
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT 1

Time-Varying BRDFs
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Abstract— The properties of virtually all real-world materials
change with time, causing their BRDFs to be time-varying.
However, none of the existing BRDF models and databases take
time variation into consideration; they represent the appearance
of a material at a single time instance. In this work, we address
the acquisition, analysis, modeling and rendering of a wide range
of time-varying BRDFs. We have developed an acquisition system
that is capable of sampling a material’s BRDF at multiple time
instances, with each time sample acquired within 36 seconds.
We have used this acquisition system to measure the BRDFs
of a wide range of time-varying phenomena which include the
drying of various types of paints (watercolor, spray, and oil),
the drying of wet rough surfaces (cement, plaster, and fabrics),
the accumulation of dusts (household and joint compound) on
surfaces, and the melting of materials (chocolate). Analytic BRDF
functions are fit to these measurements and the model parame-
ters’ variations with time are analyzed. Each category exhibits
interesting and sometimes non-intuitive parameter trends. These
parameter trends are then used to develop analytic time-varying
BRDF (TVBRDF) models. The analytic TVBRDF models enable
us to apply effects such as paint drying and dust accumulation
to arbitrary surfaces and novel materials.

Index Terms— BRDFs, time-varying phenomena, measure-
ment, natural phenomena.

I. INTRODUCTION

The appearance of essentially all real-world materials
changes with time, often dramatically. Indeed, there are so
many different phenomena that give rise to time-varying visual
appearance that it is difficult to write down an exhaustive list.
Examples include aging of human skin, decaying of flora,
corrosion of metals, weathering of surfaces, and aging of
materials. In this paper, we focus on those that can be visually
described by a time-varying BRDF. In this domain, we explore
three categories: drying of paints (watercolor, spray, and oil),
drying of wet rough surfaces (fabrics, plaster, and cement)
and dust accumulation (household and joint compound). These
phenomena are particularly interesting as they are common-
place, are often visually dramatic, and have many practical
applications. For example, artistic effects of watercolors, oil
and spray paints are often provided by commercial products
such as Fractal Design Painter. Drying models are used in
vision applications to identify wet regions in photographs [15].
Dust simulation is very popular in driving simulators, games
and visualization of interacting galaxies [3], [13].

While there has been a good deal of work on physics-
based techniques for simulating time-varying effects due to
weathering and aging [6]–[8], this work largely focuses on
temporal changes in the diffuse (not specular) texture pattern,
developing explicit models for specific effects. These models
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require a thorough understanding of the underlying physical
processes. The time-varying properties of materials with both
specular and diffuse reflectance – such as those considered
in this paper – are difficult to model with physics-based
techniques because the underlying interactions are often too
complex, or not fully understood.

Consider Figure 2. Depending on the specific properties of
the medium and its particles, light can be refracted by the
liquid-air interface (b, c, d) and reflected by the underlying
surfaces (a, b, c). Further, it can also be scattered by dust
particles (a), attenuated/reflected by pigments (c), or forward
scattered by water droplets (d). Exact simulation of the light
transport in these cases, based on the properties of the scatter-
ing particles, is too complex in terms of computation, even for
a single time instance. Yet, for each case shown in the figure,
the material changes with time: the dust layer thickens (a); the
paint layer thins (b, c); or the water droplets evaporate (d).

In each of these cases, the change of the BRDF – the direc-
tional dependence of reflectance on lighting and viewpoint –
cannot be ignored. While there has been considerable work on
measuring the BRDFs of real world materials such as [5], [22],
[23], [29], these previous efforts only represent the appearance
of a material at a single time instance.

In contrast, our work explicitly addresses the acquisition and
modeling of time-varying BRDFs (TVBRDFs). Central to this
work is the measurement of a material’s surface reflectance as
it undergoes temporal changes. To record these measurements,
we have built a simple robotic rig (Figure 3) to acquire
the first time-varying BRDF database, as conventional BRDF
measurement devices are too slow to capture the temporal
material changes. The system provides very fine sampling
along the incident light plane and covers four viewpoints from
head-on to angles near grazing (grazing angle specularity may
still be missed). It enables us to complete the measurement
of each material for one time instance within 36 seconds.
The same measurement process is repeated automatically for
subsequent time instances.

Our time-varying BRDF database includes the drying
of paints (watercolors, oil paint, and spray paint); the
drying of wet rough surfaces (fabrics, plaster, cement,
and clay); the accumulation of dusts (joint compound and
household dust); and miscellaneous time-varying effects
such as melting (chocolate) and staining (red wine). In
all we have acquired data for 41 samples. (All of our
data in their raw and processed forms is available from
www1.cs.columbia.edu/CAVE/databases/tvbrdf/tvbrdf.php.)

For each time instance, our data is carefully fit to the appro-
priate analytic BRDF functions such as Oren-Nayar, Torrance-
Sparrow and a modified Blinn’s dust model, producing a
compact set of time-varying parameter curves for each process.
We analyze the underlying trends in the parameter curves
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Fig. 1. Rendered images of dust accumulating in a tea set scene, leading to effects such as the diffusing and fading of specular highlights and the shifting
of the diffuse component resulting in overall changes in color saturation and hue. The teapot and teacup are rendered with our acquired data, and the table
with a novel material showing the same characteristic time-varying behavior. Please refer to Figure 15 for enlarged insets and Section VI for more details.

to derive the first ever set of analytic time-varying BRDF
models. These time-varying BRDF models are controlled by
a handful of intuitive parameters and are easily integrated
into any of the existing rendering packages. Furthermore, we
show how the time-varying appearance of one material can
be transferred to another, significantly increasing the impact
of the data and models presented here. Finally, in addition
to temporal variations, we have shown that our model can
be combined with simple physics-based control mechanisms
to create compelling spatial variations such as dust shadows
under occluders, fine dust gradients on curved surfaces and
spatial drying patterns as can be observed in Figures 1, 11
and 15.

To summarize, our primary contributions are twofold:
1) We introduce an efficient BRDF acquisition system that

allows for the capture of time-varying BRDFs. We use
this system to acquire the first time-varying BRDF
database.

2) From our measurements, we develop a set of ana-
lytic models for time-varying BRDFs. These models
allow time-varying reflectance effects to be incorporated
within standard rendering software, transferred to novel
materials or controlled spatially by environmental fac-
tors.

