
Insider Threats

22 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES ! 1540-7993/09/$26.00 © 2009 IEEE ! NOVEMBER/DECEMBER 2009

I n its survey of 522 security employees from US
corporations and government agencies, the an-
nual CSI Computer Crime and Security Survey for
20081 found that 44 percent of respondents cited

insider incidents. This number is nearly as high as the
49 percent of respondents who encountered a conven-
tional virus in the previous year. In general, organi-
zations are increasingly recognizing the signi!cance,
scope, and cost of the malicious insider problem.
Some state-of-the-art defenses focus on forensic anal-
ysis and attribution after an attack using techniques
such as sophisticated auditing (see www.verdasys.com)
and screen capture (see, for example, www.oakley
networks.com/products/sureview.php). Other com-
mercially available systems aim to prevent, detect, and
deter insider attacks. Ideally, the system would pre-
vent such attacks. Although researchers have studied
policy-based mechanisms and access control systems
for quite some time, no mechanism exists to prevent
insider abuse. Monitoring, detection, and mitigation
technologies are realistic necessities.

Detection systems aim to identify speci!c attack
patterns or deviations from known, long-term user
behavior. Such techniques are typically part of a stand-
alone mechanism rather than an integrated defense
architecture. Malicious behavior detection-based in-
sider defenses thus su"er from several problems:

• Behavior is a noisy approximate of user intent in the
absence of su#cient contextual information about
the user and the overall environment. Consequently,
such systems are often tuned to minimize false alerts
by being less stringent about what they consider

malicious. Al-
though it re-
duces administrators’ workload and users’ irritation,
such tuning can let some malicious behavior go un-
detected.

• Because the relationship between behavior and in-
tent is di#cult to determine and alarms can be false,
it’s di#cult to con!dently take some action (wheth-
er automated or manual) in response to an alert.

• Adversaries with some knowledge of these tech-
niques’ existence might evade or even disable them.
In fact, an increasing number of malware attacks by
!rst disabling defenses such as antivirus software
and host sensors prior to undertaking some mali-
cious activity.2

To address the malicious insider problem, systems
must leverage multiple complementary and mutu-
ally supportive techniques to detect and deter inten-
tionally malicious adversaries. We direct our e"orts
against inside attackers that have some, but perhaps
not complete, knowledge of the enterprise environ-
ment. We don’t address the important problem of ma-
licious system administrators who have control over
all defensive systems here. This remains a particularly
interesting open problem.

Our architecture consists of three main compo-
nents: a decoy document-generation component that lever-
ages uncertainty of the authenticity of information
that might be accessed in an unauthorized manner; a
network component that integrates monitored network
traps with the decoy document-generation compo-
nent to isolate malicious users’ activity; and host-based

Insider attacks—that is, attacks by users with privileged

knowledge about a system—are a growing problem for

many organizations. To address this threat, the authors

have designed an architecture for insider threat detection

that combines an array of complementary monitoring

and auditing techniques.

BRIAN M.
BOWEN, MALEK
BEN SALEM,
SHLOMO
HERSHKOP,
ANGELOS D.
KEROMYTIS,
AND SALVATORE
J. STOLFO
Columbia
University

Designing Host and Network
Sensors to Mitigate the
Insider Threat

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

 www.computer.org/security 23

sensors, collectively named RUU (Are You You?), that
collect low-level audit data from which we identify
speci!c user actions.

Threat Model—
The Attacker’s Sophistication Level
Our architecture uses decoys to deceive, confuse,
and confound attackers, ultimately forcing them to
expend far more e"ort to discern real from bogus
information. To understand the various decoys’ capa-
bilities, we !rst explore the various levels of attacker
sophistication. We broadly de!ne four monotonically
increasing levels of insider sophistication and capabil-
ity to break through the deception our decoys seek to
induce. Some insiders will have tools available to assist
in discerning decoys from real data. Others will have
only their own observations and insights.

• Low. Direct observation is the only tool available to
the adversary. We strive to defeat this level of ad-
versary with our beacon documents, even though
more advanced tools might distinguish decoys with
embedded beacons.

• Medium. The insider can base decisions on informa-
tion found through more thorough investigation.
For example, if a decoy document contains a decoy
account credential for a particular identity, an ad-
versary can verify that the identity is real by que-
rying an external system (such as www.whitepages.
com). Such adversaries will require stronger decoy
information, possibly corroborated by other evi-
dence sources.

