
A Constraint-based Approach to Dynamic Colour Management
for Windowing Interfaces

by

Blair MacIntyre

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 1991

c
Blair MacIntyre 1991

ii

Abstract
Selecting harmonious colours for traditional window systems can be a difficult and frustrating endeavor. At the

root of this problem is the fact that typical window systems do not allow abstract properties of colours to be

specified. Instead, they insist that users specify individual colour values exactly. When many colours are used,

the value of each colour must be chosen to satisfy any relationships that exist between it and previously chosen

colours. Unfortunately, the difficulty of colour selection often prevents users from taking full advantage of the

functional benefits of colour, particularly that of resolving context. A more desirable approach is to allow the

aesthetic and functional properties of colours to be specified and to allow users to select values for the colours they

wish. The window system can choose the remaining colours using these properties. Another failing of typical

window systems is that once a colour value has been determined it will not change without explicit direction

from the user. When windows open or close the factors which motivated a choice of colour value may change.

Unfortunately, if the user wishes the chosen colour value to change as the environment changes, he or she must

typically perform the modifications. A dynamic window system assists the user in making these choices. By

specifying colour properties as constraints, a dynamic window system can adjust colour values as the environment

changes, to satisfy these constraints. The potential problems with dynamic window systems incorporating colour

constraints are investigated in this thesis. An implementation that uses a distributed, jostling, constraint-solver

based on a simple dynamical system shows that this approach is possible.

iii

iv

Acknowledgements
This work was supported by the Natural Science and Engineering Research Council of Canada through a post-

graduate scholarship and grants to the University of Waterloo Computer Graphics Laboratory; the Ontario In-

formation Technology Research Centre through grants to the laboratory; by Digital Equipment Canada through

equipment donations; by Apple Computer Corporation through grants to the laboratory; and by Sun Microsystems

through software support.

I would like to thank my supervisor, William Cowan, for having the patience to teach me what I needed to

know about colour theory and for agreeing that this was an interesting topic. He also deserves credit for suggesting

the use of a dynamical system to solve the constraints. I would also like to thank my readers, Marceli Wein, Peter

Forsyth, Philippe Bertrand and Katy Simonsen for their comments. Thanks go to Maureen Stone finding those

elusive CG&A articles, to Jim Lai for the OSA XYZ coordinates in Appendix A, to Josh Siegel and Don Hopkins

for answering many NeWS related questions, and to all the members of CGL for providing an interesting work

environment, to say the least. I would also like to thank Chris Wein for seeing this through the submission process

in my absence.

A special thanks to Katy Simonsen, without whose love, support, tolerance and nods at the appropriate times

I never would have made it through those last four months. I will be forever grateful.

Also, I want to thank my mother for doing everything I could ask for over the years, and my brother Craig

who, among other things, introduced me to computers all those years ago.

v

vi

Contents

1 Introduction 1

1.1 What are users trying to do with colour? : 1

1.2 The Problem with Aesthetic Colour Selection : 2

1.3 Tools for Aesthetic Colour Selection : 3

1.4 Previous Work : 4

1.4.1 ACE: A Colour Expert System : 4

1.5 The Need For a Dynamic Window System : 4

1.6 Goals : 6

2 Background 7

2.1 Colour Display: The Colour CRT : 7

2.1.1 Gamma Correction : 9

2.2 Colour Models : 9

2.2.1 Colour Mixing : 10

2.2.2 Colorimetry : 11

2.2.2.1 Colour Matching : 11

2.2.2.2 The CIE System : 12

2.2.3 The RGB Colour Model : 15

2.2.4 The HSV Colour Model : 16

2.2.5 The HLS Colour Model : 18

2.2.5.1 Value, Lightness and Brightness : 19

2.2.6 The Gerritsen Model : 20

2.3 The OSA Colour Space : 22

2.4 Artistic Colour Use : 22

2.5 Colour Perception : 24

2.6 Basic Colour Terms and Colour Discrimination : 25

2.7 Contrast and Reading : 26

2.8 Colour Harmony : 28

vii

3 Colour Usage 31

3.1 Categorization of Colour Usage : 31

3.1.1 Absolute versus Relative Colour : 32

3.1.1.1 Absolute Colour : 32

3.1.1.2 Relative Colour : 32

3.1.2 Functional versus Aesthetic Colour : 33

3.1.2.1 Functional Colour : 33

3.1.2.2 Aesthetic Colour : 33

3.1.2.3 The Fallacy of Functional and Aesthetic Incompatibility : : : : : : : : : : : : 34

3.1.3 Multiple Categorization : 34

3.2 Colour Usage in Window Systems : 34

3.2.1 Absolute Functional Colour Use : 35

3.2.2 Relative Functional Colour Use : 35

3.2.3 Absolute Aesthetic Colour Use : 36

3.2.4 Relative Aesthetic Colour Use : 36

4 Colour Contrast 37

4.1 Luminance Contrast : 37

4.2 Calculating Luminance : 38

4.2.1 Ambient Lighting and the Brightness Control : 38

4.3 Pixel Bleed : 39

4.4 Colour Contrast Metric : 43

5 Colour Constraints 45

5.1 Dynamic Window Systems : 45

5.2 Dynamic Colour Constraints : 47

5.2.1 Multiple Constraints : 47

5.2.2 The Categorical Division of Colour Constraints : 47

5.2.3 The Hierarchical Nature of Colour Constraints : 48

5.2.4 The Varied Importance of Colour Constraints : 48

5.2.5 The Dynamic Nature of Colour Constraints : 48

5.3 Potential Problems With Colour Association : 49

5.4 Assistance for Aesthetic Colour Selection : 50

5.4.1 Automatic Handling of Functional Constraints : 51

viii

5.4.1.1 Contrast : 51

5.4.1.2 Window Organization : 51

5.4.2 Suggest Colour Combinations : 52

5.4.3 Abstract Colour Specification : 54

5.4.4 Reasonable Defaults : 55

5.4.5 Allow Gradual Customization : 56

5.4.5.1 Aesthetic Customizations : 56

5.4.5.2 Customizing Window Organization : 58

5.5 The Viability of Dynamic Colour : 59

6 Implementation 61

6.1 The NeWS Window System : 61

6.1.1 Why NeWS is Appropriate for Research : 61

6.1.2 The Choice between NeWS and X11 : 62

6.2 The Constraint Solver : 62

6.2.1 The Distributed Jostling Model : 63

6.2.2 The Dynamical Colour System : 63

6.3 The NeWS Colour Window Classes : 65

6.3.1 ClassBasicColour : 67

6.3.2 ClassColourObject : 67

6.3.3 ClassColour : 68

6.3.4 ClassColourSet : 68

6.3.5 ClassColourShifter : 69

6.3.6 ClassColourConstraint : 69

6.3.6.1 ClassCCVariation : 72

6.3.6.2 ClassCCAnalogousVariation : 75

6.3.6.3 ClassCCDistance : 77

6.3.6.4 ClassCCWindowDistance : 79

6.3.6.5 ClassCCContrast : 79

6.3.7 ClassDynamicalColourSystem : 83

6.3.8 ClassWindowStyle : 85

6.3.9 ClassColourWindow : 88

7 Conclusions and Future work 89

7.1 Conclusions : 89

7.2 Future Work : 90

ix

A Relating CIELUV Units to OSA Units 93

B Object Oriented Programming 97

C Constraint Classes 99

Bibliography 103

x

List of Tables

2.1 XYZ and Chromaticity values for RGB Primaries and Complements : : : : : : : : : : : : : : : 20

2.2 Gerritsen Lightness Compared to Colour Luminance on One CRT : : : : : : : : : : : : : : : : : 21

2.3 Mean OSA Interpoint Distance between Basic Colour : 26

4.1 The Effect of Ambient Light on Black and White Luminance : : : : : : : : : : : : : : : : : : : 39

4.2 Typical Contrast for Different Fonts and Black Levels : 43

6.1 The Default Window Style Template. : 86

6.2 Centroid Values for Eight Basic Colours. : 87

6.3 The Window Difference Constraints. : 87

A.1 A comparison of OSA and CIELUV distances. : 94

A.2 A comparison of OSA and CIELUV distances. : 95

xi

xii

List of Figures

2.1 The Triangular Pattern of Red, Green and Blue Phosphors. : 8

2.2 The Shadow-mask CRT. : 8

2.3 RGB Colour-Matching Functions : 12

2.4 XYZ Colour-Matching Functions : 13

2.5 The Visible Colours in XYZ Space : 14

2.6 The CIE 1931 Chromaticity Diagram : 15

2.7 The RGB Colour Model : 16

2.8 The HSV Colour Model : 17

2.9 The RGB Principle Axis : 17

2.10 The HLS Colour Model : 18

2.11 The Gerritsen Colour-Perception-Space : 21

3.1 Colour Usage Categories : 32

4.1 The Neighbours Of Pixel P. : 40

4.2 Font Bitmaps : 42

5.1 A Sample Constraint Hierarchy : 48

6.1 An Attractive Absolute Colour Constraint Represented as a Force : : : : : : : : : : : : : : : : : 64

6.2 A Relative Colour Constraint Represented as Two Forces : 65

6.3 Class Hierarchy For the Colour Window System : 66

6.4 Hue Relationships for the Simple Colour Schemes : 72

xiii

xiv

Trademarks
X11 is a registered trademark of Massachussetts Institute of Technology. Macintosh is a registered trademark of

Apple Computer. NeWS, OpenWindows and TNT are registered trademarks of Sun Microsystems Inc. Unix is

a registered trademark of AT&T. PostScript is a registered trademark of Adobe Systems Inc. IRIS is a registered

trademark of Silicon Graphics Inc.

All other products mentioned in this thesis are trademarks of their respective companies. The use of general

descriptive names, trade names, trademarks, etc., in this publication, even if the former are not identified, is not to

be taken as a sign that such names may be used freely by anyone.

xv

xvi

Chapter 1

Introduction

Color is life; for a world without colors appears to us as dead. (Itten, 1961)

With knowledge, an artist can take three or four unusual colors and come out with beautiful expression.
It is important to study structured color schemes simply to develop this knowledge and to learn some
sure-fire ways of developing beautiful color schemes and color harmony. Painting is like any other
art form: Just as in dance, music, or writing, once one has a thorough understanding of all the basics
of the art, the rules can be adjusted and expression becomes subjective. (Quiller, 1989)

Until very recently, high resolution colour displays were reserved for the elite few whose work justified the
expense. This has all changed. Megapixel displays, capable of displaying 256 or more simultaneous colours chosen
from a palette of over 16 million colours, are becoming inexpensive and therefore more common. In addition, the
computers driving these displays are running multi-tasking operating systems, allowing many programs to be run
simultaneously. Each program has its own set of windows, its own user interface and its own set of colour needs.

Unfortunately, the sophistication of the window systems running on these displays is not keeping pace with
the hardware. Much work is being done to make the window systems look polished; stylish three dimensional
effects and flashy demo programs are common. However, tools that allow the user to take full advantage of these
large colourful displays and of the powerful computers driving them have not been developed.

In particular, the tools available for making aesthetic colour choices are exceedingly poor. There are several
tools that allow users to specify individual colours, but few that assist the user in coordinating all of the colours
being used. Those that do address the problem are limited in scope and not generally useful.

1.1 What are users trying to do with colour?

Individual colours on a computer display are not selected in a vacuum. Each individual colour can be thought
of as a piece in a much larger puzzle: that of creating a functional and attractive computer display. In order to
create an environment in which the window system helps the user select colours, it is necessary to determine what
people are trying to accomplish with colour and window systems.

Reasons for using colour range from the aesthetic to the functional. For example, colour is often used to create
an attractive work environment, to label items, to group related elements of an interface, to signal the user about
potentially dangerous actions, to enhance the realism of an image, and to view multidimensional data. Many of

1

2 Chapter 1. Introduction

these topics have been examined in depth and rules were developed to guide the application designer in deciding
when and when not to use colour. Meier presents a detailed summary of much of this work (Meier, 1987).

Some decisions about the use of colour are hidden from the user. Whether related visual elements in an
interface are colour coded is usually decided by the application designer. Likewise, the way in which colour is
used in a data visualization or realistic rendering application is usually specified when the application is designed.
In a sense, many of the decisions about colour usage within a single application are out of the user’s hands.

However, most global colour choices are left up to the user. Perhaps the most common global use of colour
is for organizing windows. Colour can be used to group related windows and to disassociate unrelated windows.
There are many different approaches to window organization. For example, similar applications could have similar
colours, windows for different projects could be grouped using similar colours, or windows could be coloured
according to the machines that created them. What characterizes each of these organizational approaches is that
in each case a different category of semantic meaning is identified by the user and windows with similar semantic
meanings are grouped visually.

Colour is also excellent at helping the user resolve context. A common mistake in window systems is to
accidentally type into the wrong window. However, colour has been experimentally determined to be more useful
than size, shape or brightness when searching for and identifying items that vary in only one of these aspects.
Additionally, colour associations are remembered longer (Meier, 1987). When two terminal windows differing
only in colour are serving different functions, colour serves as an excellent way to distinguish the two.

For some people, the most exciting ability that colour provides is the ability to personalize their environment.
Just as some people feel strongly about more obvious expressions of their personality, such as clothing and hair
styles, so do some people want to personalize their computing environment. One user commented, for example,
that “he did not care what colours were used for his windows, as long as they all were purple.” Colour should also
allow people to make their environment dynamic, visually rich and exciting. People often change clothing styles
to reflect their mood or changes in taste. Other reflections of personal taste, such as furnishings in the home or
office, or the model of car that is driven, are not changed on a regular basis only because practical considerations
make this impossible. A computer window system, by its very nature, can have its appearance radically changed
in an instant. Unfortunately, the tools do not exist to allow people to access this potentially exiting avenue of
personal expression. Few people have the time or patience to actually create a visually interesting environment.

1.2 The Problem with Aesthetic Colour Selection

One of the reasons effective aesthetic colour selection is difficult is that it crosses many disciplines: physics,
physiology, psychology, art and graphic design, to name a few. Most people who design window systems and
windowing applications do not necessarily have expertise in any or all of these areas. As a result, colours are often
selected seemingly at random, with no regard for even the most basic design principles. In addition, tools provided
to the user for colour selection typically concentrate on allowing the user to select a single colour, ignoring how
it will be used. Therefore these tools do not provide the user with any help in selecting attractive and effective
combinations of colours (Meier, 1987).

With no knowledge of the various aspects of colour theory, users can do damage as well as good to their
working environment, and may have no idea what is causing the problems or how to solve them. Unintentional
interactions between colours can convey nonexistent meaning, such as creating illusions of window depth or
unintended structural relationships. Far more seriously, insufficient colour difference can impair legibility and
reading.

If colour selection represents such a hard problem, why are there no better tools available to help the user
solve it? The basic answer is that colour is not well understood. There are theories explaining many aspects of

1.3. Tools for Aesthetic Colour Selection 3

colour perception and colour theory, but no comprehensive model of human colour vision exists and explanations
of some perceptual phenomena elude researchers (Boynton, 1979). Another aspect of the problem is that all of
the different fields that study some aspect of colour, from graphic design to physics, use different techniques and
terminology. Chapter 2 explains the aspects of some of these areas that are relevant to this thesis. Each of the
many colour models mentioned in Sections 2.2 and 2.3 was created for certain reasons and is appropriate for
certain applications, but most contain little information about effective colour use. More seriously, some fields
give different meanings to similar terms, causing confusion.

Another reason that there are few powerful tools to aid in effective colour selection is that solving some of
the problems mentioned above without unduly restricting colour choices is very hard. Creating simple tools that
severely restrict the users choices is relatively easy, but tools such as this are not satisfactory. The aesthetic aspect
of colour is very subjective and users do not wish to be arbitrarily restricted or to have someone elses ideas of
colour harmony imposed on them. As one user interface designer put it, “A computer will never be able to tell
me what colours I should like.”

1.3 Tools for Aesthetic Colour Selection

Much effort has been put into attempting to create sets of rules for colour use in computer user interfaces and
window systems. Meier presents a good summary of this work (Meier, 1987). This thesis is not trying to extend
or duplicate this research.

While there exist many guidelines and heuristics for effective use of colour, it is virtually impossible to
implement these heuristics using current window systems. Although there have been systems which attempt to
preselect colours for user interfaces, such as ACE (Meier, 1988), they are usually too specialized or too restrictive to
be generally useful. In particular, there are no tools available that assist people in selecting aesthetically pleasing
colours while ensuring that the basic functional colour constraints are satisfied. As a result, the application
programmer or the user must consider too many different issues when selecting colours. The task is simply too
complex for many users to perform effectively.

Consider the task of selecting colours for a typical window system that has four colours for each window:
background and foreground colours for both the border and the interior of the window. In order to select four
colours for a single window, contrast between the two background and two foreground colours must be considered.
In addition, the border and window background colours must be sufficiently different that they do not blend into
one another. Finally, the border background colour must be sufficiently different from the screen colour that
the window stands out from the screen. The task of selecting a tasteful set of colours for this single window is
not overwhelming, especially if we assume the existence of a reasonably powerful tool for selecting individual
colours.

However, windows do not appear in isolation. There can be many different windows coexisting on the same
display. Suppose that the person making the colour choices is aware of how colour can be used to organize these
windows. For example, windows can be grouped by application, intended use, machine or some other logical
relationship. With only a few applications, machines, and different uses the number of different windows can
grow very quickly. For example, twenty or more different windows is not uncommon. Any of these windows
may appear on the screen simultaneously, so the colours that are chosen for one window must be compatible with
those chosen for all the other windows. The problem has quickly changed from one with four variables to one
with perhaps eighty or more! While there are probably many solutions to this problem, they are insignificant
compared to the size of the solution space. After attempting this exercise once or twice, one can see that this can
be a very frustrating and quite difficult problem to solve.

What is particularly annoying for many people is that selecting colours for the interface is something that is
tangential to the reason they are using the computer in the first place. As a result, most people quickly give up

4 Chapter 1. Introduction

attempting to discover a solution to this problem. Experience shows that users often resort to bland or extreme
colour schemes in order to reduce the number of variables that they must deal with, making the task somewhat
more manageable. Unfortunately, the functional benefits of colour, such as context resolution and showing logical
relationships, are often the first things that are discarded in an effort to simplify the problem.

This basic premise of this thesis is that window systems can and should help the user to create and maintain
an aesthetic, effective and colourful windowing environment. The aim is to demonstrate that it is possible to
create a system which helps the user choose aesthetically pleasing colours without having to explicitly consider
all functional colour requirements.

1.4 Previous Work

There has been relatively little work done in this area. The ACE system is the one notable exception (Meier,
1988). Other systems that automatically select colour, such as (Corte, 1986) and (Grosse, 1985), consider only a
small subset of the problem and are applicable to a limited domain of colour usage. These latter two systems, for
example, select sets of perceptually different colours for use in charts, tables or plots.

1.4.1 ACE: A Colour Expert System

ACE is an expert system that attempts to select colours for the sort of user interface found on the Apple Macintosh
or Xerox STAR desktop environments. ACE selects its colours from a discrete subset of the HLS colour space
(see Section 2.2.5), encoding relationships between all of the colours in that subset in its knowledge base. There
are a few key limitations to ACE. First, the aesthetic relationships that are used to select colours are encoded in
the system, with the result that the colour tastes of the authors are imposed on the user. The user can alleviate this
problem only by modifying the knowledge base of the system, which is a non-trivial exercise.

Another major problem with ACE is that it was designed to select colours for the graphical elements of a
single program. It selects colour using a monotonic scheme, meaning once a value has been selected for a colour
it will never be changed. Therefore, the relationships between colours must be expressible as a directed, acyclic
graph (DAG). While the relationships between the graphical elements of a single window may be expressible in
this fashion, it is not clear that the relationships of an entire window system could be. If the relationships cannot
be specified as a DAG, such a monotonic selection scheme could not be used.

More importantly, all of the relationships that ACE uses to evaluate a possible colour selection are pair-wise
relationships. This precludes the possibility of expressing relationships that exist among groups of windows, for
example, which is common in the sort of window systems of interest here. As Meier says, they “might be able to
devise color relations between three, and maybe even four or five colors, but more than this would be extremely
difficult. Adding these kinds of relations would require a fairly major overhaul ...”

1.5 The Need For a Dynamic Window System

A limitation of systems such as ACE is that they select colours for a single application without considering other
windows on the display. Colours for an application’s windows need to be selected in the context of the window
system as a whole, not in isolation. ACE, for example, considers multiple windows within a single application
but not over multiple applications. Meier mentions that this issue should be considered, but does not attempt to
solve it.

1.5. The Need For a Dynamic Window System 5

More importantly, the context within which a window’s colours are selected is not static. As windows are
created and destroyed, the context within which a window’s colours were chosen changes and, therefore, the
colours that should be used for any window may change. The colours should not be picked within a given context
and then ignored when that context changes.

If this assertion seems strange, consider the analogy to window positions on the screen. At any given instant
in time, there are one or more optimal spatial arrangements of the currently open windows. However, as new
windows open and old windows close, this optimal arrangement changes. Thus, the windows’ positions must be
rearranged. And so it is with colour.

To continue with the analogy, consider the tools that are provided by window systems to help the user organize
the positioning of their windows. The most common tool is a simple interactive technique which allows the user
to tell the system exactly where to move a window. More powerful tools than this are available, however. Some
systems will select an initial window position if one is not given, effectively allowing the user to say “I don’t care
where it goes on the screen.” If the position is unacceptable, the user can easily change it. The key point is that
the user does not have to specify a position unless the one chosen by the system is unacceptable. Thus the user
has one less specification to make.

There are other examples of powerful tools for positioning windows. Tiled window systems are based on the
assumption that opened windows should not overlap, and automatically rearrange the windows to enforce this.
Whether this is desirable behaviour is a matter of personal taste. A more powerful system is Stack Windows (Png,
1991), which allows windows to be hierarchically grouped into common areas called stacks. Stacks are windows
which contain other windows and have tiling behaviour enforced within them. Repositioning of windows within
the stack is automatic when windows are opened or closed. Tools are provided to manipulate the stacks and to
override the arrangement of windows within the stacks. Any window or stack that is not contained in another
stack can be overlapped freely; thus, the power of a tiled window system is available within the stacks and the
freedom of non-tiled window systems to overlap windows is available outside the stacks.

The most powerful tool implemented to date is the jostling window system used in Schlueter (1990) to
implement the concept of perceptual synchronization. Perceptual synchronization is based on the belief that the
screen is a resource that is shared by the user and the applications to communicate. Different applications make
different demands on the screen space that may cause perceptual problems on the part of the user. These problems,
such as text or graphics appearing to flow between windows, should be detected and fixed. This process is referred
to as synchronizing the users’ perception of the system. While the actual test system had usability problems, none
were of the sort that could not be fixed in a production system. The system could be thought of as attaching a
higher level of semantic meaning to window positioning, and using these semantics to help the user position the
windows.

Unfortunately, the tools provided by window systems for manipulating colour are surprisingly primitive. No
window system provides anything more than the most basic support for colour selection, forcing the user to specify
every colour explicitly. Other problems can be highlighted by returning to the analogy of window positioning.
Many window systems do not provide a general facility for users to modify the colours of a window after the
window has been created. Thus, window colours can be specified only when a window is first created unless the
client program specifically contains functions for changing its colours. This is analogous to specifying an initial
position for a window and not being able to move the window unless the application provides a facility which
allows it to be repositioned! Obviously, the resource dictated the availability of the tools: screen real estate is quite
limited compared to the size of the colour space, imposing a more immediate demand on providing the capability
to reposition windows.

Other window systems, such as that found on the Macintosh, allow the user to change the colour of existing
windows but the tools for colour selection are still not as powerful as those for window positioning. In the case
of the Macintosh, for example, windows are positioned for the user the first time they are created in a random

6 Chapter 1. Introduction

fashion, spreading them out over the screen. Colours, on the other hand, are always the same by default, providing
not even the slightest variation that is not specified by the user.

Given the situation mentioned above, why are there not good colour tools for current window systems? The
key element that is missing from most existing window systems which is that there is no semantic meaning attached
to the colours on the display, making it impossible for the window system to provide any sort of reasonable help
to the user. By attaching semantic meaning to colours, the window system should be able to assist the user in
solving the problem of effective and aesthetic colour selection.

1.6 Goals

The kind of tool created here is something analogous to the jostling window system (Schlueter, 1990). This system
attached semantic meaning to windows and their contents and defined relationships between these elements of the
display. The system imposed constraints on the possible positions of the windows based on these relationships.
Most importantly, the system dynamically adjusted the arrangement of the windows to satisfy these constraints.

Similarly, by attaching semantic meaning to colours, it is possible to define relationships between these colours
and to impose constraints based on these relationships. Using these constraints, it is possible to create a window
system which will assist users in making aesthetic colour choices by both making some of the choices for them
and removing some of the constraints on the choices they need to make. For example, the following abilities are
provided:

� Functional constraints are be handled automatically, allowing the user to ignore them if they so desire.

� Many users have no training in art or graphic design. Therefore, the system will suggest possible aesthetic
colour combinations to the user.

� The user is able to make abstract colour specifications and have the system infer the details.

� The system provides reasonable defaults.

� The system can be gradually customized, allowing a user to specify as little or as much as he or she wants.

However, it should be kept in mind that the overall goal of this thesis is to create a system that demonstrates that
more powerful tools for assisting with aesthetic colour selection are possible, not to provide definitive solutions to
all of the issues associated with the abilities mentioned above. The satisfactory solutions to many of the problems
discussed in this thesis represent theses on their own.

In Chapter 2, the reader will be provided with the background in colour theory necessary to understand and
appreciate the bulk of this thesis. Chapter 3 will describe one view of colour use that will prove particularly helpful
in creating this system. A metric for calculating contrast will be devised in Chapter 4. Chapter 5 will develop
the the colour constraints that are needed to create a dynamic window system to assist with colour selection. The
implementation of a prototype version of the dynamic window system is described in Chapter 6. Finally, Chapter 7
discusses the conclusions that can be drawn and future work that needs to be done.

Chapter 2

Background

In order to understand the body of this thesis, a variety of background information is required. In the following
sections several topics are discussed in sufficient depth to understand the thesis. For each topic, references are
provided for further reading. Knowledge of computer science and a basic knowledge of computer graphics are
assumed. For an introduction to computer graphics, see (Foley et al., 1990).

The purpose of this thesis is to demonstrate that a dynamic window system is a feasible approach to assisting
users with the selection and maintenance of window colours. Colour science bridges many disciplines, including
computer science, physics, physiology, psychology, art and graphic design. In order to create powerful colour
tools, selected aspects of each of these subjects must be understood. The logical starting point is video display
hardware. Given an understanding of how coloured images are created, the underlying colour models that are
used throughout this thesis for specifying colour values are explained. Following this, psychological aspects of
colour are examined, including a brief look at colour perception, the effects of colour on reading, and colour
discrimination. Finally, artistic models of colour and colour harmony are investigated to discover techniques of
assisting with harmonious colour selection.

2.1 Colour Display: The Colour CRT

Currently, the most common video display hardware is the cathode ray tube (CRT), an electronic device that
produces patterns of light on a glass display. A cathode creates electrons which are accelerated towards the front
of the CRT. This stream of electrons is focused into an electron beam which converges to a small point at the
faceplate of the CRT. This beam is aimed at the phosphor-coated inside of the display surface. When the electrons
strike the phosphor, it emits visible light. The pattern of light created by the glowing phosphor is the image
seen on the display surface. To create colour, several phosphors are needed, and the excitation of each must be
controlled independently. The mechanism for doing this is the shadow mask. The inside of the tube’s viewing
surface is covered with phosphor dots arranged in triangular patterns, as shown in Figure 2.1. These phosphor
dots are extremely small, a dozen or more being required to create a single pixel (or point on the screen.) The
colour of these phosphors are red, green and blue. Three different electron guns, arranged in the same triangular
shape as the phosphors, are independently focused at the same point on the screen. The shadow-mask is placed
between the phosphor surface and the incoming electrons, and has small holes in it, one for each set of three
phosphors. The electron guns, shadow-mask holes and phosphors are precisely arranged so that only the electrons
from one gun strike any individual phosphor, as shown in Figure 2.2. This arrangement allows one gun to control
the intensity of each of the red, green and blue phosphors. All colours that are displayed on a computer screen are

7

8 Chapter 2. Background

Red Green

Blue Red Green

Blue Red Green

Blue

Red Green

Blue

Blue

Red Green

Blue Red Green Red

Red

Blue

Blue

Figure 2.1: The Triangular Pattern of Red, Green and Blue Phosphors.

G

B R

G

B
R

Figure 2.2: The Shadow-mask CRT.

2.2. Colour Models 9

created as a linear combination of spectral power distributions of the red, green and blue phosphors, as discussed
in Section 2.2.1. For example, if each of the phosphors could be illuminated to two different levels (on and off)
there would be eight possible combinations. More commonly, the phosphors can be illuminated at 256 different
intensities, giving over sixteen million possible combinations. A more in-depth description of the workings of a
CRT, as well as other display devices, may be found is books such as (Foley et al., 1990). For simplicity, the CRT
stands for all video display devices, such as plasma and LCD displays, because their capabilities are similar.

2.1.1 Gamma Correction

Controlled display of many different intensities on a CRT is not as straightforward as it seems, since the intensity
of the light output by a phosphor is not linearly related to the number of electrons striking it. For simplicity, the
internal workings of the CRT are ignored and only the relationships between the voltage and the light output for a
given phosphor are considered1. The relationship is

I = kV
 ; or V = (I=k)1=

(2:1)

for constants k and
. (Foley et al., 1990) describes how to actually calculate the value of required voltage V for
a desired intensity I. For a typical CRT, the value of
 falls in the range 2.2 to 2.5. What is important here is
to note that the relationship is not linear and that the values of k and
 vary between CRTs. Correcting for the
non-linearity of phosphor response in this manner is referred to as gamma correction because of the historical use
of gamma as the exponent in Equation 2.1.

Unfortunately, the situation is even more complicated. There are two other factors which contribute to the
perceived response of the phosphors:

� Many current CRT’s are equipped with dials that control the “brightness” or “black level” and the “contrast”
of the display. The brightness control dial, in particular, changes the response of the relationship between
the voltage received by the monitor and the number of electrons striking the phosphor surface, and thus the
required gamma value. Experience has shown that the gamma value for a CRT with a typical brightness
control can fall in a range of 1 to 5!

