Exploratory Programming of
Distributed Augmented Environments

Blair Maclntyre

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

1999

© 1999

Blair Macintyre
All Rights Reserved

Abstract

Exploratory Programming of Distributed Augmented Environments

Blair MaclIntyre

Augmented realitys a form of virtual reality that uses see-through displays to enhance the
world with computer-generated material. When combined with more traditional displays,
a powerfulaugmented environmeamerges in which two and three dimensional informa-
tion can be presented to a user simultaneously on a combination of displays. Prototyping
these environments is challenging both because they are highly distributed, interactive sys-
tems, and because of the exploratory nature of building systems for new interaction para-

digms.

We have developed a testbed for exploratory programming of distributed augmented envi-
ronments, called Coterie. A single programming model is used for both single and multi-
process programs by building applications as groups of threads communicating via shared
objects. The distributed programming modeldistributed object memoryDOM), an
object-based approach thstributed shared memargoterie’s DOM presents the pro-

grammer with both client-server and replicated distributed objects.

Both interpreted (Repo) and compiled (Modula-3) languages present the application pro-
grammer with similar DOM programming models. Modula-3's replicated objects are
implemented using Shared Objects, an object replication package that is tightly integrated
with the Modula-3 object system and designed to be flexible and easy-to-use. Repo is
implemented using the Shared Object package, and presents the programmer with an
interpreted language that supports both client-server and replicated objects uniformly
across its entire type system. The final important component of Coterie is Repo-3D, a
high-level, distributed graphics library, built using the Shared Objects package and tightly
integrated with Repo. By making all graphical objects extensible and transparently distrib-

utable, programmers can use Repo-3D scene graphs as the basis for their application data

structures, allowing complex distributed graphical applications to be created in a straight-

forward manner.

Numerous stand-alone and distributed augmented environment systems have been devel-
oped using Coterie, and demonstrate its usefulness. These include an architectural anat-
omy system for viewing the support structures inside the walls of a building, a
construction assistant for space frame buildings, a maintenance and repair task for tele-
phone crossboxes, an augmented reality tour guide, and a number of interface concepts for

the National Tele-Immersion Initiative.

Table of Contents

CHAPTER 1 Introduction. 1
1.1 Exploratory Programming of Distributed Augmented Environments. 3
1.2 Research Contributions 6

1.2.1 Shared Objects: A Distributed Shared Object Memory. 6
1.2.2 Repo: A Distributed Interpreted Language 8
1.2.3 Repo-3D: A Distributed 3D Graphics Library. 9

1.2.4 Coterie: Exploratory Programming of AE Systems. 11
1.2.5 Prototype Augmented Reality Applications 11

CHAPTER2 An Overview of Coterie 13

2.1 Previous Work: Augmented Reality 13
2.1.1 KARMA. . e 14
2.1.2 WindowsontheWorld. 15
2.1.3 Architectural Anatomy. 16

2.2 MOUVALION . .. 17

2.3 Requirementsforthe Testbed 19

2.4 Related Research Areas.t e e e e 22
2.4.1 Virtual Environment Systems o 22
2.4.2 Distributed Groupware. 25

2.5 Implementation OVEIVIEW 26
2.5.1 \Virtual Environments: Tracker Support. 28

2.6 Initial Prototypes 30
2.6.1 Architectural Anatomy. 30
2.6.2 Telephone Crossbox Maintenance. 31
2.6.3 Spaceframe Construction. 32
2.6.4 Automated Tour Guide0t 33

CHAPTER3 Shared Objects., 38
3.1 Distributed Shared Memory. 39
3.2 Related WOrk 42
3.3 Shared Object Package Design, 47

3.3.1 Goal: TightIntegration. i 47
3.3.2 Model: Totally Ordered, Write-Update Objects 48
3.3.3 Event Driven Control Flow: Callback Objects 53

3.4 Implementation 54
3.4.1 Object Definition and Runtime Code Generation 55

3.5

3.6

CHAPTER 4

4.1
4.2
4.3
4.4

4.5
4.6

4.7
4.8

CHAPTER 5

5.1
5.2
5.3

3.4.1.1 Example Object Definition. 56

3.4.1.2 CallbackObjectUsage 61
3.4.1.3 Passing State Between Processes 63
3.4.1.4 Additional Tracker Examples. 65
3.4.2 The Shared ObjectRuntime. 66
3.4.2.1 Thread Management.c.oooiiiiinnn. 68
3.4.2.2 Exception and Return Value Handling............... 71
3.4.3 RESHICHONSo 72
Performance and Usability. 73
3.5.1 Shared Object Performance............. 73
3.5.2 Shared Object Usability. 79
DISCUSSION . . ettt 82
ReEPO. . . e 84
Related WOrK o 86
An Overviewof Obligand Repo i 87
Distributed Semantics 88
Replication Syntax. 92
441 Declarations. 92
442 CloningData 95
4.4.3 User-defined Picklers. 97
The Replication Module 98
EXamples 99
4.6.1 Simple Tracker Report Distribution. 99
4.6.2 Asynchronous Change Notification. 101
4.6.3 Multi-person Spaceframe Construction. 102
4.6.4 Distributed MUteXesS. 105
4.6.5 Hierarchical Object Directories.cccvuv..... 108
Implementation 111
Usability of Repo. o e 115
Repo-3D 118
Related WOrK 121
ODbIlig-3D: AN OVEIVIEW. ottt e 123
Design Of RepO-3Do 126
5.3.1 Conversionto SharedObjects 126
5.3.1.1 GraphicalObjects........... 127
53.1.2 Properties 128
5.3.1.3 AnimationHandles............................. 129
5.3.1.4 InputCallbacks............. 131
5.3.1.5 Change Notification 131