• High. The attacker has access to the most sophisti-
cated tools (for example, super computers or other
individuals with organizational information). Our
notion of a perfect decoy, which we describe later,
might be the only indiscernible decoy by an adver-
sary of such caliber.

• Highly privileged. Probably the most dangerous of all
is the privileged and highly sophisticated user. Such
attackers will be fully aware that the system is baited
and will use sophisticated tools to try to analyze,
disable, and avoid decoys entirely. Defeating this
level of threat might still be possible. Consider, for
example, someone who knows that encryption is
used (and which encryption algorithm), but doesn’t
know of an easy-to-change operational parameter
(the key). Likewise, just because someone knows
that decoys are used in the system doesn’t mean they
can identify them all.

We further de!ne insider threats by di"erentiating be-
tween masqueraders (attackers who impersonate another
system user) and traitors (attackers using their own le-
gitimate system credentials), each with varying levels
of knowledge. The masquerader will likely have less

knowledge of a system than the victim user whose cre-
dentials were stolen. The innocent insider who mistak-
enly violates policy is undoubtedly the largest population
of insiders that we also target using trap-based decoys.

Architecture
Figure 1 shows the architecture, which combines host-
based user-event-monitoring sensors with trap-based
decoys and remote network detectors. This combina-
tion of components makes it di#cult for insiders to
avoid detection with a low likelihood of misattribution.

Decoy Document Distributor
One of the architecture’s core components is the decoy
document distributor (D3) system, a Web-based service
for generating and distributing decoys. Registered us-
ers can employ D3 to generate decoys for download,
or host and network components can use it as a decoy
data source.

A decoy’s primary goal is to detect malfeasance.
Because no system is foolproof, we built D3 to auto-
matically embed multiple overlapping signals in decoy
documents to increase the likelihood of detecting de-
coy misuse. Any alert generated by the decoy indi-
cates insider activity. Because the attacker might have
varying levels of sophistication, we use a combination
of techniques to increase the likelihood that one will
generate an alert:

• embedded honeytokens—computer login accounts
that provide no access to valuable resources and

Decoy document distributor

Trap-based decoys

Traitor
detection

Host-based sensor

Masquerade
detection

Sonar reporting

Figure 1. Architecture for monitoring and detecting insider attacks. Host-
based sensors monitor user activity to detect malicious users masquerading
as other system users. Trap-based decoys attempt to catch attackers who
use their own legitimate credentials.

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

24 IEEE SECURITY & PRIVACY

are monitored when (mis)used (see the “Decoys in
Computer Security” sidebar);

• embedded beacons that alert a remote server (called So-
nar) at Columbia; and

• embedded markers to enable detection by the host-
level or network decoy sensor.

Our current D3 deployment is tailored for a uni-
versity environment by both the type of documents
and the bait within them, but it’s easily adaptable for
other deployment environments (for example, an arbi-
trary commercial enterprise). Complete details about
D3, including an evaluation of decoy documents, are
available elsewhere.3 You can evaluate our technology
at the Decoy Document Distribution Web site (www.
cs.columbia.edu/ids/RUU/Dcubed).

Sonar
The Sonar alert-management system’s primary role is
to collect alerts triggered by host and network moni-
tors, and individual beacon signals generated by the
unauthorized opening of decoy documents down-
loaded by registered users. When it receives a signal,
Sonar sends an email to the registered users associ-
ated with the particular decoy. Depending on the type
of decoy, some signals are sent directly from a decoy
(as is the case with beacons), whereas others require
Sonar to poll other resources for information (that is,
credential monitoring). Sonar currently monitors sev-
eral servers for credential misuse, including university
authentication log servers and mail.google.com. In
the case of Gmail accounts, custom scripts access and

parse the bait account pages to gather account activity
information.

Decoys and Network Monitoring
The use of deception, or decoys, plays a valuable role
in the protection of systems, networks, and informa-
tion. Cli"ord Stoll is generally considered the !rst to
use decoys in the cyber domain4,5 and detailed his
experience in the novel, The CuckooÕs Egg: Tracking a
Spy Through the Maze of Computer Espionage (Pocket
Books, 2000). Stoll’s methods included the use of
bogus networks, systems, and documents to gather
intelligence on attackers, who were apparently seek-
ing state secrets. For example, he crafted bait !les
and bogus classi!ed documents containing nonsen-
sitive government information and attached alarms
to them so he would know if anyone accessed them.
Our decoy system builds on that notion, increasing
the scope, scale, and automation of decoy generation
and monitoring.

