
Insider Threats

22 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES       !       1540-7993/09/$26.00 © 2009 IEEE       !       NOVEMBER/DECEMBER 2009

I n its survey of 522 security employees from US 
corporations and government agencies, the an-
nual CSI Computer Crime and Security Survey for 
20081 found that 44 percent of respondents cited 

insider incidents. This number is nearly as high as the 
49 percent of respondents who encountered a conven-
tional virus in the previous year. In general, organi-
zations are increasingly recognizing the signi!cance, 
scope, and cost of the malicious insider problem. 
Some state-of-the-art defenses focus on forensic anal-
ysis and attribution after an attack using techniques 
such as sophisticated auditing (see www.verdasys.com) 
and screen capture (see, for example, www.oakley 
networks.com/products/sureview.php). Other com-
mercially available systems aim to prevent, detect, and 
deter insider attacks. Ideally, the system would pre-
vent such attacks. Although researchers have studied 
policy-based mechanisms and access control systems 
for quite some time, no mechanism exists to prevent 
insider abuse. Monitoring, detection, and mitigation 
technologies are realistic necessities.

Detection systems aim to identify speci!c attack 
patterns or deviations from known, long-term user 
behavior. Such techniques are typically part of a stand-
alone mechanism rather than an integrated defense 
architecture. Malicious behavior detection-based in-
sider defenses thus su"er from several problems:

• Behavior is a noisy approximate of user intent in the 
absence of su#cient contextual information about 
the user and the overall environment. Consequently, 
such systems are often tuned to minimize false alerts 
by being less stringent about what they consider 

malicious. Al-
though it re-
duces administrators’ workload and users’ irritation, 
such tuning can let some malicious behavior go un-
detected. 

• Because the relationship between behavior and in-
tent is di#cult to determine and alarms can be false, 
it’s di#cult to con!dently take some action (wheth-
er automated or manual) in response to an alert.

• Adversaries with some knowledge of these tech-
niques’ existence might evade or even disable them. 
In fact, an increasing number of malware attacks by 
!rst disabling defenses such as antivirus software 
and host sensors prior to undertaking some mali-
cious activity.2

To address the malicious insider problem, systems 
must leverage multiple complementary and mutu-
ally supportive techniques to detect and deter inten-
tionally malicious adversaries. We direct our e"orts 
against inside attackers that have some, but perhaps 
not complete, knowledge of the enterprise environ-
ment. We don’t address the important problem of ma-
licious system administrators who have control over 
all defensive systems here. This remains a particularly 
interesting open problem. 

Our architecture consists of three main compo-
nents: a decoy document-generation component that lever-
ages uncertainty of the authenticity of information 
that might be accessed in an unauthorized manner; a 
network component that integrates monitored network 
traps with the decoy document-generation compo-
nent to isolate malicious users’ activity; and host-based 
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sensors, collectively named RUU (Are You You?), that 
collect low-level audit data from which we identify 
speci!c user actions.

Threat Model— 
The Attacker’s Sophistication Level
Our architecture uses decoys to deceive, confuse, 
and confound attackers, ultimately forcing them to 
expend far more e"ort to discern real from bogus 
information. To understand the various decoys’ capa-
bilities, we !rst explore the various levels of attacker 
sophistication. We broadly de!ne four monotonically 
increasing levels of insider sophistication and capabil-
ity to break through the deception our decoys seek to 
induce. Some insiders will have tools available to assist 
in discerning decoys from real data. Others will have 
only their own observations and insights.

• Low. Direct observation is the only tool available to 
the adversary. We strive to defeat this level of ad-
versary with our beacon documents, even though 
more advanced tools might distinguish decoys with 
embedded beacons.

• Medium. The insider can base decisions on informa-
tion found through more thorough investigation. 
For example, if a decoy document contains a decoy 
account credential for a particular identity, an ad-
versary can verify that the identity is real by que-
rying an external system (such as www.whitepages.
com). Such adversaries will require stronger decoy 
information, possibly corroborated by other evi-
dence sources.

• High. The attacker has access to the most sophisti-
cated tools (for example, super computers or other 
individuals with organizational information). Our 
notion of a perfect decoy, which we describe later, 
might be the only indiscernible decoy by an adver-
sary of such caliber.