5.3.2 Local Variations. o e 133

5.3.3 Extensibility. 135
5.4 EXampPIes . ..o 137
541 ATutorial Example 138
5.4.2 Yet Another Tracker Example 138
5.4.3 A Truncated Pyramid Object. 140
5.4.4 An Animation Examiner 141
55 Implementation 144
5.6 Performance. 153
5.7 DISCUSSION . . ottt e 155
CHAPTER 6 Coterie Examples. 158
6.1 Of Vampire Mirrors and Privacy Lamps, 158
6.2 Shared SKetCh. 162
CHAPTER 7 Conclusions and Future Work 170
7.1 Future WOrk 174
7.1.1 Shared Object Update Latencyc.coviiinn. 175
7.1.2 Network AWareness oottt 176
7.1.3 Additional Replication Semantics 178
7.1.4 Multi-object Consistency. i 180
7.1.5 More Flexible Consistency Guarantees. 180
7.1.6 BetterHandlingof Time 181
7.1.7 Generalized Local Variationsin Repo-3D................... 182
7.1.8 Applicationto Other Languagesc.coviinn... 182
ReferenCesS 184
APPENDIX A Example Generated Code 190
A.l TrackerPositionSO.M3. 190
A.2 TrackerPositionCB.i3. 197
A.3 TrackerPositionCB.m3. 197
A.4 TrackerPositionProxy.i3. 200
A.5 TrackerPositionCBProxy.i3. e 200
A.6 TrackerPositionPickle.i3 201
APPENDIXB Tracker Modules 202
B.1 TheBasicModules 202

B.1.1 Kalman. e e e 202

B.1.2 Tracker. e 202
B.1.3 TrackerPosition 203
B.1.4 TrackerPositionCB. e 203
B.1.5 TrackerServer. 204
B.2 The Tracking Device Modules. 204
B.2.1 Dynasight. 204
B.2.2 FOB ... e 205
B.2.3 Logitech. 205
B.2.4 MSMOUSE.o e 206
B.2. 5 PTU .. 206
B.2.6 RINGMOUSE. 206
B.2.7 SCANNEr. e 207
B.2.8 Trimble. 207
B.2.9 VIO . .. 208
APPENDIXC Repo Syntax. 209
APPENDIX D Additional EnhancementstoRepo 211
D.1 Additional Syntax Changes 211
D.2 Module Enhancements and Additions. 213
D.3 Efficient Module Distribution 215
APPENDIXE RepoModules 219
E.1l New Modules. e e 219
E.1.1 debug 219
E.1.2 dict. 220
E.1.3 reflect. 220
E.14 replica. 222
E.2 New Modules for Modula-3 Packages. 223
B 2.0 dir. .. 223

E 2.2 htp. ... e 224
E.2.3 httpField. 229
E.2.4 hpStatus 230
E.25 path. 231
E.2.6 random. 232

E. 2.7 TegeX. . o 232

E 2.8 CP. . 233

B 2.0 Url. . 234
E.2.20 WOrdo 235

E.3 Changed Modules 235

E.3 L armay e 235
E.3.2 Mt .. 236
E.3.3 leX. o 236

E. 3.4 net. ... 237

E. 3.5 08 ..t 238
E.3.6 PrOCESS o 238

E. 3.7 SYS i 239
E.3.8 teXt. .. 240
E.3.9 thread 241
E.4 Unchanged Modules 242
E.4.1 bool 243
E.4.2 Char. ... 243
E.4.3 COlor. ..o 243
B4 4 fOrm ..o 244
E.A 5 INt. .. 245
E46 math. 246
E.A7 online 246
E.4.8 pickle 247

E. 4.9 rd ... 247
E.d4.10 real 248

E. 4. 1L Vbt ..o 249

B4 02 Wr. o 249
APPENDIX F Another Replicated Mutex 251
F.L o mutexX.obl. ... 252
APPENDIX G Additional Enhancements To Repo-3D................. 254
APPENDIXH Repo-3BD Modules. 257
H.1 Graphics Objects e 257
H.LL GO . 257
H.1.2 GOCB ... 258
H.1.3 AmbientLightGO. 260
H.1.4 BOXGO. . ..ot 260
H.1.5 CameraGO. 260
H.1.6 ChoiceGroupGO e 261
H.1.7 ConeGO. 261
H.1.8 CylinderGO 262
H.1.9 DiskGO 262
H.1.10 GroupGOo 263