Perfectly believable decoys. To create decoys to bait
insiders with various levels of knowledge and maxi-
mize their deception, it’s important to understand
a decoy’s core properties. These properties—such as
conspicuousness, enticement, noninterference, vari-
ability, di"erentiable, detectability, and believabil-
ity—guide the design of systems that automate the
generation and placement of trap-based decoys.3
Here, we describe our e"orts to maximize decoys’
believability.

A good decoy should be di#cult to distinguish

D eception-based information resources that have no produc-
tion value other than to attract and detect adversaries are

commonly known as honeypots. Honeypots gather intelligence
about how attackers operate. They’re considered to have low
false-positive rates because they’re designed to capture only mali-
cious attackers, except for innocent users in occasional mistakes.

Lance Spitzner described how honeypots can be useful for
detecting insider attacks.1 He discusses the use of honeytokens,
which he de!nes as “a honeypot that is not a computer.”2
Spitzner cites examples such as bogus medical records, credit-
card numbers, and credentials, and describes how they can be
used to detect malicious insiders.1,2

In current systems, creating decoys or honeytokens is a labori-
ous and manual process requiring administrator intervention.
Our work extends these basic ideas to an automated system of
managing the creation and deployment of these honeytokens.

Jim Yuill and his colleagues extend the notion of honeytokens
with a system to support the creation of bait !les, or, as they
de!ne them, honey!les.3,4 They implement the honey!le system

as an enhancement to the network !le server. The system allows
the user to make any !le within the user !le space a honey!le by
creating a record associating a !lename to a userid. The honey!le
system monitors all !le accesses on the server and alerts users
when honey!les are accessed. This work doesn’t focus on the
content or automatic creation of !les but does mention some of
the challenges in creating deceptive !les (with respect to names)
that we address.

References

1. L. Spitzner, “Honeypots: Catching the Insider Threat,” Proc. Computer

Security Applications Conf. (ACSAC 03), IEEE CS Press, 2003, p. 170.

2. L. Spitzner, “Honeytokens: The Other Honeypot,” Security Focus, 17

July 2003; www.securityfocus.com/infocus/1713.

3. J. Yuill et al., “Honey!les: Deceptive Files for Intrusion Detection,” Proc.

IEEE Workshop on Information Assurance, IEEE CS Press, 2004, pp. 116–122.

4. J. Yuill, D. Denning, and F. Feer, “Using Deception to Hide Things from

Hackers : Processes, Principles, and Techniques,” J. Information Warfare,

vol. 5, no. 3, 2006, pp. 26–40.

Decoys in Computer Security

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

 www.computer.org/security 25

from an authentic document from a legitimate
source. For concreteness, we build upon the de!ni-
tion of “perfect secrecy” proposed in the crypto-
graphic community6 and de!ne a “perfect decoy” to
be a decoy that is completely indistinguishable from
a nondecoy document. One approach we use in cre-
ating decoys relies on a document-marking scheme
in which all documents contain embedded mark-
ings such that decoys are tagged with keyed-hash
message authentication codes (HMACs) and non-
decoys are tagged with indistinguishable random-
ness. Here, the challenge of distinguishing decoys
reduces to the problem of distinguishing between
pseudorandom and random numbers, a task proven
to be computationally infeasible under certain as-
sumptions about the pseudorandom-generation
process. Hence, the only attacker capable of dis-
tinguishing them is one with the key—perhaps the
highly privileged insider.

As a prototype perfect decoy implementation, we
built a component into D3 for adding HMAC markers
to PDF documents. This component adds markers au-
tomatically using the iText API and inserts them into
the document’s OCProperties section. We chose this
section because it can be modi!ed on any PDF with-
out impacting how the document is rendered or in-
troducing visual artifacts. The D3 component creates
the HMAC value using a vector of words extracted
from the PDF. The HMAC key is kept secret and is
managed by D3, where it’s also associated with a par-
ticular registered host. Because the system depends on
all documents being tagged, another component in-
serts random decoy markers in nondecoy documents,
making them indistinguishable from decoys without
knowledge of the secret key.