• Highly privileged. Probably the most dangerous of all 
is the privileged and highly sophisticated user. Such 
attackers will be fully aware that the system is baited 
and will use sophisticated tools to try to analyze, 
disable, and avoid decoys entirely. Defeating this 
level of threat might still be possible. Consider, for 
example, someone who knows that encryption is 
used (and which encryption algorithm), but doesn’t 
know of an easy-to-change operational parameter 
(the key). Likewise, just because someone knows 
that decoys are used in the system doesn’t mean they 
can identify them all.

We further de!ne insider threats by di"erentiating be-
tween masqueraders (attackers who impersonate another 
system user) and traitors (attackers using their own le-
gitimate system credentials), each with varying levels 
of knowledge. The masquerader will likely have less 

knowledge of a system than the victim user whose cre-
dentials were stolen. The innocent insider who mistak-
enly violates policy is undoubtedly the largest population 
of insiders that we also target using trap-based decoys.

Architecture
Figure 1 shows the architecture, which combines host-
based user-event-monitoring sensors with trap-based 
decoys and remote network detectors. This combina-
tion of components makes it di#cult for insiders to 
avoid detection with a low likelihood of misattribution.

Decoy Document Distributor
One of the architecture’s core components is the decoy 
document distributor (D3) system, a Web-based service 
for generating and distributing decoys. Registered us-
ers can employ D3 to generate decoys for download, 
or host and network components can use it as a decoy 
data source. 

A decoy’s primary goal is to detect malfeasance. 
Because no system is foolproof, we built D3 to auto-
matically embed multiple overlapping signals in decoy 
documents to increase the likelihood of detecting de-
coy misuse. Any alert generated by the decoy indi-
cates insider activity. Because the attacker might have 
varying levels of sophistication, we use a combination 
of techniques to increase the likelihood that one will 
generate an alert:

• embedded honeytokens—computer login accounts 
that provide no access to valuable resources and 

Decoy document distributor

Trap-based decoys

Traitor
detection

Host-based sensor

Masquerade
detection

Sonar reporting

Figure 1. Architecture for monitoring and detecting insider attacks. Host-
based sensors monitor user activity to detect malicious users masquerading 
as other system users. Trap-based decoys attempt to catch attackers who 
use their own legitimate credentials. 
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are monitored when (mis)used (see the “Decoys in 
Computer Security” sidebar);

• embedded beacons that alert a remote server (called So-
nar) at Columbia; and

• embedded markers to enable detection by the host-
level or network decoy sensor.

Our current D3 deployment is tailored for a uni-
versity environment by both the type of documents 
and the bait within them, but it’s easily adaptable for 
other deployment environments (for example, an arbi-
trary commercial enterprise). Complete details about 
D3, including an evaluation of decoy documents, are 
available elsewhere.3 You can evaluate our technology 
at the Decoy Document Distribution Web site (www.
cs.columbia.edu/ids/RUU/Dcubed).

Sonar
The Sonar alert-management system’s primary role is 
to collect alerts triggered by host and network moni-
tors, and individual beacon signals generated by the 
unauthorized opening of decoy documents down-
loaded by registered users. When it receives a signal, 
Sonar sends an email to the registered users associ-
ated with the particular decoy. Depending on the type 
of decoy, some signals are sent directly from a decoy 
(as is the case with beacons), whereas others require 
Sonar to poll other resources for information (that is, 
credential monitoring). Sonar currently monitors sev-
eral servers for credential misuse, including university 
authentication log servers and mail.google.com. In 
the case of Gmail accounts, custom scripts access and 

parse the bait account pages to gather account activity 
information.

Decoys and Network Monitoring
The use of deception, or decoys, plays a valuable role 
in the protection of systems, networks, and informa-
tion. Cli"ord Stoll is generally considered the !rst to 
use decoys in the cyber domain4,5 and detailed his 
experience in the novel, The CuckooÕs Egg: Tracking a 
Spy Through the Maze of Computer Espionage (Pocket 
Books, 2000). Stoll’s methods included the use of 
bogus networks, systems, and documents to gather 
intelligence on attackers, who were apparently seek-
ing state secrets. For example, he crafted bait !les 
and bogus classi!ed documents containing nonsen-
sitive government information and attached alarms 
to them so he would know if anyone accessed them. 
Our decoy system builds on that notion, increasing 
the scope, scale, and automation of decoy generation 
and monitoring.