The rest of the paper is organized as follows. In the next
section, we discuss how this work relates to previous work.
In Section III, we describe our acquisition rig, the fitting of
our data using parametric reflectance models and the time-
varying database. In Sections IV, V,and VI, we analyze the
trends for the drying of paints, the drying of wet surfaces, and
dust accumulation, and respectively develop analytic TVBRDF
models. In Section VII, we validate the accuracy of our
acquisition and the TVBRDF models. In Section VIII, we
compare our work in greater detail with two contemporaneous
works [11], [28]. Finally, in Section IX, we present our
conclusions and a discussion of future work.

II. PREVIOUS WORK

There is a significant body of research that is closely related
to the work presented in this paper. However, the area of time-
varying BRDFs has remained largely unexplored. The current
paper is a more detailed and extended version of [26], with
a more thorough validation (Section VII) and comparison to
contemporaneous work (Section VIII). The current paper also
explains in depth the modifications to the standard Blinn’s
reflectance model for dusty surfaces [1] in Section VI.

Time-Varying Texture Patterns: Time-varying texture pat-
terns have been studied at various levels over the past two
decades. Becket et al. [30] modeled surface imperfections
through texture specification and generation. Koudelka [16]
and Enrique et al. [9] considered a class of data-driven time-
varying textures and developed simple algorithms for synthesis
and controllability. Others have explicitly modeled the un-
derlying physical/chemical processes such as the formation
of metallic patinas [7], aging of stone [6], and appearance
changes [8]. Most recently, Lu et al. [19] studied the drying
histories of objects based on surface geometries and exposure.
Yet, all these methods only focus on the temporally changing
spatial pattern of the diffuse albedo and do not address
specular reflection of glossy surfaces.

Existing BRDF Models and Databases: Models for sur-
face reflection date as far back as Lambert [17], with numerous
models having been developed over the last four decades, e.g.,
Phong, Torrance-Sparrow, Oren-Nayar, Ward (anisotropic),
LaFortune, and Blinn (dust). However, these models treat
a material’s reflectance as static – not a function of time.
Likewise, BRDF databases have been acquired for real world
materials, e.g., CUReT (BRDF) [5], Ward [29], Marschner’s
skin measurements [22], and MIT/MERL [23]. However, the
materials in these databases were acquired at a fixed time
instance and their BRDFs were treated as temporally static.

Paints, Wet Surfaces and Dust: Paints have been well
studied in pigmented material modeling. Haase et al. [12] ap-
plies the Kubelka-Munk theory of pigment mixing to computer
graphics to improve image synthesis. Curtis et al. [4] simulated
watercolors with an ordered set of translucent glazes that are
generated using a shallow-water simulation. However, these
methods do not consider the dynamic drying effects of various
paints and cannot capture their specularity changes and diffuse
color shifts.

For wet materials, the popular L&D model [18] works best
for rough solid surfaces, such as blackboards and asphalt. In
computer vision, Mall et al. [15] applied the L&D model
to the problem of wet surface identification. In computer
graphics, Jensen et al. [14] presented a refined optical model
incorporating this theory and rendered wet materials using a
Monte Carlo raytracer. In addition, other work focuses on
specific effects such as wet roadways [24]. However, none
of these techniques address “partially wet” surfaces or how
drying influences surface appearance.

Dust on diffuse surfaces has also been studied. Blinn [1] in-
troduced a reflectance model for dusty surfaces to the graphics
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(a) Dust (b) Watercolor (c) Oil, Spray Paints (d) Wet Rough Surface
Fig. 2. In the presence of dust, watercolor fluid, pigmented medium and water, internal light attenuation/reflection/refraction/scattering due
to liquid medium and micro particles heavily influence the light paths and completely change the appearance of the material. Moreover, the
thickness of the layer of dust, watercolor fluid, pigmented medium and water changes with time.
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Fig. 3. A photograph and a diagram of our TVBRDF acquisition
system. The blue and green circles show the positions of the four
cameras and the light source, respectively. The red and yellow boxes
show the sample plate and the robot arm, respectively.

community. Hsu et al. [13] studied dust accumulation using
cosine functions and “dust maps” to simulate dust adherence
and scratching effects. Chen et al. [2] modeled dust behavior
for the purpose of driving simulations. However, the effect of
dust on the appearance of glossy surfaces remains unexplored.
We show that, unlike diffuse colors, glossy highlights attenuate
at a faster exponential rate with increases in the thickness of
the dust layer. Moreover, from this exponential decay, one can
determine the optical properties of different dust particles.

III. ACQUISITION AND TVBRDF DATABASE

In this section, we describe our acquisition setup in more
detail, explain the BRDF models and the fitting algorithm
used to fit the raw measurements, and present the time-varying
BRDF database.

A. Acquisition System

A key consideration in capturing time-varying BRDFs is to
sample the time domain finely enough so as not to miss any
important temporal variations. In this respect, previously de-
veloped scanning (gantry-type) systems for BRDF acquisition
are not suitable as they take a significant amount of time for
a single BRDF measurement. Moreover, the angular domain
also has to be densely sampled to ensure that high frequency
changes due to specularities are captured. Multi-light (dome-
type) systems only sparsely sample the lighting directions and
hence do not satisfy our sampling requirement. In addition,
a practical problem is the influence of gravity on the dusts
and liquids that are involved in our time-varying processes.

This makes it difficult to use homogenous spherical samples
to expedite the acquisition, as done in [21], [23].

As a result, we are forced to make a trade-off between
the time efficiency and the angular density of our acquisition
system. To this end, we do not capture all lighting and viewing
directions but instead densely measure the BRDF along a
single incidence plane and for a small number of viewpoints.
One of these viewpoints lies on the incidence plane, which
guarantees that the specular highlight is well captured. The
remaining viewpoints lie outside the incidence plane. One
limitation of this design is that the grazing-angle speculari-
ties may be missed. However, for most of our samples, we
anticipate little grazing-angle specularity effect and hence can
minimize the artifacts. Clearly, this approach does not result
in a complete (4D) BRDF measurement. To fill in the missing
data, the acquired data is fit to analytic BRDF functions. The
use of analytic BRDF functions also has the advantage that
the TVBRDF of a sample can be compactly represented as a
small number of time-varying BRDF parameters.