Trap-based decoys. Our trap-based decoys are de-
tectable outside a host, so they don’t require host
monitoring nor do they su"er the performance bur-
den characteristic of decoys that require constant in-
ternal monitoring. This form of decoy consists of bait
information, such as online banking logins provided
by a collaborating !nancial institution (the institution
requested that we withhold its name), login accounts
for online servers, and Web-based email accounts.
Our current deployment uses Columbia University
student accounts and Gmail accounts as bait, but we
can customize these to any set of monitored creden-
tials. The D3 Web service manages the trap-based de-
coys, thereby enabling programmatic access to them
from all registered Web-enabled clients. Automating
this service enables their distribution and deployment
in large volume.

Beacon decoys. Beacons are embedded in docu-
ments using methods of deception and obfuscation

gleaned from studying malcode embedded in ma-
licious documents as seen in the wild.7 Beacons si-
lently contact a centralized server when a document
is opened, passing to the server a unique token that
was embedded within the document at creation time.
The token uniquely identi!es the decoy document
and records the IP address of the host accessing that
document. The server collects additional data, de-
pending on the document type and rendering envi-
ronment used to view the beacon decoy document.
We implemented the !rst proof-of-concept beacons
in Word and PDF and deployed them through the D3
Web site. The Word beacons rely on a stealthily em-
bedded remote image that’s rendered when the docu-
ment is opened. The request for the remote image
signals to Sonar that the document has been opened.
In the case of PDF beacons, the signaling mecha-
nism relies on the execution of JavaScript within the
 document-rendering application.

The D3 Web service generates many types of bea-
con decoys, including receipts, tax documents, medi-
cal reports, and other common form-based documents
with decoy credentials, realistic names, addresses, and
logins—familiar information to all users. In contrast
to the HMAC decoys, these documents’ believability
lies in their content’s realism.

As noted earlier, decoys’ believability depends on
how indistinguishable they are from normal documents.
A beacon’s network connection can serve as a distin-
guishing feature. Hence, in their current form, a beacon
might be able to ensnare only the least sophisticated at-
tacker. We’re currently investigating environments in
which we can embed beacons in all documents, thereby
making beacon decoys indistinguishable (modifying
the document-rendering application is a feasible op-
tion). Another potential problem for beacons is that the
signaling mechanisms can fail or be subverted; howev-
er, when combined with other mechanisms, their use
should increase the likelihood of detection.

Host-Based Sensors
A key technique our architecture uses involves the
host-level monitoring of user-initiated events. The
host sensor is composed of two components, a behav-
ior modeler and document access sensor. The !rst pro!les
user search actions to form a baseline of normal be-
havior using anomaly-detection techniques to isolate
behavior di"erences over time. Large deviations from
this baseline found in subsequent monitoring signal
a potential insider attack. On their own, anomaly-
detection systems have high levels of false positives.
Combining multiple views of the same event can dra-
matically reduce the number of false positives associ-
ated with a malicious event.8

Second, the host sensor detects when decoy docu-
ments containing embedded markers are read, copied,

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

26 IEEE SECURITY & PRIVACY

or ex!ltrated. The host-level decoy sensor aims to de-
tect these malicious actions accurately and with neg-
ligible performance overhead. Abnormal user search
events that culminate in decoy document access are
a cause for concern. A challenge to the user, such as
asking one of several personalized questions, might
establish whether a masquerade attack is occurring.

Our prototype sensor runs on the Windows XP/
Vista platforms and relies on hooks placed in the Win-
dows ServiceTable. Malicious rootkits often use this
approach; however, whereas traditional rootkits try to
remain undetected, the host-level decoy sensor doesn’t
require operational secrecy. Our threat model assumes
attackers know that a system is being monitored, but
they don’t know the identities of the decoys or the
private key the sensor uses to di"erentiate them. Fur-
thermore, the attacker likely won’t know the victim
user’s behavior—information that isn’t as easy to steal
as a credential or a key. Given that adversaries might
be aware of system monitoring, the system must take
special care to prevent the sensor from being subvert-
ed or, equally important, to detect if it is subverted.

We have ongoing work that aims to prevent and
detect subversion of the sensor. One strategy involves
“monitoring the monitor” to detect if the host sensor
is disabled using tamper-resistant software techniques.
One possible solution relies on out-of-the-box moni-
toring,9 in which a virtual machine-based architec-
ture conducts host-based monitoring outside of the
host from within a virtual machine monitor.