H.2

H.3

H.4

H.1.11 IndexedLineSetGO. e e 263

H.1.12 IndexedPolygonSetGO. 264
H.1.13 LightGO. e 264
H.1.14 LineGO e 265
H.1.15 MarkerGO e 265
H.1.16 OrthoCameraGO e 266
H.1.17 PerspCameraGO 266
H.1.18 PointLightGO. e 266
H.1.19 PolygonGO 267
H.1.20 QuadMeshGO e 267
H.1.21 ROOIGO . . .o 267
H.1.22 SphereGO. 268
H.1.23 SpotLightGO e 269
H.1.24 SurfaceGO 269
H.1.25 Text2DGO e e 271
H.1.26 TextGO.o e 271
H.1.27 TOrusGO. 272
H.1.28 VectorLightGO. e e 272
PrOPEIIES . . . 272
H.2. 1 Prop . ..o 272
H.2.2 PropCB. 273
H.2.3 BooleanProp. 273
H.2.4 ColOrProp. 274
H.2.5 FontStyleProp 274
H.2.6 INtProp 275
H.2.7 LINeTYypPeProp. e 276
H.2.8 MarkerTypeProp e 276
H.2.9 POIN2Propo 277
H.2.10 POINtProp . . . oo 278
H.2.11 RasterModeProp 278
H.2.12 RealProp.o e 279
H.2.13 ShadingProp. 280
H.2.14 StringPropo 280
H.2.15 TexlmageProp 281
H.2.16 TexModelProp oo e 282
H.2.17 TextAlignPropo 282
H.2.18 TransformProp oo 283
H.2.19 TransmissionPatternProp.t 284
Animation Handles 285
H.3.1 AnimHandle. i 285
H.3.2 AnimHandleCB i 285
Interaction Callbacks 286
H.4.1 KeYCB ... e e 286

Vi

H.5

H.6

H.7

APPENDIX |
1.1

H.4.2 MOUSECB e e e e 286

H.4.3 PoOSItioNCB. 286
Location Callbacks. i 287
H.5.1 ProjectionCB e 287
H.5.2 TransformCB i e 287
Graphics Bases. 287
H.6.1 GraphicsBase. i 288
H.6.2 Win_OpenGL_Base............... ... 288
H.6.3 WIN_RW Base. i 288
H.6.4 X OpenGL_Base. i 288
Miscellaneous 289
H.7.1 AniM3D e 289
H.7.2 AniMmHOOK e 289

H.7.3 ProxiedObj. 289
H.7.4 TessSphere. e 290
H.7.5 Teximage e 290
The Animation Time Module 291

animtime.obl 292

Vii

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10:
Figure 2-11.:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11.:
Figure 4-12:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:

List of Figures

The KARMA Prototypeo e e 14
The Windows on the World prototype 15
The Architectural Anatomy prototype 17
An example architecture diagram. 18
The generic Tracker Report Object hierarchy 29
The new Architectural Anatomy prototypec.cooo ... 31
A prototype AR application for crossbox maintenance 32
A prototype AR application for space frame construction. 33
A prototype campus information system oo 34
Additional images of the Touring machine 35
Software design of the prototype campus information system. 36
Control and data flow for a Shared Objectupdate 52
The relationship between clients, sequencers and object managers. 53
Object hierarchy for a Shared Object. 54
The Modula-3 interface definition firackerPosition 57

The Modula-3 implementation fbrackerPosition 58
TheTrackerPositionCB.T Callback Object 62
The defaulfrackerPosition.T marshallingcode 64

A low frequency trackerobject. L 66
Data Flow in the Shared Object System. 69
The effect of different distribution semantics. 90
Declaring objects inRepo. 94
An example of synchronized replicated objectsinRepo 100
An example of notifier callback objectsinRepo 102
Extending the space frame prototype for remote consultation. 103
The replicated state for the distributed ARC prototype 104
A simple client-servermutex 106
Asimplereplicated mutex 107
A single Object Directory (OD) oo oot 109
The internal definition of an Obliqarray 112
The internal definition ofa Repo array. 113
The internal definition of a Repo replicated object 114
Two meanings of distributed graphics 119
The Repo-3D GO class hierarchy. 124
The relationship between properties, names, values, and behaviors 125
TheGOCBandPropCB modules. i 132
Embedding DistAnim-3D objectsinRepo. 136

viii

Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11.:
Figure 5-12:
Figure 5-13:
Figure 5-14:

Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure D-1:

Asimple Repo-3D example 139
ThelruncPyr object. 141
The distributed CATHI animation viewer 143
The internal structure of Anim-3D and DistAnim-3D............... 145
TheSO. T Class. 148
Excerpts froOPrivate.i3 149
BoxGO.T class definitions 149
Th&roupGO.T class definition 150
ThéAnimHandle class 152
The EMMIE system for collaborative augmented environments. 159
The routineto create aVUB item. 160
The structure of aVUB item's GO. 161
The definition of a Coterie Sketch object. 166
Distributed Sketchinuse 167
The structure of the Distributed Sketch prototype 168
Pattern matching with the Repo reflection module 214

Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 4-2:
Table 6-1:

List of Tables

A comparison of distributed object-based programming systems. 43
Local method call performance, 73
Distributed method call performance. 74
Orca Method call performance 75
Entities with state in Oblig. 92
Declaring entities with state inRepo. 93
Sketch Object Definitions 163

Acknowledgments

While it will be impossible to thank all those who have contributed in some way to this
work, there are certain folks who must be acknowledged. First and foremost are the
members of the Computer Graphics and User Interfaces Lab at Columbia University,
where this work was undertaken, especially my advisor Steven Feiner. Xinshi Sha was
instrumental in implementing many of the efficiency improvements to Anim3D to make it
usable for our applications. Numerous others at Columbia influenced this work over the
years, especially Clifford Beshers, Reza Jalili, Sushil Dasilva, Tobias Héllerer, Steven
Dossick, Steven Abrams, Bruce Zenel, Andreas Butz and Simon Baker. Luca Cardelli and
Marc Najork of DEC SRC created Oblig and Oblig-3D, and provided ongoing help and
encouragement over the years that Repo and Repo-3D have been evolving. Bill Kalsow
and Farshad Nayari of Critical Mass provided help with all aspects of Modula-3, including
creating an excellent implementation of the language.