As shown in Figure 3, our system is composed of four
key components: Four remote-head Dragonfly color cameras
mounted on an aluminum frame, a sample plate with ad-
justable tilt, a programmable Adept robot, and a light arm
holding a halogen light source and a diffuser. The four cameras
lie in a vertical plane. Each camera is 94 cm from the center
of the sample plate. In the viewing plane, the cameras have
viewing angles of 0◦, 25◦, 50◦ and 75◦ with respect to the
vertical axis. All the camera optical axes pass through the
center of the sample plate, which is 16.26 cm by 12.19 cm
in dimension and has four extensible legs to adjust its height
and tilt. All sample materials are prepared as planar patches
and placed on a 5.08 cm by 5.08 cm square tray on the plate,
as shown in the inset of Figure 3. The light source has a
stable radiant intensity and the diffuser is used to make the
irradiance uniform over the entire sample. The robot moves the
light source around the sample plate along a circle of radius
44 cm.

All the cameras are rigidly fixed and their positions are
calibrated. The cameras are also radiometrically calibrated by
measuring the radiance of both a Kodak standard color chart
and a Gray Spectralon sample, as done in [5]. The cameras
are connected to a computer via firewire interface and are
synchronized with respect to each other. Additionally, the
robot is synchronized with the cameras via a RS232 serial
cable and the computer so that the light source position can
be determined from the time stamps recorded by the cameras.
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(a) Green Watercolor
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(b) Prussian Green Oil Paint

00.0m 01.2m 02.8m 04.8m 07.2m 08.4m 11.3m
(c) Matte Yellow Spray Paint

00.0m 16.5m 30.5m 42.5m 56.5m 98.5m 151.5m
(d) Alme Dark Blue Grey Fabic

00.1m 00.2m 00.3m 00.4m 00.5m 00.6m 00.7m
(e) Cement

Amount of Dust

τ = 0.00 τ = 0.20 τ = 0.30 τ = 0.40 τ = 0.50 τ = 0.60 τ = 0.70
(f) Joint Compound On Electric Red Paint

τ = 0.00 τ = 0.20 τ = 0.30 τ = 0.40 τ = 0.50 τ = 0.60 τ = 0.70
(g) Household Dust On Satin Dove Teal Spray Paint

Fig. 4. Rendered spheres with time-varying BRDF data captured using our system. To fully illustrate the time-varying phenomena, the renderings use
complex natural lighting from the St. Peters environment map.
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Fig. 5. Example fits for three of our acquired samples. Each row
shows the measurement (red solid lines) obtained in the blue color
channel of the top camera for three different time instances, and the
results of fitting appropriate analytic BRDF functions (blue dotted
lines). Though the changes in BRDFs across time are dramatic, all
our fits are found to be fairly accurate with a maximum RMS error
of 3.8%. The small gap in the original measurement indicated by the
red arrow (around the incidence angle of 12◦) is due to the occlusion
of the sample by the light source. However, because the sample plane
is tilted, the occlusion is shifted away from the peak of the specular
lobe and does not affect the robustness of the fitting.

As mentioned earlier, our goal is to capture sharp speculari-
ties using the top-most camera that lies on the incidence plane.
However, if the sample is placed horizontally, a large part of
the specular highlight will be occluded by the light source. To
avoid this, we incline the plate by 12◦, as shown in the inset
of Figure 3. This shifts the specular peak by about 24 degrees
with respect to the vertical axis, enabling us to capture the
most important portion of it, as shown in Figure 5.

A single scan (circular motion) of the light source takes
about 12 seconds, during which time around 360 color images
(lighting direction increments of 0.5 degrees) are recorded by
each camera. To obtain high dynamic range (HDR) measure-
ments, two more scans are done with all cameras automatically
switching to different exposures ranging from 0.2 milliseconds
to 32 milliseconds. Therefore, the measurement corresponding
to a single time instance of the TVBRDF takes about 36
seconds. To capture a complete TVBRDF, the robot and the
cameras are programmed to repeat the above acquisition at a
preset time interval (which ranges from 1 minute to 5 minutes
in our experiments).

B. Data Fitting

In this section, we focus on the fitting of analytic BRDF
functions to our acquired data to obtain a compact set of time-
varying model parameters.

Drying Paints and Rough Surfaces: We fit a combination
of the Oren-Nayar diffuse model [25], denoted as ρd, and the
Torrance-Sparrow specular model [27], denoted as ρs, to the
BRDF measurement obtained from drying paints and drying

d, s Subscripts for diffuse, specular components
r, g, b Superscripts for r, g and b color channels
ωi Incoming direction
ωo Outgoing direction
θi, φi Elevation and azimuth angles for incident ray
θo, φo Elevation and azimuth angles for exitant ray
θh, φh Elevation and azimuth angles for half angle
ρ Radiance
Kd Diffuse component albedo
Ks Specular component albedo
γ Angle between light source and viewing ray
σd Roughness parameter for diffuse component
σs Roughness parameter for specular component
τ Optical thickness for dust
w Dust albedo
Φ Phase function for dust particles
g Parameter for the Henyey-Greenstein function

Fig. 6. Notation used in the paper.

wet surfaces. These two models are appropriate because they
have a handful of parameters that have physical significance,
and are widely used to model glossy or rough surfaces. This
combined BRDF model can be written as:

ρ
(
ωi, ωo; σd(t), σs(t), K

r,g,b
d (t),Ks(t)

)

= ρd

(
ωi, ωo; σd(t),K

r,g,b
d (t)

)
+ ρs

(
ωi, ωo; σs(t),Ks(t)

)
,(1)

where ωi and ωo are the incoming and outgoing directions
that are defined in a coordinate frame aligned with the surface
normal, σs and σd are roughness parameters for the specular
and diffuse components, respectively, and Ks and Kr,g,b

d

are the amplitudes of the specular and diffuse components,
respectively. More details on the Oren-Nayar and Torrance-
Sparrow models are given in Appendices A and B.

The above model has 6 time-varying parameters, namely,
the amplitudes of the diffuse and specular components
[Kr,g,b

d (t),Ks(t)], and the diffuse and specular roughness pa-
rameters [σd(t), σs(t)]. These time-varying parameters exhibit
interesting temporal trends which will be discussed later in
Sections IV and V.