Detecting anomalous user search actions. The
sensor collects low-level data from !le accesses, win-
dows registry accesses, dynamic library loading, and
window access events. This lets the sensor accurately
capture data about speci!c system and user behavior
over time. For example, we might check whether an
insider has in!ltrated the system by modeling search
behavior and comparing it to the baseline of normal
behavior. We conjecture that users search their own
!le systems in a unique manner, using only a few spe-
ci!c system functions to !nd what they’re looking
for. Furthermore, it’s unlikely that a masquerader will
have full knowledge of the victim user’s !le system,
and thus might search wider and deeper and in a less
targeted manner than would the victim user. Hence,
search behavior is a viable indicator of malicious in-
tentions.

Speci!c sections of the Windows registry, speci!c
dynamic linked libraries (DLLs), and speci!c pro-
grams on the system are involved in system searching
applications. For a given time period (10 seconds in
our initial experiments), we model a user’s search ac-
tions. After computing a baseline model, the sensor
switches to detection mode and alerts the system if
the current search behavior deviates from the user’s

baseline model. The sensor measures deviation by ex-
amining a combination of the volume and velocity of
system events in association with other user activities
that should add some context to the user’s search ac-
tions, such as the number of processes being created
and destroyed. Presently, we’ll integrate this sensor
component into the architecture to function with the
host sensor that detects decoy document accesses.

To evaluate this model, we gathered user-event
data to compute the baseline normal models, and data
that simulates masquerade attacks (we describe this
data set in the “Data and Evaluation” sidebar). For the
user-event data, we had 34 computer science students
install a host sensor on their personal computers. The
sensor monitored all registry-based activity, process
creation and destruction, window GUI access, and
DLL libraries activity. The data gathered consisted of
the process name and ID, the process path, the pro-
cess’s parent, the type of process action (registry ac-
cess, process creation, process destruction, and so on),
the process command arguments, action $ags (success/
failure), and registry activity results. We also recorded
a timestamp for each action. The collected data was
automatically uploaded to a server after the students
!ltered any data they weren’t willing to share.

To obtain masquerade attack data, we conducted
a user study in which 14 students had unlimited ac-
cess to the same !le system for 15 minutes. None of
the users had prior access to this !le system, which
we designed to look realistic and include potentially
interesting patent applications, personally identi!able
information, and account credentials stored in vari-
ous !les. We provided the students with a scenario in
which they were to !nd any data on the !le system
that could be used for !nancial gain.

The features used for modeling were essentially
volumetric statistics characterizing search volume and
velocity and describing the overall computer session in
terms of the number of processes running, particular-
ly the number of editing applications. We then trained
a one-class support vector machine (ocSVM) model
for each user using those features. Next, we extracted
the same features from test data after dividing them
into 10-second epochs. We tested the ocSVM models
against these features, using a threshold to determine
whether the user activity during the 10-second epochs
was normal or abnormal. If the normal user performs
the activity, but the ocSVM model classi!es it as ab-
normal, the system records a false positive. Our results
using the collected data and the modeling approach
described show that we can detect all masquerader ac-
tivity with 100 percent accuracy and a false-positive
rate of 0.1 percent.

Extensive prior work on masquerade attack detec-
tion has focused on the Schonlau data set for evalua-
tion (see the “Data and Evaluation” sidebar). This data

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

 www.computer.org/security 27

set has served as a common gold standard for research-
ers conducting comparative evaluations of competing
machine learning algorithms. The basic paradigm this
work follows is a supervised training methodology in
which 5,000 commands from each user serve as train-
ing data for the user’s normal behavior model. This
model is evaluated against data not used in training
from the user’s command data set but embedded in a
random location with another randomly chosen user’s
data. Performance results indicate the accuracy of the
classi!ers learned by a particular machine learning
algorithm in identifying foreign commands—that is,
those blocks of commands deemed abnormal.

The model we chose to embed in the user search
command sensor di"ers from these prior bag-of-
command based models. Our current studies analyze
user command events and the rates at which com-
mands are issued using the RUU data sets described
in the “Data and Evaluation” sidebar. The models
estimate accuracy with respect to classi!cation errors
measured for each 10-second epoch of user events.
Furthermore, whereas the Schonlau data consists of
Unix commands, the RUU data sets contain user
events created in a Windows environment.