Perfectly believable decoys. To create decoys to bait 
insiders with various levels of knowledge and maxi-
mize their deception, it’s important to understand 
a decoy’s core properties. These properties—such as 
conspicuousness, enticement, noninterference, vari-
ability, di"erentiable, detectability, and believabil-
ity—guide the design of systems that automate the 
generation and placement of trap-based decoys.3 
Here, we describe our e"orts to maximize decoys’ 
believability.

A good decoy should be di#cult to distinguish 

D eception-based information resources that have no produc-
tion value other than to attract and detect adversaries are 

commonly known as honeypots. Honeypots gather intelligence 
about how attackers operate. They’re considered to have low 
false-positive rates because they’re designed to capture only mali-
cious attackers, except for innocent users in occasional mistakes. 

Lance Spitzner described how honeypots can be useful for 
detecting insider attacks.1 He discusses the use of honeytokens, 
which he de!nes as “a honeypot that is not a computer.”2 
Spitzner cites examples such as bogus medical records, credit-
card numbers, and credentials, and describes how they can be 
used to detect malicious insiders.1,2 

In current systems, creating decoys or honeytokens is a labori-
ous and manual process requiring administrator intervention. 
Our work extends these basic ideas to an automated system of 
managing the creation and deployment of these honeytokens. 

Jim Yuill and his colleagues extend the notion of honeytokens 
with a system to support the creation of bait !les, or, as they 
de!ne them, honey!les.3,4 They implement the honey!le system 

as an enhancement to the network !le server. The system allows 
the user to make any !le within the user !le space a honey!le by 
creating a record associating a !lename to a userid. The honey!le 
system monitors all !le accesses on the server and alerts users 
when honey!les are accessed. This work doesn’t focus on the 
content or automatic creation of !les but does mention some of 
the challenges in creating deceptive !les (with respect to names) 
that we address.
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from an authentic document from a legitimate 
source. For concreteness, we build upon the de!ni-
tion of “perfect secrecy” proposed in the crypto-
graphic community6 and de!ne a “perfect decoy” to 
be a decoy that is completely indistinguishable from 
a nondecoy document. One approach we use in cre-
ating decoys relies on a document-marking scheme 
in which all documents contain embedded mark-
ings such that decoys are tagged with keyed-hash 
message authentication codes (HMACs) and non-
decoys are tagged with indistinguishable random-
ness. Here, the challenge of distinguishing decoys 
reduces to the problem of distinguishing between 
pseudorandom and random numbers, a task proven 
to be computationally infeasible under certain as-
sumptions about the pseudorandom-generation 
process. Hence, the only attacker capable of dis-
tinguishing them is one with the key—perhaps the 
highly privileged insider.

As a prototype perfect decoy implementation, we 
built a component into D3 for adding HMAC markers 
to PDF documents. This component adds markers au-
tomatically using the iText API and inserts them into 
the document’s OCProperties section. We chose this 
section because it can be modi!ed on any PDF with-
out impacting how the document is rendered or in-
troducing visual artifacts. The D3 component creates 
the HMAC value using a vector of words extracted 
from the PDF. The HMAC key is kept secret and is 
managed by D3, where it’s also associated with a par-
ticular registered host. Because the system depends on 
all documents being tagged, another component in-
serts random decoy markers in nondecoy documents, 
making them indistinguishable from decoys without 
knowledge of the secret key.

Trap-based decoys. Our trap-based decoys are de-
tectable outside a host, so they don’t require host 
monitoring nor do they su"er the performance bur-
den characteristic of decoys that require constant in-
ternal monitoring. This form of decoy consists of bait 
information, such as online banking logins provided 
by a collaborating !nancial institution (the institution 
requested that we withhold its name), login accounts 
for online servers, and Web-based email accounts. 
Our current deployment uses Columbia University 
student accounts and Gmail accounts as bait, but we 
can customize these to any set of monitored creden-
tials. The D3 Web service manages the trap-based de-
coys, thereby enabling programmatic access to them 
from all registered Web-enabled clients. Automating 
this service enables their distribution and deployment 
in large volume.