When examining my underlying motivations for how | approached this problem,
the influence of Peter Buhr can be found, to whom | am thankful for long ago instilling in
me the value of a solid and beautiful foundation for any complex programming system. |
am grateful to Henri Bal for creating Orca and publishing inspiring and lucid papers on
both the language and Distributed Object Memory in general.

Finally, I would like to thank the many relatives and friends who have encouraged
and supported me over the many years spent on this work. My family has never wavered in
their support, or in their conviction that | could and would one day complete this disserta-
tion. Many, many friends, including those mentioned above, have provided the support
needed over the years, sharing more than just food, coffee, beer and scotch. The most
important of these is Beth Mynatt, whose love and encouragement kept me sane and
focused during the final months of writing.

This work was supported by ONR Contracts N00014-94-1-0564 and N00014-97-
1-0838, the National Science Foundation under Grant CDA-92-23009 and ECD-88-
11111, the New York State Center for High Performance Computing and Communications
in Healthcare (supported by the New York State Science and Technology Foundation), the
Advanced Network & Services National Tele-Immersion Initiative, and gifts from
NYNEX Science & Technology, Intel, Critical Mass, Apple, Microsoft, and Mitsubishi
Electric Research Laboratory.

Xi

| also record those events which led, by insensible steps, to my after tale of misery,
for when | would account to myself for the birth of that passion which afterwards
ruled my destiny | find it arise, like a mountain river, from ignoble and almost
forgotten sources; but, swelling as it proceeded, it became the torrent which, in its
course, has swept away all my hopes and joys.

—Mary Shelley Frankenstein

Xii

ciarrer: INtroduction

Are you sitting comfortably? Then I'll begin.
— Preamble to children’s story Listen With Mother
BBC radio program from 1950.

In recent years, the popularity wftual environmentg¢VES), also known by the popular
termyvirtual reality (VR), has varied greatly. While VEs initially received significant atten-
tion as an interface metaphor that would revolutionize the way people interact with com-
puters, most attempts to explore this new paradigm have not lived up to initial
expectations. The focus of much of this attention has been on what we shall refer to as
exclusive VESn which an entirely synthetic sensory experience is presented to the user,
typically focusing on the visual and auditory senses through the use of opaque, head-worn
displays and headphones. The intuitive appeal of VEs is obvious; by immersing users in a
rich 3D world, they should be able to interact with virtual information using the same
skills with which they interact with the real world every day. However, there are a few
obvious problems with the paradigm. The first is a technological one: even with the rapid
advance in technology, it does not seem likely that convincing, realistic environments will
be created any time soon, either in terms of the quality of the illusion presented to the user,
or the quality of the interaction. The second is a social one: even if reasonably realistic vir-
tual environments could be created, it is not clear that people will want their interactions
with the “virtual world” to cut them off from the richness of the real world and their inter-
actions with other people and physical artifacts, such as telephones, books, pens and

paper.

Fortunately, alternative approaches may provide many of the proposed advantages
of VR while avoiding many of the problems. In particulargmented realityAR) tech-

niques aim to enhance, rather than replace, the user’s perception of the world with com-

puter-generated information. Our view, shared by many AR researchers, is that exclusive
VEs should (and probably will) only be used for those applications where the extreme
sense of presence obtained by being entirely immersed in an virtual environment out-
weighs the disadvantages of being cut off from the real world. We also believe that only a
small subset of the applications that have been proposed for VEs fit in this category.
Furthermore, it is not clear that either pure AR or VR will completely replace existing
computer interfaces. Instead, it seems likely that hybrid user-interfaces will emerge that
combine AR with other interaction paradigms. These interfaces would integrate main-
stream input and output devices (e.g, mice, tablets, speech generation, voice recognition,
and desktop, wall-mounted and handheld displays) with techniques and devices from such
interaction paradigms as augmented reality, ubiquitous computing and intelligent environ-

ments. Such interfaces are calledgymented environmentAES).

The importance of AR techniques in these environments lie ingbesonal
nature. Since AR displays tend to personal displaygthat are worn or carried by an indi-
vidual user and whose output is only perceived by that user), AR techniques provide a
solid foundation for imbuing an augmented environment with ubiquitous display capabili-
ties that are tailored to the needs of individual users. By accurately sensing the location
and orientation of the occupants of the environment, auditory and visual augmentations
can also be present@tcontexton a per user basis. When combined with more traditional
devices, a rich information space is created where combinations of public and private
information can be presented to users simultaneously using a combination of displays.
This augmenting and leveraging of the real world makes possible a wide variety of inter-

action techniques and ways of organizing information.

