. 120 receiver clusters were used: 100 for the
ground plane, 8 each for the wizard and troll, 4 for the troll’s club,
and 1 each for each of the other objects (rock and columns). On av-
erage, 47 spheres were accumulated per receiver point; a maximum
of 117 blocker spheres was observed. The scene is illuminated by
the Uffizi HDR environment, bandlimited to SH order n=4, as well
as two local spherical light sources. Measured frame rate was 15.6-
44.5Hz and averaged 26.2Hz.

The dino scene contains a sequence of different clips. The most
complicated, running at 10.6-13.7Hz, contains 8 moving dinosaurs,
120k vertices (75k static and 45k dynamic), 500 blocker leaf node
spheres and 256 receiver clusters (192 for the ground surface and 8
for each dinosaur). An average of 42 sphere blockers per receiver
were accumulated, up to a maximum of 160. Frame rate over all
clips was 10.6-33.2Hz and averaged 14.1Hz.

10 Conclusion and Future Work

Accumulating low-frequency blocker visibility in the spherical har-
monic basis provides a direct method for rendering soft shadows
without integrating over a huge number of lighting directions. We
acclerate this approach by accumulating in log space rather than
product space, and then computing the SH exponential required us-
ing new methods (HYB and PS*-p). Per-blocker computation is
greatly reduced, allowing us to handle more blockers and to map the
computation to the GPU in a single shading pass. Our algorithm is
applicable to general, dynamic geometry including deforming char-
acters whose motion need not be known in advance.

In future work we are considering anisotropic blocker models,
handling diffuse inter-reflection, and experimenting with alternative
models for spatial shading variation.

Acknowledgements

The authors would like to thank Becky Sundling for her help in
video production and Mingdong Xie for modeling and animation
of the battle and dinosaur scenes. We are grateful to the anonymous
reviewers for their helpful suggestions and comments. The ZJU
authors were partially supported by NSFC (No. 60021201), 973
Program of China (No. 2002CB312102) and the Cultivation Fund
of the Key Scientific and Technical Innovation Project, Ministry of
Education of China (No.705027).

References
AGARWALA, M., RAMAMOORTHI, R., HEIRICH, A., AND MOLL, L. 2000. Efficient

image-based methods for rendering soft shadows. In Proc. of ACM SIGGRAPH

2000, 375–384.

ASSARSSON, U., AND AKENINE-MÖLLER, T. 2003. A geometry-based soft shadow

algorithm using graphics hardware. ACM Trans. Gr. 22, 3, 511–520.

BLYTHE, D. 2006. The Direct3D 10 system. to appear in Proc. ACM SIGGRAPH

2006 (ACM Trans. Gr.).

BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-axis approximation

for sphere-tree construction. ACM Trans. Gr. 23, 1 (Jan.), 1–26.

BUNNELL, M. 2004. Dynamic ambient occlusion and indirect lighting. In GPU

Gems 2: Programming Techniques for High-Performance Graphics and General-

Purpose Computation. Addison-Weseley Professional, 223–233.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational shape

approximation. ACM Trans. Gr. 23, 3, 905–914.

HIGHAM, N. 2005. The scaling and squaring method for the matrix exponential

revisited. In SIAM Journal of Matrix Analysis Applications, no. 4, 1179–1193.

HUBBARD, P. 1995. Collision detection for interactive graphics applications. IEEE

Transactions on Visualization and Computer Graphics, 3, 218–230.

JAMES, D., AND FATAHALIAN, K. 2003. Precomputing interactive dynamic de-

formable scenes. ACM Trans. Gr. 22, 3, 879–887.

KAUTZ, J., SLOAN, P., AND SNYDER, J. 2002. Fast, arbitrary BRDF shading for low-

frequency lighting using spherical harmonics. In Proc. of the 13th Eurographics

Workshop on Rendering, 291–296.

KAUTZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispherical rasterization for self-

shadowing of dynamic objects. In Proc. of Eurographics Symposium on Rendering

2004, 179–184.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields. In Proc. of 2005

Symposium on Interactive 3D Graphics, SI3D 2005, 41–48.

LAINE, S., AILA, T., ASSARSSON, U., LEHTINEN, J., AND AKENINE-MÖLLER, T.

2005. Soft shadow volumes for ray tracing. ACM Trans. Gr. 24, 3, 1156–1165.

LLOYD, S. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-

tion Theory IT-28, 2 (Mar.), 129–137.