To compare our results with these prior studies,
we translate the false-positive rates in classifying

blocks of 100 commands with the error rate of clas-
sifying user commands issued within each standard-
duration epoch. Unfortunately, the Schonlau data
sets have no timestamps, so a direct comparison with
our modeling technique isn’t feasible. No one can ac-
curately determine how long it takes each user in the
Schonlau data to issue 100 commands. If we assume
that it takes 20 seconds to issue one user command
on average (a rough estimate from the RUU data sets
for certain periods of time), our experiments show
that we can achieve a detection rate of 100 percent
with a false-positive rate of 1.4 percent. This is a 78
percent improvement in false-positive rate over the
best reported classi!er in the prior Schonlau work.
Indeed, none of the prior work reports a 100 percent
detection rate with any reasonable false-positive rate.
If we assume it takes on average longer than 20 sec-
onds to issue a user command, the false-positive rate
drops even further.

The comparison might not be entirely fair because
the models and data are quite di"erent even though
human users generate the data. The use of temporal
statistical features from the RUU data set is crucial in
modeling user behavior, leading to far more accurate
results than blocks of commands. Furthermore, we fo-
cus on user search events, limiting the amount of data

R esearch in insider attacks is dif!cult due to the lack of read-
ily available insider attackers or a complete set of realistic

data that they generate. Researchers must therefore generate
data that simulates insider attacks. The Schonlau data set (www.
schonlau.net/intrusion.html) is the most widely used in academic
studies. It consists of sequences of 15,000 Unix commands gener-
ated by 50 users with different job roles, but the data doesn’t
include command arguments or time stamps. Researchers have
used the data for comparative evaluations of different supervised
machine learning algorithms. The Schonlau data isn’t a “true
masquerade” data set. They approximate masqueraders by ran-
domly mixing the data gathered from different users to simulate
a masquerader attack, making the data set perhaps more suitable
for author identi!cation studies.

An alternative approach to acquiring suf!cient data for eval-
uating monitoring and detection techniques is to devise a
process to acquire human user data under normal operation as
well as simulated attack data in which red-team users behave as
inside attackers. Because they involve human volunteers, these
studies are typically subject to institutional review board approv-
als. The process is costly in both time and effort but is sensible
and appropriate to protect volunteers’ personally identi!able
data. Marcus Maloof and Gregory Stephens took this approach
in evaluating Elicit.1

We gathered data from 34 users, all computer science stu-

dents at Columbia University, by distributing host sensors that
upload system event data during normal system use. The popula-
tion of student volunteers assures us that the data they generate
is derived from sources with a common role in the organization.
Hence, variations in the user behavior and data aren’t attributable
to different job functions, as is undoubtedly the case with the
Schonlau data set. We also gathered data from 14 paid volunteers
who emulated masquerade attacks on equipment in our lab. The
data set, which we call the RUU (Are You You?) data set, is more
than 8 Gbytes and is available to legitimate researchers for down-
load at http://www1.cs.columbia.edu/ids/RUU/data. The data
collected for each user averages about !ve days of normal system
use, ranging in the extreme between one and 59 days, and an
average of more than 1 million records per user. Preliminary
results using this data and the abnormal search behavior sensor
described in the article show that the red team of masqueraders
deviate substantially from ordinary system users.2

References

1. M. Maloof and G.D. Stephens, “Elicit: A System for Detecting Insid-

ers Who Violate Need-to-Know,” Recent Advances in Intrusion Detection

(RAID), LNCS 4637, Springer, 2007, pp. 146–166.

2. M. Ben Salem and S.J. Stolfo, Masquerade Attack Detection Using a

Search-Behavior Modeling Approach, tech. report CUCS-027-09, Dept.

of Computer Science, Columbia Univ., 2009.

Data and Evaluation

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

28 IEEE SECURITY & PRIVACY

analyzed and reducing the learning task’s complex-
ity. Complete details of the volumetric and contex-
tual features we used when modeling user commands
and the results achieved are reported elsewhere.10 This
work also describes the results of reducing the data in
the Schonlau experiments. The RUU data sets can
serve as a modern gold standard for other researchers
performing similar studies.

Detecting perfectly believable decoys. The host
sensor also detects malicious activity by monitor-
ing user actions directed at HMAC-embedded de-
coy documents. Any action directed toward a decoy
suggests malicious activity. When an application or
process accesses a decoy document, the host sensor
initiates a veri!cation function. This function dif-
ferentiates between decoys and normal documents by
computing a decoy HMAC (as described earlier) for
the document in question and comparing it to the one
embedded in the document’s OCProperties section. If
there’s a match, the document is deemed a decoy, and
the sensor triggers an alert; otherwise, the document
is deemed normal, and no action is taken.