The presence of these personal AR displays makes AEs especially complex, for
three reasons: the displays are availablgtinuouslythe information environment
changeslynamically and the information often needs todpatially locatedIn the first
case, since the displays are designed to be percivied same timthat the user is
attending to naturally occurring phenomenon with the same senses used to perceive the
AR display, the information being presented must be designed so that it does not interfere

with their day-to-day activities. Second, even when the user is attending to the information

presented on the see-through head-worn displays or headphones, the information contin-
ues to interact with the environment, in possibly complex ways. For example, small move-
ments of the user’s head will change what they are looking at and may therefore require
information on the (personal or shared) displays to be changed. These interactions must
then be taken into account when designing these dynamically changing information dis-
plays. Finally, virtual information often needs to appear directly in some physical context,
either by overlaying visual elements at some specific location, or by spatially positioning a
sound. To do this, highly accurate position and orientation sensing of the people and

objects that occupy the environments is needed.

1.1 Exploratory Programming of Distributed
Augmented Environments

The research reported in this dissertation was motivated by our interest in, and investiga-
tion of, the user-interaction issues that arise when building applications for multi-user AEs
[Maclintyre and Feiner, 1994, MaclIntyre and Feiner, 1996a, MacIntyre and Mynatt, 1998].
Based on our initial experience building single-user AR prototypes [Feiner et al., 1993a,
Feiner et al., 1993b, Feiner et al., 1995], it was obvious early on that exploring multi-user
AEs would be unusually challenging. First, the physical environments are extremely diffi-
cult to work with. Multiple users, multiple displays of different kinds (from see-through
head-worn to wall-mounted to hand-held), and a wide variety of input devices (from pens
and mice to voice to three and six degree-of-freedom (DOF) sensors) must be integrated
into a single cohesive system. Second, these devices and displays are attached to an assort-
ment of computers, requiring that the simplest of applications be distributed over many
machines. These difficulties are exacerbated bgxpkratorynature of building proto-

types for a completely new interaction paradigm: neither the structure of the applications,
the kind of data being shared, nor the distribution characteristics of that data are necessar-
ily known ahead of time and will likely be modified continuously as the applications are

developed.

Finally, our research prototypes are usually developed by a group of researchers,

not an individual programmer. Dourish points out that not only the mechanics, but also the

social activities, of prototyping and collaborative development require toolkits with a high
degree of flexibility, a finding that falls in line with our experiences. If the tools are too

rigid, the natural exploratory nature of collaborative prototyping suffers [Dourish, 1996].

This research meets these challenges by combining state-of-the-art distributed sys-
tems, programming language and graphics techniques into a flexible programming envi-
ronment called Coterie. In contrast to much of the research in these areas, the issues
encountered when building Coterie are addressed in the context of our main research
focus, the exploration of novel, highly interactive user-interfaces. As a result, Coterie is
well suited to prototyping applications for multiple display, multi-modal augmented envi-

ronments, as well as a wide variety of other distributed interactive applications.

The goal of this research is to create an environment that allows distributed pro-
grams to be built as easily as non-distributed ones, even if that means the execution and
network usage of those programs may be slightly less efficient than otherwise possible.
The primary concern is to develop an exploratory programming environment in which (in
the words of Alan Kay) “simple things should be simple, complex things should be possi-
ble”. This focus on ease of use, at the possible expense of efficiency, is not typical in the
design of distributed programming environments. However, in the context of our motivat-
ing research agenda, this focus is reasonable: the target audience is HCI researchers, rang-
ing from undergraduate students to graduate students, professors and professional
programmers, most of whom have little experience (or direct interest in) building complex
distributed applications. These researchers typically build throw-away application proto-
types to demonstrate interaction concepts, and are not overly focused on the efficiency of

execution of these prototypes.

We satisfy these goals by focusingsamplicity andflexibility. To ensure that
“simple things are simple”, Coterie’s distributed programming model is based on a
familiar and well understood non-distributed programming paradigm, that of multiple
threads of control communicating via shared objects. By providing an object-based imple-
mentation ofistributed shared memoPSM) [Li, 1986], often called distributed
object memoryDOM) [Levelt et al., 1992], both stand-alone and distributed programs are

built the same way, with local and distributed data being used transparently and inter-

changeably, and with threads on the same or different machines communicating through
shared objects. Furthermore, these distribution facilities are tightly-integrated with a popu-
lar programming language, allowing existing software and programming skills to be capi-
talized on. Our contribution to Coterie’s DOM programming model is the Shared Object
object replication package, which was designed to be integrated with Modula-3 and to

address the needs of highly interactive, distributed applications.

To further ensure that simple tasks are easy, Coterie includes the most common
building blocks needed for the sorts of applications we envision, the most important and
interesting being a novel distributed 3D graphics library called Repo-3D. Finally, all of
these facilities are made available in Repo, Coterie’s high-level, interpreted, distributed
language. Repo is the only interpreted language we know of that supports both client-
server and replicated data uniformly across its entire type system. Using Repo, relatively
sophisticated applications can be built and tested with a minimum of effort. The imple-
mentations of Repo and Repo-3D also serve to highlight the power and flexibility of the

Shared Object package.