� The lighting conditions in the area where the CRT is being viewed dramatically affects the perceived
intensity of the phosphors (see the discussion of veiling lights in Section 2.5.)

These two factors are, in fact, related — the existence of the second necessitates the first. Brightness controls are
put on monitors to allow users to compensate for lighting conditions in the area of the CRT.

2.2 Colour Models

Colour is intuitively described using the three terms hue, lightness and saturation. Hue refers to the chromatic
component of the colour, the quantity that distinguishes between colours such as red, green and blue. Lightness
refers to how dark or light a colour is. Finally, saturation describes the purity of a colour, which ranges from
neutral grey to pure colour. The colours black, white and the shades of grey are said to be “achromatic” or neutral
— they are completely desaturated, having no “chromatic” colour component.

For colour to be used effectively in computer graphics, it is necessary to be able to specify colours precisely.
Most computer framebuffer hardware require colour values to be specified by their red, green and blue (RGB)

1The relationship between the number of electrons striking the phosphor and the voltage sent to the CRT for that phosphor is linear.

10 Chapter 2. Background

components. More abstract models of colour specification, such as HSV and HLS, are also used in computer
graphics. These models provide a more intuitive organization of colour values, but are merely different views
of the same RGB colour space. While these models are precise with respect to the values placed in the video
framebuffer, they do not allow accurate colour specification with respect to colour appearance — the same
RGB, HLS or HSV specification may appear as a different colour on different computers or different CRTs.
Objective colour specification, independent of any display medium, is provided by the branch of physics known
as colorimetry. Many of these models are based on colour models developed long ago by artists and scientists
such as (Chevreul, 1967), (Munsell, 1947) and (Ostwald, 1931).

In the following sections, several models will be described. For a more complete history of colour models, see
(Norman, 1990) or (Gerritsen, 1988). For a more in depth discussion of the colour models described below, see
one of (Foley et al., 1990; Rogers, 1985; Hall, 1988; Boynton, 1979). In addition, many of the concepts discussed
in this section are treated at an introductory level in (Hope and Walch, 1990).

2.2.1 Colour Mixing

From the psychophysical point of view, colour can be defined as (Wyszecki and Stiles, 1982)

that characteristic of a visible [colour stimulus] : : :by which an observer may distinguish differences
between two structure-free fields of view of the same size and shape, such as may be caused by
differences in the spectral composition of the radiant power concerned in the observation.

This spectral power distribution which defines a colour is a measurement of the intensity of light at unit
intervals for each visible wavelength of the electromagnetic spectrum, which extends from approximately 400
(�min) to 700 (�max) nanometers, and is denoted as follows:

E(�) =

�maxX
i=�min

ei (2:2)

where ei is the intensity of wavelength �i. When all of the visible wavelengths are present in approximately
equal amounts, the result is achromatic. Otherwise, a dominant wavelength is perceived which corresponds to the
intuitive notion of hue.

When colours are mixed, their spectral power distributions are mixed. There are two colour mixing systems,
subtractive and additive, which apply to reflective and self-luminous objects, respectively.

Additive When working with luminous objects (objects that generate light), the colour primaries typically used
red, green and blue. Luminous objects create colour by emitting light with certain spectral power distributions.
Colour mixing is linearly additive. When two lights with spectral power distributions E1 and E2 are mixed
together, the result E3 is

e3i = e1i + e2i; i = �min; : : : ; �max (2:3)

where ej i is the component of Ej at the wavelength �i. When the primaries are added together in equal quantities,
all the wavelengths of light are present and the result is seen as white light2. These three colours can be combined
to create all of the colours of the spectrum plus purple (a non-spectral colour with is created by adding together red
and blue). This allows a wide variety of colours to be created. Anyone who has watched TV or used a computer
has seen colour created additively.

2This is a simplification. See Section 2.2.2.

2.2. Colour Models 11

Subtractive When most people think of the primary colours (the basic colours that are combined to create all
other colours) their intuition is based on their childhood experience of mixing paint: yellow and blue combine
to produce green. The three primaries are blue, red and yellow. These colours are the primary colours for a
subtractive colour scheme3 , which is the colour scheme used when mixing paint, ink, dye, or any other reflective
material, and when dealing with transmissive materials such as film. Subtractive colour mixing is significantly
more complicated than additive mixing, so a detailed account of how it occurs is not possible here. A brief
description of how subtractive mixing occurs with filters is all that is possible.

Filters do not generate light, but are seen by the light which passes though them. The color of a filtered light
is, therefore, determined by the amount of each wavelength that passes though the filter. This can be expressed by
a transmission function

T (�) = ti; 0 � ti � 1; i = �min; : : : ; �max (2:4)

where ti is the fraction of wavelength �i that is transmitted. When a light with a spectral power distributionE(�)

is passed through a filter with a transmission function T1(�), the spectral power distributionE1(�) of the resulting
light is

e1i = eit1i; i = �min; : : : ; �max (2:5)

If this light is then passed through a second filter, with transmission T2(�), the spectral power distributionE2(�)

of the resulting light is
e2i = eit1it2i; i = �min; : : : ; �max (2:6)

In the above situations, where light is transmitted through one or more filters, the effect is to subtract intensity
from the spectral power distribution of the incident light. That is why this is referred to as subtractive colour
mixing — mixing coloured objects results in light being subtracted from the incident light. When the three filters
corresponding to ideal subtractive primaries are used in succession, little colour is transmitted and the result is
black.

The question of how pigments combine requires knowledge of how pigments are suspended in the medium
and how light is scattered within the medium. For a more detailed discussion of this, see (Cowan and Ware, 1985).

Complementary Colours With both additive and subtractive colour mixing, each pure colour has associated
with it another colour, call its complement. Mixing a colour with an equal amount of its complement results in
grey. Mixing a colour with a lesser amount of its complement results in a less saturated colour of the same hue.
The complements of the primary colours are often referred to as the secondary colours.

2.2.2 Colorimetry

The purpose of colorimetry is to provide an objective, quantitative way of specifying colour. Standard colorimetric
systems, which are based on additive colour mixing, are well adapted for use with CRTs.

2.2.2.1 Colour Matching

Colorimetry begins with colour matching. Imagine an experiment where the subject is looking at two areas of
coloured light. One area is a test colour. The subject attempts to create a matching colour in the other area. To
perform this match, the subject has three dials which control the intensity of three coloured lights (referred to
as the colour primaries) that are combined to create the matching colour. These three lights are red, green and

3The subtractive primaries are actually cyan, magenta and yellow, but artists typically refer to the primaries as red, blue and yellow.

12 Chapter 2. Background

400 500 600 700
-0.2

0

0.1

0.2

43
8.

1
nm

54
6.

1
nm

70
0.

0
nm

r λbλ

gλ

r λ

λ

Wavelength

T
ri

st
im

ul
us

 V
al

ue
s

Figure 2.3: Colour-matching functions, showing the tristimulus values for the visible spectrum, where the three
primaries are R = 700nm, G = 546.1nm and B = 438.1nm. (Adapted from Foley et al. (1990))

blue, the additive primaries from section 2.2.1. In practice, some colours can not be matched by the positive
combinations of these standard lights. This problem can be overcome by allowing the subject to add one of the
primaries to the test light and then attempt to create a match with the remaining two primaries. In this case, the
match can be specified as a combination of positive and negative amounts of the primary lights, where a negative
amount means the primary was added to the test light instead of the match light. These values are referred to as
tristimulus values for the colour, since they define the amount of each stimulus needed to create the colour.

By performing this experiment repeatedly, with the test light set successively to every visible wavelength of
light, the amount of each primary needed to match any wavelength of light can be tabulated. This was done
with a set of observers and the results averaged to obtain values for a standard observer. This table defines three
colour-matching functions, called r̄�, ḡ� and b̄�, similar to those shown in Figure 2.3 (which are adjusted so that
the area under each of the three functions is 1.0). In order to obtain a colorimetric specification for a stimulus light
with spectral power distributionE� the tristimulus values for the light can be calculated using the equations

R =

Z
E�r̄�d�

G =

Z
E�ḡ�d� (2.7)

B =

Z
E�b̄�d�

An important point to note is that two colours with physically different spectral distributions can result in the
same tristimulus values. These colours will appear the same for the standard observer, and are referred to as being
metameric. The pairs of colours are called metamers.

2.2.2.2 The CIE System

The above colour matching experiment was performed and the data used to create an objective description of
colour. This work was carried out by the Commission Internationale de l’Éclairage (CIE), which in 1931 defined

2.2. Colour Models 13

z

y x

x

Wavelength

V
al

ue

400 500 600 700
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.9
1.0
1.1

0.8

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Figure 2.4: Colour-matching functions, showing the tristimulus values for the CIE 1931 primaries X, Y and Z.
(Adapted from Foley et al. (1990))

the CIEXYZ colour space, which uses three hypothetical primaries with colour-matching functions x̄(�), ȳ(�)
and z̄(�) shown in Figure 2.4. These standard primaries were specifically chosen to satisfy a few properties, most
importantly that all visible colours have positive tristimulus values, and that the luminous energy of the colour is
represented by the Y value. To satisfy these constraints, the primaries themselves are imaginary and can not be
created from non-negative spectral power distributions. Analogous to Equation 2.8, the tristimulus values for a
stimulus light E� can be calculated as follows

X =

Z
E�x̄d�

Y =

Z
E�ȳd� (2.8)

Z =

Z
E�z̄d�

The visible colours create a cone-shaped volume in XYZ space, with black at the origin, as show in Figure 2.5.

While the Y value, which defines the luminance of the colour, corresponds roughly to the intuitive notion of
brightness, the XYZ tristimulus values do not correlate neatly with the intuitive notions of hue and saturation. To
separate the chromatic component from the brightness, the CIE defined the chromaticity coordinates of a colour
(which define the hue and saturation, but ignore the luminance) as

x =
X

X + Y + Z

y =
Y

X + Y + Z
(2.9)

z =
Z

X + Y + Z

14 Chapter 2. Background

X

Z

Y

Figure 2.5: The visible colours in XYZ space form a cone radiating up into the positive octant. The plane
X + Y + Z = 1 is also shown (Adapted from Foley et al. (1990))

Notice that x + y + z = 1, so only two values, x and y, need to be retained, because z = 1 � x � y. However,
in order to recover X, Y and Z, a third piece of information is needed. That value is the luminance, Y. The
values x and y can be plotted on the CIE chromaticity diagram, shown in Figure 2.6, which represents the plane
X +Y +Z = 1. These three values make up what is called the CIE Y, x, y system. Notice on the diagram that the
pure wavelengths of light are plotted around the horseshoe shaped periphery. Colours then gradually blend until
they reach white near the center. The CIE also defined a number of “standard” illuminants, which approximate the
spectrum of light produced by various white light sources. Standard illuminantD65, which represents sunlight, is
shown on the diagram.

An advantage of the CIE chromaticity diagram is that colour mixing is a linear function. In other words, any
colour produced by adding together positive amounts (not negative amounts, as was allowed in the colour matching
experiment) of colours I and J falls on the line IJ that connects them. Extending this, any additive combination of
three colours I, J and K lies in the triangle IJK. This area, called a colour gamut, represents all the colours that
can be additively produced using I, J and K as colour primaries (Foley et al., 1990). Colour gamuts are actually
three dimensional since the verticies are defined using XYZ coordinates, but are more conveniently represented
on the two-dimensional chromaticity diagram.

One problem with the CIE XYZ system is that it is not perceptually uniform, meaning the Euclidean distance
between any two points in XYZ space does not indicate the size of the perceived difference between the two
colours. There have been many colour spaces developed which attempt to represent colour in a perceptually
uniform fashion. All these colour spaces are non-linear transformations from the XYZ colour space. One, the
OSA Uniform Colour Space, is discussed in Section 2.3. Another, theL�u�v� colour space, has been standardized
by the CIE. Given the coordinates of the white colour as (X0; Y0; Z0), the transformation of any colour from XYZ
to L�u�v� is defined by

L� = 25

�
100Y
Y0

�1=3

� 16; (1 � Y � 100) (2.10)

u� = 13L�(u0 � u00)

v� = 13L�(v0 � v00)

where
u0 = 4X=(X + 15Y + 3Z); v0 = 9Y=(X + 15Y + 3Z)
u00 = 4X0=(X0 + 15Y0 + 3Z0); v00 = 9Y0=(X0 + 15Y0 + 3Z0)

(2:11)

2.2. Colour Models 15

700

600

580

560

540
520

510

500

490

480

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
Purple

Blue

Cyan

Green

Yellow

Red

y

x

Figure 2.6: The CIE 1931 Chromaticity Diagram (Adapted from Foley et al. (1990))

L�u�v� (also called CIELUV) is important because measurements of colour difference must be performed in a
uniform colour space. Of all the uniform colours spaces, CIELUV is computationally the easiest to transform
colour coordinates into.

2.2.3 The RGB Colour Model

For computer applications, the dominant colour model is the RGB model. This model specifies colours as a
additive combination of the red, green and blue primaries of the display. It is in widespread use owing to its close
correspondence to colour CRT hardware.

The RGB colour model can be visualized as a cube of unit size (each side has a length of 1 unit.) Its three
orthogonal axes are the intensities of the red, green and blue primaries. These primaries, which are produced by the
three coloured phosphors used by the CRT display, mix additively. When all primaries are zero, the phosphors are
off and the resulting colour is black. Conversely, when all primaries are 1, each phosphor provides its maximum
contribution and the resulting colour is white. When all phosphors contribute the same amount, the result is a
shade of grey. Therefore, achromatic colours appear along the main diagonal of the RGB cube, between black
(0,0,0) and white (1,1,1) (Figure 2.7.)

The gamut of available colours on a CRT is determined by the chromaticity coordinates of the CRT phosphors.
Two monitors with different phosphors have different gamuts and display the colours of the RGB cube differently.
For this reason, it is often desirable to specify colour using a display independent model such as the XYZ model.

16 Chapter 2. Background

Green = (0,1,0)

Yellow = (1,1,0)Red = (1,0,0)

Magenta = (1,0,1)

Blue = (0,0,1) Cyan = (0,1,1)

Black = (0,0,0)

White = (1,1,1)

Figure 2.7: The RGB Colour Model

The conversion between RGB and XYZ can be expressed as follows (Hall, 1988, Eq 3.2)

red phosphor: rx; ry; rz = 1� rx � ry
green phosphor: gx; gy; gz = 1� gx � gy
blue phosphor: bx; by; bz = 1� bx � by
white point: wx; wy; wz = 1�wx �wy

2
4 X

Y

Z

3
5 =

2
4 Sr(rx) Sg(gx) Sb(bx)

Sr(ry) Sg(gy) Sb(by)

Sr(rz) Sg(gz) Sb(bz)

3
5
2
4 R

G

B

3
5

(2:12)

Sr , Sg and Sb are scale factors for the red, green and blue. For more information on generating this matrix,
see (Hall, 1988). It should be noted that, like the XYZ space, the RGB cube is not perceptually uniform.

2.2.4 The HSV Colour Model

In contrast to the hardware oriented RGB colour model, the HSV model attempts to provide a model based on
the intuitive notions of Hue, Saturation and lightness (Value.) The HSV model is also known as the HSB model,
where B stands for Brightness. The model defines an inverted single-hexcone (Figure 2.8) with a height and radius
of 1. Hue is measured angularly around the vertical axis, with red at 0�. Value ranges from 0 at the tip of the cone
to 1 at the flat top. Saturation is a ratio of the distance from the center vertical axis to the triangular side, ranging
from 0 to 1. The additive primaries and their complements are spaced equally around the edge of the flat top of
the cone, at 0�, 60�, 120�, 180�, 240� and 300�, with the primary and its complement opposite each other (180�

apart.) They are the maximally saturated colours, having S = 1 and B = 1.

The HSV model is actually a deformation of the RGB model. Looking down the principle axis of RGB cube
gives an intuitivenotion of how the two correspond, as shown in Figure 2.9. Because this model is a transformation
of the RGB model, it shares the same gamut problems. For example, a colour with a red hue (0�), .5 saturation
and .75 lightness are not colorimetrically the same on different monitors.

The conversion from RGB to HSV is

M = max(r; g; b)

2.2. Colour Models 17

S
H

V

Red

MagentaBlue

Cyan

Green Yellow

White

Black

V=1.0

V=0.0

Figure 2.8: The HSV Colour Model

Yellow

Red

MagentaBlue

Cyan

Green

White

Figure 2.9: The RGB cube, when viewed along the principle axis, with white at the front and black hidden at the
back, presents the same view as the top of the HSV hexcone.

18 Chapter 2. Background

S
H

Red

MagentaBlue

Cyan

White

Black

YellowGreen

L

L=1.0

L=0.0

L=0.5

Figure 2.10: The HLS Colour Model

m = min(r; g; b)

V = M (2.13)

S =

�
0 if M = 0
(M �m)=M otherwise

H =

8>><
>>:

UNDEFINED if S = 0
60((g � b)=M �m) if r = M

60(2 + (b � r)=M �m) if g = M

60(4 + (r � g)=M �m) if b = M

For more information on the HSV colour model, including detailed algorithms for conversion between RGB
and HSV, see (Foley et al., 1990; Rogers, 1985).

2.2.5 The HLS Colour Model

Another model that attempts to provide an intuitive method of colour specification is the Hue, Lightness and
Saturation (HLS) model. The HLS model can be pictured as a double hexcone, as shown in Figure 2.10. Like the
HSV model, HLS is a transformation of RGB. Given the discussion of the HSV model above, however, it may be
easier to consider the HLS model as a transformation of HSV. Visually, the transformation is simple. In HSV, the
black point is at the tip of the single hexcone and the white point is in the center of the flat top. In HLS, the black
point is at one tip of the double hexcone and the white point is at the other. This results in the ring of saturated
colours, which is at the flat top of the single hexcone in HSV, being half way up the lightness axis where the two
single hexcones meet. Numerically, this means that a lightness of 0.5 is required to obtain the maximally saturated
colours, as opposed to a value of 1.0 in HSV.

2.2. Colour Models 19

HLS offers a slightly more intuitive method of colour selection than HSV. With the fully saturated colours in
the middle of the lightness axis, the lighter shades (or tints, as they are sometimes called) of a colour are all in
the upper hexcone, with white at the top. Conversely, the darker shades (or simply shades) of a colour are all in
the lower hexcone, with black at the base. This corresponds more naturally to the way an artist mixes colour, as
will be discussed in Section 2.4. By visualizing the L=0.5 plane as being the tones obtained by mixing together
pure colours, the upper hexcone is, by analogy, the result of adding white to any of the tones. Similarly, the lower
hexcone is the result of mixing black with the tones.

The conversion from RGB to HLS is very similar to Equation 2.13, the important difference being the
calculation of the L coordinate compared to that of the V coordinate of HSL. The conversion is

M = max(r; g; b)

m = min(r; g; b)

L = (M �m)=2 (2.14)

S =

8<
:

0 if M = m

(M �m)=(M +m) if L � 0:5
(M �m)=(2 �M �m) otherwise

H =

8>><
>>:

UNDEFINED if M = m

60((g � b)=M �m) if r = M

60(2 + (b� r)=M �m) if g = M

60(4 + (r � g)=M �m) if b = M

For further information on the HLS model, including detailed algorithms for conversion between RGB and
HLS, see (Foley et al., 1990; Rogers, 1985).

2.2.5.1 Value, Lightness and Brightness

While providing more intuitive approaches to colour selection than the RGB model, the HSV and HLS models
do not solve the problem of perceptual non-uniformity. Furthermore, there is a new problem that must be kept in
mind, which is that the neither value nor lightness corresponds to the intuitive notions of lightness or brightness.

Technically, brightness is the intensity of a light source or other self-luminous object, such as a CRT. Lightness
is the perceived intensity of a reflective object. Value is a carefully calibrated uniform lightness scale used in the
Munsell colour system (Munsell, 1947).

While these terms are used in colour models such as HLS, HSV or HSB, the reader should be aware that they
are used in these systems to represent fairly arbitrary measures of colour luminance and should not be confused
with the technical meanings of these terms.

For example, analysis of the fully saturated colours (HSV value = 1, HLS lightness = 0:5), shows that they
do not all have the same perceived brightness. Table 2.1 shows the XYZ tristimulus values and the chromaticity
coordinates, when viewed on a typical colour CRT4, of the three RGB primaries and their complements. A glance
at the Y values (which is proportional to the perceived brightness of the colours) shows that they are far from
uniformly bright, yet they all have a value of 1.

4The chromaticity coordinates of the monitor primaries and white point are those of a typical colour CRT, as suggested in (Hall, 1988).

20 Chapter 2. Background

Colour RGB XYZ Chromaticity

White 1 1 1 0.951 1.000 1.088 0.313 0.329
Red 1 0 0 0.589 0.290 0.000 0.670 0.330
Green 0 1 0 0.179 0.605 0.068 0.210 0.710
Blue 0 0 1 0.183 0.105 1.020 0.140 0.080
Cyan 0 1 1 0.362 0.710 1.088 0.168 0.329
Magenta 1 0 1 0.772 0.395 1.020 0.363 0.181
Yellow 1 1 0 0.768 0.895 0.068 0.444 0.517

Table 2.1: The XYZ tristimulus values and the chromaticity coordinates for a standard set of RGB primaries and
their complements.

2.2.6 The Gerritsen Model

While the HSV and HLS models are an improvement over the RGB model with respect to intuitivecolour selection,
they suffer from the problem that the perceived brightness of the colour does not correspond to the lightness/value
parameter of the model. This is to be expected because the actual colours created by models depend on the
characteristics of the CRT. Without knowing the chromaticity coordinates of the CRT phosphors the perceived
brightness of any colour can not be accurately predicted. Furthermore, even when the chromaticity coordinates
are known, it may not be possible to predict the perceived brightness confidently because of other factors that
influence colour appearance (see Section 2.5.)

However, even if it is impossible to discover the exact perceived brightness of a colour, it is possible to improve
on than the HLS and HSV models. Consider the Y values listed in Table 2.1. They range from .1 to .9, whereas
the value parameter for the HSV model is always 1.0 and the lightness parameter for the HLS model is always 0.5.
Furthermore, the variation is due to the nature of both the phosphors used and the human eye. The values for red,
green and blue in this table correspond to the phosphors and the relationship between them, that of green being
the brightest, red being darker and blue being the darkest. This general relationship is a function of the human
visual system and, therefore, holds for all CRTs, even if the exact numbers vary.

Gerritson noted this and proposed a new model which he refers to as the Colour-Perception-Space (Gerritsen,
1975; Gerritsen, 1988) shown in Figure 2.11. His model corresponds to the HLS space with the important
difference that the fully saturated colours do not all lie on the L = :5 plane. Instead, he codes the Lightness
scale in nine intervals and labels them A-J, where white is A, black is J and the middle grey falls between E and
F. The six primary and secondary colours are arranged around the outside of the hue ring identically to the HLS
space, but that ring is now deformed so that the fully saturated colours have a Lightness corresponding (roughly)
to their luminance. Gerritsen ignores the problem of colours having a different appearance on different CRT’s,
and sets the colours to values that are indicative of what he believes to be their correct perceptual relationship to
each other. Table 2.2 shows the Lightness values Gerritsen uses compared to the luminances of the hypothetical
monitor in Table 2.1. In this case, while Gerritsen’s values have the same relationship to each other as the CRT,
the green that Gerritsen uses is much darker than the green phosphor of the hypothetical CRT. As a result, the
green value is darker than its complement magenta, whereas our hypothetical CRT has a green that is brighter than
its complement magenta. However, perceived brightness is not exactly equivalent to luminance, so his values
are actually more reasonable than suggested by Table 2.2. In any event, the Lightness values of the model more
closely reflect the perceived brightness of the colours than the HLS or HSV models.

The idea behind Gerritsen’s model, regardless of its shortcomings, is a good one. It is often desirable to specify
something akin to the perceived brightness of a colour when making colour selections, such as when two or more

2.2. Colour Models 21

A

B

C

D

E

F

G

H

I

J
Red

Green

Blue

Yellow

Cyan

Magenta

Black

White

Figure 2.11: Gerritsen’s Colour-Perception-Space (Adapted from Gerritsen (1988))

Colour Gerritsen Y

Red 0.33 0.29
Green 0.44 0.61
Blue 0.22 0.10
Cyan 0.66 0.71
Magenta 0.55 0.39
Yellow 0.77 0.90

Table 2.2: Gerritsen Lightness Compared to Colour Luminance on One CRT

22 Chapter 2. Background

colours of the same perceived brightness are needed. Gerritsen’s Colour-Perception Space allows this, whereas
the RGB, HSV and HLS models do not except via experimentation.

2.3 The OSA Colour Space

Another useful uniform colour space was created by the Optical Society of America (OSA) Committee on Uniform
Color Scales. It consists of a set of 424 painted samples. These tiles are arranged as a lattice of points in a regular-
rhombohedral crystal in a Euclidean colour space. The colour space is perceptually uniform, in that equal distances
between points correspond to equal visual differences between the corresponding colours. The organization of the
space was chosen so that each point has 12 equally spaced neighbours and would appear in six entirely different
equally spaced uniform scales. This organization is based on Wyszecki’s uniform colour space, which is in turn
derived from the Munsell space (Wyszecki, 1954), and is chosen so that

the system of colour sampling ... provides the maximum number and variety of [one and two
dimensional] uniform colour scales and exhibits the maximum possible variety of relationships
among colours (MacAdam, 1974).

The colour difference information for the space was experimentally derived by having subjects judge pairs
of 59 sample tiles for colour difference. The data for the subjects was analyzed and a mathematical model was
derived that best fit this data. The final 424 points in the colour space were generated from this mathematical
model and checked further.

A shortcoming of the OSA space is that the equations used to derive the colours do not extrapolate well outside
the range of the original colour tiles. The final set of tiles encompases a subset of the possible colours that are
available on a CRT, for example, and the equations become very badly behaved within the gamut of a typical CRT.
Work has been done to try and create a model that is more comprehensive compared to the CRT gamut (Seim and
Valberg, 1986).

The committee hoped that because of the striking and unusual colour relationships displayed in its various
colours scales, “artists and designers [would] find it useful in devising new and beautiful arrangements of
colors” (MacAdam, 1974). In fact, that has happened. Artist Karl Gerstner, for example, has made use of this
system in his art and states

Whether the uniform color space is the final model of colorimetrics, sought by so many generations
of scientists, can be determined only by future research. As far as I am concerned, one thing is
certain: it imparts a surprisingly novel experience of color and could not be more stimulating to the
artist (Gerstner, 1986).

2.4 Artistic Colour Use

To create a window system that assists with aesthetic colour selection, it is useful to consider the techniques used
by artists to select harmonious colour. Many artists have developed theories of colour, including (Albers, 1971),
Gerritsen (see Section 2.2.6), (Itten, 1961), (Munsell, 1947) and many others. For a good introduction to such
theories, see (Hope and Walch, 1990) and (Norman, 1990).

Recently, artist Stephan Quiller has taken the standard colour circle, familiar to all artists, and developed
a detailed colour model for use by artists (Quiller, 1989). It is based on the subtractive colour circle that all

2.4. Artistic Colour Use 23

art students learn; the primaries are red, yellow and blue, the secondaries are green, violet and orange. Quiller
explains how to use the model effectively, especially by describing techniques for creating harmonious colour
palettes using a few simple colour schemes.

While much of Quiller’s discussion applies only to painting, the concepts of colour harmony he presents are
generally applicable. He describes five major colour schemes that can be created in a structured manner using the
colour wheel and discusses how to create harmonious colour schemes with them.

The Monochromatic Colour Scheme The simplest of the colour schemes uses a single hue, which can be varied
in both lightness and saturation. When using a monochromatic colour scheme, the key issue is how lightness and
saturation are used. For example, since the eye is drawn to areas of strong contrast they should be used sparingly
and purposefully to attract the eye; otherwise, “the eye would be disturbed and would have a hard time looking at
the painting.”(Quiller, 1989, p.31). Areas away from the center of attention should use colours which are similar
in lightness and saturation.

By their very nature, the colours of a monochromatic colour scheme are harmonious. While it is hard to create
visually stunning effects with this scheme, the results are usually pleasant, if somewhat bland.

The Complementary Colour Scheme Complementary colours are located opposite each other on the colour
wheel (or hue circle.) When true complements are mixed together, they produce “beautiful neutral colours” (Quiller,
1989, p.38). When mixed in correct proportions, they produce a neutral grey. The complementary colour scheme,
therefore, consists of a colour, its complement and all the semi-neutral colours created with them.

The complementary scheme works especially well because of the visual phenomenon of simultaneous contrast
(see Section 2.5.) However, it is precisely this effect which makes this scheme hard to use. If both the highly
saturated complementary colours are used equally throughout a composition then they compete. One way of using
two complementary colours effectively is to pick one as the dominant colour and the other as subordinate. The
dominant colour is used in large amounts with varying value and intensity. The subordinate colour is used in
small amounts to bring the dominant colour to life. Quiller does not give a satisfactory explanation of how to use
dominant and subordinant colours, instead relying on examples and exercises to help the artist develop a feeling
for the correct use of this scheme.

The Analogous Colour Scheme The analogous colour scheme uses three closely related colours. By considering
the twelve primary, secondary and tertiary colours, any adjoining three of these (plus the light and dark values and
semi-neutrals of those colours) make up an analogous colour scheme.

Like the monochromatic colour scheme, the analogous colour scheme is harmonious by its very nature. By
selecting three adjoining colours, each colour is close enough to the others to be visually related. Analogous
colour schemes are slightly harder to use than monochromatic ones, but more visually interesting.

The Split-Complementary Colour Scheme The split complementary colour scheme is a union of the comple-
mentary and analogous schemes. First, select the analogous colour scheme that is to dominate the composition,
then add the complement of the middle analogous colour to the scheme. This scheme is a natural extension of the
analogous scheme, with richness added by the complementary colour.

While giving a richer result than the analogous scheme, this scheme shares the problem of the complementary
scheme; it is difficult to achieve balance between the complementary colours, the choice of saturation and value
being a very subjective decision.