Beacon decoys. Beacons are embedded in docu-
ments using methods of deception and obfuscation 

gleaned from studying malcode embedded in ma-
licious documents as seen in the wild.7 Beacons si-
lently contact a centralized server when a document 
is opened, passing to the server a unique token that 
was embedded within the document at creation time. 
The token uniquely identi!es the decoy document 
and records the IP address of the host accessing that 
document. The server collects additional data, de-
pending on the document type and rendering envi-
ronment used to view the beacon decoy document. 
We implemented the !rst proof-of-concept beacons 
in Word and PDF and deployed them through the D3 
Web site. The Word beacons rely on a stealthily em-
bedded remote image that’s rendered when the docu-
ment is opened. The request for the remote image 
signals to Sonar that the document has been opened. 
In the case of PDF beacons, the signaling mecha-
nism relies on the execution of JavaScript within the 
 document-rendering application.

The D3 Web service generates many types of bea-
con decoys, including receipts, tax documents, medi-
cal reports, and other common form-based documents 
with decoy credentials, realistic names, addresses, and 
logins—familiar information to all users. In contrast 
to the HMAC decoys, these documents’ believability 
lies in their content’s realism.

As noted earlier, decoys’ believability depends on 
how indistinguishable they are from normal documents. 
A beacon’s network connection can serve as a distin-
guishing feature. Hence, in their current form, a beacon 
might be able to ensnare only the least sophisticated at-
tacker. We’re currently investigating environments in 
which we can embed beacons in all documents, thereby 
making beacon decoys indistinguishable (modifying 
the document-rendering application is a feasible op-
tion). Another potential problem for beacons is that the 
signaling mechanisms can fail or be subverted; howev-
er, when combined with other mechanisms, their use 
should increase the likelihood of detection.

Host-Based Sensors
A key technique our architecture uses involves the 
host-level monitoring of user-initiated events. The 
host sensor is composed of two components, a behav-
ior modeler and document access sensor. The !rst pro!les 
user search actions to form a baseline of normal be-
havior using anomaly-detection techniques to isolate 
behavior di"erences over time. Large deviations from 
this baseline found in subsequent monitoring signal 
a potential insider attack. On their own, anomaly-
detection systems have high levels of false positives. 
Combining multiple views of the same event can dra-
matically reduce the number of false positives associ-
ated with a malicious event.8

Second, the host sensor detects when decoy docu-
ments containing embedded markers are read, copied, 
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or ex!ltrated. The host-level decoy sensor aims to de-
tect these malicious actions accurately and with neg-
ligible performance overhead. Abnormal user search 
events that culminate in decoy document access are 
a cause for concern. A challenge to the user, such as 
asking one of several personalized questions, might 
establish whether a masquerade attack is occurring.

Our prototype sensor runs on the Windows XP/
Vista platforms and relies on hooks placed in the Win-
dows ServiceTable. Malicious rootkits often use this 
approach; however, whereas traditional rootkits try to 
remain undetected, the host-level decoy sensor doesn’t 
require operational secrecy. Our threat model assumes 
attackers know that a system is being monitored, but 
they don’t know the identities of the decoys or the 
private key the sensor uses to di"erentiate them. Fur-
thermore, the attacker likely won’t know the victim 
user’s behavior—information that isn’t as easy to steal 
as a credential or a key. Given that adversaries might 
be aware of system monitoring, the system must take 
special care to prevent the sensor from being subvert-
ed or, equally important, to detect if it is subverted. 

We have ongoing work that aims to prevent and 
detect subversion of the sensor. One strategy involves 
“monitoring the monitor” to detect if the host sensor 
is disabled using tamper-resistant software techniques. 
One possible solution relies on out-of-the-box moni-
toring,9 in which a virtual machine-based architec-
ture conducts host-based monitoring outside of the 
host from within a virtual machine monitor.