Dust Accumulation: Blinn’s reflectance model [1] appears
to be the most relevant for dusty surfaces and relatively simple.
The model is also controlled by a few intuitive parameters.
We have modified Blinn’s model to fit our dust samples. This
model can be written as:

ρ
(
ωi, ωo; g, wr,g,b; σd,K

r,g,b
d ; σs(τ),Ks(τ)

)

=
(
1− T (τ)

) · ρdust

(
ωi, ωo; g, wr,g,b

)

+T (τ) · ρd

(
ωi, ωo; σd, K

r,g,b
d

)

+ρs

(
ωi, ωo; Ks(τ), σs(τ)

)
, (2)

where:
T = e

−τ( 1
cos θi

+ 1
cos θr

)
. (3)

Again, ωi and ωo are the incoming and outgoing directions, g
is the parameter used in the Henyey-Greenstein phase function,
wr,g,b are the dust albedos in the different color channels,
Ks and σs are the amplitude and roughness for the specular
component, Kr,g,b

d and σd are the amplitudes and roughness
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for the diffuse component, and τ is a dimensionless quantity
called optical thickness which represents the attenuating power
of the dust layer. A detailed discussion on the above model
and how it relates to Blinn’s model [1] is given in Section
VI-A.

Fitting Algorithm: The Levenberg-Marquardt non-linear
least-squares optimization algorithm [20] is used to fit the
above analytic models to the measured TVBRDF data. For
all of our 41 samples, the fits are found to be accurate with a
maximum RMS error of 3.8%, as seen from Table I.

C. Database

As shown in Figure 4, we have acquired a variety of
samples including watercolors, spray paints, oil paints,
fabrics, cement, clay, plaster, joint compound dust, household
dust and chocolate. A complete list of our 41 samples
and the models used to fit their data is given on the left
side of Table I. On the right side of the table are the time
intervals, number of temporal samples and the RMS errors
in the BRDF fits. The estimated parameter values are not
included for lack of space. The minimum time interval
between consecutive scans is set to be 1 min because
most of the time-varying phenomena that we measured are
long-lasting, ranging from 10 mins to 200 mins. In addition,
since each single scan takes 36 seconds, continuously
scanning the material samples is less meaningful and won’t
improve the sampling resolution. All of our measurements
and parameter estimates are available for download from
www1.cs.columbia.edu/CAVE/databases/tvbrdf/tvbrdf.php.
This database can be directly used in a variety of computer
graphics and vision applications.

Figure 5 shows the accuracy of three example fits for our
acquired samples. The RMS errors within the some group
of paint materials are varying because the different colored
paints can have dramatically different makes and hence distinct
appearance.

Our goal is to use this database to first identify temporal
trends in the estimated parameter values that are associated
with each type of time-varying phenomenon (drying paint,
drying wet surface, dust accumulation, Sections IV, V, VI).
Next, we propose analytic functions that model these temporal
trends in parameter values. These models enable us to “apply”
several of the above physical processes to novel materials. We
validate the accuracy of these analytic TVBRDF models in
Section VII. In Section VIII, we compare our work with two
contemporaneous publications [11], [28].

IV. DRYING OF PAINTS

Existing scattering theories related to pigmented materials,
such as the Kubelka-Munk theory, do not address how the
appearance of the material changes as it dries. In this section,
we explore the temporal behaviors of the BRDF parameters of
our drying paint samples. Based on our analysis, we propose
simple analytic models for the parameter variations over time.
These models allow us to achieve two effects: We can predict
the TVBRDF of a paint of the same type but with a different
color as well as the TVBRDF when the paint is applied to a
novel surface.

Sample Name and Interval Scans RMS
BRDF Model (mins) (%)

Paints - TS+ON
Krylon Spray Paint

Flat / White 1 24 0.90
Satin / Green 1 27 1.73
Glossy / Blue 1 40 1.36
Glossy / Red 1 40 0.67
Satin / Dove-Teal 1 30 1.63

Rust-Oleum Spray Paint
Flat / Yellow 1 40 1.34

Crayola Watercolor
Blue 1 21 1.27
Red 1 30 1.26
Green 1 30 3.11
Purple 1 40 0.51
Orange 1 40 0.82
Light Green 1 40 2.32
Yellow 1 40 1.20

Daler-Rowney Oil Paint
Prussian Green 1 10 1.87
Prussian Red 1 10 0.98
Permanent Light Green 1 40 0.66
Cadmium Yellow 1 40 0.26

Drying - TS+ON
Fabrics

Alme Grey Blue Fabric 5 30 3.08
Idemo Beige Fabric 5 40 0.35
Ingebo Dark Red Fabric 5 39 0.41
Pink Denim Fabric 1 30 0.10
Orange Cotton Fabric 1 41 0.08
Beige Cotton Fabric 3 40 0.38
Pink Cotton Fabric 3 40 0.22

White Plaster 1 40 0.31
Cement 5 30 2.55
Terracotta Clay 5 30 0.55

Dust - TS+Blinn
Joint Compound Powder

Electric Red Exterior Paint - 15 1.04
Satin / Red Spray Paint - 11 0.66
Satin / Dove-Teal Paint - 15 0.26
Flat / Yellow Spray Paint - 15 0.20
Almas Red Fabric - 13 0.23
Green Grey Metallic Paint - 15 2.94

Household Dust
Electric Red Exterior Paint - 10 1.25
Satin / Red Spray Paint - 10 3.62
Satin / Dove-Teal Paint - 09 0.28
Flat / Yellow Spray Paint - 11 0.09
Almas Red Fabric - 10 0.07
Green Grey Metallic Paint - 10 3.84

Miscellaneous - TS+ON
Hershey’s Chocolate Melting 1 30 0.48
Red Wine on White Fabric 3 47 0.10

TABLE I
The complete list of 41 samples and their associated effects that are

included in our TVBRDF database. “TS” and “ON” stand for the
Torrance-Sparrow and Oren-Nayar models, respectively. “Interval” is the

time interval between consecutive scans (time instances) and “Scans” is the
number of total scans. The RMS errors show the accuracy of the model fits
to the acquired measurements over all time instances. The maximum RMS

error (over all samples) is found to be 3.84 %.
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Fig. 7. (a) The fall-off with time of Ks (normalized by the initial
value Ks,wet) of various paint samples. (b) This plot is similar to the
one in (a) except that the dry value is first subtracted and then the
natural log is applied. Note that Ks in the case of paints attenuates
exponentially with time.

A. Temporal Specular Trends

Materials with wet paint applied are highly specular due to
strong surface reflection at the liquid-air interface (Figure 2(b)
and (c)). As the material dries and the liquid layer thins, the
specular component diffuses out and eventually disappears in
some cases. This effect is characteristic of the paint-drying
process and must be captured by the TVBRDF.