24 Chapter 2. Background

The Triadic Colour Scheme The final colour scheme presented by Quiller, the triadic colour scheme, is created
by selecting any three equally spaced colours around the circle for the primary colours. This scheme creates very
colourful and potentially striking palettes, but is much more difficult to use than the above mentioned schemes.
Satisfactory use of it seems to depend on sophisticated artistic intuition.

What makes these colour schemes important is their applicability to be algorithmicapplication. The monochro-
matic and analogous colour schemes are especially useful because of their simplicity and inherently harmonious
nature. The complementary, split-complementary and triadic schemes require significantly more artistic intuition
to be successfully applied, and thus do not lend themselves as well to automatic application.

2.5 Colour Perception

The psychophysical and physiological basis of human colour vision, the process by which coloured light is
converted into an image inside the human brain, is far from being completely understood. For an in-depth look at
colour vision, see (Boynton, 1979).

Some things are known about colour vision: for example, it is believed that the colour information in the
visual system is processed in parallel and independently of other aspects of vision (Cowan and Ware, 1985). Also,
the sensation of colour hue is very complicated, being far more than just a perception of the dominant wavelength
of the light entering the eye. Josef Albers (1971) shows how simple it is to create visual illusions such as making
two colours appear as one. Other visual illusions, such as creating impressions of transparency and depth with
colour, are discussed by Albers and in (Hope and Walch, 1990).

Many of the effects discussed by Albers are the result of simultaneous contrast, an effect where colour
differences are increased at edges. Other aspects of colour perception, such as successive contrast, colour
blindness and chromatic aberration, also affect the appearance of colours. What is important for the reader to
realize is that colours interact with other colours in proximity to them, altering the viewers perception of their
colour value. A few perceptual effects are especially relevant to this thesis, and are discussed below.

Colour Constancy An extremely important perceptual phenomenon is colour constancy. This is the effect
whereby different objects maintain their colour appearance under a wide variety lighting conditions. The easiest
way to see the effect of this is to put on a pair of coloured sunglasses on a sunny day. Immediately, all the colours
in the visual field will change due to the loss of light and the colour of the glass. After a short time, the objects
being viewed will seem to change back to their original colours, even if the sunglasses are tinted a distinctive
colour such as red or orange. Similarly, human vision is capable of accommodating huge ranges of brightness,
from bright daylight to moonlight. With very dim light, however, the sensation of colour ceases, with red being
visible the longest as light is decreased.

Veiling Veiling is a situation whereby the lighting conditions in the viewing area alter colour appearance. With
respect to self luminous objects, such as CRTs, the spectral power distribution V� of a veiling light is added to
the object’s spectral power distribution E�, changing the colour of the object. Consider the colour matching
experiment described in Section 2.2.2. To change the appearance of one coloured light, another coloured light is
added to it. Similarly, if the amount of light in the viewing area of a coloured light source is changed, the colour
of that light will change. This effect is seen when the lights in the area of a computer screen are turned on, or the
sun shines on a computer screen. In either of these cases, the addition of large amounts of white light causes the
colours on the screen to appear lighter and desaturated.

2.6. Basic Colour Terms and Colour Discrimination 25

Colour Memory Human colour memory, or the ability to remember a specific colour and be able to identify it
later, is not very good. The concept of colour memory, as used here, is best illustrated with an example. Consider
the colour red used on stop signs. This is a colour that most people have seen many times. Yet a typical observer,
given a group of similar reds, one of which is the red used on stop signs, would most likely not be able to identify
it.

Helson et al (Helson, Judd and Warren, 1952) studied object colour changes under different lighting conditions.
In the course of their study, they trained subjects to identify colours in the Munsell colour space. Even after training,
their subjects were not able to exactly identify the Munsell name of a sample colour. Their results were informally
analyzed and show that the subjects were only capable of identifying approximately 1500 distinct colours. If this
is all that can be expected when subjects are actively trained to identify colours, much less can be expected of the
average untrained person, perhaps as few as 100-150 distinct colours.

2.6 Basic Colour Terms and Colour Discrimination

The linguistic concept of basic colour terms were introduced by anthropologists Berlin and Kay (Berlin and Kay,
1969). It has been suggested, based on their work, that there may be only 11 categories of basic colour sensations,
each associated with a well-learned name and possibly a unique physiological substrate. Basic colour terms provide
faster and more reliable colour naming than other terms, with greater agreement amount viewers. (Smallman and
Boynton, 1990). Colour naming is important because colours on a display will often need to be cross referenced,
as in “the red window” or the “green window with blue text”. Furthermore, if the suggestion that each of these
basic colour names represents a basic physiological colour sensation is correct, these colours should be optimal
for colour categorization.

There is no simple definition of what constitutes a basic colour term. Intuitively, they are words such as
black, white, and green but not expressions such as crimson, scarlet, blond, blue-green, bluish, lemon-coloured,
salmon-coloured, and the colour of the air pipes in the Davis Centre. Berlin and Kay (Berlin and Kay, 1969)
proposed that the basic colour terms are similar across all languages. This proposal contradicted the prevailing
doctrine of American linguists and anthropologists, which held that each language performs the linguistic coding
of life experiences in a unique manner. They found that, although different languages encode in their vocabularies
different numbers of basic colour categories, a universal list of eleven categories exists from which the basic terms
in all languages are drawn. These terms are black, white, red, green, yellow, blue, brown, purple, pink, orange,
and grey. Their findings have been experimentally confirmed by Boynton and his students (Boynton and Olson,
1990; Uchikawa and Boynton, 1987; Uchikawa, Uchikawa and Boynton, 1989; Smallman and Boynton, 1990).

The last of these studies is of particular interest. Prior to this paper, research seemed to suggest that there is
an upper limit on the number of colours that can segregate successfully, perhaps as low as six. In the context of
a computer display with coloured windows, this implies that if more than six different colours are used for the
windows, the ability of the user to organize these windows and quickly associate a certain colour with a certain
window context is significantly diminished. However, Smallman and Boynton showed that by drawing colours
from the eleven basic groups, this limit can be almost doubled. Furthermore, the use of basic colours yields
equivalent search performance for two types of cues—examples and names. This is an important point, because
coloured objects are often referred to by colour names. They also noted that the good separation of the basic
colours5 counts more for useful segregation than the fact that they are basic colours. The mean interpoint distance
between each of the optimal basic colours and all others is shown in Table 2.3. By using a set of non-basic
colours with only half the interpoint OSA distance of the basic colours, Smallman and Boynton showed that in

5The separation of two colours is defined here as the Euclidean distance between them in the Optical Society of America (OSA) uniform
colour space.

26 Chapter 2. Background

Basic Colour Mean Interpoint
OSA Distance

Yellow 13.84
White 13.01
Orange 12.73
Blue 12.14
Green 11.59
Pink 11.37
Purple 11.34
Black 11.30
Red 11.04
Brown 9.47

Table 2.3: Mean Interpoint Distance in the OSA Uniform Colour Space is OSA Units between Each Optimal
Basic Colour and All Others (Smallman and Boynton, 1990)

one extreme case, efficient colour coding can take place with 14 colours as long as they are well separated in the
OSA space. However, the use of basic colours is still advantageous because the ease of attaching universal names
to the colours for cross referencing.

The suggestion that colour distance accounts for the segregation of two colours raises an interesting question.
It is well known that adaptation in the human visual system causes sensitivity to luminance contrast to scale
relative to the range of the luminances of all objects in the visual field, dulling sensitivity to small contrasts when
large contrasts are present (Cowan and Ware, 1985). Does a similar effect hold for chromatic contrast? If so,
similar colours can be easily differentiated as long as there are no radically different colours present in the visual
field. However, using closely spaced colours is often a bad idea because of the poor quality of colour memory.
For example, consider a display that uses three shades of blue. While all three shades are visible, it may be quite
easy to discriminate between them. However, if the darkest shade is removed, it is hard for a user to decide if the
darker of the two remaining colours is the “darkest” of the three, or the “middle” of the three. This is because
relative judgements are precise, so the user will create associations with the “dark blue”, the “light blue” and the
“middle blue”. When one is removed, the relationship is destroyed. When the display consists of three basic
colours such as red, blue and green, removing one colour does not pose the same problems.

In addition, the effects of variable illumination and the large variance in colour response of different monitors
means that colours which were designed to be close to one another, such as similar shades of some colour, may
sometimes appear the same.

Grouping of colours using the basic colour terms satisfies a key requirement for organizational colour use:
they are easily distinguishable from each other by the vast majority of readers and they have unique names.

2.7 Contrast and Reading

When using colour for text, the most important consideration is readability. It is irrelevant how aesthetically
pleasing the colours are if they prevent the text from being read! Legibility has been addressed by numerous
studies with quite similar results (Legge, Rubin and Luebker, 1987; Legge, 1989; Legge et al., 1990; Rubin and
Legge, 1989; Tinker, 1963; Knoblauch and Arditi, 1989; Knoblauch, Arditi and Szlyk, 1990; Gould et al., 1987).

2.7. Contrast and Reading 27

Many factors influence the legibility of text displayed on a computer screen: the typeface of the text, the
resolution of the computer display, the contrast between the text and the background, and so on. Contrast
is particularly interesting. Most studies examine luminance contrast (the luminance difference between the
characters and the background) without considering colour contrast (the chromaticity difference). Normally, the
clarity of text is a function of the luminance contrast between the text and the background. However, luminance
contrast is not required for text to be readable. Colours with the same luminance (referred to as equiluminant
colours) but with high chromatic contrast can create legible text (Knoblauch, Arditi and Szlyk, 1990; Legge et al.,
1990).

Luminance contrast is usually measured by comparing the luminance of the foreground and background
colours6 using a standard contrast measure, such as Michelson contrast.

C =
Lmax � Lmin

Lmax + Lmin

(2:15)

C ranges from 0 to 1.0. Unfortunately, a reasonable measure for equivalent chromatic contrast is not quite as
straightforward. While measuring the distance between two colours is possible in a uniform colour space, it is
not obvious how to measure contrast using these distances. Legge (Legge et al., 1990), for example, measured
chromatic contrast by looking at the wavelengths of light seen by the long- and medium-wavelength-sensitive
cones in the eye.

The major results of the aforementioned studies are as follows:

� For people with normal vision, reading speed deteriorates by about half as luminance contrast falls from
100% to 12%. Below 12% contrast, reading rate drops very rapidly. It appears that for contrasts greater
than approximately 12%, reading rate is not significantly affected.

� Chromatic contrast is similar to luminance contrast, once the data is normalized to the respective threshold7

levels. To further complicate matters, the reading threshold changes based on the character size. At normal
to large text sizes, consisting of characters with a visual angle8 of less than 1�, the luminance threshold is
lower than the colour threshold. However, when character size increases to very large sizes of around 6�,
the colour threshold lowers to levels approximately equal to the luminance threshold. It is possible that
chromatic contrast may outperform luminance contrast for character sizes larger than 6�.

� The two forms of contrast are processed independently within the visual system. It appears that readers rely
on whichever conveys the most information. Readability is equivalent to the maximum of luminance and
chromatic contrast.

With the exception of Gould et al. (1987), these studies look at reading speed for relatively small amounts of
text, with no consideration given to reading comfort or effort required. Clearly, reading at maximum speed should
require little effort, or extended reading will be fatiguing and quite unpleasant. Intuitively, one would expect
a range of contrasts where reading at maximum speed is possible, but where the reader has to strain somewhat
to achieve this speed. This situation is not desirable from the point of view of the reader, even if they are not
consciously aware it is occurring. The issue of reading comfort has been addressed by (Gould et al., 1987). His
interest is in why reading from a CRT is slower than reading from paper. Unfortunately, his suggestions for
improving reading speed on a CRT do not consider colour or contrast, rather concentrating on issues such as
character size while using only black on white or white on black text.

6The luminance of a colour can be measured using a photometer, for example.
7The reading threshold refers to the minimum level at which reading is possible.
8visual angle is “the angle formed at the eye by rays from the extremities of an object viewed”(Allen, 1990)

28 Chapter 2. Background

In section 2.6, several issues are discussed which relate to the way colours are perceived. Many things that can
change the appearance of a colour, such as lighting and vision problems, are considered. Just as these factors need
to be taken into account when quantifying colour discriminability, they should be considered when discussing
levels of contrast. The luminance of a colour, and thus its contrast with any other colour, is directly affected by
such things as lighting conditions. By increasing the background light in the vicinity of a CRT, or more drastically
by shining light directly on the CRT, luminance contrast is diminished. Similarly, the perceived saturation of the
colours will be decreased by strong veiling lights, reducing chromatic contrast.

Adaptation presents another interesting problem because the threshold level for contrast is dependent on the
largest contrast presented to the reader.

2.8 Colour Harmony

According to the Concise Oxford Dictionary (Allen, 1990), harmony is defined as “an apt or aesthetic arrangement
of parts ... the pleasing effect of this.” Unfortunately, defining harmonies, particularly colour harmonies, is not
simple. Meier (1988) looked at the problem of colour harmony and reported

We tried to discover a general relation between any two colors in a three-dimensional color space
that would show whether the two colors harmonized or contrasted and how attractive they appeared
together ... we were unable to find any general relations.

Similarly, Hope and Walsh (1990) comment

Harmonies are subjective; those that appeal to some people, repel others. Although the human eye
and mind are sensitive and efficient in sorting out, responding to, and creating harmonies of color, it
has proven impossible to formulate and establish absolute rules for harmony.

There are many theories of colour harmony, but most of them share a few common problems. First, they are
usually created for a specific audience. For example, Quiller’s (1989) theories (Section 2.4) are directed at artists
and Albers (1971) theories (Section 2.5) are directed at the graphic designer. Second, they tend to be medium
specific. Quiller discusses the number of pigments are use, selecting colours for use as translucent washes, the
effects of mixing pure pigments with black and white, etc. Albers, on the other hand, discusses the relative sizes
of pieces of coloured paper, visual illusions such as simultaneous contrast and how to avoid them, etc.

Finally, and most importantly, none of these theories are sufficiently prescriptive or rigorous. They all rely
on the colour sense of the user to such a degree that they are not easily computerized; artists and designers
cannot provide algorithms for harmonious colour selection. This inability occurs because many guidelines are
expressed in terms of such concepts as “visual balance,” which are possible to explain through examples but not
with algorithms. These theories are necessarily underdetermined, and must be to allow for artistic expression.
Consider the following:

� Given the same theory of colour harmony, two designers would most likely create two completely different
colour palettes, each of which fits the constraints of the given theory.

� It is possible to choose palettes that satisfy all the guidelines of a theory, yet are not aesthetically pleasing.

This is not to say that the quest for colour harmony is hopeless. The ultimate model of colour harmony
is not in sight, but some modest results are possible and, for our requirements, preferable. For example, two

2.8. Colour Harmony 29

of Quiller’s colour schemes, the monochromatic and analogous schemes, seem convertible into algorithms that
generate harmonious colour palettes. While uninteresting from an artistic viewpoint, these palettes will provide
some minimum level of harmony that will be inoffensive to many people. While the “best” harmonies are novel or
unexpected, they are the least easy to find by algorithmic approaches and the most likely to arouse disagreement.
Algorithms for generating harmonious colours are a good subject for a thesis, but are not the main subject of this
thesis.

Many colour theories aim to develop the student’s sense of harmony, as opposed to dictating rules of colour
use. By teaching and suggesting instead of dictating, more of the historical colour theories can be used. Thus,
while many of the theories cannot be turned into algorithms that always generate harmonious colours, they may
be turned into algorithms that sometimes generate harmonious colours. By incorporating human criticism with
computer generation, these algorithms are useful.

30 Chapter 2. Background

Chapter 3

Colour Usage

This chapter explores how colour is used, both in a general way and in computer window systems specifically.
Unfortunately, use of colour is not a well understood topic. Despite much research, results in the area amount to
little more than conjecture, rules of thumb and subjective guidelines. The aim of this chapter is not to create a
comprehensive model of colour usage, but to extract a set of theories that can provide a realistic basis for a set of
tools to assist in the task of colour selection for windowing systems.

First, a useful categorization of colour usage is explained. Following this, important uses of colour in window
systems are described in the context of this categorization, both to show its utility and to highlight the problems
this thesis will attempt to solve.

In this chapter, a “colour” refers to colour as the property of the appearance an object, such as the background
colour of a window or the colour of an apple. “Colour value” refers to the location of a colour in one of the many
colours models described in Section 2.2. Thus, text in a window has a colour which in turn has a colour value
with respect to one of the colour models.

3.1 Categorization of Colour Usage

Colour is one of the most poorly understood aspects of computer window systems. It is rare to find two users
who describe their colour use the same way. For example, some users describe using colour for purely aesthetic
reasons, while others mention using colour to distinguish different windows. Taking these descriptions as a whole,
however, it is possible to distinguish several common themes.

Colour usage can be divided into four categories by distinguishing between two important aspects of colour
usage, colour relationships and colour intent, as shown in Figure 3.1. The first, colour relationships, divides colour
usage between absolute and relative. The distinction is between colours whose values are determined from an
absolute specification and colours whose values are determined relative to the values of other colours. The second,
colour intent, divides colour usage between functional and aesthetic. This distinction is between colours whose
values are intended to subserve a utilitarian function and those whose function is aesthetic.

31

32 Chapter 3. Colour Usage

STOP

Monet

Foreground

Absolute vs. Relative
Relationship

F
un

ct
io

na
l v

s.
 A

es
th

et
ic

In
te

n
t

Figure 3.1: Colour usage can be divided into four categories by distinguishing between colour relationships and
colour intent. Typical examples are raytracing, the Impressionist paintings of Claude Monet, stop-sign red and
adequate foreground/background contrast.

3.1.1 Absolute versus Relative Colour

3.1.1.1 Absolute Colour

Absolute colour refers to colour values that are meaningful because of their absolute position in the colour space.
For example, red is often used to signify danger or warning, as when used on a stop sign. The meaning associated
with red is created by society and is linked to the absolute position of the colour value. Another use of absolute
colour occurs in the use of trademarked colours. The blue used by Xerox is different from the blue used by IBM,
which is in turn different from the blue used by Sun. The exact blue colour in each case is trademarked by its
absolute colour value.

When realistic images are created using techniques such as ray tracing or radiosity, colour is used in an absolute
way. The exact colour value for each point in an image is computed by simulating the interaction of light and
matter. Thus, the meaning of the colour values are related to their absolute position in colour space. This is an
example of the absolute use of colour.

3.1.1.2 Relative Colour

Relative colour, on the other hand, refers to colour values which are meaningful through their relationships with
other colour values. Consider a user of a computer window system attempting to select colours for many windows.
Aesthetic considerations notwithstanding, the user will consider certain criteria when selecting values for these
colours, some of which represent functional colour usage. For example, there will need to be enough contrast
between the foreground and background colours of any particular window so that the window contents to be
legible. More interestingly, the values of colours in unrelated windows will need to be distinct enough that the
windows will appear to be visually unrelated. In both of these cases, the absolute values of the colours are not
important. Rather, their values relative to other colours are at issue.

3.1. Categorization of Colour Usage 33

Consider the way in which certain impressionist and postimpressionist painters, such as Van Gogh and Monet,
used colour. Instead of using purely realistic colour values, they used relative colour techniques to create more
vibrant and intense colour impressions. By exaggerating the colour values in the shadows of a painting, for
example, a viewer’s perception of the colours outside of the shadows can be enhanced, possibly beyond the limits
of the paint gamut. Another technique used by some impressionists was to mix dabs of bright colour directly on
their canvases and allow the viewer’s eye to mix these colours, creating additive colour sensations in a subtractive
medium. In both of these examples, the actual colour values being used are important only in their relation to the
other colours in the paintings; as such, they represent relative colour use (Hope and Walch, 1990).

Obviously, there are cases when the dividing line between absolute and relative colour is not clear. A particular
shade of red may be chosen both to represent danger and to provide enough contrast with another colour to allow
text to be read. In this situation, the colour has both absolute and relative properties. Which is most important
varies from one situation to another. However, both properties exist and both are used to determine the value of
the colour, regardless of which is more important in the mind of the person selecting the colour.

3.1.2 Functional versus Aesthetic Colour

3.1.2.1 Functional Colour

Functional colour refers to colours whose values are chosen to provide some sort of functional benefit to the
user. This includes, for example, colour used to imply professional association through the use of trademarked
colours, to convey spatial, temporal and structural organization, to aid in comprehension or to emphasize important
information.

Consider the examples of relative colour described in the preceding section. The problem of choosing visually
unrelated colour values for logically unrelated windows represents a functional use of colour because the logical
organization of the windows is conveyed to the user by colour. A more obvious use of functional colour is the
selection of colour values for the foreground and/or background of a window. In this case, the colour values must
contrast enough that the contents of the window are legible. Again, the values of the particular colours are chosen
to provide some functional benefit to the user.

This is not to imply that functional and relative colour are equivalent. For example, the absolute use of the
colour value red to signify danger is also an example of functional colour usage.

3.1.2.2 Aesthetic Colour

Aesthetic colour refers to colours whose values are chosen for their aesthetic properties. Very few colour choices
are made without considering aesthetics to some degree.

Users often believe that colourful interfaces improve their productivity. They feel that colour is less monotonous
and causes less fatigue and eyestrain (Meier, 1988). Colour workstations are often seen as a status symbol or
an indication that their employer is concerned about them. In addition, colour allows users to personalize their
environment by expressing their colour preferences, which may make the environment more pleasant to use. If
the environment is more enjoyable to use, people may work longer and take fewer breaks. Conversely, if the
colours used by the system are arbitrarily restricted and the user finds them unpleasant, they will not enjoy using
the environment which may have detrimental effects on their productivity. There are many sets of colours that
satisfy the functional requirements of the window system. The user should be allowed to select a set that they
prefer.

As with the boundary between absolute and relative colour, the distinction between functional and aesthetic
colour is not always clear. As illustrated above, when a colour is selected for use as a background colour in a
window, there are both aesthetic and functional aspects to be considered.

34 Chapter 3. Colour Usage

3.1.2.3 The Fallacy of Functional and Aesthetic Incompatibility

There is a belief among many people that aesthetic and functional considerations are at odds with one another.
Statements such as “Any decorative use of colour should be subservient to the functional use” and “In general,
it is good to minimize the number of different colours being used” are common in guidelines for user-interface
design (Foley et al., 1990). The purpose of such guidelines is to avoid garish displays and unintentional user
associations.

Consider the implications of allowing users to choose the foreground and background colours for their
windows. In the previous section it was suggested that there are many sets of colours that satisfy the functional
constraints of a window system, so the user should be allowed to select the set that they prefer. However, there is
no guarantee that users will select colours that satisfy any of these functional constraints, such as provide enough
contrast to enable them to read quickly and with a minimum of errors. This is obviously of concern to employers,
since productivity can be adversely affected by such problems.

However, the problem is not that functional and aesthetic constraints are incompatible, but rather that there are
no tools available to help the user select colours in an intelligent manner. When users make colour choices, they
do not purposefully select colours which violate the functional constraints. Instead, they are either unaware of all
the functional constraints that should be considered or incapable of creating a set of colours that satisfies these
constraints. Even if the choices are being made for purely functional reasons, given a reasonably large number of
windows, it is quite difficult for most people to satisfy all the constraints without help.

3.1.3 Multiple Categorization

Most colours on a display can be described by more than one of the four categories discussed above. The categories
describe the uses of colour, and most colours are determined by the interaction of more than one functional or
aesthetic requirement, either absolute or relative. For example, the choice of the colour used for the title on the
cover of a book may be determined by any of the following:

� the relative contrast between the background and foreground colours.

� the absolute colour associated with the publisher, book series, author, institution or company.

� the aesthetic interaction of the title with pictures on the cover.

� the aesthetic judgments of the publisher, author or cover designer.

� contrast with other books on the same topic.

Therefore, when considering colour usage in window systems it must be remembered that most colours are
simultaneously subjected to constraints from more than one of the four categories. As as result, it is not always
possible to identify a primary use for any colour, nor is it necessary to do so.

3.2 Colour Usage in Window Systems

The next step in developing a set of tools to assist with colour selection is to examine how colour is used in
window systems and decide how the window system can help the user. Each of the four categories introduced
above are discussed in turn, highlighting the common ways colour is used in each of them.

3.2. Colour Usage in Window Systems 35

3.2.1 Absolute Functional Colour Use

Absolute functional colour is commonly used in window systems to create an association between the colour and
something. Consider the following:

� Colour denotes a physical property of an objects, such as ripeness.

� Colour denotes a conceptual property of an object, such as a blue being associated with IBM or red being
associated with danger.

There are two important things to note about absolute functional colour use. First, there are obviously times
when functional requirements of colour demand that the colour value displayed be exact, such as is the case when
a trademarked colour is used. Conversely, there are times when a request for an absolute colour does not require
an exact colour value. Consider using red to associate something with danger. There are many shades of red and
many of them serve the purpose equally well. Both of these cases of functional colour must be supported by any
usable system.

3.2.2 Relative Functional Colour Use

Relative functional colour can be used in many different ways in computer window systems. Two of them,
ensuring legibility and showing the logical or structural organization of the windows, are particularly important.

Ensuring legibility is the most basic functional requirement. In studies conducted by Legge and others
(discussed in Section 2.7), reading speed dropped when contrast was inadequate, and reading errors also increased.
As conditions deteriorate in these studies, so does reading performance. However, this could be due to speed,
errors or subject fatigue. Gould et al (1987) showed that even with the maximum possible contrast, reading on a
CRT is usually slower than reading from paper.

Structural organization can be effectively conveyed through colour. As a simple example, similar colours
can be used to display functionally related windows and distinct colours to display unrelated windows. A major
concern in selecting colours in this manner is to avoid false associations. This problem, unfortunately, is not
easily solved. Colour difference is relatively easy to measure (see Sections 2.2.2.2, 2.3 and 2.6) but there are
additional factors affecting colour similarity which are not understood and make it more than just the inverse of
colour difference. For example, the distance between a particular value of red and and some shade of pink may
be exactly the same as the distance from the red to some shade of yellow, yet there is something about the red and
pink that makes them more strongly associated. In this case, the similarity of their hues probably accounts for the
association between them. However, consider a red and a pink that have the same difference measure as a yellow
and a brown. In this case, the yellow and brown may also have the same hue, but the association between them is
much weaker. Alternatively, consider the situation in which the majority of the colours in the users visual field are
very desaturated. Those few colours that are saturated may be associated by the user. The key phrase here is may
be associated, as people create associations differently. Associations between colours are also created for many
other reasons, such as the nationality and age of the user, that vary from person to person and cannot possibly
be accounted for. As a result, it may be impossible to guarantee that false associations are never created on an
extremely colourful display.

Other uses of relative colour will not be discussed in depth. For example, colour is often used to aid in
comprehension and to emphasize important information, both of which represent relative functional colour use.
In both cases, the problem can be thought of as showing the logical or structural relationships of objects within
a single window or application. The problems are analogous to the problem of window organization, and can be
handled similarly.

36 Chapter 3. Colour Usage

3.2.3 Absolute Aesthetic Colour Use

Absolute aesthetic colour, as can be inferred from the above, refers to any colour whose aesthetic properties
depend on its actual colour value. Examples of absolute aesthetic colour usage are the following:

� Colours that are required to be an exact value for some artistic or subjective reason. This is the typical
interpretation of absolute aesthetic colour usage.

� Colours whose values are precisely computed as part of some image generation technique, such as ray
tracing, and whose values must be displayed exactly as specified. It should be noted here that while the term
aesthetic is usually associated with artistic colour usage or personal colour preferences, the colours used in
pictures generated by realistic rendering techniques are also considered aesthetic under this categorization.
The individual colour values serve no function aside from creating a realistic image. The success of the
image is determined by the realism of its appearance, which is largely an aesthetic issue.

� Colours that can have one of many values within a certain absolute range. Consider, for example, when a
user decides that a certain window should have a green background. In some cases, an exact value of green
is required, but more often the desire of the user is to have a colour “something like a certain green”. The
exact value is not important. Often the specific value of the colour is determined by the user in an attempt
to solve some other functional or aesthetic issue.

Just as with absolute functional colour, different degrees of absolute are required. Colour will need to be
specified in any level from “exactly this value” to “something close to this value.”

3.2.4 Relative Aesthetic Colour Use

Most of the colour choices that a user makes are determined to some degree by aesthetics. As a result, relative
aesthetic is the category of colour use employed most often by users of window systems. While some aesthetic
colours choices are absolute, many more are made in relation to existing colours, since the easiest way of achieving
harmonious colour is to select colours that have a close relationship to each other. Consider the colour schemes
suggested by Quiller in Section 2.4. All of these schemes are defined by one, two or three absolute colours. All
other colours in a composition are chosen relative to these.

Chapter 4

Colour Contrast

The major obstacle when attempting to select colours is the large number of constraints that simultaneously affect
any single colour choice. There are two ways a system can assist users in making effective and harmonious colour
choices:

� the system reduces the number of constraints that must be explicitly handled by the user. In particular, to
enable users to concentrate on aesthetic issues, the system should reduce the number of functional constraints
that the user must consider.

� the system reduces the number of choices the user must make. In particular, the user is allowed to make a
few aesthetic colour choices and the system selects the remaining colours to satisfy functional and aesthetic
constraints.

In both cases the system must make colour choices based on functional colour constraints. Maintaining sufficient
contrast between background and foreground colours to provide legible and readable window contents is the most
important functional colour constraint. In this chapter a metric for measuring the contrast of a pair of colours is
presented.

There has been much work done relating to contrast and reading, as discussed in Section 2.7. When considering
the effects of contrast on colour displays, two aspects of contrast must be considered. Luminance contrast is the
relative difference between the luminance of the foreground and background colours. Chromatic contrast is the
relative difference between the chromaticity of the foreground and background colours. Research has shown
that either luminance contrast or chromatic contrast is sufficient for reading and legibility, and that the visual
system will use whichever one provides the greatest legibility. However, there is no generally accepted metric for
measuring chromatic contrast. For this reason, only luminance contrast is considered here.