Detecting anomalous user search actions. The 
sensor collects low-level data from !le accesses, win-
dows registry accesses, dynamic library loading, and 
window access events. This lets the sensor accurately 
capture data about speci!c system and user behavior 
over time. For example, we might check whether an 
insider has in!ltrated the system by modeling search 
behavior and comparing it to the baseline of normal 
behavior. We conjecture that users search their own 
!le systems in a unique manner, using only a few spe-
ci!c system functions to !nd what they’re looking 
for. Furthermore, it’s unlikely that a masquerader will 
have full knowledge of the victim user’s !le system, 
and thus might search wider and deeper and in a less 
targeted manner than would the victim user. Hence, 
search behavior is a viable indicator of malicious in-
tentions. 

Speci!c sections of the Windows registry, speci!c 
dynamic linked libraries (DLLs), and speci!c pro-
grams on the system are involved in system searching 
applications. For a given time period (10 seconds in 
our initial experiments), we model a user’s search ac-
tions. After computing a baseline model, the sensor 
switches to detection mode and alerts the system if 
the current search behavior deviates from the user’s 

baseline model. The sensor measures deviation by ex-
amining a combination of the volume and velocity of 
system events in association with other user activities 
that should add some context to the user’s search ac-
tions, such as the number of processes being created 
and destroyed. Presently, we’ll integrate this sensor 
component into the architecture to function with the 
host sensor that detects decoy document accesses.

To evaluate this model, we gathered user-event 
data to compute the baseline normal models, and data 
that simulates masquerade attacks (we describe this 
data set in the “Data and Evaluation” sidebar). For the 
user-event data, we had 34 computer science students 
install a host sensor on their personal computers. The 
sensor monitored all registry-based activity, process 
creation and destruction, window GUI access, and 
DLL libraries activity. The data gathered consisted of 
the process name and ID, the process path, the pro-
cess’s parent, the type of process action (registry ac-
cess, process creation, process destruction, and so on), 
the process command arguments, action $ags (success/
failure), and registry activity results. We also recorded 
a timestamp for each action. The collected data was 
automatically uploaded to a server after the students 
!ltered any data they weren’t willing to share.

To obtain masquerade attack data, we conducted 
a user study in which 14 students had unlimited ac-
cess to the same !le system for 15 minutes. None of 
the users had prior access to this !le system, which 
we designed to look realistic and include potentially 
interesting patent applications, personally identi!able 
information, and account credentials stored in vari-
ous !les. We provided the students with a scenario in 
which they were to !nd any data on the !le system 
that could be used for !nancial gain.

The features used for modeling were essentially 
volumetric statistics characterizing search volume and 
velocity and describing the overall computer session in 
terms of the number of processes running, particular-
ly the number of editing applications. We then trained 
a one-class support vector machine (ocSVM) model 
for each user using those features. Next, we extracted 
the same features from test data after dividing them 
into 10-second epochs. We tested the ocSVM models 
against these features, using a threshold to determine 
whether the user activity during the 10-second epochs 
was normal or abnormal. If the normal user performs 
the activity, but the ocSVM model classi!es it as ab-
normal, the system records a false positive. Our results 
using the collected data and the modeling approach 
described show that we can detect all masquerader ac-
tivity with 100 percent accuracy and a false-positive 
rate of 0.1 percent.

Extensive prior work on masquerade attack detec-
tion has focused on the Schonlau data set for evalua-
tion (see the “Data and Evaluation” sidebar). This data 
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set has served as a common gold standard for research-
ers conducting comparative evaluations of competing 
machine learning algorithms. The basic paradigm this 
work follows is a supervised training methodology in 
which 5,000 commands from each user serve as train-
ing data for the user’s normal behavior model. This 
model is evaluated against data not used in training 
from the user’s command data set but embedded in a 
random location with another randomly chosen user’s 
data. Performance results indicate the accuracy of the 
classi!ers learned by a particular machine learning 
algorithm in identifying foreign commands—that is, 
those blocks of commands deemed abnormal.