In the Torrance-Sparrow model, the glossiness of a material
is governed by two parameters: the specular roughness σs and
the specular amplitude Ks. Specular highlights of different
materials fall off at different rates. In our paint measurements,
we observed two important temporal effects. As shown in the
linear and log plots in Figure 7(a), Ks(normalized) falls off
exponentially from its initial value Ks,wet to the value Ks,dry .
After subtracting Ks,dry , we plot the attenuation of Ks in
log scale in Figure 7(b). Note that the temporal variation in
this plot is more or less linear, indicating that Ks decreases
exponentially with time. The rate of the decrease is given by
the slope of the plot, which varies between the paints.

On the other hand, σs (after normalization) increases from
its initial value σs,wet to σs,dry , as shown in Figure 8(a).
We plot 1/σs on a linear scale in Figure 8(b) and see that
it falls off exponentially with time. In Figure8(c), 1/σs,dry

is subtracted from 1/σs and the negative of the log of this
quantity is plotted. Note that these plots are more or less
straight lines, indicating that σs increases exponentially with
time. Qualitatively, this agrees with our intuition that as the
paint on the material dries, the specularity broadens and fades
away.

The exponential forms of Ks and σs are strongly coupled
and have a rather stable linear relation across different materi-
als. As shown in Figure 8(d), the average slope of this linear
relation is around 1. The above observation can be used to
develop the following simple analytic model for the temporal
variation of the specular parameters of paints:

Ks(t) = (Ks,wet −Ks,dry) · e−λt + Ks,dry, (4)

σs(t) =
σs,wet · σs,dry

(σs,dry − σs,wet) · e−λt + σs,wet
, (5)

where λ is the effective attenuation rate of the specular
component. In the case of a given measurement, λ can be
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Fig. 9. The diffuse color shifts associated with drying paints lie on
dichromatic planes spanned by the diffuse color vector of the surface
(shown in magenta) and the diffuse color vector of the paint (shown
in cyan). The first row shows the dichromatic planes for watercolors:
(a) Blue watercolor, (b) purple watercolor, and (c) red watercolor. The
second row shows the dichromatic planes for oil paints: (d) Cadmium
yellow oil paint, (e) light green oil paint, (f) Prussian red oil paint.

estimated using the above model. Alternatively, it can be
selected by a user when creating a new paint TVBRDF.

B. Temporal Diffuse Trends

In the case of paints, the diffuse color changes are more
complicated as they can vary significantly with the types of
pigments and solutions in the paint. For example, a watercolor
can be modeled using the theory of subtractive color mixing
[10] because its colorant is fully dissolved in the solution,
making a wet watercolor transparent enough for light to pass
through it. The color shifts associated with some of our
measured watercolors are shown in Figures 9(a), (b), and (c).
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Fig. 10. All diffuse color shifts of wet materials are roughly straight
lines connecting the BRDFs when fully dry and wet. (a) Orange
Cotton Fabric, (b) Terracotta Clay.

Oil paints, on the other hand, consist of opaque particles that
not only absorb but also selectively scatter light energy. Thus,
the appearance of an oil paint depends on the sizes, density
and shapes of the particles. Figures 9(d), (e), and (f) show
the color shifts of some of our measured oil paints. Spray
paints, however, cover surfaces with opaque colored spots and
therefore show little color variation during drying. Moreover,
irrespective of the type of paint, the diffuse color shifts may
be affected by more complex factors such as the thickness of
the paint coating and how absorbing the underlying surface is.

In the case of our measured paint samples, we found that the
diffuse color shifts tend to lie on dichromatic planes in color
space, as shown in Figure 9. For a given paint, the dichromatic
plane is spanned by the color vectors of the colorant and
the underlying surface. This is in line with our intuition
that the appearance variation of a painted material should
be a combination of the appearances of the paint and the
underlying surface. Therefore, a dichromatic decomposition
can be applied to separate the diffuse color into a weighted
combination of the colors of the paint and the surface:

ρd(t) = α(t) · ρd,surface + β(t) · ρd,paint, (6)

where α(t) and β(t) are the time-varying weights associated
with the diffuse radiance ρd,surface of the surface and the
diffuse radiance ρd,paint of the paint. These two radiances are
directly measured from the bare surface and a thick layer of
wet paint, respectively. In this way, we have captured all the
diffuse temporal variations with two coefficients. This enables
us to synthesize the effects of novel paints drying on new
surfaces. Further work is needed to develop analytic models
for the precise forms of α(t) and β(t). For now, we simply
use the measured data.

C. Analytic Time-Varying Model for Paints

We have developed an analytic time-varying BRDF model
for paints which is given by Equations 4, 5 and 6. The
only time-varying parameters are α(t) and β(t) in Equation
6. In addition, λ in Equations 4 and 5 is a new parameter
that determines the time variation of the specular component.
Finally, we need the initial (wet) and final (dry) values of
standard parameters such as Ks and σs. In practice, all of
these parameters can be estimated from a measured TVBRDF.

Alternatively, some of the parameters can be selected by a
user to modify the properties of the paint or the underlying

surface. For instance, by changing ρd,surface and ρd,paint, we
can synthesize the drying of a different colored paint on a new
surface. We can also change the glossiness of the time-varying
material by changing Ks,wet, Ks,dry , σs,wet and σs,dry , while
setting the value of λ to the one estimated from our acquired
data.

D. Rendering

Our paint data can readily be used for rendering the effect of
drying. The analytic TVBRDF model for paints also enables
the transfer of the phenomena to novel materials. Figure 11
shows several models rendered with both acquired and syn-
thesized materials. The dragon is rendered with our acquired
blue watercolor drying on white paper. Decomposing this
material into a combination of the paint color and the paper
color, we can easily replace either of them to synthesize the
effect of different colored paint drying on novel surfaces. In
this way, we synthesize the effect of green watercolor drying
on white paper to render the bunny and the effect of blue
watercolor drying on red paper to render the bird (Figure 11).
The specular properties of the new materials are transferred
by assuming the same exponentially changing rate of Ks and
σs as the original data, but with different initial values.

Furthermore, a heat source is suspended in the top left
corner to control the drying rates of different parts of the
models. The drying rate varies inversely with distance from
the source. Therefore, the further away the point is, the slower
it dries. Additionally, the drying rate varies linearly with the
surface orientation with respect to the source so that up-facing
parts of the models dry significantly faster than others. As
a result, the local “time” variable t for each point ticks at
different rates, causing time dependent parameters such as
α(t), β(t), Ks(t) and σs(t) to be spatially varying.