4.1 Luminance Contrast

Luminance contrast measures the difference in lightness of the foreground and background colours, usually as a
ratio. Different studies of legibility and contrast find a wide range of values for the minimum contrast consistent
with satisfactory reading, probably because of variations in the meaning of “satisfactory”. For example, both
Legge (1987) and Knoblauch (1990) find deterioration in reading with contrast to be statistically significant only
when the contrast drops as low as 12%. By this point, however, reading speed is down to 50% of the high

37

38 Chapter 4. Colour Contrast

contrast value and reading comfort probably much lower. Gould et al (1987), on the other hand, found reading
speed on CRTs to be lower than paper reading speed at all CRT contrast levels. An informal study conducted by
the author found luminance contrasts between 80% and 95% required for comfortable reading by some users1.
As a result, the minimum contrast value should be user adjustable, with a value around 12% being the absolute
lowest reasonable value and something much higher, such as 80% or more, used as a reasonable default. Because
luminance contrast between colours with similar chromaticities may need to be very high for comfortable reading,
chromatic contrast should be studied further. Otherwise, many pairs of colours with low luminance contrast but
high chromatic contrast will be disallowed even though they may be perfectly acceptable.

4.2 Calculating Luminance

Before Equation 2.15 can be used used to calculate the contrast between the background and foreground colours,
the luminance of these two colours must first be determined. Section 2.2 shows that the luminance of any colour
on a display is the Y coordinate when the colour’s value is expressed in the XYZ colour space. To convert from
one of the standard colour models used in computer graphics to XYZ, the chromaticity coordinates of the display
must be known. They are often available from the monitor manufacturer, or can be measured with a colorimeter
as described in Section 2.2.2.2. If it is not possible to determine the chromaticity coordinates of the display, the
coordinates of a similar monitor or the coordinates of a standard monitor can be used. However, while many
monitors have similar coordinates, they do vary, even between similar models. Large variations are probably
due to some fundamental change in the internals of the monitor. Such changes occur even between monitors of
the same make and model. Therefore, if the chromaticity coordinates of the monitor are not available for the
conversion to XYZ, the contrast threshold should be raised to provide an engineering margin of error. Some
colour combinations are then eliminated but not enough to make it worth running the risk of producing illegible
text. Alternatively, a system could be developed for interactively adjusting the default chromaticity coordinates
to more closely correspond to the monitor. However, there are far more serious issues that affect the effective
luminance of the colours.

The Y values of the foreground and background colours are proportional to the intensity of light being
generated by a given pixel. This is not sufficient to calculate contrast because the measured luminance of any
pixel on the display surface is affected by other factors (Cowan, 1989; Klassen, 1989). First, the ambient lighting
in the room can affect the measured luminance, especially for dark colours. Second, a monitor’s black level, or
the luminance of black relative to the luminance of white, is not zero but some small amount greater than zero.
Most monitors are equipped with two controls, a brightness control and a contrast control which greatly affect
the black level of the monitor (see the discussion of gamma correction in Section 2.1.1). Third, light emitted by
a pixel affects the neighbouring pixels, a effect called pixel bleeding. The shape of a single pixel is generally
taken to be Gaussian. Therefore, the light contributed to a neighbouring pixel is proportional to the exponentiated
inverse of the square of the distance between the pixels, as shown in Equation 4.3. Since contrast is a measure of
the difference in intensity between pixels along edges of luminance or colour difference, the fact that the intensity
of a pixel is affected by the intensity of those around it must be considered.

4.2.1 Ambient Lighting and the Brightness Control

Without knowing both the lighting conditions in the viewing area and the setting of the brightness and contrast
controls, it is impossible to determine the exact brightness of any pixel. As discussed in Section 2.1.1 the purpose

1These number represent a percentage of the maximum contrast available, using approximations developed in this chapter. For example,
if the maximum possible contrast is 50%, users required values between 40% and 48%.

4.3. Pixel Bleed 39

Monitor A Monitor B
Typical Light Bright Light Typical Light Bright Light

Luminance of White 14.01 15.50 6.45 8.51
Luminance of Black 0.17 2.11 0.05 1.75
Black Level 0.01 0.14 0.01 0.21
Contrast 0.98 0.76 0.98 0.66

Table 4.1: The luminance of large areas of black and white were measured on two typical monitors without
adjusting the brightness or contrast controls. Monitor A is a Sun colour monitor Model GDM-1662B, manufactured
by Sony. MonitorB is DEC monochrome monitor Model VR 260-BB. The viewing area is a computer lab equipped
with both dim incandescent directional track lights and overhead fluorescent lights. The typical lighting condition
occurs with only the dim incandescent lights turned on. The bright lighting conditions occur when the fluorescent
lights are turned on as well. The typical low lighting conditions are representative of many computer labs. The
contrast and brightness of the monitor were not adjusted to account for the brighter light. The contrast was
calculated using Equation 2.15.

of having brightness and contrast controls on a monitor is to allow the user to respond to changes in ambient
illumination. The black level of a correctly set-up monitor is black, allowing us to ignore the effects of ambient
lighting on the black level.

If the phosphor chromaticities, black and white levels of the monitor are measured, they should be measured
in typical viewing conditions so the typical ambient light and monitor adjustments are taken into account. This
is important, especially for the black and white levels. Table 4.1 shows the effect of different lighting conditions
on the luminance of large areas of black and white on two typical monitors. The monitor was not re-adjusted to
account for the bright light. As can be seen, ambient light drastically increases the black level of the monitor if
the brightness and contrast controls are not adjusted. The result is a dramatic decrease in the contrast at a black
and white edge. If the black level of the monitor cannot be measured at typical light levels, a reasonable default
is to use 1% of the maximum white level, as is the case with both of the monitors in Table 4.1 when the controls
are adjusted for the typical lighting conditions (Cowan, 1989).

The black level of the monitor represents the minimum luminance that can be produced on the monitor. To
account for this, the black level should be added to the calculated luminances of the colours before the contrast is
calculated. If Yfg and Ybg are the Y coordinates of the foreground and background colours, the luminances are

Lbg = Ybg + LB (4.1)

Lfg = Yfg + LB (4.2)

where LB is the black level of the monitor.

4.3 Pixel Bleed

The problem of pixel bleed is more difficult because it cannot be ignored and is very difficult to measure. The
contribution of any pixel to its neighbours varies from monitor to monitor, but is significant in all cases. For a field
of full intensity pixels, almost 40% of the brightness of an individual pixel can be contributed by its neighbours.

40 Chapter 4. Colour Contrast

P

4 4 4

4

4

4444

4

4

4

3

3

3

3

2

22

2 1

1

11

Figure 4.1: The Neighbours Of Pixel P.

The spatial profile of the light emitted by a given pixel can be expressed as a Gaussian function centered at the
pixel location (x0; y0) by2

Φ(x; y) / exp

��((x � x0)
2 + (y � y0)

2)

�2

�
(4:3)

The amount a pixel influences others around it depends on the value of the constant �, which represents the amount
of pixel bleed3. As was mentioned above, this value varies from monitor to monitor. Using a light meter capable
of measuring the intensity of individual pixels, a reasonable approximation of this value can be determined for
a given monitor, but this procedure is very tedious and such equipment very expensive. Unfortunately, monitor
manufacturers do not generally make this specification available, possibly because few people are aware of it.
Furthermore, this value is adjustable with the focus controls, which are usually located inside the monitor.

Since calculating the pixel bleed for every monitor is impractical, consider instead the reason pixel bleed
exists. Imagine the monitor displaying a flat field of equal intensity pixels. If the� value is small enough that there
is no noticeable pixel bleed, it would be possible to see the grid pattern of the pixels clearly on the display surface
because the intensity of the light halfway between the pixels would be almost zero. As the � value is increased,
the adjoining pixels add more light to the space between them. At the optimal level of pixel bleed, the space
between equally bright pixels is close enough to the brightness of the pixels that the difference is imperceptible,
resulting in the impression of an area of uniform intensity. Increasing the pixel bleed further causes the area to
become even smoother, but the display looses its sharpness (Klassen, 1989). While individual monitors may not
be worth measuring an optimal value is calculable and we can assume that all well adjusted monitors have this
value. Klassen suggests that a value of �=a = :51� :01 is optimal, where a is the distance between pixel centers.
By using � = a=2, Equation 4.3 becomes

Φ(x; y) / exp

��2((x � x0)
2 + (y � y0)

2)

a2

�
: (4:4)

Using (4.4), it is possible to calculate the contributionthat a pixel’s neighboursmake to its measured luminance.
Figure 4.1 shows the pixel neighbours. The first and second neighbours contribute a total of 61.5% of their intensity,
and the third and fourth neighbours contribute 0.2%. Thus, the measured luminance at the center of a pixel is
161.7% of the intensity being generated by that pixel. Therefore, 38.07% of the measured luminance of a pixel is
contributed by neighbouring pixels if only the immediate neighbours are considered, and 38.13% if the second set
of neighbours are considered. Given the significant contribution of the first and second neighbours, to calculate

2This is actually a simplification of the formula for a monochrome display. For a colour display, the formula is similar, but complicated by
the existence of a shadow mask.

3The beam shape is usually not the same in the vertical and horizontal directions, and thus the value of � should be different for the x and
y directions. This difference is not significant in this context and is ignored for simplicity.

4.3. Pixel Bleed 41

the intensity of a pixel the luminances of its first and second neighbours must be known, but third and fourth
neighbours can be ignored.

Unfortunately, calculating the intensity of all pixels in a window is not a solution. It is computationally
prohibitive and the accuracy of such calculations exceeds what can be used, since contrast is a single number that
measures the performance of the whole screen. Therefore, the problem should be approached from the other end
by first determining the average number of foreground pixels near a background pixel. The measured luminance
of the average background pixel can be calculated as

L0

bg = Lbg + �(LbgNbg + Lfg(1� Nbg)) (4:5)

where Nbg represents the average number of background pixels neighbouring a background pixel. The optimal �
value of 0.62 would typically be used. The measured luminance of the average foreground pixel can be calculated
similarly

L0

fg = Lfg + �(Lbg(1 + Nfg) + LfgNfg) (4:6)

where Nfg represents the average number of foreground pixels neighbouring a foreground pixel. Two important
observations should be made. First, Nfg is not necessarily equal to Nbg . Second, when calculating the average
adjacency only pixels that are at a luminance edge should be considered because they are the ones that determine
the contrast.

For text based applications, two observations can be made. First, the average neighbour of a foreground pixel,
and thus the intensity of the pixel, is largely determined by the font being used. Second, the average neighbour
of a background pixel is largely independent of the font being used. Consider the two fonts shown in Figure 4.2.
To see how this affects contrast, first consider what happens when these fonts are rendered in black text on a
white background, just as they appear in the Figure. The white background pixels will bleed into any adjoining
black foreground, increasing their brightness and therefore lowering the contrast. The average foreground pixel of
font (a) (the thinner font) has approximately six background neighbours, whereas the average foreground pixel in
font (b) (the thicker font) as only three. As a result, the foreground pixels of font (a) have roughly twice as much
light added to them as the foreground pixels of font (b), resulting in a lower contrast for font (a) than for font (b).

Now consider what happens when these fonts are rendered in white text on a black background. The white
foreground pixels will bleed into the adjoining black background pixels, but the overall affect will be the same for
both fonts. Additionally, the foreground pixels will bleed into other foreground pixels, increasing their brightness.
The average foreground pixel of font (a) has two foreground neighbours, whereas the average foreground pixel
of font (b) has approximately five. As a result, the foreground pixels of font (a) have roughly half as much light
added to them as the foreground pixels of font (b), resulting in a lower contrast for font (a) than for font (b).

The effect in both cases is the same. Font (a) has less contrast than font (b) when displayed with the same
colours. While there are many fonts available for use in most window systems, it would be possible to calculate
an average foreground/background pixel adjacency relationship for each of these fonts. However, for a system
with scalable fonts this is not possible. Instead, fonts can be divided into a few categories such as thick and thin.
Thick fonts are those whose foreground pixels are adjacent to many other foreground pixels, similar to font (b) in
Figure 4.2. Font (a), on the other hand, is representative of thin fonts; most of the pixels adjacent to its foreground
pixels are background pixels. Of course, scalable fonts would be classified differently depending on the scale.

In a graphics based application, the interaction of the foreground and background is much harder to determine
without significant work because the relatively simple pattern found in text based applications is not likely to
exist. The best approach when no pattern can be found is to use the worst case situation, in which eight pixels of
the lighter colour surround each pixel of the darker colour, significantly lightening the darker colour. While this
situation may be extremely unlikely, depending on the application, this assumption provides a lower bound that
will guarantee legibility.

42 Chapter 4. Colour Contrast

(a)

(b)

Figure 4.2: The average number of foreground colour pixels around any pixel in a font varys widely between
fonts. Over 70% of the pixels in font (a) have one or two neighbours. Conversely, well over half of the pixels in
font (b) have five or more neighbours and only a dozen have two or less. In both cases, most background pixels
that are neighbouring foreground pixels have 2 or 3 foreground neighbours.

4.4. Colour Contrast Metric 43

Pixel Colour Black Level
Adjacency Orientation 1% 2.5% 5%

Thick Font Black on White 0.714 0.695 0.666
White on Black 0.709 0.687 0.653

Thin Font Black on White 0.521 0.509 0.490
White on Black 0.706 0.680 0.640

Worst Case 0.476 0.465 0.449
Best Case 0.828 0.794 0.743

Table 4.2: The effects of different black levels and pixel adjacency relationships are apparent. Changing the black
level is insignificant compared to the effect of changing the pixel adjacency relationship. The thick and thin fonts
are those shown in Figure 4.2. The contrast was calculated using the values suggested in the text. The worst case
is when a single black pixel is completely surrounded by white. The best case is when a single white pixel is
surrounded by black.

Table 4.2 shows the contrast calculated for black and white foregrounds and backgrounds with an optimal
value of sigma. As can be seen, the effects of using different black levels is not that significant compared to using
different pixel adjacency values.

4.4 Colour Contrast Metric

By using the average adjacency relationship and the optimal � values, a reasonable metric for measuring colour
contrast can be determined by setting Lmax and Lmin in Equation 2.15 to the appropriate one of L0

bg and L0

fg

from Equations 4.5 and 4.6, as follows

Lmax = max
�
L0

bg ; L
0

fg

�
(4.7)

Lmin = min
�
L0

bg; L
0

fg

�
(4.8)

If none of the specifications of the monitor or the viewing area are provided, the reasonable defaults provided
throughout this chapter can be used. Chromaticities for the phosphors of a standard, or similar, monitor can be
used to calculate the Y values needed for Equations 4.1 and 4.2. A typical black level such as 1% can also be
used in these equations. The background lighting and the contrast and brightness controls on the monitor can be
ignored. Optimal pixel bleed can be assumed for the � in Equation 4.4. Using these default values, Equations 4.7
and 4.8 can be used with Equation 2.15 as a reasonable metric for calculating contrast on a CRT.

44 Chapter 4. Colour Contrast

Chapter 5

Colour Constraints

This chapter discusses the issues involved with adding colour constraints to a dynamic window system with the
goal of assisting with aesthetic colour selection. It should be kept in mind that the goal of this thesis is to show
that this is possible, not to provide a definitive solution. Indeed, an important aspect of the current implementation
is to experiment with such issues.

Before tackling the issues of adding colour constraints to a window system, dynamic window systems are
described generally. Following that, general properties of colour constraints are discussed. Next, techniques for
avoiding the disruption of user colour associations are suggested. The bulk of the chapter investigates specific ways
colour constraints can assist with aesthetic colour selection. Finally, the features of dynamic colour constraints
that allow them to be successfully added to a dynamic window system are summarized.

While this chapter discusses issues on a general level, the reader should keep in mind that this design has been
implemented. The implementation is discussed in Chapter 6.

5.1 Dynamic Window Systems

Consider how a user interacts with a window system, which was briefly alluded to in Section 1.5. Most current
window systems are based on the assumption that no arbitrary restrictions should be placed on the user. In other
words, the user should have complete control of the windowing environment whenever possible. However, most
systems fail to realize that users do not always want or need absolute control. Some control is essential, but
beyond that the user performs tasks that could be done equally well by the computer.

Thus, that while users should be allowed to specify anything, there should be tools available to make spec-
ifications the user does not, or can not, provide. Most window systems, lacking such tools, force the user to
specify everything. The result is a failure to achieve the original goal. To summarize, the typical window system
is designed to allow the user complete freedom. But that freedom is consumed by requiring the user to perform
tedious and complicated tasks that are actually unnecessary.

There is another problem when the user specifies everything with little help from the window system. By
their very nature, windowing environments are dynamic, constantly changing as the user interacts with them.
Windows open and close, are moved and resized. While users typically have an intuitive idea of how they want
the environment to appear and be organized, they typically have no way of communicating it to the window
system. As a result, common actions such as opening or closing a window often require other windows to be
adjusted, and the user must perform these adjustments.

45

46 Chapter 5. Colour Constraints

It is better to tell the window system not only what to do, but why it is being done. Why can be expressed in
the form of constraints. For example, the user may position the windows so that a particular window is visible.
By creating a constraint that this window should be visible, new windows can automatically be positioned to keep
it visible. In addition, it is possible to specify the why without specifying the what. For example, if the system is
informed of the visibility constraint before the window is opened it can automatically position the window so it is
visible. In either situation, adjustment of many windows by the system may be needed to satisfy the constraint.

The user is not necessarily relinquishing any freedom by allowing the system to help in managing the
environment. Currently, users must tell the system to place a window at an exact position, which can be equally
well expressed as a constraint. However, the crippling burden of being forced to specify every detail is lifted from
the user’s shoulders, freeing them to concentrate on their work.

Traditional window systems are normally static and lifeless in their interaction with the user, doing exactly
what the user tells them; no more, no less. By contrast, the window system described here is more suited to the
dynamic nature of windowing environments, interacting with the user’s actions and filling in details. Therefore,
such a window system shall be referred to as a dynamic window system, in contrast with the more common static
window system.

There are a few important requirements that should be satisfied by a dynamic window system if it is to be
useful:

� Superior results. Inferences made by the window system should never result in a situation that is less
desirable than what would have occurred had no inferences been made. For example, many current window
systems default to a black and white colour scheme which, while bland, satisfies the basic functional and
aesthetic requirements. A system that attempted to select more exciting colours, but that frequently created
nonfunctional or offensive combinations would not be acceptable.

� Non restrictive. User specifications should take precedence over selections inferred by the window system.
If the user wants to select colours that exhibit undersirable properties or to position windows in a potentially
ambiguous arrangement, they should be allowed to.

� Easily customizable. It should be very easy for the user to change anything that is inferred by the system,
or to alter the method used by the system to perform its inferences.

� Predictable. While it is desirable that the window system assist the user with tedious tasks, the system
should be predictable so that the user feels in control. If the systems appears to move windows or change
window colours for no apparent reason, the user may become disoriented or annoyed with the system. To
make the system predictable, changes should only occur in response to user actions. Equally important,
the changes must start immediately so that it is obvious which action initiated the change. For example, if
a new window is opened and no changes occur until a few seconds later, the user may not realize that the
opening of the window initiated the change, lessening the predictability of the system.

� Adequate Performance. While perhaps obvious, the performance of the window system must be considered
because dynamic window systems must perform significantly more work that static window systems.
Maintaining constraints should not noticeably degrade the response time of the window system. The
constraint solver is one of the lowest priority tasks that need to be performed by the window system and
should not interfere with more important tasks such as sending keyboard and mouse input to applications
and displaying the results of these actions.

Schlueter (1990) represents a significant step in the direction of creating more dynamic window systems.
Criticisms of the system result from violations of one or more of the above requirements. For example, one of the
properties of the system is that overlapping or adjoining windows cannot have coincident text baselines, which

5.2. Dynamic Colour Constraints 47

is beneficial in general. However, occasionally a user wants text baselines to be coincident, such as when the
contents of two windows are being compared. The system provided no way to do this, a violation of the “non
restrictive” requirement.

Two important lessons can be learned from Schlueter (1990). First, it is possible to create a dynamic window
system. Most of the problems with the system have obvious solutions that could be implemented in a production
system. Second, to create a system that is usable, these issues must be addressed. Otherwise, the system is likely
to exhibit annoying behaviour which will decrease its user-acceptance. Having said that, it should now be recalled
that the aim of this thesis is not to create a commercially viable product. Many features that are needed in a
commercial product, such as an intuitive graphical interface, are beyond the scope of this thesis. The focus of this
chapter is on the constraints are needed to satisfy particular requirements of the system; how the user generates
these constraints is not addressed.

5.2 Dynamic Colour Constraints

How can a dynamic window system with colour constraints assist with aesthetic colour selection? Consider some
examples of colour usage from Chapter 3. They can be expressed as constraints on colour selection. For example:

� Red is often used to represent danger or warning, an absolute property of the colour red, created by societal
influences on the typical viewer. However, when an application designer uses red to signify danger, their
desire can be interpreted as a request for a colour value from a range of values that appear as red.

� An important relative functional requirement is the maintenance of enough contrast between background
and foreground colours for legibility, which can be expressed as the requirement: the contrast between
foreground and background must exceed a certain level.

� Another common example occurs when colour is used to show the relationships between windows. This
can be expressed as a requirement that unrelated windows use significantly different colours and similar
windows use similar colours.

Like these examples, other issues can be viewed as constraints. There are some very general observations that can
be made about the sort of colour constraints that are of interest in this thesis.

5.2.1 Multiple Constraints

Few colours can be entirely described by a single category of colour usage, as discussed in Section 3.1.3. Similarly,
few colours are affected by only one constraint. Each constraint is simple and predictable, but the complete set is
necessary to describe most colours.

5.2.2 The Categorical Division of Colour Constraints

The distinction between absolute and relative colour usage divides constraints into two groups distinguished by
the number of colours involved in the constraint. Constraints derived from absolute colour properties do not refer
directly to other colours and can be expressed as a function of a single colour. Relative constraints, on the other
hand, refer to two colours and must be expressed as a function of both colours.

The distinction between functional and aesthetic colour usage creates another division among the constraints.
The objective nature of functional constraints means they can generally be expressed algorithmically. Aesthetic

48 Chapter 5. Colour Constraints

Window A
Colour 1

Window A
Colour 2

Window B
Colour 2

Window B
Colour 1

Figure 5.1: High level constraints can be expressed in a hierarchical fashion allowing complicated constraints
to be decomposed into more simple ones. This hierarchy expresses a constraint that ensures two windows are
different from each other, with the colours represented as circles and the constraints as arrows.

constraints, on the other hand, are thought to be more subjective which precludes easy algorithmic expression.
This difference accords well with the goals of this thesis. When constraints to solve functional usage problems
are embedded in the window system, the user is freer to concentrate on the aesthetic issues.

5.2.3 The Hierarchical Nature of Colour Constraints

Colour constraints are often expressed in a hierarchical manner. Consider the functional constraint that unrelated
windows should be easily discriminable. Given two unrelated windows, this relationship can be expressed
hierarchically, as shown in Figure 5.1. The two background colours in each of the windows must be different
from both of the background colours in the other window, with the degree of difference shown by the weight of
the lines, with heavier lines implying a need for further separation.

5.2.4 The Varied Importance of Colour Constraints

Not all of the constraints expressed by the system are of equal importance. For example, the constraint that
window contents be legible is far more important than any other constraint. The window system therefore allows
constraints of high importance to be satisfied in preference to constraints of lesser importance.

5.2.5 The Dynamic Nature of Colour Constraints

Any colour choice is determined by a (possibly complicated) set of inter- and intra-window constraints. When
a window is created or destroyed these constraints, or the solution to them, may change. In a dynamic window
system the constraints are re-evaluated whenever the window configuration changes. The system discovers when
current colour values are unacceptable and changes them to satisfy the constraints. The automatic changing of

5.3. Potential Problems With Colour Association 49

colours has significant implications, the most important of which is the effect it has on colour association, which
is discussed in Section 5.3.

Another interesting issue is user acceptance. In the dynamic window system created by Schlueter, the reaction
to, and acceptance of, the system was surprising. At first users were disturbed when windows moved of their own
accord since unexpected motion is inherently distracting. After using the system for a short while, however, users
became accustomed to the behaviour and began to take advantage it. Most surprising, however, was the reaction
of these users when they returned to using more traditional window systems. They reported that the systems felt
dead and lifeless and were disturbed by the lack of motion! While these tests where informal, they suggest that a
properly designed dynamic system is acceptable to users.

It is likely that user response to a dynamic window system with colour constraints will be the same or better
because tools for colour selection are significantly poorer than those available for window positioning. Therefore,
users have fewer preconceived notions of how colour should behave.

5.3 Potential Problems With Colour Association

Window colours in a dynamic window system with colour constraints occasionally change without explicit
direction from the user, which raises the possibility of potentially harmful effects on colour associations.

Christ (1975) reviewed the experimental literature and found that colour is superior to size, brightness, and
shape in searching for and identifying items that vary in only one of these categories, making colour ideal for
organizing windows. In addition, for some tasks people remember colour longer than size, orientation or shape
so that colour is an excellent way of presenting context.

These functional benefits of colour depend on the user’s ability to associate a colour value with some semantic
meaning. Colour helps in context resolution, for example, because the user associates the colour of the window
with the task for which the window is being used.

Unfortunately, changing the window colours might destroy many of the potential benefits of colour association.
Worse, dynamic colour might be less beneficial than even arbitrary colours in a static window system, since colour
associations are static, regardless of aesthetics. To prevent this from occuring, one or more of the following
strategies can be considered.

1. To prevent loss of context, colours should be changed gradually instead of immediately adopting their new
colour values, so that the user can adapt to them. Gradual changes can be accomplished either by making
only small changes or by slowly changing colours from one value to another. For example, assume a new
window opens which must have colour values that are a well distinguishable from those of current windows,
and this is not possible without changing the colours of the other windows. If the colours immediately
change to their new values, the changes destroy any associations the user had developed with those windows.
However, if the window colours changed slowly, the user can notice the changes and adjust to them. The
colours should also change slowly for aesthetic reasons. If a large number of colours suddenly change, the
effect is unpleasant and visually jarring. However, by slowly changing the colour values, the effect will be
smoother and, hopefully, more pleasing.

2. Any individual colour value should change as little as possible. For example, if a colour changes from one
shade of purple to another shade of purple, loss of association will be less likely than if the colour changes
to some dramatically different colour such as blue or green.

3. To give persistence to colour values, older windows should change less than newer ones. This is important,
because experience shows that associations may be stronger with older windows. In particular, when colour

50 Chapter 5. Colour Constraints

changes are the result of a new window being created, the new window’s colours should be changed in
preference to any other window’s colours, since there will be little or no contextual associations with the
new window. If colour constraints can be solved by only changing the new window, or by only changing
existing windows slightly, the user’s colour associations are disturbed as little as possible.

4. Finally, colour associations last not only during one session with a window system. After using the same
colours for a relatively short period of time, the associations of colours with tasks become strong enough
that they extend between sessions. Thus, for colour associations to be maximally preserved, the state of the
colour in the system should be remembered between sessions. The implementation is bound to be highly
system dependent. Some computer, like the MacIntosh, already preserve the state of the system between
sessions. Folders that were open when the machine is shut off will be re-opened when it is turned back
on. Other systems, such as most window systems for machines running the Unix operating system, have a
poorer concept of inter-session state so adding this feature will be more difficult. Cowan and Wein (1990)
examine the differences between state and history based interfaces, as well as the pitfalls of adding state
information to a history based window system. A major pitfall to remembering colour between sessions
with a history based window system is that the user may incorrectly infer that the entire state has been
remembered. Therefore, if colour is remembered, some thought must be given to preserving as much of the
state as possible.

5.4 Assistance for Aesthetic Colour Selection

Aesthetic colour selection for window systems is as a two step process. First, the general characteristics of the
window’s appearance and the relationships between the colours, the window style, are chosen. The window style
can be simple and abstract, such as deciding that the window borders should be darker than the application area
in the center. It can be complicated, such as wanting the borders to be a light pastel colour, the center area to be a
slightly lighter analogous colour, the text in both areas to be dark saturated colours and to have all of these colours
harmonize. It can be detailed, such as defining the exact values for all of the window colours. Second, colour
values are chosen to satisfy these characteristics and any other constraints on the window colours, especially
functional constraints relating to contrast and window organization.

Currently, there is no way provided for the user to specify relationships between colours, so only the most
trivial of window styles can be specified.

The preceding sections showed how colour relationships may be expressed as constraints. However, to use
constraints effectively for aesthetic colour selection, semantic information must be attached to individual colours
on the display. Examples of semantic information include whether a colour is a background or foreground colour,
if it is used in the border or application area of a window, what application created the window and what task the
application is being used for. Some window systems, such as X11, already have semantic information attached to
colours but make very little use of it (see Section 6.1).

By attaching semantic information to colours, it is possible to add colour constraints to a dynamic window
system. These constraints can assist with aesthetic colour selection in the following ways:

� Functional constraints can be applied automatically.

� Possible aesthetic colour combinations can be suggested.

� More abstract colour specifications are possible.

� Useful defaults can be provided.

5.4. Assistance for Aesthetic Colour Selection 51

� The system can be customized gradually.

In the following sections, each of these is discussed to show how it can assist with aesthetic colour selection
and how it can be provided using constraints.

5.4.1 Automatic Handling of Functional Constraints

To allow the user to concentrate on making aesthetic colour choices, the window system should automatically
handle some of the functional constraints. The two most common functional constraints, contrast and window
organization, are described below.

5.4.1.1 Contrast

In Chapter 4 the importance and difficulty in calculating contrast is discussed and a reasonable metric for calculating
contrast on CRTs is presented. Using this metric, it is straightforward to create a constraint that enforces contrast
by ensuring there is sufficient luminance difference between any pair of foreground and background colours. As
discussed in Chapter 4, if the context in which the colours will be used is known, the contrast can be determined
more accurately. Otherwise, the worst case suggested in Section 4.3 can be used. Fortunately, it is relatively easy
for an application to inform the window system if the foreground colour will be used for a specific purpose such
as displaying text using a certain font.

As was pointed out in Section 4.1, while the absolute minimum contrast threshold is approximately 12%, a
much higher threshold of as great as 80% of the maximum available contrast may be needed to ensure comfortable
reading. Additionally, some users will want to adjust this threshold to account for poor vision or aesthetic
preferences, so the threshold used in this constraint should be user adjustable.