To ensure that “complex things are possible,” Coterie is a general purpose pro-
gramming environment whose data distribution facilities were designed with flexibility in
mind. This is a key to its eventual success; because Coterie is being used to explore new
computing paradigms, it should contain as few distribution or interagiidiciesas possi-
ble. Rather, the programmer is presented with languages and tools that are sufficiently
powerful and flexible to experiment with whatever policies and approaches to data organi-
zation, control flow and user-interaction are appropriate. In effect, Coterie is a toolkit for

building experimental AE systems, not an AE system itself.

This dissertation will discuss the design and implementation of the various compo-
nents of Coterie, and how they fit together to satisfy our goal of an easy-to-use testbed for
building distributed AEs. Examples of its use, and justification for the various choices,
will be provided by presenting simple examples, and discussing complete applications,

built using the toolkit.

1.2 Research Contributions

The research described in this dissertation involves the creation of a programming envi-
ronment to support exploratory programming of distributed AEs, and in using this infra-

structure to investigate some interesting problems. The contributions of this research are:

1. Shared Objects, a novel, tightly integrated replicated object package for a mainstream
programming language (Modula-3) that presents the programmer with a powerful

DOM programming model,

2. Repo, a distributed, interpreted language that presents a DOM to the programmer with

both client-server and replicated data sharing semantics,

3. Repo-3D, a high-level, structured graphics library with directly distributable and exten-

sible graphical objects,

4. Coterie, a testbed for fast prototyping of distributed AE applications that incorporates

these components, and

5. A number of prototypes implemented in Coterie that explore different augmented envi-

ronment application domains.

1.2.1 Shared Objects: A Distributed Shared Object Memory

The idea of distributed shared memory (DSM) was introduced by Li [Li, 1986, Li and
Hudak, 1989]. His approach, and that of a number of others since then, was to implement
shared memory at the operating system level, by leveraging the virtual memory architec-
ture and integrating memory distribution with the paging system of the operating system.
Unfortunately, this approach suffers from a number of problems, not the least of which is
difficulty of implementation that arises because changes must be made at the operating

system level.

An alternative approach, often referred to as Distributed Object Memory (DOM),
is a distributed shared-memory abstraction that avoids the problems caused by the page-
level granularity of DSM. In this approach, the illusion of one large shared memory is pre-
sented at the programming language level, by encapsulating the shared data in program-

ming language objects and using the language constructs to ensure all access to that data is

through method calls on those objects. Access to objects is uniform: at the language level,
local and remote objects are accessed in the same way. Distribution semantics (if an object
is replicated, when to migrate single-copy objects, etc.) may be hidden, or language fea-

tures may be used to control them.

While there have been a number of DOM systems, none are suitable for our work.
All of the systems that support replicated data are part of non-mainstream programming
languages (e.g., Argus [Liskov, 1988], Amber [Chase et al., 1989], Distributed Smalltalk
[Decouchant, 1986], Emerald [Jul et al., 1988], Munin [Bennett et al., 1989], and Orca
[Bal et al., 1992]). Those systems that are integrated with popular programming languages
only support client-server data, with a single copy of each object and proxy-based remote
access from other processes (e.g., RPC [Birrell and Nelson, 1984], CORBA
[OMG, 1992], Network Obijects [Birrell et al., 1993], Java RMI [Wollrath et al., 1996],
and ILU [Janssen et al., 1998]). Unfortunately, client-server data is not sufficient for
highly interactive applications. Replicated data is needed as well, since any data required
to respond to a user’s actions in real time must be local to the process handling that
response. Since this replicated data may or may not need to remain synchronized over
time, there are three basic data distribution semantics needed for our domain: client-

server, unsynchronized replication, and synchronized replication.

Building a custom language, or working with an obscure one, is impractical, pri-
marily because of the lack of existing software. One of the main reasons we chose Mod-
ula-3 [Harbison, 1992] for this work was the variety of software packages available for it.
One particularly useful package provides an elegant solution for distributed shared objects
with client-server distribution semantics (Network Objects [Birrell et al., 1993]). This
package also ends up providing unsynchronized replicated objects though automatic mar-
shalling of arbitrary data structures: any non-Network Object parameter or return value of
a Network Object method call is automatically copied between processes. The Shared
Object package is a complementary package that satisfies the need for tightly synchro-
nized replicated data and is cleanly integrated with Modula-3 and the Network Objects

package.

The Shared Object package design was inspired by the approach to object replica-
tion used by Bal and his colleagues [Bal and Tanenbaum, 1988, Levelt et al., 1992]. In
their formulation, implemented in the Orca programming language [Bal et al., 1992, Bal
et al., 1998], objects are replicated across machines as needed and the semantics of object
replication are enforced by the language. Replication consistency is accomplished by
write-update vidotally-ordered function shippingvhere the runtime environment
ensures all methods that update an object are executed in the same order on all replicas of
the object. As it turns out, this approach is extremely well suited to implementation as an
add-on to a strongly-typed programming language such as Modula-3. Furthermore, the
performance characteristics of this approach are appropriate for highly interactive graphi-
cal systems, where the objects tend to have a high read/write ratio and need low latency

update distribution.