As time goes by, the two synthesized materials show
changes consistent with the original paint as specular high-
lights diffuse out and dim and the watercolor layer thins and
transmits more color from the underlying surface.

V. DRYING OF WET SURFACES

We can often tell the wetness of an object simply by
observing its appearance, because wet surfaces generally lose
their color contrast and exhibit significant decrease in color
saturation. We apply a similar analysis to wet surfaces as we
did for paints and develop their analytic TVBRDF model. Wet
surfaces in our experiments refer mostly to rough and diffuse
materials quenched in water and having a very thin water layer
on their surfaces.

The specular highlights of most wet surfaces vanish very
quickly, as seen in Figure 4(d), and can be ignored for
subsequent time instances (grazing angle specularity may
be missed in our measurements). However, in the case of
glossy underlying surfaces or a thick water layer, the specular
reflectance can be important. We leave the acquisition and
analysis of this effect to future exploration. Diffuse color, on
the other hand, exhibits significant time variations. For most
of our acquired wet materials, the diffuse color shifts in the
color space are more or less straight lines, as shown in Figure
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White Surface Blue Watercolor on White Surface

White Surface Green Watercolor on White Surface

Red Surface Blue Watercolor on Red Surface

Fig. 11. Objects painted with watercolors dry over time. The dragon is rendered with our acquired blue watercolor on white paper. The
bunny is rendered with a synthesized green watercolor on white paper. The bird is rendered with the blue watercolor on synthesized pink
paper. The white sphere suspended in the corner represents a heat source.

10. This simple observation enables us to derive the analytic
TVBRDF model for wet materials:

ρd(t) = α(t) · ρd,dry +
(
1− α(t)

) · ρd,wet , (7)

where ρd,dry and ρd,wet are the albedos of the material when
fully dry and wet, respectively, and α(t) can be estimated
from our measured data. Over time, α(t) behaves as a sigmoid
function as shown in Figure 12, confirming Lu et al.’s earlier
results [19] for the specific case of drying stone.

VI. DUST ACCUMULATION

Dust is ubiquitous in our visual experience. Based on
the temporal trends that we have observed, we develop a
simple analytic TVBRDF model for dust which can generalize
the dusty effect to arbitrary surfaces. This also shows that
our analysis approach can be extended to a very different
BRDF model from the Torrance-Sparrow + Oren-Nayar model
considered in the previous two sections.

A. Dust Reflectance Model

We initially tried to use the top-lit reflectance model for
dusty surfaces proposed by Blinn in [1] for fitting. A more
detailed description of this model is in Appendix C. In
essence, it is a weighted blending of two terms: the dust
reflectance ρdust and the original surface reflectance ρsurface.
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Fig. 12. Plots of α(t) versus time for two sample materials.

The blending factor is a term called transparency T . The model
can be briefly written as:

ρ = (1− T1) · ρdust + T2 · ρsurface , (8)

T1 = e
−τ 1

cos θr+cos θi . , (9)

T2 = e−τ 1
cos θr . (10)

We can use the model directly. However, there are two
important issues that need to be addressed. Firstly, though the
first transparency term T1 introduced in [1] correctly takes the
dependency on both the lighting and view angles θi, θr into
account, the second term T2, describing the transmission of
the reflectance from the underlying surface, is asymmetrical
and solely depends on the viewing angle θr. It ignores the
fact that light rays have to pass through the dust as well as
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Fig. 13. Plots showing results of fitting both the original and modified
Blinn’s dust model to the measured data. It is clear that the modified
model fits better consistently. (a) Red color channel from the third
camera for Household Dust on Satin Dove Teal Paint (b) Red color
channel from the top camera for Joint Compound on Almas Red
Fabric.

exit it. Therefore, we reconcile the difference between the T1

and T2 by incorporating the lighting angle θi into T2. Both
the transparency terms T1 and T2 can be consolidated using a
single transparency T :

T (τ) = e
−τ( 1

cos θi
+ 1

cos θr
)
. (11)

To compare the accuracies, we ran fits with both models across
all our dust samples. The result clearly shows that our model
fits better, as seen in Figure 13.

Second, the model defined by Equation 8 was originally
developed for diffuse surfaces and does not address glossy
highlights due to the difficulty in explicit modeling. Our
experiments suggest that the specular component falls off at a
much faster rate than the diffuse component. Therefore, we fit
the specular reflectance ρs separately from the whole surface
reflectance ρsurface. We rewrite Equation 8 and expand some
of its arguments:

ρ
(
ωi, ωo; g, wr,g,b; σd, K

r,g,b
d ; σs(τ),Ks(τ)

)

=
(
1− T (τ)

) · ρdust

(
ωi, ωo; g, wr,g,b

)

+T (τ) · ρd

(
ωi, ωo;σd,K

r,g,b
d

)

+ρs

(
ωi, ωo; Ks(τ), σs(τ)

)
, (12)

where ωi and ωo are the incoming and outgoing directions, g
is a parameter that controls the phase function of the dust par-
ticles, wr,g,b are the dust albedos for different color channels,
Ks and σs are the amplitude and roughness for the specular
component, Kr,g,b

d and σd are the amplitudes and roughness
for the diffuse component, and τ is a dimensionless quantity
called optical thickness which describes the attenuation power
of the dust layer.

The dust reflectance ρdust depends on a few other static
parameters such as the dust albedo wr,g,b and g in the
Henyey-Greenstein phase function. These parameters need to
be computed only once from pure dust. Similarly, the static
BRDF parameters for the underlying surfaces such as σd

and Kd can be estimated from the materials when they are
completely dust free.

Levenberg-Marquardt method [20] is used to fit our mod-
ified model to the acquired data. The fitting result for the
combined BRDF contains only two time-varying parameters:
[Ks(τ)] and [σs(τ)].
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Fig. 14. (a) The natural log of Ks normalized by its initial value
Ks0 versus optical thickness τ . It clearly shows that Ks decays
exponentially with the optical thickness τ and the slopes of the lines
depend on the types of dust. (b) Absolute values of σs versus optical
thickness τ .

B. Temporal Parameter Trends

The change in diffuse colors due to dust has been addressed
by the modified transparency T in Equation 11. Therefore, we
focus on the behavior of the specular highlights subject to dust.

Due to complicated interactions such as scattering and inter-
reflection inside the dust layer, specular highlights should not
be attenuated by exactly exp(−τ). However, considering that
dust is primarily a single scattering medium and the net effect
of dust on a surface is observed from a distance, we estimate
that the specularities should still fall off at an exponential rate.