5.4.1.2 Window Organization

To create constraints that assist with window organization, the system must know the relationships between
windows and have a metric to determine if windows are visually similar or visually different. Using this
information, constraints that group related windows and create visual distinctiveness between unrelated windows
can be created.

Window Relationships. There are many ways the system could be informed of the relationships between
windows. A possible approach is to have the user specify them, which is inconsistent with reducing the workload
on the user. Instead, the system should infer reasonable default relationships. Of course, the user should be able
to change the defaults or specify additional relationships.

A simple technique for inferring relationships between windows is to derive them from the semantic attributes
associated with the windows. Semantically similar windows should be coloured similarly, windows that are
semantically different should be coloured differently. Some semantic attributes, such as the name of the application
program that owns the window and the machine the application is running on, can be automatically determined by
the system. Additional semantic attributes, such as the type of work being done in the window, can be specified
by user. However, some groupings require more than one of these semantic attributes. For example, users may
wish to group windows according to all three attributes mentioned above or to use other attributes, such as the
type of file being editing in an editor window. Therefore, there should be no restriction on the type of attributes
that can be attached to a window, and the method used to determine which windows are “different” and “similar”
should be adjustable by the user.

52 Chapter 5. Colour Constraints

Window Difference. A general model of how windows can be judged as related or unrelated has not been
developed and doing so is beyond the scope of this thesis. However, since a method for judging the visual
difference and similarity of windows is needed, the following simple scheme is proposed. First, notice that the
dominant colours in any window are the background colours of both the applications area and the border. For
example, if the background colours of two windows are the same, some relationship will be assumed to exist
between these windows. If the background colours are different, no relationship will be assumed, regardless of
the foreground colour values. There are exceptions, of course. If all the background colours are very desaturated
and dull, and all the foreground colours are extremely saturated, then relationships might be drawn based on the
foreground colours. In general, however, foreground colours can be safely ignored. Given this, windows can be
judged to be different if the backgrounds are different, and the same if the background colours are the same. To
implement this constraint, it is necessary only to measure the difference of the background colours, as illustrated
in Figure 5.1.

Colour Difference. Most definitions of “different” and “similar” windows, such as the one presented in the
previous section, depend on judging the difference of one or more colour values. Recent experimentation by
Boynton and Smallman (Section 2.6) shows that the ability to segregate colours is dependent on their separation
in a uniform colour space. They found that basic colours segregated well because they are well separated in
the OSA colour space, with an average interpoint Euclidean distance of greater than ten OSA units. They also
found that in special cases, distances of only five units provided sufficient segregation. They did not extend their
study to find a lower bound on the distance that provides good segregation, but their work can provide a good
metric. Table 2.3 shows that a distance of ten OSA units can be used as a threshold for good colour separation.
However, this distance is only an estimate based on the separation of the basic colours, and the measurement of
difference in any uniform colour space, including the OSA space, is not exact. Thus, the constraint that enforces
colour difference does not use this value as a fixed threshold. Rather, it rates the difference between the colours
as progressively worse the farther under ten OSA units it falls. Therefore, if it is possible for two colours to be
separated by the threshold value they will be, but if other constraints draw them closer together, the penalty for
a decreased distance will be insignificant for values close to ten, but gradually become more significant as the
distance decreases.

Measuring Colour Distance. Boynton’s work was done in the OSA colour space which is not particularly
useful when working with a computer display, as it is neither continuous nor does it apply to the entire gamut of
colours available on a CRT. However, colour difference works well in the OSA space because it is perceptually
uniform. Thus, other perceptually uniform colour spaces can serve equally well, such as the CIELUV colour
space. Appendix A shows that the work done using OSA interpoint distances can be applied reasonable well using
CIELUV interpoint distances. The advantage of CIELUV is that an easy conversion exists between it and colour
spaces commonly used in computer graphics, such as RGB and HLS. Appendix A shows that ten OSA units is
approximately equal to eighty CIELUV units, which can be used as the threshold for the distance constraint for
different windows.

5.4.2 Suggest Colour Combinations

Section 2.8 discusses the difficulty in producing a general model of colour harmony. The colour choices people
make in their everyday lives show that colour preferences and colour harmonies are very subjective. Thus,
expecting a computer window system to select harmonious colours for windows without user assistance is
unreasonable.

However, expecting users to make harmonious colour choices may be equally unreasonable. While it is quite
easy for most users to say whether they like a particular colour combination or not, it is significantly harder for

5.4. Assistance for Aesthetic Colour Selection 53

them to actually generate colour combinations they find appealing. Creating harmonious colour combinations is
something that artists and designers take years to learn, and most users of window systems are not trained artists
or designers. Typical users make far better critics than designers.

Therefore, a natural way to assist users in making aesthetic colour choices is to suggest various colour
combinations and window styles, and let them criticize. Consider the task of selecting individual colours via
suggestion and criticism by providing the user with a small palette of colours from which they can select a single
colour value. This approach is becoming more common, being used in commercial systems such as the Property
Manager for OpenWindows2.0. However, these systems do not take the semantics of the colours into account
when presenting palettes of colour values to the user, and are therefore of limited value.

The problem of suggesting colour combinations and window styles for individual windows is more difficult.
Unlike the situation where a single colour is being suggested, colour harmony is a prime concern. Although it is
impossible to create a general model of colour harmony, it is possible to generate more simplistic models with
more narrow applicability. Consider the colour schemes suggested by Quiller (Section 2.4). They all have the
property that one or two colours are selected, and the remaining colours are generated in relation to those colours.
This approach can be applied quite naturally to windows. Given a dominant colour value and one of Quillers
simple colour schemes, an instance of the scheme can be selected which contains the dominant colour value. The
range of colour values that fall within the specific instance of the colour scheme can then be calculated. Creating
a constraint that restricts colours to have values within this range is straightforward.

Thus, the user selects one colour as the dominant colour and the constraint is applied automatically to select
the remaining colours. For example, a monochromatic scheme can be created by selecting any colour hue for the
dominant colour and constraining the remaining window colours to use the same hue. Similarly, an analogous
scheme can be created by selecting one of the possible analogous colours schemes that contains the dominant
colour value and constraining the remaining window colours to use an analogous hue. The complementary and
split complementary colour schemes can be defined in similar ways. It should be noted that these colour schemes
restrict only the hue of the colour values. When Quiller creates a colour scheme, he includes all the “semineutral”
colours that fall between the fully saturated hues and neutral grey. When specifying colours using the HLS model,
this specification allows any saturation. Similarly, any colour values can be mixed with white or black. Adding
white to a colour is roughly equivalent to increasing the lightness above the midway value, adding black to a
colour is roughly equivalent to decreasing the lightness below the midway value. In both cases, the colour value
is also desaturated. Quiller’s colour schemes are based on subtractive colour mixing, whereas HLS is additive, so
the complementary colours in HLS are different from the ones Quiller uses. How this affects the colour harmonies
is a matter for future work. In any event, the natural correspondence to the method Quiller uses to mix colours is
a good reason for using the HLS model for colour specification, as opposed to HSV or RGB.

Each colour can be generated to fall randomly within the colour scheme, subject to whatever other constraints
act on it. With the possible exception of the monochromatic scheme, each of these schemes contains a wide variety
of colours that can be combined to create a remarkable array of window styles. More refined window styles can
be created by applying additional constraints to limit the possible saturation and lightness values. For example,
if the border colour was constrained to be very dark and the background very light, a distinctive monochromatic
window style is achieved. However, by using more unconstrained colour generation schemes initially, users are
prompted with a greater variety of window styles and colour combinations, many of which would never have
occurred to them, and can learn over time which styles and colours they find attractive. They can then apply
additional constraints to restrict the possible the window styles and colour combinations to those that they find
most attractive.

Because they are prompted with different colour combinations and window styles, even users untrained in art
or design gradually become familiar with combinations of colours and window styles that appeal to them. The
window system trains the users sense of colour harmony through constant experimentation, in much the same

54 Chapter 5. Colour Constraints

way artists and designers are trained. As the user develops a sense of colour harmony, he or she can develop more
elaborate colour styles that more accurately express his or her personal taste.

This approach of having the window system select colours randomly from a restricted set is workable as long
as the following conditions are met:

� it must be very easy for the user to have the system pick another set of colours. If the selected colour
combination is entirely unsatisfactory and the user does not want to change it manually, he or she should be
able to tell the system to try another scheme.

� it must be very easy for the user to modify the individual colours that are generated by the scheme. If
a colour combination is selected by the window system and the user wants to change one or more of the
colours to create a combination he or she prefers, it should be possible.

In addition to these necessary conditions, one or more of the following conditions will further improve the usability
of the system:

� one or more of the colours can be frozen and the system told to pick a new set that incorporates them.

� users can inform the system which aspects of the colour set they like or dislike and the system can use this
information when making future selections.

5.4.3 Abstract Colour Specification

Abstract colour specification refers to any colour specification that tells the system how to pick a colour instead
of telling it the exact colour value to use. Examples of abstract colour specifications are found in all four of the
categories of colour usage. Many of the constraints discussed in other sections of this chapter are also examples
of abstract colour specification.

The constraints discussed in Section 5.4.1 are abstract colour specifications which can be categorized as relative
functional colour usage. For example, a useful foreground colour could be completely specified by the constraint
that there should be adequate contrast between the foreground and the background. Unless other constraints are
imposed to further restrict the colour there is no guarantee that the result would be visually appealing, but it would
at least provide adequate contrast.

Many absolute functional colour concepts are more accurately expressed in an abstract manner than as specific
colour values. Consider, for example, the use of red to represent danger or as a warning. In most cultures this
property of the colour red is absolute. However, an application designer who wishes to use red to signify danger
might think “I wish to use a colour that represents danger, so a colour that the viewer interprets as red would be
appropriate. Therefore, the colour should be constrained to appear to all viewers as red.” However, there are
many different colours that appear as “red”, all of which would serve the purpose of signifying danger equally
well. Therefore, specifying a specific value of red is not appropriate. To see how a more abstract specification
for “red” can be formulated, recall Boynton’s study of basic colour terms discussed in Section 2.6. Boynton and
Olson identified sets of colours in the OSA colour space that correspond to the basic colours (Boynton and Olson,
1987). Using this data, a constraint that restricts a colour value to “red” could easily be constructed by restricting
the colour to a colour value that is in Boynton and Olson’s set of “red” colours.

The concept of window styles introduced in Section 5.4.2 is an example of abstract colour specification that can
be categorized as relative aesthetic colour usage. For example, a user may wish to have green terminal windows
and blue editor windows, but aside from the basic hue does not care about the specific colour values used for any
of the window colours. To allow the user to specify colours in this fashion, a set of window styles can be provided

5.4. Assistance for Aesthetic Colour Selection 55

using the simple colour schemes discussed in Section 5.4.2. Additionally, by using the default window style they
only need to specify “I want the major colour of my terminal windows to be green” and the system will select the
specific colour values.

Finally, some absolute aesthetic colour choices are more appropriately expressed abstractly. Consider the
above example of a user specifying that terminal windows should be green. The specification of “green” is an
absolute aesthetic colour choice. However, the user may not wish to specify the exact shade of green, such as
olive green, kelly green, forest green, etc. In this case, the colour is better defined by a constraint which ensures
that its colour value is identifiable as “green,” just as the absolute functional colour “red” was defined above. In
this case, the same approach can be taken by using Boynton and Olson’s quantification of the basic colours. Many
abstract specifications of absolute aesthetic colour usage can be expressed as some function of the basic colours
because of the nature of the basic colours.

5.4.4 Reasonable Defaults

An important function that is performed by a window system is choosing default colours for the windows. The
standard approach is to choose a simple colour set, such as black text on a white background and a subdued border
colour with black border text, and use these colours for all windows. This approach is unsatisfactory for the
following reasons. First, the ability of colour to organize windows is lost. More than one user has commented
that they didn’t realize that colour could be used to organize their windows. Part of the blame for this ignorance
lies with the window system for not providing examples of how colour can be used. Second, the window system
appears utilitarian and visually boring. The complete lack of colour variety does not entice the user to create more
interesting colours, rather it reenforces the belief that computing environments are cold and impersonal. By using
a utilitarian colour scheme, users may also get the impression that changing the colour values is difficult and avoid
attempting to do so because they do not want to waste a large amount of time. While this feeling is quite justified
in many current window systems, it need not be so.

The system defaults should be pleasant and colourful. They should whet the user’s appetite for more exciting
and novel colour schemes. However, they should also be inoffensive to the vast majority of people and satisfy
some basic functional constraints, such as those discussed in Section 5.4.1.

To achieve defaults that satisfy these requirements, the following approach is used. A window style is designed
which, given a single colour, generates the remaining window colours using a simple and bland colour scheme.
A good colour scheme for this purpose is the monochromatic colour scheme discussed in Section 5.4.2. By using
standard design principles, such as those summarized in (Meier, 1987), a window style such as the following could
be created (the specifications in this example use the HLS colour space as suggested in Section 5.4.2):

� border colour. Any hue, a saturation of 25%, a lightness of 50%.

� border text. Absolute colour value of black.

� window interior. Same hue and saturation as the border, a lightness of 90%.

� window text. Absolute colour value of black.

This window style generates bland colours that satisfy the requirements for a default window style. In addition,
the contrast in this example scheme is very high, ensuring that legibility is satisfactory. Finally, the undesirable
perceptual phenomena discussed in Section 2.5 are avoided by using a monochromatic colour scheme since only
a single hue appears in each window.

However, this window style does not satisfy all of the requirements stated above. The functional requirement
that colour be used to organize windows also exists. The eleven basic colours provide a method to satisfy this

56 Chapter 5. Colour Constraints

goal. First, black or white should be used as foreground colours so that, as discussed above, the basic requirement
of contrast is satisfied and additional perceptual problems are avoided. Grey is the best choice for the overall
background colour of the window system, since no colour will conflict with it when used as a border colour.
As discussed by Boynton, the eight remaining basic colours are excellent choices for window colours when the
primary motivation is window organization. In addition to their good segregation qualities, they allow windows to
be easily and unambiguously referred to by colour name. Given this set of colours, the default window organization
discussed in Section 5.4.1.2 is used to decide which windows should be grouped together. The application name
and a user supplied name are used to provide a default organization for windows. If the user does not specify a
name, the machine the application is running on is used as the default name of the window. The latter point is
especially useful in an environment where applications are often run on different machines. When a new window
is opened, if it is to be grouped with an existing window it uses the same basic colour for its dominant colour as
is used in the existing window. Otherwise, an unused basic colour is assigned to it. If more than eight different
colours are required, Boynton and Smallman point out that colours midway between the basic colours can be used.

5.4.5 Allow Gradual Customization

An extension of the inability of current window systems to specify colour relationships is that colour customizations
tends to be all-or-nothing. When the user decides to add colour to their environment, they must specify very many
colours. The window system does not force them to change all the colours, of course, but the interrelationships of
the colours requires that many colours be specified for real benefit to be gained.

Consider the following example. A typical window system defaults to a single colour scheme for all windows,
such as black and white, or some colour and either black or white. The first customization many users perform is
to change these global defaults, which is painless, requiring only two or three colours to be specified. However,
at some point many users realize that colour can be used to help them organize their windows. In order to use
colour to organize the windows, however, many colours need to be specified because each window must have its
colours explicitly defined.

Unlike conventional window systems, the defaults used by the dynamic colour system automatically use colour
to organize the windows. Therefore, the customizations most users want to perform fall in two categories. First,
the default aesthetic choices made by the window system may need to be adjusted. Second, the user may wish to
change the method by which the window system organizes the windows.

5.4.5.1 Aesthetic Customizations

There are many aesthetic customizations that can be performed. Some new constraints and modifications of
existing constraints are obvious, others are more difficult. The more common customizations are discussed below.

Expressing Dislike of Colours. The first customization the vast majority of users perform is to avoid colours
or colour combinations they dislike. The window system chooses colours for unrelated windows from the basic
colours: red, green, yellow, blue, brown, purple, pink and orange. Few people find all of these colours equally
pleasant. Occasionally, the window system bases a colour scheme on a basic colour that the user dislikes. It should
be very easy for the user to tell the system not to use that colour again. Given this information, complying with
the user’s wish involves removing the offensive colour from the set of colours from which the system chooses its
defaults.

Consider instead the situation where a user indicates that a particular shade of a colour is offensive. While it
is quite easy to add a constraint to the system that repels colours from the immediate area around the indicated
colour, other questions must be answered in order to determine the area to be avoided. Is the colour at the center

5.4. Assistance for Aesthetic Colour Selection 57

of the range of undesirable colours? How large an area around the colour should be avoided? Is the particular
colour value unappealing in general, or only when used for the particular part of the window? If the colour value
is unappealing only in the context of the current colour scheme, perhaps the colour scheme should be criticized,
not the colour value, as discussed below. Once the range of colour values that should be excluded has been
determined, a constraint can be added to the system which repels all colours from this range of values. It should
be possible to apply this constraint to either the particular colour scheme or to the entire system. More often than
not the constraint will be applied globally, as users see colours they dislike and want them to not occur in any
window.

The second aspect of the problem, when the system has chosen a colour combination that is unattractive, is
more difficult to rectify. Selecting another set of colours within the bounds of the active constraints is trivial;
simply generate another random set of colours that satisfy the constraints. The problem is that the system should
avoid reselecting the unattractive set of colours. Like the situation where the user is criticizing a particular colour
value, it should be possible to specify a constraint that disallows a combination of colours globally or within a
particular window style. It is more appropriate for these constraints to be applied to the window style, as opposed
to globally. A window style represents a way for windows to be coloured and therefore criticizing a particular
colour set is actually a method of customizing that window style. Creating a hierarchy of constraints that causes
the a window to avoid a particular colour combination is straightforward; a constraint is created for each colour
in the window which repels it from the appropriate colour in the undesirable colour scheme.

The problem with both of the above constraints is that as the set of undesirable colours and colour sets grows
large the load on the constraint solver increases dramatically. It is easier for the user to tell the system that they
dislike a certain colour or colour combination than to modify the window style that is generating the offending
colour combinations. Indeed, it may not be possible to modify the window style without unduly restricting the
colour sets that may be generated. Techniques to optimize these constraints should be investigated, but doing so
is beyond the scope of this thesis.

Expressing Approval of Colours. Just as users dislike colour values or combinations of colours values, so do
they approve of colour values or sets of colour values. There are two aspects to expressing approval, the first for
individual colour values and the second for sets of colour values.

The fundamental difference between creating constraints that express a preference for a colour value and
those that express aversion is that the constraints for colour preference cannot reasonably exist in the constraint
solver on a full time basis. If they did, all instances of affected window styles would be attracted to the preferred
colours. This contradicts one of the goals of the system, which is to suggest new colour combinations. Instead, the
constraints should be used to alter the mechanism for picking new colours. By biasing the selection of individual
colour values and the creation of colour schemes to those that the user has expressed a preference for in the past,
the system will occasionally select colour schemes based on user preferences.

There are a few ways this can be accomplished. The simplest technique is to store a list of preferences and
occasionally use one instead of picking colours at random. While the random colours are still unaffected by the
users preferences, the occasional colour value or colour combination reflects the preferences. More complicated
and powerful techniques are possible, of course. For example, user preferences could be used to create a neural
network that picks colour sets similar to the ones the user expressed a preference for (Salomon and Chen, 1989).
One of the criticisms of using neural nets to select colours is that they always generate sets of colours similar to
the seed sets. In this case, however, that is exactly what is desired.

Modification of Window Styles. Window styles are introduced as a technique of grouping aesthetic constraints
which express the general characteristics of window appearance. The default window styles are designed to create

58 Chapter 5. Colour Constraints

bland colour schemes which are visually inoffensive to the majority of users. Eventually users will modify the
default window styles or create their own.

A window style consists of a set of constraints which together specify how a window should appear. Each
constraint is based on either an absolute or relative requirement, the absolute constraints affecting only a single
colour and the relative constraints relating one colour to another. The constraints are independent of each other
and can be mixed and matched relatively freely. Therefore, to modify a style, change the constraints that define it.

Exploring an intuitive interface for such window style and constraint editing is beyond the scope of this thesis,
partly because an effective method of modifying the styles is dependent on their implementation. However, the
constraints are fairly simple, as shown by the default window style in Section 5.4.4, so editing them should not be
difficult.

Exact Colour Specification. One constraint that will often be needed in a window style is the specification
of an exact colour value. To implement this, simply constrain the colour to the desired value and define the
importance of the constraint high enough that the colour is not affected by other constraints. Such constraints
mimic colour specification in all current window systems. Exact colour specification therefore demonstrates that
colour specifications which are possible in other window systems are possible in a dynamic window system with
colour constraints, so no flexibility has been sacrificed.

Manual Modification of Colour Values. When the system selects a set of colours, users may wish to modify
one or more of the colours by hand to create a colour scheme that appeals to them. While this is a straightforward
operation, the user’s motivation for modifying the colour should be considered so that appropriate action may
be taken. Usually, the user modifies colours to create an attractive colour scheme. After modifying a colour,
therefore, the user may desire that the colours in that window should be fixed at their current values so that the
customization is not lost. Alternatively, they may only wish that the particular colour they modified remain where
they set it, leaving the other colours free to change. Finally, they may change a colour only because it does not fit
with the other window colour values and do not mind if it changes when the other window colour values change.
An interface for changing colours can easily ask the user which of the above situations they intend.

If the user intends to have one or more of the colours fixed at its current value, the system should not changed
it. However, when the user specifies that a colour should no longer change there is usually an implied qualification
that the colour can change if there is enough pressure from other constraints. In this case, constraints may be
added which force the colour toward the desired value, but have greater importance so that other constraints acting
on the colour will only change the value in extreme cases. Additionally, it should be possible for the user to say
that they want the colour to remain exactly as it appears, in effect disabling all the other constraints acting on that
colour.

5.4.5.2 Customizing Window Organization

The second aspect of customization is to modify the approach used by the system to organize windows. While the
default technique of using the application name and optional user specified name is surprisingly powerful, there
are times when it is not powerful enough, such as when users wish to create additional levels of grouping. For
example, a user may wish to use a certain colour scheme for personal windows and another for work windows.
Within the work windows, they may wish to use green for windows associated with one project and blue for
windows associated with another. Within a certain project, they may want to use different colours for editing
documentation than for editing source code. While it is possible to create groupings like this using the current
scheme by careful creation of window styles, there should be simpler ways for the user to express these desires.

5.5. The Viability of Dynamic Colour 59

In a sense, where typical window system force the user to specify all of the colour values, the addition of
constraints adds a level of indirection by allowing users to specify more abstract properties of the windows. The
next step, which is needed to provide additional customization to the methods of window organization, is to
create a system which will add yet another level of indirection by providing more intuitive and abstract ways of
specifying the relationships between window colours. However, such a system is beyond the scope of this thesis.

5.5 The Viability of Dynamic Colour

At the end of Section 5.1 five necessary qualities of a usable dynamic window system were discussed. The features
of dynamic colour that fulfill these requirements are summarized here.

Superior results. By purposely choosing bland window styles by default, the dynamic window system will
create sets of colours that are inoffensive to the vast majority of users, yet are far more interesting than
the defaults provided by conventional static window systems. In addition, the functional potential of the
windows is obtained by selecting default colours that organize the windows in a reasonable fashion.

More importantly, by allowing gradual and abstract customizations, the window colours are more likely to
remain harmonious than if the user is forced to select many specific colours to organize their windows.

Another important feature of constraint-based systems is that when all constraints cannot be satisfied, a
reasonable constraint solver allows constraints to be relaxed in order to find a non-optimal minimum value.
In other words, the system fails gracefully. For example, if the desired level of visual separation between
windows or contrast between colours cannot be achieved, a minimum is found that provides a reasonable
solution. The system does not give up when a constraint cannot be absolutely satisfied.

Non-restrictive. It has been shown that the user can customize the system to any level of detail, changing or
overriding any of the system defaults. There are no arbitrary restrictions placed on the user. While this
allows the user to make selections that exhibit undesirable properties, it is condescending to dictate to the
user what is best. The system attempts to suggest functional and potentially harmonious colour schemes,
but all decisions of the user take precedence. In particular, users can specify colours using exact values
which will not be changed, just as they do with current window systems.

Easily customizable. Sections 5.4.3 and 5.4.5 demonstrate how the system can be easily customized by the user.

Predictability and Performance. The aspects of predictability and performance of the system discussed in
Section 5.1 are both functions of the implementation of the window system. In particular, they depend
almost entirely on the implementation of the constraint solver. They are addressed in Section 6.2.

Adding colour constraints to a dynamic window system with the goal of assisting with aesthetic colour selection
is feasible. By satisfying the fundamental properties of dynamic window systems, and avoiding problems with
colour association, a usable system can be implemented. In Chapter 6, such an implementation is presented.

60 Chapter 5. Colour Constraints

Chapter 6

Implementation

6.1 The NeWS Window System

It was decided at an early stage of this thesis not to implement a new window system. Rather, the capability for
using dynamic colour to assist users in making aesthetic colour choices should be added to an existing window
system. Furthermore, it was also decided that the window system should be one that runs on one of the many Unix
workstations available in the Computer Graphics Laboratory. An obvious choice for the window system might
have been X11, due to its widespread popularity on these machines. However, a few limitations of X11, which
are discussed below, ruled it out as a candidate. Instead, the NeWS window system was chosen. Schlueter (1990)
provides a good overview of the important features of NeWS which make it ideal for doing window system
research. Only the particularly relevant points are discussed here. The interested reader is directed to the NeWS
2.1 Manual (Sun, 1990) and the The NeWS Toolkit Reference Manual (Sun, 1991) for more a more in-depth
discussion of the NeWS window system.

6.1.1 Why NeWS is Appropriate for Research

There are many feature of NeWS that make it ideal for doing window system research. Most importantly, NeWS
is easily extensible because it is controlled by programs written in an Object Oriented extension to the PostScript
language1. Typical features of a window system, such as windows and menus, are implemented as classes in this
language. Therefore, adding additional functionality to the window system can done with a minimum amount of
coding by building on existing classes. Furthermore, these programs are interpreted, not compiled. This results in
a much faster turnaround in the modify-compile-test cycle when prototyping a new system since the compilation
step is eliminated. As well, changes can be made to the window system while it is running, allowing new ideas to
be tested easily.

The processes that implement the X11 and NeWS window systems are called window servers because
they provide a windowing service to other applications. An important feature of the NeWS server is that it
provides concurrent execution of multiple lightweight PostScript processes. A process is created for each client
application that opens a connection with the window server. Additional processes can be created and destroyed
in a straightforward fashion by the client. Typically, the client process(es) handle the user interface of the client

1It is assumed that the reader is familiar with object oriented programming terminology. Readers unfamiliar with object oriented
programming terminology should refer to Appendix B for a brief overview.

61

62 Chapter 6. Implementation

application, this being referred to as the server-side of the application. Since PostScript in interpreted, and
therefore inherently inefficient, the bulk of an application is written in a more efficient, compiled language and
run externally. This is referred to as the client-side of the application because the compiled program is a client of
the window server. PostScript uses dynamic binding for all references, so references to data objects or methods
are resolved at runtime. This means that all of the NeWS operators and methods, including the window system
methods, can be changed without requiring recompilation of existing applications.

Tied in with the multiprocess nature of the NeWS window server is the event distribution system. To distill
input events to the appropriate applications and to allow NeWS processes to communicate with each other, NeWS
provides a powerful event distribution mechanism. A process can express an interest in many types of events,
such as those created by keyboard input, mouse movement, window damage, etc. Furthermore, a process can
create and distribute any type of event, including new types of events they define themselves. The distribution
mechanism is very flexible, allowing event distribution to be controlled in a number of useful ways. For example,
by specifying which process is to receive an event, interprocess communication is possible. As well, all events
are time-stamped, allowing events to be created for future distribution. These features of the event distribution
mechanism are used heavily throughout this implementation.

6.1.2 The Choice between NeWS and X11

For this thesis, however, not only is NeWS the most appropriate window system for the implementation, it is in
fact the only known window system with the necessary features. It has already been pointed out that the choice is
primarily between NeWS and X11.

The NeWS Toolkit 2.0 (TNT2.0) provides the standard set of PostScript classes that define the NeWS window
system. This toolkit provides an appropriate colour interface for the purpose of this thesis. Two logical colours,
Foreground and Background, are defined along with a set of interfaces for modifying and retrieving their values.
These two colours already contain some of the semantic information required by this implementation: they are
defined to be the background and foreground colours for the application area of a window. More importantly,
the allocation and management of the colour lookup table (LUT) entries corresponding to these colours is done
by the server, not the application. A client can set the foreground colour, for example, but is unaware of the
implementation of this action. Indeed, all the application knows is that the specified foreground colour is used
from then on.

Under X11, an application asks the server for specific colour values and is returned an index of an entry in
the LUT which contains that colour value. Little semantic information is provided to the window server by the
application. Adding additional semantic information would necessitate modifying many applications that are to
be used with the dynamic window system.

6.2 The Constraint Solver

The task of the constraint solver is to find an optimal set of colours for the window system within a set of
constraints. The behaviour of the dynamic window system is determined by the implementation of its constraint
solver. In Section 5.5, it was suggested that the predictability and performance of the window system also depends
on the implementation of the constraint solver. The implementation of the constraint solver is based on two
conceptual models which together satisfy these concerns: the distributed-jostling model and the concept of a
dynamical colour system.

6.2. The Constraint Solver 63

6.2.1 The Distributed Jostling Model

A concept which greatly improves the efficiency of this implementation is the distributed-jostling model of con-
straint solving. This model was used in Schlueter (1990) to implement the system for perceptual synchronization.
A distributed constraint solver is possible because finding a globally optimal colour set is equivalent to finding
a satisfactory set of colours for each window. Thus, each window in the system participates in the search for an
optimal colour set by finding a solution for its colours. More interesting is the jostling nature of the constraint
solver. When attempting to find a satisfactory set of colours, a window only considers another window if there
are constraints between these two windows’ colours which are not satisfied. When a window’s colours change
enough that they are no longer affected by another window, the other window is immediately forgotten. Since
not all other windows are considered, a window may come into conflict with previously non-conflicting windows
when attempting to find a solution for its colours. A conflicting window notices the conflict and adjusts its colours.
This may in turn cause conflicts with other windows, including the window which originally created the problem,
requiring that they adjust their colours. The window colours can be viewed as “jostling” for position with their
neighbours.