The model we chose to embed in the user search 
command sensor di"ers from these prior bag-of- 
command based models. Our current studies analyze 
user command events and the rates at which com-
mands are issued using the RUU data sets described 
in the “Data and Evaluation” sidebar. The models 
estimate accuracy with respect to classi!cation errors 
measured for each 10-second epoch of user events. 
Furthermore, whereas the Schonlau data consists of 
Unix commands, the RUU data sets contain user 
events created in a Windows environment.

To compare our results with these prior studies, 
we translate the false-positive rates in classifying 

blocks of 100 commands with the error rate of clas-
sifying user commands issued within each standard-
duration epoch. Unfortunately, the Schonlau data 
sets have no timestamps, so a direct comparison with 
our modeling technique isn’t feasible. No one can ac-
curately determine how long it takes each user in the 
Schonlau data to issue 100 commands. If we assume 
that it takes 20 seconds to issue one user command 
on average (a rough estimate from the RUU data sets 
for certain periods of time), our experiments show 
that we can achieve a detection rate of 100 percent 
with a false-positive rate of 1.4 percent. This is a 78 
percent improvement in false-positive rate over the 
best reported classi!er in the prior Schonlau work. 
Indeed, none of the prior work reports a 100 percent 
detection rate with any reasonable false-positive rate. 
If we assume it takes on average longer than 20 sec-
onds to issue a user command, the false-positive rate 
drops even further.

The comparison might not be entirely fair because 
the models and data are quite di"erent even though 
human users generate the data. The use of temporal 
statistical features from the RUU data set is crucial in 
modeling user behavior, leading to far more accurate 
results than blocks of commands. Furthermore, we fo-
cus on user search events, limiting the amount of data 

R esearch in insider attacks is dif!cult due to the lack of read-
ily available insider attackers or a complete set of realistic 

data that they generate. Researchers must therefore generate 
data that simulates insider attacks. The Schonlau data set (www.
schonlau.net/intrusion.html) is the most widely used in academic 
studies. It consists of sequences of 15,000 Unix commands gener-
ated by 50 users with different job roles, but the data doesn’t 
include command arguments or time stamps. Researchers have 
used the data for comparative evaluations of different supervised 
machine learning algorithms. The Schonlau data isn’t a “true 
masquerade” data set. They approximate masqueraders by ran-
domly mixing the data gathered from different users to simulate 
a masquerader attack, making the data set perhaps more suitable 
for author identi!cation studies. 

An alternative approach to acquiring suf!cient data for eval-
uating monitoring and detection techniques is to devise a 
process to acquire human user data under normal operation as 
well as simulated attack data in which red-team users behave as 
inside attackers. Because they involve human volunteers, these 
studies are typically subject to institutional review board approv-
als. The process is costly in both time and effort but is sensible 
and appropriate to protect volunteers’ personally identi!able 
data. Marcus Maloof and Gregory Stephens took this approach 
in evaluating Elicit.1 

We gathered data from 34 users, all computer science stu-

dents at Columbia University, by distributing host sensors that 
upload system event data during normal system use. The popula-
tion of student volunteers assures us that the data they generate 
is derived from sources with a common role in the organization. 
Hence, variations in the user behavior and data aren’t attributable 
to different job functions, as is undoubtedly the case with the 
Schonlau data set. We also gathered data from 14 paid volunteers 
who emulated masquerade attacks on equipment in our lab. The 
data set, which we call the RUU (Are You You?) data set, is more 
than 8 Gbytes and is available to legitimate researchers for down-
load at http://www1.cs.columbia.edu/ids/RUU/data. The data 
collected for each user averages about !ve days of normal system 
use, ranging in the extreme between one and 59 days, and an 
average of more than 1 million records per user. Preliminary 
results using this data and the abnormal search behavior sensor 
described in the article show that the red team of masqueraders 
deviate substantially from ordinary system users.2
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analyzed and reducing the learning task’s complex-
ity. Complete details of the volumetric and contex-
tual features we used when modeling user commands 
and the results achieved are reported elsewhere.10 This 
work also describes the results of reducing the data in 
the Schonlau experiments. The RUU data sets can 
serve as a modern gold standard for other researchers 
performing similar studies.