The host sensor performs tasks similar to anti virus
programs. In evaluating the sensor’s performance,
we use overhead comparisons of antivirus programs
as a benchmark because the task of comparing an
HMAC code doesn’t substantially di"er from test-
ing for an embedded virus signature. Hence, accuracy
performance is irrelevant for this particular detector.
However, there’s a fundamental di"erence between
detecting malware and detecting decoy activity. Anti-
virus programs aim to prevent malicious software’s
execution and to quarantine it whenever any process
is initiated. Decoy detection mechanisms merely trig-
ger an alert when a decoy !le is loaded into memory.
Thus, the decoy detection need not serialize execu-
tion—for example, it can be executed asynchronously
(and in parallel by running on multiple cores).

We tested the decoy host sensor on a Windows
XP machine. We embedded a total of 108 decoy PDF
documents generated through D3 in the local !le sys-
tem. We embedded markers containing randomness
in place of HMACs in another 2,000 normal PDF
!les on the local system. The sensor recorded any at-
tempt to load a decoy !le in memory, including con-
tent or metadata modi!cations, as well as any attempt
to print, zip, or unzip the !le.

The sensor detects the loading of decoy !les in
memory with 100 percent accuracy by validating the
HMAC value in the PDF !les. However, as we dis-
covered during our validation tests, decoy tests can be
susceptible to nonnegligible false-positive rates. The
problem encountered in our testing was created by
antivirus scans of the !le system. The scanning pro-
cess’s numerous !le accesses generated spurious decoy

alerts. Although we’re engineering a solution to this
particular problem by ignoring automatic antivirus
scans, our test highlights the challenges such moni-
toring systems face. Many applications on a system le-
gitimately access !les indiscriminately. Care must be
taken to ensure that only (illicit) human activity trig-
gers alerts. Future versions of the sensor might !lter
!le touches not triggered by user-initiated actions but
rather by routine processes, such as antivirus scanners
or backup processes. Nevertheless, this issue demon-
strates a fundamental design challenge to architect-
ing a security system with potential interference from
competing monitors.

The sensor components used an average of 20
Kbytes of memory during our testing—a negligible
amount. When performing tests such as zipping or
copying 50 !les, the !le access time overhead averaged
1.3 seconds on a series of 10 tests using !les with an
average size of 33 Kbytes. The additional access time
the sensor introduces is unnoticeable when opening
or writing document !les. Based on these numbers,
we assert that our system has a negligible performance
impact on the system and user experience.

T he spectrum of techniques we propose covers a
broader range of potential attack scenarios than

would any of the constituent components in isolation.
To date, we’ve tested and evaluated the individual de-
tectors in isolation but haven’t created an integrated end-
to-end solution. A fully integrated detection system as
proposed here can’t be adequately developed, deployed,
and formally tested without a fully capable response
component—a topic beyond this article’s scope.

We must carefully consider how detectors respond
to events. For example, should the detector challenge
the user with questions to ascertain whether the user
is a masquerader, or should a signal alert a system ad-
ministrator to immediately revoke a credential that’s
being misused? These questions depend on the con-
text (for example, an organization’s policies might de-
termine its response) and are typically part of product
design in a commercial setting.

Testing each component detector also poses chal-
lenges due to the lack of generally available insider attack
data, as discussed in the “Data and Evaluation” sidebar.
Acquiring useful traitor data to test an integrated system
poses challenges we have yet to overcome in a university
environment. Even so, we posit that a true controlled
study evaluation should be performed in which the in-
tegrated system responds to insider events.

Acknowledgments
This material is based on work supported by the US De-
partment of Homeland Security under grant award number
2006-CS-001-000001-02 and the Army Research O#ce

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

Insider Threats

 www.computer.org/security 29

under grant ARO DA W911NF-06-10151. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as necessarily rep-
resenting the o#cial policies, either expressed or implied,
of the US Department of Homeland Security or the Army
Research O#ce.

References
1. R. Richardson, CSI Computer Crime and Security Survey,

Computer Security Inst., 2008.
2. D. Llet, “Trojan Attacks Microsoft’s Anti-Spyware,”

CNET News, 9 Feb. 2005.
3. B.M. Bowen et al., Baiting Inside Attackers Using Decoy

Documents, tech. report CUCS-016-09, Dept. of Com-
puter Science, Columbia Univ., 2009.