This model is useful for the following reasons. First, the issue of predictability is satisfied because the window
colours start changing immediately, providing immediate feedback. Second, performance is improved because
iterations of the jostling process are staggered over time, each taking a relatively small amount of the available
computing resources. While staggering the iterations of the system increases the time taken to find a solution,
this slowness turns out to be a positive feature. Recall from Section 5.3 that a potential problem with dynamically
changing colour is that it may destroy the ability of the user to build strong colour associations. One of the ways
of countering this problem is to change colours slowly so that the user notices and adapts to them. This is very
important, as rapid changes are unnerving.

There are two other notable features of this model for constraint solving in a dynamic window system. First,
since there is no global attempt at discovering an optimal colour set, this approach scales better to larger numbers
of windows than a centralized algorithm. Second, algorithms that implement this model are simple to implement.

6.2.2 The Dynamical Colour System

Throughout this thesis, the window system is called a dynamic window system. One reason is that this window
system can, in fact, be modelled by a mathematical dynamical system. It seems reasonable, then, that the constraint
solver should be implemented as a simple dynamical system. Instead of viewing a colour in the system as an
abstract quantity, consider it to be a physical object. Each colour object exerts repulsive and attractive forces on
other colours, with the forces created by the constraints between those colours. Each colour has a position which
is its location in colour space. Colour acceleration and colour velocity are derived in the usual manner, using
Newton’s Second Law.

F = ma (6:1)

which gives

d̄0 = initial position

v̄0 = initial velocity

ā = F̄ � v̄iF=m (6.2)

v̄i+1 = v̄i + ā∆t
d̄i+1 = d̄i + v̄i∆t

64 Chapter 6. Implementation

F1

C1

C2

C3

F3

F2

Absolute Colour Value

Figure 6.1: The force attracting colours to an absolute colour value act along the line between the colour and the
absolute colour value, directed from the colour to the absolute colour value.

where d̄ is the colour position, v̄ is the velocity of the colour, F̄ is the force acting on the colour, m is the mass of
the colour, F is a damping factor, ā is the acceleration of the colour2, and ∆t is the time interval between time i
and time i+ 1. What is meant by colour mass is explained below. Viewing the colours in this manner provides us
with an elegant constraint solver based on Newton’s Laws, with one caveat which shall be discussed below. The
constraints between colours are expressed as forces in a straightforward manner.

There are two kinds of constraints, absolute and relative. An absolute constraint acts as a force between a
colour and a specific colour value, directed along the line from the colour’s current position to the position of the
specific colour value. Forces are either attractive or repulsive. For attractive forces, the farther the colour is from
that value, the higher the force. For repulsive forces, the closer the colour is the the value, the higher the force. A
situation where a colour is too far from an attractive absolute colour value is illustrated in Figure 6.1. In a sense,
it is as if the colour is either anchored to a location in colour space, such as by a spring, or is being repelled from
a location in colour space, such as by a magnet of the same polarity.

Relative constraints are expressed similarly, except that the force acts between two colours and is exerted on
both of them in equal and opposite directions. There is a relationship between the two colours that is expressed as
the constraint. When this constraint is violated, both colours attempt to change their values to satisfy it. As with
the previous constraints, the farther the colours are from satisfying it, the higher the force. A situation in which
two colours are too far apart is illustrated in Figure 6.2. Even when relative constraints are hard to visualize as
forces, they are easy to represent mathematically.

In Chapter 5, constraints were considered to have more or less importance. This concept is easy to accomplish
by varying the magnitude of the force vector produced by the constraint. Furthermore, this type of constraint
solver automatically relaxes its constraints so that solutions which are closest to satisfying the constraints may
be found. Consider the situation when a colour is bordered on all sides by colours which are exerting repulsive
forces. While the colour may not be able to move to a position where there are no more forces acting on it, it does
move to a position where the net force acting on it is zero. This represents a optimal solution which comes closest
to satisfying the constraints and occurs naturally with this model.

Another requirement of a dynamic colour system is that some colours be less likely than others to change their
values. The concept of colour mass makes this possible. Equation 6.2 shows that increasing the mass of an object

2The 1
2a∆t2 term is omitted because of its relatively small effect.

6.3. The NeWS Colour Window Classes 65

C1

F

-F
C2

Figure 6.2: The force attracting the two related colours acts along the line between them, directed from each
colour toward the other.

decreases its acceleration. When the mass of a colour object is varied, it becomes more or less likely to move
when it interacts with other colours. For example, if an exact colour value has been specified for a colour it should
never move. This is easily accomplished by giving the colour an infinitely large mass, so all forces result in zero
acceleration. Consider another example. If the user has expressed a preference for a certain colour value it should
be less likely to move than colours which were chosen randomly by the system. This is accomplished by giving
the colour a larger mass that the average colour.

As it turns out, this model fits quite well with the distributed jostling model. Each window is given its own
dynamic system in which it puts its colours and its intra-window constraints. When a constraint between one
of this window’s colours and a colour in another window is violated, that window’s colours are added to the
local dynamic system along with the constraints in question. During each iteration of the dynamic system, the
sum of the forces acting on each local colour is used to determine the acceleration acting on the colour. This
acceleration is used to update the velocity and position of the colour using Equation 6.2. If any local colours
move, all windows are notified of the change in position. Any external constraints that exert no force on the local
colours are discarded, and any external windows whose colours are no longer in conflict with the local colours are
discarded.

The final feature of this model is the use of a force similar to friction in damping oscillations. By applying a
force against the motion of colours, the system naturally dampens any potential oscillations that could occur. F
is the damping factor in Equation 6.2.

It is mentioned at the beginning of this section that there is one caveat to the statement that this system is based
on Newton’s Laws. That caveat is that when there are no longer any forces acting on a colour object aside from
the force of friction, it immediately stops moving. While this introduces slight discontinuities into the system,
this highly damped behaviour is required to ensure that colours change as little as possible to prevent unnecessary
damage to user colour associations.

6.3 The NeWS Colour Window Classes

The actual implementation consists of a hierarchy of classes built on top of the TNT2.0 classes. A separate class
exists for each major issue that had to be handled during the implementation. This separation of functionality
facilitates fast prototyping, provides a logical organization for explaining the system and allow the system to be

66 Chapter 6. Implementation

ClassColourWindow

ClassWindowStyle

ClassDynamicalSystem

ClassRGBColourShifter

ClassColourSet

ClassColour

ClassColourObject

ClassBasicColour

ClassWindow
ClassBaseWindow

ClassPopupWindow

(other TNT classes)

Figure 6.3: The Colour Window System classes are added to the TNT2.0 system by inheriting from the TNT2.0
ClassWindow class and modifying the ClassWindow subclasses ClassBaseWindow and ClassPopupWindow
to inherit from ClassColourWindow.

easily modified for future experimentation. Figure 6.3 shows the class hierarchy of this system, along with an
excerpt from the TNT2.0 class hierarchy showing where these classes fit in3.

A goal of the implementation is to allow the concept of dynamic colour to be added to the NeWS window
system in such a way that many existing applications work with the system without needing to be modified or
recompiled. A simplification is made to the conceptual model discussed in Chapter 5 in order to achieve this goal.
Specifically, only four conceptual colours are supported for each window, as described below.

TNT2.0 provides a standard colour interface which allows applications to specify foreground and background
colours. Fortunately, most of the available NeWS applications only use the single foreground and background
colours supported via the standard interface discussed earlier. When additional colours are used, applications set
them in a variety of ways, usually by using the NeWS setcolor operator to directly set the drawing colour just
prior to using it. Unfortunately, there is no way to override the setcolor operator in an intelligent manner because
there is no way to infer the semantic meaning of colours specified in this fashion. Therefore, since changing
the applications is to be avoided, the only application colours with which the window system can do anything
intelligent are the two colours set through the standard interface. As mentioned above, few of the existing TNT2.0
applications use more than the standard two colours, so most of them work with the system without modification.
These two colours are referred to as the Client colours throughout the implementation.

Standard TNT2.0 windows share a single set of border colours, which are a medium intensity gray background
with a black foreground by default. This restriction is removed in the colour window classes, allowing each
window to have its own distinct border colours. These are referred to as the Border colours throughout the
implementation. These two border colours, and the two client colours mentioned above, comprise the set of four
colours for which some semantic information can be implied by the window system.

In the following sections, each of the major classes in the Colour Window System are described.

3Throughout NeWS colour is spelled “color”, so references to NeWS routines, classes, types, etc. will be spelled in that way.

6.3. The NeWS Colour Window Classes 67

6.3.1 ClassBasicColour

NeWS provides an object type called colortype to represent colour values. A colortype can be created by
specifying its coordinates in either RGB or HSB colour space. All of the NeWS colour operators, and most of the
class methods, take parameters of type colortype. The functionality provided by the colortype is not sufficient
for this implementation because colours will need to be specified in colour spaces aside from these two.

RGB specification is required. What NeWS calls HSB appears to correspond to the HSV colour space
discussed in Chapter 2, but is not adequately described in the NeWS documentation. In any case, the HLS model
provides a more intuitive approach to colour specification than HSV, so HLS is used in this implementation. To
support both the measuring of contrast and colour difference, colours need to specified by their XYZ and CIELUV
coordinates. ClassBasicColour provides a replacement for colortype that supports all of these colour spaces.

Since the ClassBasicColour overrides the NeWS colortype, all of the NeWS colour operators and some of
the class methods that deal with colour are rewritten to support parameters of this class as well as of colortype.

6.3.2 ClassColourObject

This object adds to ClassBasicColour the physical characteristics required to use colours in the dynamical system
described in Section 6.2.2. The value of the colour is equivalent to its position. Methods are provided to change
the mass of the colour and to stop the motion of the object. Force is applied to the object through two methods.
addforce adds a force vector to the total force acting on the object, as follows:

Input: F (an [h, l, s] force vector)

MyForce.h += F.h
MyForce.l += F.l
MyForce.s += F.s

No Output

applyforce first calculates friction as a function of the object’s velocity, then applies the total force vector to the
object, automatically updating the acceleration, velocity and position of the colour using Equation 6.2, as follows:

No Input

% these are vector operations
MyAccel := MyForce / MyMass
MyForce := 0

if (magnitude(MyAccel) < threshold) then
stopmotion
return true

else
MyAccel += MyVelocity * Friction / MyMass
MyPosition += MyVelocity * DeltaTime
MyVelocity += MyAccel * DeltaTime

set_my_colour(MyPosition)
return false

Output: boolean

MyAccel, MyForce, MyMass, MyVelocity and MyPosition correspond to the acceleration, force, mass, velocity
and position of the colour object. If the total external force acting on the colour is close to zero when applyforce

68 Chapter 6. Implementation

is invoked, the colour will immediately stop moving. The threshold value determines how small the acceleration
must be to be considered zero. While this does not correspond to natural physical laws, it is nevertheless desirable
to make sure that colours move no more than is necessary to satisfy the constraints, giving the system a highly
damped feeling. applyforce returns a boolean value indicating whether the net force acting on the colour was
approximately zero, and thus the stability of the colour.

The force is specified as a vector in the HLS colour space. The HLS space was chosen because most of the
constraints are expressed in HLS coordinates, as discussed in Section 6.3.6.

6.3.3 ClassColour

The last of the colour objects, and the one used by other classes, is ClassColour. It solves the final problem
associated with the colour classes, that of overriding the NeWS colour model.

NeWS uses a static colour model. The colour lookup table is filled with a cube of colour that samples the
colour gamut at regular intervals. When a colour is requested by an application, the nearest available colour in
the colour cube is used. Unfortunately, as was discussed in Section 5.4.1.2 there is no concise definition of colour
similarity. As a result, the colour value chosen by NeWS is not necessarily the most appropriate one available.
This is especially true when colours are chosen subject to some constraints, such as when they are supposed to be
different shades of the same hue.

There are two drawbacks to this scheme. First, and most importantly, when a colour value is requested by this
system, it is important that the exact colour value is returned. Otherwise, both the aesthetic and functional colour
relationships that are created by this system can be destroyed. Second, in order to change window colours freely,
each different colour used by the system must have its own LUT entry. With a static colour model, an application
does not have the same LUT entries for its colours after they are changed, requiring it to redraw its windows every
time the colours change. To avoid this, the values stored in the LUT entries used by the application are changed.
Unfortunately, with the NeWS static colour model, if two colours start with the same value, they will have the
same LUT entry. When one of these windows changes its colour value, the other window’s value is also changed,
which is unsatisfactory. Fortunately, current versions of NeWS allow dynamic colour maps to be created. By
forcing the window system to use a dynamic colour map instead of the static one it uses by default, LUT entries
are allocated for the exclusive use of particular colours, solving this problem.

A serious limitation is the small size of colour lookup tables. Current systems have 256 entries in their LUT’s,
which is sufficient for static colours, but with dynamic colours all the entries tend to be used quite quickly. Each
window in the window system has two foreground/background colour pairs. However, since TNT draws all
of its interface components using an embossed, three dimensional appearance, each of these conceptual colour
pairs actually requires five LUT entries. Thus, a typical window in this system requires ten LUT entries. If the
three dimensional effects are turned off, each window still requires four colours. To handle this problem, the
ClassColour object makes use of the idea of active and inactive colours. When a colour needs to be used, the
window system attempts to activate it, causing the ClassColour object to attempt to allocate a LUT entry for
its exclusive use. If this fails, the ClassColour object uses a default LUT entry which it does not allow to be
modified. Therefore, when the system runs out of LUT entries, applications run but use a default set of colours
instead of their own. Fortunately, as hardware becomes more powerful, this problem will disappear. For example,
systems already exist with 4096 LUT entries, such as the Silicon Graphics IRIS workstations.

6.3.4 ClassColourSet

The dynamic colours used by a window are managed by ClassColourSet. Each colour is given a symbolic name,
indicative of its semantic meaning, which is used to store a reference to the colour in a dictionary called ColourSet.

6.3. The NeWS Colour Window Classes 69

The four major colours automatically created by the system are labeled BBG (Border Background), BFG (Border
Foreground), CBG (Client Background) and CFG (Client Foreground).

The concept of active and inactive colours introduced by the ClassColour object raises two issues which
are dealt with by this class. First, if a window has more than one colour, either all or none of them are active.
Allowing a subset of the window colours to be active would increase the complexity of the rest of the system
without providing any clear benefit to the user. Consider, for example, that most of the window’s colours are used
to create three dimensional effects for the various interface objects. If any of the colours in that set are inactive,
and thus uses its default colour value, all of them must assume the default colour values or the three dimensional
appearance of the window is disrupted. Grouping the colours allows them to be activated and deactivated as a
set. Also, the semantic meaning of each of these colours is known by ClassColourSet, so reasonable default
values are provided when colours can not be allocated; black for the foreground colours and shades of gray for the
background and three dimensional effects. Thus, windows that can not allocate their colours have an achromatic
appearance that distinguishes them from the rest of the windows in the system.

The second problem is that if all of the LUT entries are allocated and a window deactivates its colours, any
windows using the default colours should be notified so they can reattempt to activate their colours. To facilitate
this notification, ClassColourSet defines a ColourSegFreed event which is distributed when the window’s colours
are deactivated. Similarly, when a window is unable to activate all of its colours, it expresses an interest in the
ColourSegFreed event. To ensure that starvation does not occur when multiple windows are competing for the
same small set of LUT entries, exclusive events are used. These events are only distributed to one interested
process at a time and are used for synchronization because only one window at a time will receive the event and
attempt to activate their colours. This prevents problems such as The Dining Philosophers Problem (Tanenbaum,
1986) from occuring and guarantees that one of the windows will activate its colours if there are enough LUT
entries.

6.3.5 ClassColourShifter

A potential problem with changing colours via a distributed jostling model is that colours are not guaranteed to
take a straight or smooth path to their final colour value. Analogous behaviour was seen in Schlueter’s system
when the windows appeared to jiggle around before settling on their final positions. The movements of the
windows in Schlueters system were, however, relatively small. Even though the often vigorous jiggling was
distracting, the user could see why they moved as they did. Colour movements are not necessarily as small and
colour relationships are not always as obvious. If the colours are allowed to jiggle as vigorously, they inevitably
appear to change abruptly in random ways causing jarring visual effects.

It is desirable, therefore, to have the colours shift gradually from their current values to the new ones.
ClassColourShifter provides this ability in a simple fashion. When the system decides to changes a colour value,
the destination value is set inside of this class and the colour slowly changes to that value. As the jostling causes
the colour value to change, the destination of the colour is changed and its route altered. Therefore, many quick
changes in the destination value of the colour will not be as distracting, as the colour’s actual value will move
very little between each change in its destination.

6.3.6 ClassColourConstraint

ClassColourConstraint defines the methods common to all constraints. Using this class, it is possible to create
all of the constraints needed for this thesis. It is not intended to be instantiated, but rather to provide a template
for the creation of specific types of colour constraints.

70 Chapter 6. Implementation

As described in Section 6.2.2, there are two forms of constraints, absolute and relative. All of the constraints
operate on two operands, which are instances of either the ClassColour class or the NeWS colortype. Recall
that ClassColour is a subclass of ClassColourObject, giving instances of ClassColour an understanding of the
physical concepts of mass, force, etc. that are necessary for the constraints to exert force on them. A colortype,
on the other hand, is a elementary NeWS type with no knowledge of the necessary physical concepts. They are
useful, however, for specifying exact colour values that will not change. Since all forces result in zero acceleration
when applied to an object of infinite mass, by viewing colortype operands as colour objects with infinite mass the
constraints do not need to apply force to them.

The constraints are modelled as forces between two colours. If the constraint is satisfied, there is no force
exerted on the colours. If the constraint is not satisfied, there is a force exerted on the colours, pushing them toward
a satisfactory state. How this force is determined is a function of the individualconstraints, but the magnitude of the
force is always proportional to the distance the colours are from positions that satisfy the constraint. Furthermore,
the force is exerted bidirectionally, affecting both colours in equal and opposite directions. However, since the
constraint solver is distributed, with each window changing only its local colours, only intra-window constraints
actually have their force applied to both colours. If two windows have conflicting colour values, each window
applies the same constraint to the two conflicting colours. If the resulting force is applied to both colours in both
windows, each colour will have the force applied twice. However, following the principle that a window will only
change its local colours, the forces resulting from inter-window constraints are only applied to the local colours,
avoiding this problem. A method is provided to inform a constraint if it should be bidirectional? or not.

As discussed in Section 6.2.2, some constraints are more important than others. Therefore, a setimportance
method is provided to set the Importance of the force. The value specified is used by the constraint to determine
the magnitude of the force. For all of the forces described below, the magnitude of the force vector is simply
multiplied by Importance value, which defaults to 1.

Many of the constraints in the system, especially the functional constraints, are repeated occurances of a
small number of constraints applied to different windows. For example, every pair of foreground and background
colours in the window system has a contrast constraint acting on it, yet there are only two distinct constraints.
One is between the border foreground and background colours, the other is between the client foreground and
background colours. To take advantage of situations such as this, the colours that a constraint acts on are denoted
either using the symbolic names defined in ClassColourSet or by a NeWS colortype. When any of the methods of
a constraint are invoked, the ColourSets containing the appropriate window’s ClassColour objects are provided
and the constraint retrieves the needed colours. For example, an instance of a constraint may affect the BBG
and BFG colours. When one of this constraint’s methods are invoked, the BBG colour is looked up in the first
ColourSet and the BFG colour is looked up in the second. The setoperand1 and setoperand2 methods are
provided to set the name or colortype of each operand.

There are three methods provided by all constraints, which correspond to the three tasks a constraint may
need to perform: check, apply and pickrandom. The check method does not apply any force to the affected
colour, but returns a boolean result which indicates whether the constraint is satisfied. The apply method first
checks to see if the constraint is satisfied. If it is not satisfied, force is applied to the colours to push them toward
a satisfactory state. The pickrandom method is used when new colours must be generated for a window, as
described in Section 6.3.8. It assumes the second operand’s colour is valid and picks a random colour value for
the first operand such that the constraint is satisfied.

The general algorithm used by all constraints for the check and apply routines is as follows:

Input: op1, op2 (type ClassColourSet or colortype)

if type(op1) = ClassColourSet then
op1 := lookup key operand1 in dictionary op1

6.3. The NeWS Colour Window Classes 71

if type(op2) = ClassColourSet then
op2 := lookup key operand2 in dictionary op2

if type(op1) = ClassColour or
(type(op2) = ClassColour and bidirectional) then
{ WORK }

else
return true

Output: boolean

where f WORK g in the check routine is:4

return ((F := getforce(op1, op2)) = 0)

and in the apply routine is:

F := getforce(op1, op2)
if type(op1) = ClassColour then

addforce(op1, F)

if type(op2) = ClassColour and bidirectional then
addforce(op2, negative(F))

return (F = 0)

getforce is calculated differently for each type of constraint, each of which will be explained in the corresponding
section. addforce is the addforce routine discussed in Section 6.3.2.

The pickrandom routine is:

Inputs: op1, op2 (type ClassColourSet or colortype)

if type(op1) = ClassColourSet then
op1 := lookup key operand1 in dictionary op1

if type(op2) = ClassColourSet then
op2 := lookup key operand2 in dictionary op2

if type(op1) = ClassColour then
colour := pickrand(op1,op2)
setcolour(op1, colour)

Output: none

As with getforce, pickrand is calculated differently for each type of constraint and explained in the appropriate
section.

Three types of constraints have been implemented which encompass all of the constraints discussed in
the thesis. These constraints are ClassCCVariation, ClassCCContrast and ClassCCDistance. Two other
constraints, ClassCCAnalogousVariation and ClassCCWindowDistance, were implemented to demonstrate
how more interesting constraints can be built by subclassing from these three basic constraints. Each of these
constraints is discussed below.

4The check routines for the existing constraints have been coded more efficiently by only doing as much work as is necessary to determine
if the force would be non-zero. The details are omitted for simplicity.

72 Chapter 6. Implementation

C

A1

A2
A3

A4
M

S

H

Figure 6.4: The relationships between the hues for the simple colour schemes described in Section 2.4. Hue and
saturation are shown, with the lightness axis perpendicular to the page. The colour on which the scheme is based
is represented by the open circle. Monochromatic variations have hue M. Complementary colours have hue C.
Analogous colours either have A1 � hue � A3 or A2 � hue � A4.

6.3.6.1 ClassCCVariation

All the aesthetic constraints discussed in this thesis are implemented using the ClassCCVariation class. Each
constraint defines one colour as a variation of an other one. For example, a monochromatic constraint defines one
colour to have the same hue as an other, making the former colour a monochromatic variation of the latter.

For these constraints, the HLS colour coordinate system is used. The three HLS coordinates — hue, lightness
and saturation — are defined in the range [0; 1]. The hue value represents a continuous circle of hues, with
hue values of 0 and 1 being equivalent. The lightness range is also treated specially. Noting Gerritsen’s work
(Section 2.2.6), it is often desirable to specify the perceived brightness of a colour rather than the abstract lightness
value. For example, a user may desire that all of their window backgrounds have the same perceived brightness.
To support this, the lightness range specification can apply to either the HLS lightness coordinate or the XYZ Y
coordinate of the colour.

Variations are defined by providing either an relative or absolute range of acceptable values for each of the
coordinates. A relative range indicates the amount the two colours can differ in the coordinate, specifying the
value of the first colour operand relative to the value of the second. For example, if a relative range of [�:25;+:15]
is specified for the saturation and the second colour operand has a saturation of .3, the first colour’s saturation
could fall anywhere from :05 to :45 units. An absolute range, on the other hand, specifies the possible values of
the first colour operand independently of the second. For example, if the lightness was specified by the absolute
range [:5; :6], the first colour would have a lightness of between :5 and :6 irregardless of the lightness of the second
colour.

Using this class, the following interesting constraints can be created:

� Monochromatic colours. Recall from Section 2.4 that a colour is a monochromatic variation of another
colour if they both have the same hue, as shown in Figure 6.4. To create a monochromatic constraint,
a ClassCCVariation constraint is applied to the colours with a relative hue range of [0; 0] and absolute
lightness and saturation ranges of [0; 1]. This condition constrains the hues to be the same but does not affect

6.3. The NeWS Colour Window Classes 73

the saturation or lightness. By further refining the brightness and saturation ranges, more specific results
can be obtained. For example, consider the default colours scheme suggested in Section 5.4.4. There were
two background colours in that scheme:

– border background. Any hue, a saturation of 25%, a lightness of 50%.

– client background. Same hue and saturation as the border, a lightness of 90%.

They could be created with the following constraints:

– border colour. Absolute hue range [0; 1], absolute saturation range [:25; :25], absolute lightness range
[:5; :5].

– window interior. Relative hue and saturation range [0; 0], relative lightness range [+:4;+:4].

� Complementary colours. Recall from Section 2.4 that two colours are complementary if their hues lie
exactly opposite each other on the circle of hues. As mentioned above, the hue value represents a circle.
Effectively, this means addition and subtraction of hue values is performed modulo 1 so that hue values
wrap around the ends of the range properly. Therefore, specifying a constraint between two colours with a
relative hue range of [:5; :5] constrains them to be complementary colours. The saturation and brightness
are handled in the same fashion as for monochromatic colours.

The force exerted by the ClassCCVariation constraint is determined independently for each of the H, L and
S coordinates, the magnitude and direction being proportional to the distance of the coordinate from the closest
edge of the range of satisfactory colour values. This is important. The first colour operand of this constraint
is only partially defined in relation to the second colour operand. Specifically, any of the coordinates that are
constrained to absolute ranges are independent of the second colour operand. The force exerted on the first operand
is determined by adding the three independent forces. However, the force on the second operand is determined by
adding only those forces whose associated coordinate is constrained by a relative range, since these are the only
coordinates which interact with the colour value of the first operand.

Each component of the force can have a different importance specified for it, allowing different aspects of
the relationships expressed via these constraints to have different conceptual importance. For example, a relative
hue range of [0; 0] might be specified because the user wishes the colours to be monochromatic variations of each
other. By giving the hue relationship a high importance, the likelihood that the constraint will be satisfied is
increased. However, it may not be desirable to assign the lightness or saturation components of the constraint an
equally high importance. For example, a relative lightness range of [+:25;+:25] might be specified so that one
colour is lighter than the other. The importance of this aspect of the constraint may be significantly less than the
importance of the hue aspect.

In Section 6.3.6, the check and apply routines were defined in terms of a getforce function. For ClassCC-
Variation, that function is:

Inputs: op1, op2 (type colortype)

% calculate the saturation force component
sat := sat(op1)
if SaturationMode = Relative then

sat := sat - sat(op2)

if sat >= SatRangeMin then
if sat <= SatRangeMax then

F.s := 0
else

F.s := SatRangeMax - sat

74 Chapter 6. Implementation

else
F.s := SatRangeMin - sat

% calculate the lightness force component
light := light(op1)
if LightnessMode = Relative then

light := light - light(op2)

if light >= LightRangeMin then
if light <= LightRangeMax then

F.l := 0
else

F.l := LightRangeMax - light
else

F.l := LightRangeMin - light

% calculate the hue force component
hue := hue(op1)
if HueMode = Relative then

hue := (hue - hue(op2)) mod 1

if hue >= HueRangeMin or hue <= HueRangeMax then
F.h := 0

else if HueRangeMin < HueRangeMax then
% median is half the size of the
% area outside the hue range
median := (1 - HueRangeMax + HueRangeMin)/2
if hue < HueRangeMin then

% if hue is within median of min,
% then hue is closest to min
if median > (HueRangeMin - hue) then

F.h := HueRangeMin - hue
else

F.h := hue + 1 - HueRangeMax
else

% if hue is within median of min,
% then hue is closest to min
if median > (hue - HueRangeMax) then

F.h := HueRangeMax - hue
else

F.h := HueRangeMin + 1 - value
else

% if HueRangeMin > HueRangeMax, the value hue
% range wraps around the end.
median := (HueRangeMin - HueRangeMax)/2 +

HueRangeMax
if median < hue then

F.h := HueRangeMin - hue
else

F.h := HueRangeMax - hue

F.s *= SatImportance
F.l *= LightImportance
F.h *= HueImportance

Output: F (the force vector)

6.3. The NeWS Colour Window Classes 75

In addition, ClassCCVariation redefines the negative routine as follows:

Input: F (a force vector)

if SaturationMode = Relative then
F.s *= -1

else
F.s := 0

if LightnessMode = Relative then
F.l *= -1

else
F.l := 0

if HueMode = Relative then
F.h *= -1

else
F.h := 0

Output: -F (the force vector)

As explained above, only those coordinates of the second operand that influence the first operand are to have force
applied to them.

The pickrandom routine was defined in terms of a pickrand function. For ClassCCVariation, that function
is:

Inputs: op1, op2 (of type colortype)

colour.s := SatRangeLength * random + SatMin
if SaturationMode = Relative then

colour.s += sat(op2)
colour.s := colour.s mod 1

colour.l := LightRangeLength * random + LightMin
if LightnessMode = Relative then

colour.l += light(op2)
colour.l := colour.l mod 1

colour.h := HueRangeLength * random + HueMin
if HueMode = Relative then

colour.h += hue(op2)
colour.h := colour.h mod 1

Output: colour (of type colortype)

6.3.6.2 ClassCCAnalogousVariation

ClassCCAnalogousVariation is a subclass of the ClassCCVariation class, demonstrating how more interest-
ing aesthetic constraints can be created. This class overrides the hue specification of ClassCCVariation so
that the hues of the two colours vary within an analogous colour range. It is necessary to create a more
specialized class because analogous hue cannot be defined by the simple linear relationships possible with
ClassCCVariation.

Recall from Section 2.4 that an analogous colour scheme can be defined by dividing the colour circle into
twelve segments and selecting any neighbouring pair of segments. All colours that fall within this pair of segments

76 Chapter 6. Implementation

define a set of analogous colours. The colour on the border of two segments can be considered to fall in both
segments, but is restricted to one of them for simplicity. If the hue parameter defines a clockwise circle, the hues
on the borders of segments are included only in the segment on their clockwise side. Therefore, any given colour
value falls within two analogous colour schemes, as shown in Figure 6.4.