Detecting perfectly believable decoys. The host 
sensor also detects malicious activity by monitor-
ing user actions directed at HMAC-embedded de-
coy documents. Any action directed toward a decoy 
suggests malicious activity. When an application or 
process accesses a decoy document, the host sensor 
initiates a veri!cation function. This function dif-
ferentiates between decoys and normal documents by 
computing a decoy HMAC (as described earlier) for 
the document in question and comparing it to the one 
embedded in the document’s OCProperties section. If 
there’s a match, the document is deemed a decoy, and 
the sensor triggers an alert; otherwise, the document 
is deemed normal, and no action is taken.

The host sensor performs tasks similar to anti virus 
programs. In evaluating the sensor’s performance, 
we use overhead comparisons of antivirus programs 
as a benchmark because the task of comparing an 
HMAC code doesn’t substantially di"er from test-
ing for an embedded virus signature. Hence, accuracy 
performance is irrelevant for this particular detector. 
However, there’s a fundamental di"erence between 
detecting malware and detecting decoy activity. Anti-
virus programs aim to prevent malicious software’s 
execution and to quarantine it whenever any process 
is initiated. Decoy detection mechanisms merely trig-
ger an alert when a decoy !le is loaded into memory. 
Thus, the decoy detection need not serialize execu-
tion—for example, it can be executed asynchronously 
(and in parallel by running on multiple cores).

We tested the decoy host sensor on a Windows 
XP machine. We embedded a total of 108 decoy PDF 
documents generated through D3 in the local !le sys-
tem. We embedded markers containing randomness 
in place of HMACs in another 2,000 normal PDF 
!les on the local system. The sensor recorded any at-
tempt to load a decoy !le in memory, including con-
tent or metadata modi!cations, as well as any attempt 
to print, zip, or unzip the !le.

The sensor detects the loading of decoy !les in 
memory with 100 percent accuracy by validating the 
HMAC value in the PDF !les. However, as we dis-
covered during our validation tests, decoy tests can be 
susceptible to nonnegligible false-positive rates. The 
problem encountered in our testing was created by 
antivirus scans of the !le system. The scanning pro-
cess’s numerous !le accesses generated spurious decoy 

alerts. Although we’re engineering a solution to this 
particular problem by ignoring automatic antivirus 
scans, our test highlights the challenges such moni-
toring systems face. Many applications on a system le-
gitimately access !les indiscriminately. Care must be 
taken to ensure that only (illicit) human activity trig-
gers alerts. Future versions of the sensor might !lter 
!le touches not triggered by user-initiated actions but 
rather by routine processes, such as antivirus scanners 
or backup processes. Nevertheless, this issue demon-
strates a fundamental design challenge to architect-
ing a security system with potential interference from 
competing monitors.

The sensor components used an average of 20 
Kbytes of memory during our testing—a negligible 
amount. When performing tests such as zipping or 
copying 50 !les, the !le access time overhead averaged 
1.3 seconds on a series of 10 tests using !les with an 
average size of 33 Kbytes. The additional access time 
the sensor introduces is unnoticeable when opening 
or writing document !les. Based on these numbers, 
we assert that our system has a negligible performance 
impact on the system and user experience.

T he spectrum of techniques we propose covers a 
broader range of potential attack scenarios than 

would any of the constituent components in isolation. 
To date, we’ve tested and evaluated the individual de-
tectors in isolation but haven’t created an integrated end-
to-end solution. A fully integrated detection system as 
proposed here can’t be adequately developed, deployed, 
and formally tested without a fully capable response 
component—a topic beyond this article’s scope. 

We must carefully consider how detectors respond 
to events. For example, should the detector challenge 
the user with questions to ascertain whether the user 
is a masquerader, or should a signal alert a system ad-
ministrator to immediately revoke a credential that’s 
being misused? These questions depend on the con-
text (for example, an organization’s policies might de-
termine its response) and are typically part of product 
design in a commercial setting. 

Testing each component detector also poses chal-
lenges due to the lack of generally available insider attack 
data, as discussed in the “Data and Evaluation” sidebar. 
Acquiring useful traitor data to test an integrated system 
poses challenges we have yet to overcome in a university 
environment. Even so, we posit that a true controlled 
study evaluation should be performed in which the in-
tegrated system responds to insider events. 
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