MALMER, M., MALMER, F., ASSARSSON, U., AND HOLZSCHUCH, N. 2005. Fast

precomputed ambient occlusion for proximty shadows. Tech. Rep. 5779, INRIA.

MCCOOL, M., ANG, J., AND AHMAD, A. 2001. Homomorphic factorization of

BRDFs for high-performance rendering. In Proc. of ACM SIGGRAPH 2001, 171–

178.

MEI, C., SHI, J., AND WU, F. 2004. Rendering with spherical radiance transport

maps. Eurographics 2004 (Computer Graphics Forum) 23, 3, 281–290.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-frequency shadows

using non-linear wavelet lighting approximation. ACM Trans. Gr. 22, 3, 376–381.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple product integrals

for all-frequency relighting. ACM Trans. Gr. 23, 3, 477–487.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B. 1992. Nu-

merical Recipes in C, Second Edition. Cambridge University Press, Cambridge,

England.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An efficient representation for

irradiance environment maps. In Proc. of ACM SIGGRAPH 2001, 497–500.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B., SLOAN, P., BAO,

H., PENG, Q., AND GUO, B. 2006. Supplement for real-time soft shadows in

dynamic scenes using spherical harmonic exponentiation. Tech. rep., Microsoft

Corporation. available on the SIGGRAPH 2006 Conference DVD.

SCHETZEN, M. 1980. The Volterra and Wiener Theories of Nonlinear Systems. John

Wiley and Sons.

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND HAEBERLI,

P. 1992. Fast shadows and lighting effects using texture mapping. In Proc. of

SIGGRAPH 92, 249–252.

SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments. ACM Trans.

Gr. 21, 3, 527–536.

SLOAN, P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered principal compo-

nents for precomputed radiance transfer. ACM Trans. Gr. 22, 3, 382–391.

SLOAN, P., LUNA, B., AND SNYDER, J. 2005. Local, deformable precomputed

radiance transfer. ACM Trans. Gr. 24, 3, 1216–1224.

SNYDER, J. 2006. Code generation and factoring for fast evaluation of low-order

spherical harmonic products and squares. Tech. Rep. MSR-TR-2006-53, Microsoft

Corporation.

SOLER, C., AND SILLION, F. 1998. Fast calculation of soft shadow textures using

convolution. In Proc. of ACM SIGGRAPH 1998, 321–332.

TAO, J., SCHAEFER, S., AND J., W. 2005. Mean value coordinates for closed trian-

gular meshes. ACM Trans. Gr. 24, 3, 561–566.

WANG, R., ZHOU, K., SNYDER, J., LIU, X., BAO, H., PENG, Q., AND GUO, B.

2006. Variational sphere set approximation for solid objects. Submitted to Pacific

Graphics.

ZHOU, K., HU, Y., LIN, S., GUO, B., AND SHUM, H. 2005. Precomputed shadow

fields for dynamic scenes. ACM Trans. Gr. 24, 3, 1196–1201.

(a) ray traced, actual blockers (b) ray traced, sphere blockers (c) SH product, n=4 (d) SHEXP, n=4 (e) SHEXP, n=6

Figure 7: Approximation error progression. Lighting is SH order n=4.

(a) n=3, SHEXP, 1.9x, 7.1Hz (b) n=4, SHEXP, 3.4x, 5.5Hz (c) n=5, SHEXP, 6.5x, 4.3Hz (d) n=6, SHEXP, 11.0x, 3.3Hz (e) n=6, SH prod., 0.3Hz

Figure 8: SH order comparison. Factors like “1.9x” in (a) are the increase in speed of the SHEXP method over the SH product method of the same order.

Timings were done on a CPU-only rendering using 200×200 shaded vertices on the ground plane and nS=60 shadowing spheres (ho hierarchy).

(a) product space (CPU) (b) PS-21 (CPU) (c) OL (GPU) (d) HYB (GPU) (e) PS*-2 (CPU)

#prod=494,790; #squares=0 #prod=327,680; #squares=0 #prod=0; #squares=0 #prod=0; #squares=30,784 #prod=0; #squares=45,518

2.47Hz 3.27Hz 90.4Hz 82.6Hz 7.53Hz

Figure 9: SH exponential method comparison. The bunny model contains nS=63 spheres.

(a) battle scene, 23.2Hz (b) dino scene, 22.4Hz

Figure 10: Images from GPU rendering. Frame rate for the particular image is shown.