By default, the constraint permits the hue of the first colour operand to fall anywhere in the range of hues
possible in either of the analogous schemes that could be defined by the hue of the second colour operand,
allowing the widest range of hues. When a single ClassCCAnalogousVariation constraint is being used to
relate two colours, this is a reasonable approach. However, when more than two colours are being related with
ClassCCAnalogousVariation constraints with the intent of having them all be analogous to each other, either a
constraint must be placed between every pair of colours, or they all must be related to a common colour by one
of the two analogous schemes. Otherwise, the colours are not guaranteed of falling in the same analogous colour
scheme. The former approach is desirable when a small number of colours are being related, since it allows the
most flexibility in colour selection. However, the number of constraint required is

�
N
2

�
= N (N � 1)=2 where N

is the number of colours. When the number of colours is large, the second approach is more desirable, because
only N � 1 constraints are needed. Additionally, the second approach allows more control over which analogous
colour scheme is used. If only one of the schemes is desired, the user may specify which of the two schemes is to
be used. The pseudocode for the calculation of possible hues is as follows:

Input: hue2 (the hue of operand2, range [0,1])

% the hues are divided into 12 analogous ranges
sector := integer((hue2 * 12) mod 12)

% "Either" selects three sectors, the other
% methods select the left or right pair
if Analogous_Scheme = Either then

Range_min := sector - 1
Range_max := sector + 2

else if Analogous_Scheme = Left then
Range_min := sector
Range_max := sector + 2

else
Range_min := sector - 1
Range_max := sector + 1

% convert back to [0,1] ranges
Range_min := (Range_min mod 12) / 12
Range_max := (Range_max mod 12) / 12

Output: Range_min, Range_max

ClassCCAnalogousVariation is implemented by overriding the apply, check and pickrandom interface
methods of ClassCCVariation. The new methods determine the appropriate hue range for the analogous colour
scheme defined by the colour value of the second operand, use it to set the ClassCCVariation hue range and
finally invoke the superclass method they override. Since each instance of the constraint can be used multiple
times, the code between setting the hue range and invoking the superclass method is a critical section (Tanenbaum,
1986). Synchronization is provided by enclosing the setting of the superclass hue range and the invocation of its
check, apply or pickrandom method with a monitor.

As mentioned above, the class definition for ClassCCAnalogousVariation is quite short, demonstrating how
simple new constraints are to create. It is included in Appendix C to illustrate that point.

6.3. The NeWS Colour Window Classes 77

6.3.6.3 ClassCCDistance

The ClassCCDistance constraint is used to specify a distance relationship between two colours. As suggested in
Section 5.4.1.2, the distance between two colour values is calculated as the Euclidean distance in the CIELUV
colour space. Since both maximum and minimum distance constraints are needed, the constraint can be used to
either attract colours so they attempt to stay within a certain distance or repel colours so they attempt to stay beyond
a certain distance. Methods are provided to set the Distance threshold and to specify whether this constraint should
exert an attractive or repulsive force by defining the boolean parameter Attract?. The magnitude of the force is
proportional to the distance that the value is from the threshold, adjusted by the importance of the constraint. The
direction of the force is collinear to the two colour values, either directed towards the colours or away from the
colours depending on if the constraint is attractive or repulsive.

In Section 6.3.6, the check and apply routines were defined in terms of a getforce function. Before defining
this function, the luvdistance function is defined as the Euclidean distance between the two colours as follows:

Inputs: colour1, colour2 (type colortype)

luv1 := LUV(colour1)
luv2 := LUV(colour2)

distance := square_root((luv2.l-luv1.l)ˆ2 +
(luv2.u-luv2.u)ˆ2 + (luv2.v-luv2.v)ˆ2)

Outputs: distance

Using this function, the getforce routine for ClassCCDistance is:

Inputs: op1, op2 (of type colortype)

Force := Distance - luvdistance(op1, op2)
if Attract? then

Force := -Force

if Force < 0 then
F := 0

else
% scale the force to a more resonable value
% which has been chosen experimentally
Force /= 80
Force *= Importance

% now, calculate the vector between the two colours
vector := HLS(op1) - HLS(op2)
if Attract? then

vector := -vector

% make sure the hue is taking the shortest route
if vector.h > .5 then

vector.h -= 1
if vector.h < -.5 then

vector.h += 1

% if the vector length is close to zero, don’t
% use it. PickRandDir returns a unit vector
% pointing in a random direction
if LENGTH(vector) < .001 then

unit := PickRandDir()

78 Chapter 6. Implementation

else
unit := vector/LENGTH(vector)

F := unit * Force

Output: F (the force vector)

The pickrandom routine was defined in terms of a pickrand function. For ClassCCDistance, that function is
defined as:

Inputs: op1, op2 (of type colortype)

if Attract? then
colour := op2

else
vector := PickRandDir() * MinDistance

% hue wraps around the end
colour.h := op2.h + vector.h mod 1

% lightness and saturation are truncated
colour.l := op2.l + vector.l
if colour.l > 1 then

colour.l := 1
elseif colour.l < 0 then

colour.l := 0

colour.s := op2.s + vector.s
if colour.s > 1 then

colour.s := 1
elseif colour.s < 0 then

colour.s := 0

Output: colour (of type colortype)

This constraint is used to create many relationships, examples of which are given below.

Preferred Colour Specification. Although it is possible to specify the value of a colour as an exact value that
does not change, there are times when a particular value is preferred, but the colour can change if other constraints
are acting on it. For example, if a user modifies a colour manually, a constraint of this type is created by specifying
an attractive force with a distance threshold of zero.

Similar Colours. When windows are grouped together as described in Section 5.4.1.2, their colours should be
similar. Because colour similarity is not well understood, a fairly arbitrary threshold has been chosen within which
colours are taken to be similar. From Section 5.4.1.2 it can be seen that distances as small as five OSA units
can provide good colour separation. Therefore, the distance threshold should be smaller than this. A reasonable
choice is the OSA nearest neighbours, which have a distance of

p
3 and 2. From Appendix A, it can be seen that

this corresponds to 15 to 20 CIELUV units. Fifteen was chosen to err on the conservative side. Therefore, this
constraint is created by specifying an attractive force with a distance threshold of fifteen.

Slightly Different Colour. Unless window colours are explicitly constrained to be the same, they should be
distinguishable, even if they are constrained to be similar as described above. From Appendix A we see that an

6.3. The NeWS Colour Window Classes 79

CIELUV difference of approximately ten units is a reasonable value to use for slight difference. Therefore, this
constraint is created by specifying a repulsive force with a distance threshold of ten. It is also given a fairly high
importance so that the colours do not come significantly closer to one another than ten units.

Significantly Different Colour. When windows should be visually different, some of their colours are required
to be significantly different. As discussed in Section 5.4.1.2, an CIELUV distance of approximately eighty units
is a reasonable value to use. Therefore, this constraint is created by specifying a repulsive force with a distance
threshold of eighty.

6.3.6.4 ClassCCWindowDistance

ClassCCWindowDistance, like ClassCCAnalogousVariation, is an example of how to create more powerful
constraints based on the three basic types. ClassCCWindowDistance uses ClassCCDistance to create a simple
window distance constraint that can be used to repel or attract windows, just as ClassCCDistance can repel or
attract individual colours.

Window distance is defined to be the difference between either the border background colours or the client
background colours of the two windows. The pair with the highest chromatic component is chosen, since these
colours represent the predominant window colour. The heuristic used to calculate the chromatic component of a
colour value is

Cr = 2
�
:5� jL � :5j� S (6.3)

where L and S are the HLS lightness and saturation coordinates of the colour. Since the HLS saturation coordinate
represents the percentage of the maximum saturation for a given lightness value, and colour values are less
saturated the farther their lightness value is from .5, Equation 6.3 is a measure of the absolute saturation of a colour
independent of the lightness.

ClassCCWindowDistance is implemented similarly to ClassCCAnalogousVariation by overriding the
apply, check and pickrandom interface methods of ClassCCDistance. Each of these routines determines
which pair of colours should be used, sets the the operands of its ClassCCDistance superclass appropriately and
invokes the corresponding superclass method. Just as with ClassCCAnalogousVariation, each instance of the
constraint can be used multiple times, so a monitor is used for synchronization.

Like ClassCCAnalogousVariation, this constraint is very simple and is included in Appendix C.

6.3.6.5 ClassCCContrast

The ClassCCContrast constraint is used to ensure that a pair of colours, one a background colour and one a
foreground colour, maintain a specified contrast. This constraint is implemented using the contrast metric derived
in Chapter 4. Since every pair of background and foreground colours in the system has a contrast constraint
applied to it, some care is taken with efficiency of the implementation. While there are many variables in the
equations that describe the contrast metric, most of them are set once when a specific instance of ClassCCContrast
is created. For example, the black level and pixel bleed are functions of the monitor and the pixel densities are
functions of the application using the two colours. The only parameters that vary between each application of the
constraint are the luminances of the two colours. Thus, Equations 2.15, 4.7 and 4.8 are rearranged to isolate these
values.

As discussed in Chapter 4, only luminance contrast is considered, since chromatic contrast is not well
understood. While luminance contrast may not be necessary for legibility, it is sufficient. As with other constraints,

80 Chapter 6. Implementation

all parameters are specified assuming the first operand is constrained to the second. Since the calculation of the
luminances L0

bg and L0

fg from Equations 4.5 and 4.5 are different, the boolean Background? flag specifies
whether the first operand is the foreground or background colour. Furthermore, the desired Polarity of the colours
may be specified so that either light text on a dark background, or the reverse, can be absolutely required. The
first colour can be constrained to be Lighter than the second, Darker than the second or to be Either polarity. If
either polarity is acceptable, whichever one is more easily satisfied is used.

When the colours do not have the required luminance contrast, a force is applied which is proportional to the
difference between the current contrast and the required contrast, and is parallel to the lightness axis of the colour
space.

Before giving the pseudocode algorithms used in the contrast constraint, the following constants are derived
from the equations in Chapter 4:

BGfg := (1 - BGPixelDensity) * PixelBleed
FGfg := PixelBleed * FGPixelDensity + 1
FGbg := (1 - FGPixelDensity) * PixelBleed
BothBL := (1 + PixelBleed) * BlackLevel

where FGPixelDensity is the percentage of foreground pixels next to another foreground pixel and
BGPixelDensity is the percentage of background pixels next to another background pixel. These can be changed
depending on the application, but the defaults assume a text based application with thin fonts. PixelBleed is the
amount of pixel bleed. The default is the optimal value 62%. BlackLevel is the black level of the monitor. The
default value is 2.5%.

A routine called getcontrast is defined which calculates the contrast using the following algorithm:

Inputs: Y1, Y2 (the luminances of the two colours)

if Background? then
Ybg := Y1, Yfg := Y2

else
Ybg := Y2, Yfg := Y1

Lfg := Yfg * FGfg + Ybg * FGbg + BothBL
Lbg := Yfg * BGfg + Ybg * BGbg + BothBL

Lmax := MAX(Lfg, Lbg)
Lmin := MIN(Lfg, Lbg)

C := (Lmax - Lmin) / (Lmax + Lmin)
Ok? := C > Contrast

Outputs: C, Ok? (the contrast and if it is sufficient)

Using this function, the getforce routine for ClassCCContrast is:

Inputs: op1, op2 (of type colortype)

Y1 := XYZ(op1).y, Y2 := XYZ(op2).y
F.h := F.s := 0

(C, Ok?) := getcontrast(Y1, Y2)
if Polarity = Either then

if not Ok? then
% check if the current polarity can satisfy

6.3. The NeWS Colour Window Classes 81

% the required contrast
if Y2 < Y1 then

% compare Y1 to White
(Ccurr, Ok?) := getcontrast(Y1, 1)

else
% compare Y1 to Black
(Ccurr, Ok?) := getcontrast(Y1, 0)

if not Ok? then
% see if the other polarity will work
if Y2 > Y1 then

% compare Y1 to White
(Cother, Ok?) := getcontrast(Y1, 1)

else
% compare Y1 to Black

(Cother, Ok?) := getcontrast(Y1, 0)

% aim for the higher contrast.
if Ccurr < Cother then

if Y2 > Y1 then
F.l := 1

else
F.l := -1

else
if Y2 > Y1 then

F.l := Ccurr - Contrast
else

F.l := Contrast - Ccurr
else

if Y2 > Y1 then
F.l := Ccurr - Contrast

else
F.l := Contrast - Ccurr

Ok? := false
else

F.l := 0
OK? := true

else
if Polarity = Lighter then

if Y2 <= Y1 then
if not Ok? then

F.l := Contrast - C
else

F.l := 0
else

% it’s the wrong polarity, force toward white
F.l := 1
Ok? := false

else
if Y2 >= Y1 then

if not Ok? then
F.l := C - Contrast

else
F.l := 0

endif
else

% it’s the wrong polarity, force toward black
F.l := -1
Ok? := false

Output: F (the force vector)

82 Chapter 6. Implementation

The pickrandom routine was defined in terms of a pickrand function. Unlike the getforce function, the pickrand
function must calculate a minimum or maximum luminance threshold for the first colour based on the luminance
of the second colour. Using this threshold, pickrand then selects a luminance at random from the range of
satisfactory values.

In order to isolate the luminances of the foreground and background colours from Equations 2.15, 4.7 and 4.8 to
determine a luminance threshold, the Polarity and Background? values must be known. There are four possible
equations for calculating the luminance threshold, corresponding to the different values of these two parameters.

Throughout the following equations, the parameters of the contrast metric from Chapter 4 are denoted as
follows:

0 � C � 1

0 � PDf � 1

0 � PDb � 1

0 � � � 1

0 � BL � 1

C is the required level of contrast. The default value is 40%. PDf is the percentage of foreground pixels next
to another foreground pixel. Similarly, PDb is the percentage of background pixels next to another background
pixel. � is the amount of pixel bleed. BL is the black level of the monitor.

If Background? = true and Polarity = Lighter, the threshold is the minimum value for the luminance of the
background colour:

Cf 1 = ((PDf � PDb + 1)� + 1)C + (PDf + PDb � 1)� + 1 (6.4)

Cb1 = ((PDf � PDb � 1)� � 1)C + (PDf + PDb � 1)� + 1 (6.5)

CB = (2� + 2)BL (6.6)

C1 = Cf 1=Cb1 (6.7)

C2 = (CB C)=Cb1 (6.8)

Yt = Yb

= C1Yf + C2 (6.9)

If Background? = false and Polarity = Darker, the threshold is the maximum value for the luminance of the
foreground colour:

C3 = (CB C)=Cf 1 (6.10)

Yt = Yf

= Yb=C1 � C3 (6.11)

Similarly, if Background? = true and Polarity = Darker, the threshold is the minimum value for the
luminance of the background colour:

Cf 2 = ((PDf � PDb + 1)� + 1)C� (PDf + PDb � 1)� � 1 (6.12)

Cb2 = ((PDf � PDb � 1)� � 1)C� (PDf + PDb � 1)� � 1 (6.13)

C4 = Cf 2=Cb2 (6.14)

C5 = (CB C)=Cb2 (6.15)

Yt = Yb

= C4Yf + C5 (6.16)

6.3. The NeWS Colour Window Classes 83

If Background? = false and Polarity = Lighter, the threshold is the maximum value for the luminance of the
foreground colour:

C6 = (CB C)=Cf 2 (6.17)

Yt = Yf

= Yb=C4 � C6 (6.18)

All of the subscripted C values are constants that are recalculated whenever the values of C, Pf , Pb, � or BL
are changed. Thus, the calculation of the threshold value requires only one multiplication and one division when
the constraint is being applied to two colours. Equations 6.9 and 6.18 are used to define a function getlighter
which returns a lighter luminance threshold. Similarly, Equations 6.11 and 6.16 are used to define a function
getdarker which returns a darker luminance threshold. Using these two functions, the pickrand function for
ClassCCContrast is defined as follows:

Inputs: op1, op2 (of type colortype)

Y2 := XYZ(op2).y
TL := getlighter(Y2)
TD := getdarker(Y2)

% if Polarity is Either AND
% only one is in range AND it’s TL, or
% pick a random one and it’s TL
% or Polarity is Lighter
if ((Polarity = Either) and

(((TL <= 1) exclusive or (TD >= 0)) or
random(0, 1) <= .5)) or

(Polarity = Lighter) then
if TL > 1 then

colour.l := 1
else

colour.l := random(TL, 1)
else

if TD < 0 then
colour.l := 0

else
colour.l := random(0, TD)

colour.h := op2.h
colour.s := op2.s

Output: colour (of type colortype)

6.3.7 ClassDynamicalColourSystem

ClassDynamicalColourSystem provides each window with its own dynamical system which it uses to apply
constraints to its window colours. As mentioned earlier, the problem of finding a global set of colours is
decomposed into finding sets of colours for each window. The global dynamical system can be broken down
similarly. Each window has a set of forces acting on its colours and maintains its own dynamical system to apply
those forces to its colours. The dynamical system knows about four types of data; the local ColourSet, the local
constraints, the ColourSets from other windows and the constraints between other windows and the local window.

84 Chapter 6. Implementation

When the system is initialized, it knows about the local ColourSet and the default functional constraints
between these colours. These include:

� a ClassCCContrast constraint between the border foreground and background colours.

� a ClassCCContrast constraint between the client foreground and background colours.

� a ClassCCDistance constraint between the border and client background colours ensuring they are distin-
guishable.

More local constraints can be added with the addlocalconstraint method. Conversely, local constraints can be
removed with the removelocalconstraint method. When a local constraint is applied, the local ColourSet is
specified for both operands.

External windows are added to the dynamical system by specifying their ColourSet and a single constraint.
External windows remain known to the dynamical system until their constraint has been satisfied. External
constraints are invoked by specifying the local ColourSet for the first operand and the external ColourSet as the
second operand.

A constraint can be either a single instance of one of the constraint classes or an array of instances. To perform
an action on an array of constraints, the action is performed on each array element and the result is the logical
and of the individual results. In this way, many constraints can define the relationship between two windows,
for example, but they can be managed much more simply by ClassDynamicalColourSystem because they are
grouped together. To handle this, the apply method of a constraint is not involked directly, rather a cover function
called applyconstraint is involked. This function is defined as follows:

Input: ColourSet1, ColourSet2, Constraint

if type(Constraint) = array then
satisfied := true
for each constraint C in array Constraint do

satisfied := satisfied and
apply(ColourSet1, ColourSet2, C)

return satisfied
else

return apply(ColourSet1, ColourSet2, Constraint)

Output: boolean (indicating if the constraint is satisfied)

The dynamical system has its own internal “clock” which it uses to update its state. Each time the clock advances
one unit, the state of the system is updated by applying all of the local and external constraints. The clock is
actually implemented using NeWS events. A TickTockDS event is defined and ClassDynamicalColourSystem
expresses an interest in it. If the system has not reached a state of equilibrium as a result of the current update, the
dynamic system distributes a TickTockDS event to itself which will arrive a fixed amount of time in the future.
When it receives the event, the process is repeated.

To determine if the dynamical system has reached a state of equilibrium, instances of ClassColour returns a
boolean value when their applyforce method is invoked, indicating if the net force exerted on them is approximately
zero. A zero net force indicates the colour is relatively stable. If all of the colours indicate that they are stable, the
system is assumed to be stable and no TickTockDS event is sent out.

6.3. The NeWS Colour Window Classes 85

The pseudocode for the routine which updates the dynamical system is:

loop for ever
wait for a TickTockDS event

% apply the local constraints
for i = 1 to size(LocalCons) do

applyconstraint(Local ColourSet,
LocalCons[i].op2,
LocalCons[i].constraint)

% apply the conflicting window constraints
for i = 1 to size(ConflictingCons) do

satisfied := applyconstraint(Local ColourSet,
ConflictingCons[i].otherColourSet,
ConflictingCons[i].constraint)

if satisfied then
remove constraint i from ConflictingCons

% now, update the colours.
allstable := true
for each colour C in Local ColourSet do

if iscolourobject(C) then
stable := applyforce(C)
if not stable then

newcolourgoal(C, colour(C))
allstable := allstable and stable

if not allstable then
send a new TickTockDS event

endloop

Once the system is stable, the only way it can become unstable again is if one of its local colours is changed
manually, or if another window’s colours change to conflict with it. If either of these events occur, the nudgesystem
method is called. If a TickTockDS event has been sent out and the system is waiting for it, this method does
nothing. Otherwise, a new TickTockDS event is broadcast.

The time delay of the TickTockDS event is proportional to the age of the window. When the window has just
opened, its colours are required to change very quickly so that other colours are disturbed as little as possible. This
initial state of rapid change lasts a relatively short time but has the desirable effect of allowing a new window to
quickly move its colours out of conflict with older windows, if at all possible. A second benefit of having the time
delay proportional to the age of the window is that the delay will be slightly different for each window. This avoids
a regular pattern of dynamical system updates for any subset of windows, which in turn results in a much more
consistent computational load on the window system because all of the windows do not update simultaneously.

6.3.8 ClassWindowStyle

This implementation of window styles (see Section 5.4.2) represents a very simple approach which illustrates the
potential of window styles. ClassWindowStyle manages the organization and retrieval of the window styles.
Windows are organized based on their application name and a second optional name. This optional name is ideally
specified by the user to provide additional semantic information about the window, such as its purpose. However,
this name must be provided by the application, something that is not supported in existing NeWS programs.
Therefore, if the optional name is not defined, the hostname on which the application is running is used as a

86 Chapter 6. Implementation

Key Constraint Defining Characteristics
BBG ClassCCVariation: Operand1 = BBG

Operand2 = HLS Colour (0, .5, 0)
Relative Hue Range = [0; 0]
Relative Saturation Range = [0; 0]
Relative Perceived Br. Range = [�:25;+:25]

BFG colortype RGB Colour (0, 0, 0)
CBG ClassCCVariation: Operand1 = CBG

Operand2 = BBG
Relative Hue Range = [0; 0]
Relative Saturation Range = [0; 0]
Relative Perceived Br. Range = [+:4;+:4]

CFG colortype HLS Colour (0, 0, 0)
Extra null

Table 6.1: The Default Window Style Template.

default. The window name is the concatenation of these two names. ClassWindowStyle provides a method to
change both the application and optional names of a window.

To allow different window styles to be created, this class defines a global dictionary called the StylesDict
which contains all of the style templates defined in the system. A style template is a set of constraints associated
with a name in this dictionary. It is called a style template, and not a window style, because a window style can
be created from multiple style templates, as discussed below. Each style template is implemented as a dictionary
which can contain one or more of these five keys: BBG, BFG, CBG, CFG and Extra. The purpose of these
specific keys is explained below.

When a window is opened, a window style is created for it. Its window style is a dictionary that will contain
the constraints which define its style, and is created as follows. First, the constraints for the default window style
are added to the dictionary. This defines a bland, monochromatic window style, as shown in Table 6.1. Next, the
application name, the optional name and the window name are looked up in the StylesDict. If any of these are
found, their constraints are added to the window style dictionary. Thus, any keys that are defined in these style
templates will replace the current keys in the dictionary.

If none of these names are found in the StylesDict, the default BBG constraint is replaced by a similar
ClassCCVariation constraint which uses one of the eight basic colours described in Section 5.4.4 as its second
operand. The actual colour value used for operand two is one of the mean centroid values found by Boynton and
Olson (Boynton and Olson, 1987), shown in Table 6.2.

Windows with the same name are defined to be similar, those with different names are defined to be different.
Therefore, all windows with the same name are assigned the same basic colour. The first time a window name
is encountered, a basic colour is assigned to it at random from the set of basic colours that have not yet been
assigned to any name. When the eight basic colours have been assigned, they are reused. The window difference
constraints should take care of making the windows appear different, even if they are based on the same basic
colour.

Once the window style has been created, the initial colours for the window are selected by invoking the
pickrandom method of the constraints whose keys correspond to the symbolic names of the four window colours:
BBG, BBG, CFG and CBG. The colours are picked in such an order that the colour a constraint depends on is

6.3. The NeWS Colour Window Classes 87

Basic Mean OSA Nearest OSA XYZ
Colour Coordinates Coordinates Coordinates
Name L j g L j g X Y Z
Red -3.6 1.5 -6.9 -4 2 -6 14.77 10.28 6.01
Green -0.4 3.9 2.5 0 4 2 26.56 32.05 18.68
Orange -0.2 5.7 -6.3 0 6 -6 36.08 28.26 9.20
Purple -2.5 -2.5 -1.8 -3 -3 -1 15.20 14.21 24.81
Pink 0.5 0.3 -4.9 1 1 -5 40.38 33.93 30.37
Brown -3.2 2.8 -2.9 -3 3 -3 15.20 14.21 24.81
Yellow 2.6 8.2 -1.7 3 9 -1 53.10 53.86 14.24
Blue -0.8 -2.5 2.8 -1 -3 3 19.62 23.81 39.52

Table 6.2: Centroid Values for Eight Basic Colours.

Parameter Similar Window Different Window
Value Value

Attract? true false
Distance 15 80

Table 6.3: The Window Difference Constraints.

picked before that constraint is used to select a random colour. The same approach is used by the picknewcolours
method, which is invoked to select a new set of colours for the window.

Once the initial colour values for the window are selected, the window style constraints are added to the
dynamical system as local constraints. The Extra key in the style dictionary holds an array of additional style
constraints that are not involved in the initial colour selection, but should be added to the dynamical system. Since
the dynamical system is started whenever a new constraint is added, these constraints will be applied to the initial
colours even though they were ignored during the initial colour selection.

ClassWindowStyle handles the differentiation between different and similar windows. As mentioned above, if
windows have the same name, they are similar, otherwise that are considered different. ClassCCWindowDistance
constraints are created to group similar windows and distinguish different windows, as shown in Table 6.3. The
distances suggested in Section 6.3.6.3 for grouping similar colours and distinguishing different colours are used
for the distance parameter.

A method called checkwindow is provided to check if an external window’s colours conflict with the local
colours. This method uses the window names to determine if the windows are similar or different, and invokes
the check method of the appropriate ClassCCWindowDistance constraint described above to check for conflicts.

A method called addwindow is provided to add an external window to the dynamical system. As above,
the name is used to determine if the window is similar or different and the check method of the appropriate
ClassCCWindowDistance constraint is invoked to check for conflicts. If the external window’s colours conflict
with local colours, the external window is added to the dynamical system.

88 Chapter 6. Implementation

6.3.9 ClassColourWindow

ClassColourWindow is used to integrate the colour window classes into the TNT2.0 class hierarchy. To do this, it
inherits from both the TNT2.0 ClassWindow and from ClassWindowStyle. This class is also responsible for the
interwindow communication of the jostling constraint solver. Furthermore, the ClassDynamicalColourSystem
introduced the concept of an initial period of rapid change. This concept is further supported by this class.

Window communication is simple. When a window is created it expresses an interest in an event called
a Jostle event. Jostle events contain all of the pertinent information about a window. It then notifies existing
windows of its initial colours by sending out a Jostle event. When a window receives a Jostle event, it checks to
see if any of the colours in the jostling window conflict with its colours by invoking the checkwindow method of
ClassWindowStyle.

If the colours conflict, one of two things happens. If the conflicting window is in its initial state and the local
window is not, a Jostle event is immediately sent directly to the conflicting window and is not added to the local
dynamical system. This informs the conflicting window of the local windows colours, allowing it to attempt to
solve the conflict before its initial period is over. If the conflicting window in not in its initial state, or the local
window is in its initial state, the conflicting window is added to the local window’s dynamical system by invoking
the addwindow method of ClassWindowStyle.

A window participates in the jostling process until it is destroyed, even when it is not visible. The decision to
include a window in the jostling process when it is iconified or invisible is based on the desire to create as stable
a colour environment as possible. If windows cease to jostle when they are closed (but not destroyed), colours
may be required to change whenever a window is opened, regardless of how long it has been since a window was
created or destroyed. These changes are avoided by having all windows continually participate in the jostling
process.

Chapter 7

Conclusions and Future work

7.1 Conclusions

The aim of this thesis is to demonstrate the feasibility of a dynamic window system with colour constraints to
supports aesthetic colour selection. This has been accomplished. Relevant research from many unrelated fields
was reviewed, providing a firm basis on which to build the system. The important factors that must be taken into
account when designing and implementing a dynamic window system with colour constraints were explored in
depth and a system designed and implemented which embodied the results. The implementation shows that such
systems are possible to create.

There are several key features that make the implementation work. Obviously, the most important aspect is that
the colour relationships of interest can be expressed as constraints between the colours. The distributed-jostling
model allows the colour selection problem to be decomposed into several smaller problems, allowing for an
efficient implementation. The concept of the dynamical colour system allows the constraints to be modelled as
forces between the colours, providing a simple and elegant constraint solver.

It is apparent from using the window system that much fine tuning is needed, both of the implementation and of
the theoretical basic for the constraints. An ongoing period of constraint adjustment is underway in which specific
values used in the implementation, such as the strengths of the forces that are used to satisfy the constraints, the
time step used in the dynamical system, the mass of the colours, etc., are being adjusted.

Of greater importance, however, are the theoretical constraints, not the implementation of them. All of
the constraints, especially the contrast constraint and the window separation constraints, where created using
experimental results from other fields. While those results were the best guidelines available, now that the system
has been shown to be feasible, these results need to be examined more carefully in the context of computer window
systems.

� The contrast metric is based on experiments where reading thresholds were of interest. As a result, declines
in reading speeds of up to half were considered insignificant. However, these drops in reading speed most
likely resulted in a significant decline in reading comfort. Informal experiments with members of the
Computer Graphics Laboratory confirmed that contrast levels much higher than those discusses by Boynton
and Knoblauch are needed for comfortable use. Indeed, these researchers never claimed that their results
were valid for this particular application.

� The distance metric is based on the Euclidean distance in CIELUV space. While CIELUV is perceptually
uniform, it is geared toward smaller colour differences. Furthermore, no uniform colour spaces are well

89

90 Chapter 7. Conclusions and Future work

suited for judging colour similarity. Two shades of a single colour may appear related in some abstract way,
yet be far apart in these spaces because the colours are quantitatively different. Furthermore, the distance
thresholds used were based on experimental evaluation of the segregation abilities of the basic colours.
Those experiments did not focus on creating a lower bound for good colour segregation.