After normalizing the specular amplitude Ks by its initial
value, we plot it in log scale versus the optical thickness τ .
As Figure 14(a) shows, the log value of specular parameter
Ks decreases essentially linearly with the optical thickness
τ , which confirms our intuition about the exponential decay.
Moreover, the slopes of these curves actually relate to the scat-
tering properties of the dust particles and are dust dependent.
This can be modeled by the effective specular optical thickness
λ. On the other hand, most changes of σs are rather small as
shown in Figure 14(b), and thus can be treated as negligible.

C. Analytic Time Varying BRDF Model for Dust

Based on the temporal trends mentioned above, we have
developed an analytic TVBRDF model for dust:

ρ(τ) =
(
1− T (τ)

) · ρdust + T (τ) · ρd + e−λτ · ρs , (13)

where T (τ) is the modified transparency term as defined
in Equation 11 and blends the dust color with the diffuse
reflectance of the surface. The specular reflectance of the
surface is attenuated at an exponential rate described by
the effective specular optical thickness λ. If the specular
component behaved the same way as the diffuse component,
λ would equal 1. However since specular highlights fall off
faster, in practice, λ is greater than 1 and depends on the
type of the dust particles. In our database, λ is about 11 for
joint compound dust and 10

3 for household dust. In Figure 15,
the teapot and teacup are rendered directly using our acquired
data while the material of the table is synthesized with a low
specular exponent (still using the λ for household dust from
our data).
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Fig. 15. A tea set scene accumulating dust across time and its close
ups (bottom). A sequence of this scene across time is shown in Figure
1. Please note effects such as intricate dust shadows under the teacup
and the teapot and its knob (white arrows), fine dust gradient on
the teapot body and diffusing specularities on the saucer and teapot
(yellow haloed arrows).

D. Rendering and Physics Controls

Dust accumulation is affected by many factors, including
wind, the position and orientation of the dust source, the
inclination, stickiness and exposure of a surface and its contact
with other objects, as discussed in Hsu et al. [13]. With
our analytic time-varying BRDF model for dust, different
physics control mechanisms only need to modify τ spatially
to generate compelling spatially varying effects. In Figure 15,
a tea set scene is accumulating dust cast from a circular dust
source above. The effect of gravity and surface inclination on
the rate of dust accumulation is modeled by the cosine of the
angle between the surface normal and the vertical axis. As a
result, the dust is not evenly distributed and less accumulates
on steeper surfaces – for instance, on the side of the teapot
and teacup. Wherever dust is present, the surface becomes dull
and specular highlights are attenuated, as shown by the saucer
and the teapot in the insets.

Further, due to occlusion, the surface exposure at all points
is computed as the solid angle subtended by the dust source
and is used to linearly control the rate of dust accumulation.
Certain areas exhibit a “dust shadow” effect and remain shiny
and in high contrast across time – for example, the areas just
under the teapot and its knob, under the teacup and on the
saucer, and on the bottom side of the table, as shown in the
insets.

VII. VALIDATION

We validate both the acquisition and the analytic TVBRDF
models presented in earlier sections.

A. Validation of Acquisition

In Section III, we quantitatively showed the accuracy of our
fits to the original measurements in Figure 5. To further test the
fidelity of our data to the real materials, we take photographs

Time=1.0 mins Time=6 mins       Time = 15 mins

Photos of Real Spheres

Rendered Spheres

Fig. 16. Photos of a real sphere (top row) and rendered images of
a virtual sphere covered with Satin Dove Teal Spray Paint (bottom
row). Across time, both spheres show similar appearance changes,
such as the diffusing out of specular highlights. Color differences
between the two spheres are due to distinct lighting environments.

of actual painted spheres and compare them with rendered im-
ages using the parameters in our database. As Figure 16 shows,
despite different external factors such as the lighting, our data
qualitatively agrees with real observed material appearance.
Across time, the specular highlights broaden and diffuse out
on both the real and rendered spheres. Slight color differences
can be observed because of distinct lighting conditions.

B. Validation of analytic TVBRDF Models

In this section, we test the effectiveness of our TVBRDF
models in capturing the temporal variations of the original
measurements. We focus on the TVBRDF models for paints
and dusts. For qualitative comparisons, we render teapots with
both the original measurements and the analytic TVBRDF
models and compare their visual differences. For quantitative
comparisons, we plot the parameter curves of the analytic
TVBRDF models against the the original measured data.

For the TVBRDF model of paints, Figure 17 shows two
teapots rendered respectively with the captured data of a
light green oil paint and the analytic model at different time
instances. Though the specular highlights predicted by the
analytic model grows slightly stronger in the middle column,
the overall temporal variations of the visual appearances of
the teapots are very similar. For quantitative comparison, we
compare the specular component of the measurements and
the analytic TVBRDF model (since the diffuse component is
accurately decomposed by α(t) and β(t) in the model). Figure
18 shows Ks and σs predicted by our analytic TVBRDF model
against the measured data in log scale. Different line slopes are
described by λ, the effective attenuation rate of the specular
component. Despite slight deviations of the data from the
model, such as that of the Satin Dove Teal Spray Paint in
Figure 18, they largely agree on their overall variations across
time. The misalignment of the data with the model could be
due to many reasons such as acquisition noise, surface prop-
erties, airflows and even some micro-level chemical reactions.
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Time=0.5 mins Time=4 mins         Time = 12 mins

Measured Data

Analytic TVBRDF Model

Fig. 17. Two teapots rendered with the measured data (top row) and
the analytic TVBRDF model (bottom row) for light green oil paint
at different time instances.
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Fig. 18. The temporal variation of Ks (left) and σs (right) of both the
paint measurements and their analytic TVBRDF model. Curves of the
same material have the same color, but with markers to distinguish the
measurements and the TVBRDF model. All curves are normalized
and then plotted in the natural log space.
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Fig. 19. Two teapots rendered with the measured data (top row)
and the analytic TVBRDF model (bottom row) for joint compound
powder dust on electric red paint at different time instances.
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Fig. 20. The attenuation of Ks with time for both the dust measure-
ments and its analytic TVBRDF model. Black lines are the TVBRDF
models, while the marked color curves are the measurements. All
curves are normalized and then plotted in the natural log space.