By encapsulating application state in the language objects and having the seman-
tics enforced transparently, both Network and Shared Objects satisfy one of our primary
goals by exhibiting a high degree of network data transparency. This is extremely impor-
tant for exploratory programming, as changes in the distribution patterns of data (for
example, when client-server data becomes replicated) will then have a minimal impact on
the structure of the code. Because these objects are tightly integrated into the program-
ming language, objects with different distribution semantics can be mixed in arbitrary
ways with predictable, and sometime novel, results. These results have also been reported
in [Macintyre, 1995, Maclintyre and Feiner, 1996b].

1.2.2 Repo: A Distributed Interpreted Language

A common approach to rapid prototyping is to provide the programmer with an inter-

preted language in which they can build their applications: Coterie’s interpreted language
is called Repo. Since we want Coterie to support a common programming model through-
out its various components, both the interpreted and compiled languages should support

similar forms of object distribution.

Repo is based on a distributed language, called Obliq [Cardelli, 1995], that sup-

ports client-server distribution semantics of all data items (objects, arrays and variables)

via the Network Object package. Repo extends Oblig’s type system uniformly so that all
its data items can also be distributed using both unsynchronized replication semantics, via
normal programming language objects, and synchronized replication semantics, via our
Shared Object package. Repo also includes a number of libraries that are needed to
support rapid prototyping in our domain, such as simple support for reflection, HTTP

clients and servers, regular expressions and so on.

Unlike the Modula-3 DOM, in which only the programming language objects (and
not other language data, such as arrays and sets) are distributable with all possible seman-
tics, in Repo all data items (objects, arrays and variables) can take on any of the three
possible distribution semantics. Since all of these data types can be mixed and matched in
arbitrary ways, a wider range of interesting data structures can be developed in Repo than
is possible in Modula-3. Because it allows distributed applications to be developed in a
few lines of interpreted code, Repo turns out to be an excellent language for exploratory
programming of distributed interactive applications. The implementation of replicated
objects in Repo also serves to highlight the power of the programming model used by the

Shared Object package.

1.2.3 Repo-3D: A Distributed 3D Graphics Library

Distributed graphicsefers both to the architecture of a single graphical application whose
components are distributed over multiple machines, and to systems for distributing the
shared graphical state of multi-display/multi-person, distributed, interactive applications.
Coterie is designed to support both of these architectures. The former is obviously
supported by the combination of Repo and any non-distributed 3D graphics library; the
latter is provided by Repo-3D.

While many excellent, high-level programming libraries are available for building
stand-alone 3D applications (e.g., Inventor [Strauss and Carey, 1992], Performer [Rohlf
and Helman, 1994], and Java 3D [Sowizral et al., 1998]), there are no similarly powerful
and general libraries for building distributed 3D graphics applications. Programmers are
typically forced to use a general purpose mechanism, such as Repo, for distributing

application state, and then to manually synchronize that state at each site with the state of

10

a local graphics library. Keeping these “dual databases” synchronized is a complex,
tedious, and error-prone endeavor. Repo-3D was designed to address this problem by
allowing programmers to encode application state in its directly distributable and extensi-

ble 3D graphical objects.

Repo-3D is an object-oriented, high-level graphics package, derived from
Oblig-3D [Najork and Brown, 1995]. Like Oblig-3D, Repo-3D’s graphics facilities are
similar to those of other modern high-level graphics libraries. However, the objects used to
create Repo-3D’s graphical scenes are directly distributable and extensible because they
are built using Shared Objects. Repo-3D also takes advantage of the Shared Objects’ abil-
ity to allow programmers to locally modify the object’s replicated state. This addresses
two concerns particular to distributed applications, interactivity and the frequent need for

local variations to the global scene.

With most approaches to synchronized replicated data (including the Shared
Objects), updates to distributed state will be slower than updates to local state, and the
amount of data that can be distributed is limited by network bandwidth. Therefore, if
interactive speed is not to be sacrificed, a programmer must be able to perform some
operations locally. Additionally, there are times when a shared graphical scene may need
to be modified locally for reasons other than efficiency. For example, a programmer may
want to highlight the object under one user’s mouse pointer without affecting the scene
graph viewed by other users. Repo-3D allows the properties of a graphical object to be

modified locally, and parts of the scene graph to be locally added, removed, or replaced.

Repo-3D is the first implementation of a directly distributed and extensible 3D
graphics library. In addition to providing a solution to some significant issues, we
highlight a number of directions for future work both in distributed 3D graphics and in
object-based distributed shared memory systems. As with Repo, the implementation of
Repo-3D highlights the power of the Shared Object package. Repo-3D has also been

reported to the research community in [Macintyre and Feiner, 1998].

11

1.2.4 Coterie: Exploratory Programming of AE Systems

Coterie incorporates Repo and Repo-3D as its major building blocks, and is designed to
support our experimentation with distributed AEs. Coterie provides a unique, general
purpose environment for constructing experimental distributed virtual environment

systems and applications in a heterogeneous computing envirdnment

In addition to Repo and Repo-3D, Coterie contains a set of building blocks
particular to AE applications. These include support for typically useful virtual environ-
ment components, such as two, three and six degree-of-freedom (DOF) trackers and two-
way differential constraints. More interestingly, Coterie includes a number of libraries
(some of which have been developed based on our group’s experiences implementing
prototype applications) that demonstrate how a general purpose DSM can be used for
building distributed virtual environment applications. This work has also been reported in
[Macintyre and Feiner, 1996b, Macintyre, 1997].