For each of these problems, experiments need to be designed to determine more precise constraints for use in
dynamic window systems. This implementation can serve as an ideal testbed for the results of such experiments.

Another example of experimentation that can be supported with this system involves experiments aimed at
discovering a more comprehensive model of window difference and similarity. A general model of how people
judge coloured objects to be different or similar does not exist, yet is needed to create more useful constraints
for window organization. Furthermore, more than just the difference or similarity of the component colours is
involved in the grouping and segregation of windows. For example, use of the system has shown that very different
window styles can create visually unrelated windows with quite similar colours. Improving techniques for window
organization is important, as recent experiments (Cowan, Jolicoeur and Loop, 1991) show convincingly that colour
is far superior to any other aspect of computer windows for context resolution.

Furthermore, use of the window system has suggested a need for more specialized constraints. For example,
colour combinations such as fully saturated red with fully saturated blue should be avoided. While the red/blue
problem is well known, other colours exhibited problems which need to be explored. Very saturated purple, for
example, caused much the same problems when used with almost any colour.

The performance of the system was surprisingly good, considering the amount of processing being done in an
interpreted language. However, the performance is not adequate for a production system, or even one that will
be used for experimentation. It is hoped that further refinement of the constraints will alleviate the performance
problems. However, if all else fails, much of the system can be recoded in C and executed as an external process.
This will definitely solve the performance problems, although some flexibility for experimentation may be lost.

The implementation is based on the HLS colour space, which is not necessarily the best choice. HLS was
used primarily because it is easy to visualize and explain to non-colour theorists and because is is mathematically
uniform, making the implementation of most of the constraints very simple. However, this colour space is
perceptually non-uniform and is not well suited for some constraints, most notably the distance constraint. A
better choice would be one of the uniform colour spaces, such as CIELUV. CIELUV supports the notions of hue,
lightness and saturation which are needed for the ClassCCVariation constraint as follows (CIE, 1978):

huv = arctan(v�=u�) (7.1)

C�

uv = (u�
2
+ v�

2
)1=2 (7.2)

suv = C�

uv=L
� (7.3)

where L�, u� and v� are the CIELUV coordinates or a colour value, L� is the lightness of the colour, huv is the
hue angle of the colour, C�

uv is the chroma of the colour and suv is the saturation of the colour. Furthermore, L�

is a direct function of Y as follows

L� = 116(Y=Yn)1=3 � 16; Y=Yn > 0:01 (7:4)

(where Yn is the value of Y for the white object-colour), making CIELUV appropriate for calculating ClassCC-
Contrast as well.

7.2 Future Work

Much work remains to be done before this system could be interpretted as a fully usable commercial system.
Most obviously, a well designed graphical interface should be created to allow users easy modification of various

7.2. Future Work 91

aspects of the system, such as adjusting individual colour values and creating and modifying aesthetic constraints
and window styles. No interactive support is currently provided for these tasks.

User criticisms are not currently handled by the system, although support for doing so exists in the form a
colour mass. Colours that a user has expressed preference in merely need to have there mass increased to prevent
them from moving. When a user indicates his or her likes or dislikes, they should be retained, analyzed and used
to influence future choices. However, techniques for doing this effectively and efficiently need to be explored
carefully, so that the ability of the system to suggest new colour combinations is not compromised. A simple
way of handling this is to occasionally create some windows based on past user choices and to create others
without regard for those choices. An exciting possibility for creating windows based on past user choices is found
in (Salomon and Chen, 1989), where neural nets were used to generate colour sets. The generated sets have the
property that they are quite similar to the seed set, which is exactly what is required here.

Another area for improvement is the handling of more than the four basic colours for a specific window.
Fortunately, the dynamic window system was designed with this in mind, so adding support for more colours, and
for constraints between them, would be trivial. For example, since the colours are stored in PostScript dictionaries,
adding support for additional colours only requires that a consistent naming scheme be developed for these colours.
The dynamical system and the constraints would automatically handle the new colours, while the window style
object would need to be generalized.

Given the ability to use an arbitrary number of colours in a single window, it would be possible to automatically
generate multiple background and foreground colours for a single window. For example, an application could
request a background colour and any number of foreground colours for use with it. The techniques used for the
generation of distinguishable window colours, as well as research such as (Corte, 1986) and (Grosse, 1985), would
provide a basis for this functionality. By giving applications the ability to specify the foreground/background
relationship between any pair of colours, the implementation would be straightforward.

Additional constraints for to assist with aesthetic colour selection should be developed. It is mentioned
in Section 2.3 that one of the design goals of the OSA space was the capability of suggesting interesting colour
harmonies. The art of Karl Gerstner (1986) demonstrates that this goal has been achieved. Lai (1991) demonstrates
one possible intuitive approach to navigating the OSA colour space. This interface could be used to allow users
to specify interesting aesthetic constraints based on the planes of the OSA lattice.

One class of windows that have seemingly been ignored throughout this thesis are those which contain realistic
and/or complicated interiors. Handling such windows is difficult and was deemed clearly beyond the scope of this
thesis from the start. The major problem with such windows is that there is not clear way to select colours that will
harmonize with them, so another approach is called for. Consider the way pictures are framed. No matter how
complicated the picture, the use of a sufficiently thick matte will allow it to be placed on a wall of a completely
different colour or with a complicated pattern. The matte sets the picture apart from the rest of the wall, just as a
thicker, neutrally coloured border would set a complicated window apart from the rest of the window system and
prevent it from ruining the harmony of the window system. However, a computer screen can afford the loss of
real estate represented by a thick matte far less than a wall. Other techniques will need to be investigated. In the
very least, experiments should be performed to discover the minimum reasonable thickness that a border should
be to provide good separation.

Another problem is that as colour becomes easier to use, the limits of colour to organize windows are
discovered. Colour spaces have only three degrees of freedom, and organizing many unrelated windows in a
useful fashion is quite difficult. To alleviate this problem, the colour vocabulary needs to be enriched. The obvious
dimension to explore is visual texture. Currently, windows all have a plastic appearance, regardless of their colour.
Imagine, instead, windows that appeared as marble, wood, metal, fur or water. By adding additional degrees of
freedom to window appearance, especially ones that are so completely different from the current ones, the ability
to organize windows is significantly increased. While there are many different ways texture could be added, and

92 Chapter 7. Conclusions and Future work

many different textures that could be added, experiments should be performed to discover what sort of textures
would be useful to support context resolution and window organization, and not merely gratuitous.

Appendix A

Relating CIELUV Units to OSA Units

Boynton and Smallman (1990) demonstrated that the basic colours have good segregational abilities. Part of that
ability is due to their good separation in OSA space; the pairs of basic colours are on average just over ten OSA
units appart. Distances as small as half of that also showed good separation is certain cases.

The adjacent colours in the OSA space are similar enough to appear related, yet clearly distinct when viewed
in close proximity. Thus, they provide a good metric for the degree of difference that should be used for similar
colours.

Unfortunately, the OSA space is not practical for computer graphics work because it only encompasses a
subset of the CRT colour gamut. Worse, the defining formulae do not extrapolate well beyond the confines of the
OSA space, becoming very badly behaved even within the confines of the CRT gamut. Another uniform colour
space, such as the CIELUV colour space described in Section 2.2.2.2, is more appropriate for use with CRTs.

What is needed, then, are reasonable CIELUV equivalents to the OSA distances mentioned above. Since the
OSA space is discrete, with only 424 colours defined, it is fairly simple to compute the distance between every pair
and compare it to the distance between the CIELUV representations of the two colours. The CIELUV coordinates
of each colour were obtained by converting from the XYZ coordinates found in (Wyszecki and Stiles, 1982).

Tables A.1 and A.2 show the results of the comparison. For all the pairs of OSA colours with the same interpoint
distance, the average, maximum, minimum and standard deviation for the equivalent CIELUV distances are shown.
The results are fairly good, showing that if only rough distance measures are required, the CIELUV space will
serve the purpose. By examining the table, 80 CIELUV units is a reasonable value to represent a distance of
ten OSA units. Similarly, 40 CIELUV units shall be used to represent five OSA units and 15 CIELUV units to
represent 2 OSA units.

93

94 Appendix A. Relating CIELUV Units to OSA Units

OSA CIELUV Distance OSA CIELUV Distance
Dist Cnt Av Max Min Std.Dev Dist Cnt Av Max Min Std.Dev

1.7 1372 13.4 17.9 7.4 0.14 9.5 1549 77.9 102.4 51.4 0.16
2.0 992 15.3 21.0 8.4 0.22 9.8 720 78.8 100.2 56.0 0.13
2.8 1739 21.8 30.7 14.7 0.15 9.9 2035 80.0 104.7 54.5 0.14
3.3 3238 25.6 36.9 15.1 0.18 10.0 818 81.5 106.5 53.3 0.15
3.5 1078 26.9 35.2 16.7 0.13 10.2 1833 83.2 108.1 54.7 0.15
4.0 734 31.0 41.9 19.3 0.22 10.3 1725 83.9 110.6 60.2 0.14
4.4 2730 33.8 47.3 23.0 0.14 10.4 791 85.4 109.2 55.8 0.14
4.5 2640 34.7 49.3 22.7 0.18 10.7 999 87.4 111.9 62.7 0.14
4.9 2481 38.2 53.2 23.8 0.15 10.8 1474 87.3 114.9 60.6 0.13
5.2 3158 40.6 56.5 25.7 0.18 11.0 920 91.0 115.8 61.5 0.14
5.7 1062 44.1 60.8 31.4 0.15 11.1 892 91.3 115.4 59.3 0.13
5.9 4007 46.2 65.3 31.2 0.16 11.3 191 92.9 117.9 73.9 0.15
6.0 2518 47.0 63.6 30.4 0.15 11.4 1840 95.3 121.0 62.6 0.13
6.3 1842 49.8 69.0 32.4 0.19 11.5 720 94.6 118.5 66.6 0.14
6.6 1789 51.5 68.2 35.0 0.13 11.7 664 95.0 123.2 70.7 0.13
6.6 1739 52.3 71.8 33.9 0.17 11.8 936 97.6 122.2 65.6 0.13
6.9 567 54.4 68.5 39.3 0.12 11.8 611 98.8 123.7 71.1 0.13
7.1 3096 56.5 76.5 36.6 0.17 12.0 361 98.3 123.3 65.1 0.13
7.2 1488 56.8 78.2 39.1 0.16 12.1 614 102.1 127.7 70.7 0.12
7.5 2810 59.0 80.8 41.1 0.14 12.2 275 105.8 127.5 66.3 0.10
7.7 4018 60.8 83.8 41.0 0.15 12.3 719 103.7 127.7 67.1 0.12
8.0 324 64.9 82.8 41.7 0.19 12.4 893 102.8 128.7 73.9 0.12
8.2 1184 65.2 86.1 44.3 0.15 12.6 206 110.1 133.1 75.4 0.09
8.2 2339 65.8 88.5 43.7 0.15 12.8 195 107.6 131.1 86.1 0.15
8.5 1619 68.0 90.5 44.6 0.16 12.8 731 108.3 133.2 76.0 0.12
8.7 2372 68.8 93.4 50.3 0.15 13.0 345 109.0 133.0 82.8 0.14
8.7 1006 69.0 91.7 53.7 0.14 13.1 821 111.8 135.7 80.5 0.12
8.9 925 71.9 96.5 49.5 0.16 13.1 151 106.6 128.2 81.1 0.12
9.1 2709 73.3 96.1 47.8 0.15 13.3 142 115.3 135.0 90.6 0.08
9.2 1741 73.7 98.3 50.7 0.15 13.4 656 114.1 139.3 84.3 0.11
9.4 838 74.2 93.9 57.5 0.12 13.4 391 112.7 139.8 84.7 0.13

Table A.1: A comparison of OSA and CIELUV distances.

95

OSA CIELUV Distance OSA CIELUV Distance
Dist Cnt Av Max Min Std. Dev Dist Cnt Av Max Min Std. Dev

13.6 240 117.9 139.7 85.6 0.10 16.6 47 142.1 164.5 117.4 0.08
13.7 217 115.7 140.0 87.6 0.11 16.7 9 139.0 151.8 108.1 0.13
13.9 24 106.4 121.6 91.7 0.11 16.8 22 144.5 167.1 125.4 0.08
14.0 373 119.5 144.7 86.8 0.10 17.0 12 156.5 166.7 147.7 0.05
14.0 204 120.5 142.9 93.7 0.09 17.1 18 153.7 167.5 120.6 0.12
14.1 268 118.8 146.7 89.6 0.12 17.1 12 156.5 167.8 138.6 0.08
14.2 322 124.4 145.4 96.6 0.11 17.2 34 147.6 169.5 126.3 0.08
14.3 161 124.8 146.2 95.6 0.11 17.3 32 151.4 168.7 123.6 0.07
14.4 78 126.7 147.7 97.7 0.12 17.3 16 147.8 169.4 123.8 0.13
14.5 170 121.7 145.9 94.5 0.14 17.4 4 161.9 163.9 160.7 0.01
14.6 196 127.6 151.0 96.9 0.10 17.5 18 146.8 171.3 130.5 0.10
14.7 226 126.4 150.4 96.0 0.10 17.5 8 155.7 169.7 148.9 0.04
14.8 208 127.5 151.2 96.4 0.10 17.7 6 149.0 169.1 121.5 0.13
15.0 91 127.6 149.5 99.7 0.11 17.7 18 149.2 170.2 128.5 0.08
15.1 201 129.9 152.0 96.8 0.10 17.9 4 148.1 172.2 139.6 0.11
15.1 58 127.3 148.9 98.2 0.10 18.0 7 154.9 160.5 151.1 0.02
15.2 44 133.8 156.1 120.1 0.08 18.0 9 147.0 166.9 137.1 0.06
15.3 70 135.8 157.2 123.7 0.06 18.1 1 157.2 157.2 157.2 NaN
15.4 99 132.9 155.6 99.4 0.10 18.2 3 153.2 164.3 146.4 0.06
15.6 116 134.8 155.4 104.5 0.10 18.2 2 160.6 162.1 159.2 0.01
15.6 74 134.3 156.7 102.7 0.12 18.3 4 154.0 167.3 148.2 0.06
15.7 104 138.7 157.6 108.8 0.10 18.4 3 153.0 161.6 146.6 0.05
15.8 144 138.7 161.4 101.7 0.11 18.4 1 154.7 154.7 154.7 NaN
16.0 2 140.3 144.6 135.9 0.04 18.5 1 159.3 159.3 159.3 NaN
16.1 79 139.8 161.8 111.6 0.09 18.6 3 142.8 155.3 134.8 0.08
16.1 68 140.9 162.3 107.4 0.10 18.8 1 162.1 162.1 162.1 NaN
16.2 52 141.2 161.9 119.3 0.10 18.9 2 149.3 156.0 142.6 0.06
16.3 20 141.4 152.9 108.6 0.09 19.0 3 147.4 156.9 139.3 0.06
16.4 15 139.5 157.3 113.7 0.08 19.1 1 161.1 161.1 161.1 NaN
16.5 16 142.9 164.2 136.3 0.05 19.3 2 149.7 151.4 147.9 0.02
16.6 59 142.5 166.3 111.3 0.09 19.5 1 155.1 155.1 155.1 NaN

Table A.2: A comparison of OSA and CIELUV distances.

96 Appendix A. Relating CIELUV Units to OSA Units

Appendix B

Object Oriented Programming

A good overview of object oriented programming principles and terminology may be found in (Wegner, 1987) or
(Meyer, 1988). Details of the object oriented extension to PostScript used in NeWS can be found in (Sun, 1990).
This appendix provides a list of the key object oriented terms needed to understand the thesis.

The following list of terms is taken from (Wegner, 1987).

� object: An object has a set of “operations” and a “state” that remembers the effect of operations. The
value returned by an operation on an object, unlike typical functions, may depend on its state as well as its
arguments.

� object-oriented language: A language that supports objects which belong to classes and has class hierar-
chies which may be incrementally defined by inheritance. In other words:

object-oriented = object + class + inheritance

� class: A class is a template from which objects are created. Objects of the same class have common
operations. Classes have an interface that specify the operations accessible to clients. The class specifies
code for implementing operations in the class interface.

� inheritance: A class may inherit operations from “superclasses” and may have its operations inherited
by “subclasses.” An object of class X may use the operations defined by class X and its superclasses.
Inheritance from a single superclass is called single inheritance; inheritance from multiple superclasses is
called multiple inheritance.

The following additional definitions are taken from (Sun, 1990).

� instance: An instance is one of the objects described by a class; an instance inherits its variables and
procedures from its class.

� instance variables: Instance variables are given to each instance of a class.

� class variables: Class variables are shared by all instances of a class. Together with the instance variables,
they define the “state” of an object.

� methods: Methods are procedures that a class uses to operate on its instances. A message is sent to an
object to invoke a method. Methods are the “operations” that effect the “state” of an object.

97

98 Appendix B. Object Oriented Programming

Appendix C

Constraint Classes

Two constraints, ClassCCAnalogousVariation and ClassCCWindowDistance were created to illustrate how
simple it is to create new constraints by subclassing from the three basic constraints. They are included here to
illustrate that point.

%%
%% A useful variation on ClassCCVariation constrains
%% colours to be analogous to other colours.
%%
/ClassCCAnalogousVariation ClassColourConstraint
dictbegin

% style is one of; -1, 0 or 1
% There are two analogous colour schemes for any given
% colour, one to the left and one to the right.
% 1 means use both
% -1 means the colour is in the right sector
% 0 means it is in the left sector
/AnalogousMethod 0 def

% A monitor is needed because the instance vars are
% changed and the constraint could be used multiple
% times. Things could get nasty otherwise.
/MyMonitor null def

dictend
classbegin

/NewInit {
% initialize our parent
/NewInit super send

% a monitor is needed to synchronize access
/MyMonitor createmonitor promote

% Hue mode must be /Absolute
/HueMode /Absolute promote

} def

% disable setting hue mode, since it must be absolute.
/sethuemode { % mode => -

pop
} def

99

100 Appendix C. Constraint Classes

% allow the analogous method to be changed.
/setanalogousmethod { % method => -

/AnalogousMethod exch def
} def

% do a (mod 12) to keep the hues in the range of 0..11
% PostScript’s mod operator allows negative results!
/modhue { % huesector => validhuesector

12 mod
dup 0 lt {12 add} if

} def

/setanalogoushuerange { % hue => -
AnalogousMethod % hue meth
exch 12 mul % meth 0..12
dup 12 eq {pop 0} if cvi % meth sec

% is it "random" or one of the two methods?
1 index 1 eq {

% random range goes from sec-1 to sec+2
exch pop % sec
dup 1 sub exch % sec-1 sec
2 add % sec-1 sec+2

} {
% range goes from meth+sec to meth+sec+2
add dup 2 add % s+m s+m+2

} ifelse

% fix the hues.
modhue 12 div exch modhue 12 div exch

% set the parents hue range to the allowed hues.
sethuerange

} def

% check: return true if the constraint is satisfied,
% false otherwise
/check { % op1 op2 => bool

MyMonitor {
dup getoperand2 getoperandraw pop pop
setanalogoushuerange
/check super send

} monitor
} def

% apply: return true if the constraint is satisfied,
% false and a force vector otherwise
/apply { % op1 op2 => bool

MyMonitor {
dup getoperand2 getoperandraw pop pop
setanalogoushuerange
/apply super send

} monitor
} def

% select a valid random colour
/pickrandom { % op1 op2 => -

MyMonitor {
dup getoperand2 getoperandraw pop pop
setanalogoushuerange
/pickrandom super send

101

} monitor
} def

classend def

%%
%% the difference between two windows is slightly more
%% complicated than just the distances between the
%% component colours.
%%
/ClassCCWindowDistance ClassCCDistance [/MyMonitor]
classbegin

/NewInit {
/NewInit super send
% a monitor is needed to synchronize multiple
% access
/MyMonitor createmonitor def

} def

% the defining colour is the one with the highest
% chroma. We only consider BBG and CBG.
/getchroma { % l s => c

% get the distance l is from .5
exch .5 sub abs

% reverse and double it. .5 => 1, 0,1 => 0
.5 exch sub 2 mul

% scale the saturation
mul

} def

/getdefiningcolour { % CS1 CS2 => /label true |
% false

.1 null [/BBG /CBG] { % cs cs max lab nl
4 index 1 index get % ... op1
4 index 2 index get % ... op1 op2
getoperandhls
getchroma % ... op1 h2 c2
exch pop % ... op1 c2

exch getoperandhls
getchroma
exch pop % ... c2 c1
max % ... c’
dup 4 index ge {

4 -1 roll pop 3 1 roll % cs cs max lab nl
exch pop

} {
pop pop

} ifelse
} forall % cs cs max lab

4 1 roll pop pop pop

% if none of the colours have a high chroma,
% trivially accept the windows since trying to
% move low chroma colours causes the system to
% misbehave.
dup null eq {pop false} {true} ifelse

} def

102 Appendix C. Constraint Classes

% check: return true if the constraint is satisfied
% false otherwise
/check { % op1 op2 => bool

MyMonitor {
2 copy getdefiningcolour { % op1 op2 dc2

dup setoperand1 % op1 op2 dc2
setoperand2
/check super send

} { % op1 op2
pop pop true

} ifelse
} monitor

} def

% apply: return true if the constraint is satisfied,
% false and a force vector otherwise
/apply { % op1 op2 => bool

MyMonitor {
2 copy getdefiningcolour { % op1 op2 dc2

dup setoperand1 % op1 op2 dc2
setoperand2
/apply super send

} {
pop pop true

} ifelse
} monitor

} def

% select a valid random colour
/pickrandom { % op1 op2 => -

MyMonitor {
2 copy getdefiningcolour { % op1 op2 dc2

dup setoperand1 % op1 op2 dc2
setoperand2
/pickrandom super send

} {
pop pop

} ifelse
} monitor

} def
classend def

Bibliography

Albers, J. (1971). Interaction of Color. Yale University Press. text of the original 1963 edition with selected color
plates.

Allen, R. E., editor (1990). The Concise Oxford Dictionary of Current English. Oxford University Press, 8th
edition.

Baecker, R. M. and Buxton, W. A. (1987). Readings in Human–Computer Interaction: A Multidisciplinary
approach. Morgan Kaufmann Publishers, inc.

Berlin, B. and Kay, P. (1969). Basic Color Terms. University of California Press.

Boff, K. R., Kaufman, L., and Thomas, J. P., editors (1986). Handbook of Perception and Human Performance.
Wiley, New York, Toronto.

Boynton, R. M. (1979). Human Color Vision. Holt, Rinehart and Winston.

Boynton, R. M. and Olson, C. X. (1987). Locating basic colors in the osa space. Color Research and Application,
12:94–105.

Boynton, R. M. and Olson, C. X. (1990). Salience of chromatic basic color terms confirmed by three measures.
Vision Research, 30(9):1311–1317.

Chevreul, M. E. (1967). The Principles of Harmony and the Contrast of Colors. Reinhold, New York. Originally
published in 1854.

Christ, R. (1975). Review and analysis of colour coding research for visual displays. Human Factors, 17(6):542–
570.

CIE (1978). Recommendations on uniform color spaces – color difference equations – psychometric color terms,
supplement #2 to cie publication #15. Available in the US from the National Bureau of Standards. Available
in Canada from the National Research Council of Canada.

Corte, W. D. (1986). Finding appropriate colors for color displays. Color Research and Application, 11(1):56–61.

Cowan, W., Jolicoeur, P., and Loop, S. (1991). Experiments in context resolution comparing various aspects of
computer windows. Performed recently at the University of Waterloo.

Cowan, W. B. (1989). Colorimetric properties of video displays. Notes for Course 25 at the Annual Meeting of
the Optical Society of America.

Cowan, W. B. and Ware, C. (1985). Colour perception tutorial notes: Siggraph’85. Notes for Course 5.

103

104 Bibliography

Cowan, W. B. and Wein, M. (1990). State versus history in user interfaces. In et al., D. D., editor, Human-Computer
Interaction - INTERACT ’90, pages 555–560, North-Holland. Elsevier Science Publishers B.V.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer Graphics: Principles and Practice.
The Systems Programming Series. Addison-Wesley Publishing Company, New York, 2nd edition.

Gerritsen, F. (1975). Theory and Practice of Color. Van Nostrand Reinhold Company, New York. Translation of
Het fenomeen kleur, by Ruth de Vriendt.

Gerritsen, F. (1988). Evolution in Color. Schiffer Publishing Ltd., West Chester, PA. originally published in
Dutch in 1982 as Evolutie van de Kleurenleer. Translation by Dr. Edward Force and Ruth de Vriendt.

Gerstner, K. (1986). The Forms of Color. MIT Press. Translation of: Die Formen der Farben.

Gould, J. D., Alfaro, L., Finn, R., Haupt, B., Minuto, A., and Salaun, J. (1987). Why reading was slower from crt
displays than from paper. In Carroll, J. M. and Tanner, P. P., editors, Human Factors in Computing Systems
and Graphics Interface, pages 7–11. CHI + GI.

Grosse, E. (1985). Automatic choice of colors for level plots. Technical report, AT&T Bell Laboratories.
Numerical Analysis Manuscript 85-1.

Hall, R. (1988). Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York.

Helson, Judd, and Warren (1952). Object-color changes from daylight to incandescent filament illumination.
Illuminating Engineering, 47:221.

Hope, A. and Walch, M. (1990). The Color Compendium. Van Nostrand Reinhold, New York.

Itten, J. (1961). The Art of Color: The subjective experience and objective rationale of color. Van Nostrand
Reinhold Company, New York. Translated by Ernst van Haagen.

Klassen, R. V. (1989). Device Independent Image Construction for Computer Graphics. PhD thesis, University
of Waterloo. Available as Research Report CS-91-19 from the Department of Computer Science.

Knoblauch, K. and Arditi, A. (1989). Effects of character size and chromatic contrast on reading performance.
Applied Vision: 1989 Technical Digest Series, 16:98–101.

Knoblauch, K., Arditi, A., and Szlyk, J. (1990). Effects of chromatic and luminance contrast on reading. In press:
Journal of the Optical Society of America A.

Lai, J. (1991). Implementation of colour design tools using the osa uniform colour system. Master’s thesis,
University of Waterloo.

Legge, G. E. (1989). Reading: Effects of contrast and spatial frequency. In Applied Vision: 1989 Technical Digest
Series, volume 16, pages 90–93.

Legge, G. E., Parish, D. H., Luebker, A., and Wurm, L. H. (1990). Psychophysics of reading. xi—comparing
color contrast and luminance contrast. Journal of the Optical Society of America, 7(10):2002–2010.

Legge, G. E., Rubin, G. S., and Luebker, A. (1987). Psychophysics of reading—v. the role of contrast in normal
vision. Vision Research, 27(7):1165–1177.

MacAdam, D. L. (1974). Uniform color scales. Journal of the Optical Society of America, 64(12):1691–1702.

Meier, B. (1987). Effective use of color in user-computer interface design: Final report. Technical report, Brown
University, Department of Computer Science, Box 1910, Providence, RI 02912.

Bibliography 105

Meier, B. J. (1988). Ace: A color expert system for user interface design. In Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, pages 117–128.

Meyer, B. (1988). Object-oriented Software Construction. Prentice Hall International Series in Computer Science.
Prentice-Hall.

Munsell, A. H. (1947). A Color Notation: An Illustrated System Defining All Colors and Their Relations be
Measured Scales of Hue, Value and Chrome. Munsell Color Company, Baltimore, MD.

Norman, R. B. (1990). Electronic Color: the art of color applied to graphic computing. Van Nostrand Reinhold.

Ostwald, W. (1931). Color Science: A Handbook for Advanced Students in Schools, Colleges, and the Various
Arts, Crafts, and Industries Depending on the Use of Color. Winsor and Newton.

Png, T. (1991). Stack windows. Technical report, University of Waterloo.

Quiller, S. (1989). Color Choices. Watson-Guptill Publications, 1515 Broadway, New York, N.Y. 10036.

Rogers, D. F. (1985). Procedural Elements for Computer Graphics. McGraw-Hill.

Rubin, G. S. and Legge, G. E. (1989). Psychophysics of reading. vi—the role of contrast in low vision. Vision
Research, 29(1):79–91.

Salomon, G. and Chen, J. (1989). Using neural nets to aid color selection. Preprint.

Schlueter, K. G. (1990). Perceptual synchronization in window systems. Master’s thesis, University of Waterloo.
Available as Research Report CS-90-36 from the Department of Computer Science.

Seim, T. and Valberg, A. (1986). Towards a uniform color space: A better forumla to describe the Munsell and
OSA color scales. Color Research and Application, 11:11–24.

Smallman, H. S. and Boynton, R. M. (1990). Segregation of basic colors in an information display. Journal of
the Optical Society of America, 7(10):1985–1994.

Sun (1990). NeWS 2.1 Programmer’s Guide. Sun Microsystems, Inc. Part Number: 800-4888-10.

Sun (1991). The NeWS Toolkit Reference Manual. Sun Microsystems, Inc. Part Number: 800-5543-10.

Tanenbaum, A. S. (1986). Operating Systems: Design and Implementation. Prentice Hall Software Series.
Prentice-Hall, Inc.

Tinker, M. A. (1963). Legibility of Print. Iowa State University Press.

Uchikawa, H., Uchikawa, K., and Boynton, R. M. (1989). Influence of achromatic surrounds on categorical
perception of surface colours. Vision Research, 29(7):881–890.

Uchikawa, K. and Boynton, R. M. (1987). Categorical color perception of japanese observers: Comparison with
that of americans. Vision Research, 27(10):1825–1833.

Wegner, P. (1987). Dimensions of object–based language design. SIGPLAN Notices, 22(12):168–182. Proceed-
ings of the OOPSLA’87 Conference, Oct. 4–8, 1987, Orl ando, Florida.

Wyszecki, G. (1954). A regualr rhombohedral lattice sampling of munsell renotation space. Journal of the Optical
Society of America, 44:725.

Wyszecki, G. and Stiles, W. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae.
Wiley, New York.