To validate the TVBRDF model for dust, we first show two
teapots rendered with the acquired joint compound powder
on electric red paint and the model in Figure 19. The two
teapots look visually similar across time. The quantitative
validation tests the model’s specular component. In Figure
20, we plot Ks best predicted by our model in comparison
with the measurements in log scale. Though the curves of
different materials do not exactly follow the straight lines of
the model, their temporal behavior can be well approximated
by the TVBRDF model within a large range of the optical
thickness.

VIII. COMPARISON WITH CONTEMPORANEOUS WORK

We compare our work with two most recent publications,
Wang et al. [28] and Gu et al. [11], in terms of research
goals and results, acquisition setups and BRDF models used
for fitting.

Wang et al. [28] studied the appearance manifolds that
model the time-variant surface appearance of a material.
They observed that concurrent variations in appearance over a
surface represent different degrees of weathering. They started
from a weathered material sample at a single time instance,
and inferred its spatial and temporal variations during the
weathering process.

Gu et al. [11] explored a number of natural processes that
cause the surface appearance to vary, such as burning, decay,
corrosion, drying and rusting. A multi-light system with 16
Basler cameras and 150 white LED light sources was used to
capture the time-varying surface appearance. A Space-Time
Appearance Factorization(STAF) model was also proposed to
factor the space and time-varying effects.

Our work differs from these contemporaneous works pri-
marily in three aspects. (1) They focus primarily on spatial pat-
terns due to spatially different rates of weathering for general
time-varying process, but do not discover any trends between
different materials (each process/sample is treated completely
independently). On the other hand, we do not consider spa-
tial variation, but instead study temporal BRDF variations
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more carefully and discover trends and analytic models for
TVBRDFs among different specific types of processes (paints
drying, dust) (2) In terms of acquisition, Wang et al. [28] use
the data of a weathered material at a single time instance, and
use simpler linear light-source reflectometry. By contrast, Gu
et al. [11] and we consider time-varying acquisition, and both
methods use rapid acquisition setups. They use a dome-type
system with a sparse sampling of the full light-view space,
while we use a robotic rig to densely sample the BRDF along
a single incidence plane and for a small number of viewpoints
to capture high-frequency specularities accurately (while they
also fit parametric models, the sparse sampling means they
cannot make quantitative claims regarding the accuracy of their
specular fits). (3) The isotropic Ward model [29] was used in
[28] to fit all materials. Gu et al. [11] used a combination of
diffuse Lambertian and simplified Torrance-Sparrow model for
fitting. In our work, more complicated BRDF models such as
the Blinn’s dust model are also used to study the appearance
of different types of materials.

IX. CONCLUSIONS AND FUTURE WORK

We have introduced the notion of time-varying BRDFs, and
have for the first time captured, modeled and rendered such
temporal changes in appearance. A major result of our work is
a comprehensive database which is currently accessible from
www1.cs.columbia.edu/CAVE/databases/tvbrdf/tvbrdf.php.
Our data can be directly used for many important qualitative
time-varying effects such as drying, dusting and melting, in
any standard rendering package. Moreover, we have analyzed
the temporal trends of the model parameters, and developed
analytic TVBRDF models which are useful in extending
these time-varying phenomena to novel materials.

We are interested in exploring many related aspects of time-
varying BRDFs. One avenue would be to incorporate time-
varying BRDFs into existing Precomputed Radiance Transfer
methods for real-time rendering. An alternative direction can
be to couple important appearance changes such as burning
and melting with physical simulation of those processes.
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APPENDIX

a) Appendix A: Oren-Nayar Diffuse Reflectance Model:
The Oren-Nayar reflectance model was designed for rough surfaces.
The model is composed of two parts: the direct illumination com-
ponent and the inter-reflection component. The direct illumination
component in the radiance for this model is given by

ρ1
d(θr, θi, φr − φi; σd, Kd)

=
Kd

π

[
C1(σd) + cos(φr − φi)C2(α, β, φr − φi, σd) tan β

+ (1− | cos(φr − φi)|)C3(α, β, σd) tan(
α + β

2
)
]

(14)
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where,

α = max(θr, θi) (15)
β = min(θr, θi) (16)

C1 = 1− 0.5
σ2

d

σ2
d + 0.33

(17)

C2 =





0.45
σ2

d

σ2
d
+0.09

sin α cos(φr − φi) ≥ 0

0.45
σ2

d

σ2
d
+0.09

(sin α− ( 2β
π

)3) otherwise
(18)

C3 = 0.125(
σ2

d

σ2
d + 0.09

)(
4αβ

π2
)2 (19)

The inter-reflection component is given by

ρ2
d(θr, θi, φr − φi; σd, Kd)

= 0.17
K2

d

π

σ2
d

σ2
d + 0.13

[
1− cos(φr − φi)(

2β

π
)2

]
(20)

These two components combine to give the total diffuse surface
radiance.

ρd(θr, θi, φr − φi; σd, Kd) (21)
= ρ1

d(θr, θi, φr − φi; σd, Kd) + ρ2
d(θr, θi, φr − φi; σd, Kd)

b) Appendix B: Torrance-Sparrow Specular Reflectance
Model: The Torrance-Sparrow specular model is expressed by
specular component amplitude, facet normal distribution, geometrical
attenuation and fresnel reflection terms as

ρs =
Ks ·D ·G · F
4 cos θi cos θr

(22)

where Ks is the specular component amplitude, D describes the
distribution of facet normals over the surface and G is a geometrical
attenuation factor.

D = e−(θh/σs)2 (23)

G = max(0, min(1,
2 cos θi cos θh

cos θi cos θh + sin θi sin θh cos(φi − φh)
,

2 cos θr cos θh

cos θr cos θh + sin θr sin θh cos(φr − φh)
)) (24)

F is the fresnel reflection term and depends on the refractive index
n of the material. We have set the Fresnel term to 1 for convenience
of measurement and fitting.

c) Appendix C: Top-lit Dust Reflectance Model: The dust
reflectance ρdust is from the top lit brightness function in [1] which
is given by

ρdust(θr, θi, φr − φi; g, wr,g,b) = wr,g,bΦ(γ)
cos θi

(cos θi + cos θr)
(25)

where γ is computed as the angle between the light and viewing ray.
Φ is the popular Henyey-Greenstein phase function which describes
the dependence of scattering on deviation angle γ.

Φ(γ, g) =
1− g2

(1 + g2 − 2g cos γ)3/2
(26)

This is the equation of an ellipse in polar coordinates, centered at
one focus. The parameter g is the eccentricity of the ellipse and is
a property of the material. When g equals 0, scattering is isotropic.
When g is greater than 0, it is predominantly forward scattering.