4. J. Yuill et al., “Honey!les: Deceptive Files for Intrusion
Detection,” Proc. IEEE Workshop on Information Assur-
ance, IEEE CS Press, 2004, pp. 116–122.

5. L. Spitzner, “Honeytokens: The Other Honeypot,”
Security Focus, 17 July 2003; www.securityfocus.com/
infocus/1713.

6. J. Katz and L. Yehuda, Introduction to Modern Cryptogra-
phy, Chapman and Hall CRC Press, 2007.

7. W. Li et al., “A Study of Malcode-Bearing Docu-
ments,” Proc. Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 07), LNCS 4579,
Springer, 2007, pp. 231–250.

8. W. Lee et al., “Toward Cost-Sensitive Modeling for
 Intrusion Detection and Response,” J. Computer Secu-
rity, vol. 10, nos. 1–2, 2002, pp. 5–22.

9. X. Jiang and X. Wang, “Out-of-the-Box Monitoring
of VM-Based High-Interaction Honeypots,” Recent
Advances in Intrusion Detection (RAID), LNCS 4637,
Springer, 2007, pp. 198–218.

10. M. Ben Salem and S.J. Stolfo, Masquerade Attack De-
tection using a Search-Behavior Modeling Approach, tech.
report CUCS-027-09, Dept. of Computer Science,
Columbia Univ., 2009.

Brian M. Bowen is a PhD student in Columbia UniversityÕs

Department of Computer Science, where heÕs a member of

the Network Security Lab and the Intrusion Detection Systems

Lab. HeÕs also a senior member of the technical staff at Sandia

National Laboratories and is enrolled in the Sandia Doctorate

Study Program. BowenÕs research interests include network

security, primarily trap-based defense using deception tech-

niques. He has an MSc in computer science from Stony Brook

University. Contact him at bmbowen@cs.columbia.edu.

Malek Ben Salem is a PhD student in computer science at Co-

lumbia University, where she works in the Intrusion Detection

Systems Lab. Her research interests include developing novel

data mining techniques and applying them to computer secu-

rity in general, and to host intrusion detection in particular.

Ben Salem has an MSc in computer science from Columbia

University. Contact her at malek@cs.columbia.edu.

Shlomo Hershkop is the assistant director of the Comput-

ing Research Facilities and is an adjunct assistant professor

in Columbia UniversityÕs Department of Computer Science.

His research interests include data mining security, anomaly

detection, and email modeling and analysis. Hershkop has

a PhD in computer science from Columbia University. HeÕs a

member of the IEEE, the ACM, and Usenix. Contact him at

shlomo@cs.columbia.edu.

Angelos D. Keromytis is an associate professor in the Depart-

ment of Computer Science and director of the Network Secu-

rity Lab at Columbia University. His research interests include

most aspects of security, in particular systems and software

security, cryptography, and access control. Keromytis has a

PhD in computer science from the University of Pennsylvania.

He is a senior member of the ACM and the IEEE. Contact him

at angelos@cs.columbia.edu.

Salvatore J. Stolfo is a professor in the Computer Science

Department at Columbia University and the director of the

Intrusion Detection Lab, which pioneered the use of data

analysis and machine learning techniques for the adaptive

generation of novel sensors and anomaly detectors for a

variety of computer security tasks. His research interests in-

clude parallel computing, arti!cial intelligence, data min-

ing, and computer security and intrusion detection systems.

Stolfo has a PhD in computer science from New York Uni-

versityÕs Courant Institute. He is a board member for IEEE
Security & Privacy. Contact him at sal@cs.columbia.edu.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

Please visit our Web site at
www.computer.org/internet

IEEE Internet Computing magazine
reports emerging tools, technologies,
and applications implemented
through the Internet to support a
worldwide computing environment.

2009 Editorial Calendar

RFID Software and Systems: Jan/Feb

Dependable Service-Oriented
Computing: Mar/Apr

IPTV: May/June

Emerging Internet Technologies and
Applications for E-Learning: Jul/Aug

Cloud Computing: Sept/Oct

Unwanted Traf!c: Nov/Dec

Authorized licensed use limited to: Columbia University. Downloaded on March 11,2010 at 15:22:19 EST from IEEE Xplore. Restrictions apply.