1.2.5 Prototype Augmented Reality Applications

During the course of this research, the testbed has been used by members of Columbia's
Computer Graphics and User Interfaces Lab to build a number of prototype applications

that demonstrate the utility of this work and point the way towards future research.

These prototypes include both new application areas and enhanced versions of our
group’s previous prototype systems, and cover a wide range of application domains,

including:

« extending our previouarchitectural anatomyroject, in which we allowed a user to
view the support structures (columns, beams, etc.) inside the walls of a building [Feiner
et al., 1995], to include both construction of new structures and maintenance of existing
structures [Webster et al., 1996a, Webster et al., 1996b],

« amaintenance and repair task for telephone crossboxes. A telephone crossbox is where

a telephone company wire bundle is patched through to subscribers. In this prototype,

1. Coterie currently runs on Solaris, IRIX, Windows NT, Windows 95 and Linux.

12

we allow notes to be spatially attached to groups of terminals, so that repair personnel
can reserve terminals, denote bad or suspicious terminals, and so on [Maclntyre and
Feiner, 1996D].

an augmented reality tour guide, where an outdoor site (such as the Columbia campus,
in our case) is augmented with interesting information displayed on either the user’s
HMD or handheld tablet display [Feiner et al., 1997],

exploring interface concepts for the National Tele-Immersion Initiative, such as how to
integrate other user interface tools (e.g. the integration of the Brown Sketch system
[Zeleznik et al., 1991], demonstrated during the presentation of [Macintyre and
Feiner, 1998)),

exploring the management of information across multiple, heterogeneous display
devices. EMMIE has been developed to explore this issue, focussing on techniques for

dealing with privacy issues is multi-user environments [Butz et al., 1998].

13

ciarrer2 AN Overview of Coterie

In this chapter, we will give a high level overview of Coterie, the testbed we built to sup-
port our AE research, and which encompasses the ideas presented in this thesis. We will
begin by detailing the high-level requirements that were identified for the testbed, based
on our previous experience, both building distributed AR systems and using a number of
VE systems. After presenting related work in distributed virtual environments and distrib-
uted groupware, we will discuss the design of Coterie in the context of our requirements,

the related work and the practical implications of the environment in which it was built.

But first, a note about the name of the testbecbt@rieis a group of people who
share a common interest. As will become apparent in this chapter, this concept fits well
with our view of the kinds of distributed applications we will build, as a set of threads of
control that are designed to work together to achieve a common goal. This is fairly impor-
tant, as it prejudices our design decisions in favor of techniques that facilitate tightly-cou-
pled distributed processes, in contrast to the decisions we would have made if we
approached our applications differently. For example, if we built our systems as groups of
agents, our design would favor techniques appropriate for loosely-coupled, self-contained
threads. Coterie is also an acronym: the Columbia Object-oriented Testbed for Explor-

atory Research in Interactive Environments.

2.1 Previous Work: Augmented Reality

Our previous research in AR focused on stand-alone applications [Feiner et al., 1993a,
Feiner et al., 1993b, Feiner et al., 1995]. The three prototypes we will discuss here are typ-
ical of what we and others envision to be some important potential uses of augmented real-
ity. These prototypes are KARMA (maintenance and repair) [Feiner et al., 1993Db],

Windows on the World (integrating two- and three-dimensional information) [Feiner

14

(a) “Pull ub the lever”

(b) “Pull out the paper tray”

Figure 2-1: The KARMA prototype. Two images showing graphical instructions
designed by KARMA to augment the user’s view of the printer. In both images, the
system is conveying an action to be taken by the user, either lifting the printer lid lever
or removing the paper tray. In both cases, the system highlights the object of the
action and draws an animated arrow indicating the action to be taken. In (b), the sys-
tem also draws a ghosted representation of the desired final location of the tray.

et al., 1993a] and Architectural Anatomy (examining hidden and alternate views of real
world objects) [Feiner et al., 1995]. Each prototype was a stand-alone application assem-

bled from an ad hoc combination of client-server software components.

211 KARMA

KARMA (Knowledge-based Augmented Reality Maintenance Assistant) was a prototype
system that used a see-through head-mounted display to explain simple end-user mainte-
nance for a laser printer. One of the key design goals of KARMA was to generate virtual
information that complements the real world on which it is overlaid, taking advantage of
what the user can already see. For example, one of the rules used by the system states that
if a goal is to show the user where an object is located, the system must determine if the
object is blocked by other objects. If it is blocked, it will be displayed so that it appears to

be seen through the blocking objects; if it is already visible in the real world, it need not be
drawn at all. In this prototype, we monitored the position and orientation of several key
components of the printer by attaching 3D trackers to them and feeding this information

into a modified version of the IBIS rule-based illustration generation system [Seligmann

15

(a) S

Figure 2-2: The Windows on the World prototype. The two views are shown
through the user’s head-worn display. The user is looking at another person in the
lab who is tracked via a magnetic tracker worn around their neck. In (a), the person
is working on a laptop, and in (b) both the user and the person in the image have
moved to the left of the laptop. There are three windows visible in this scene: a note
attached to the person, a small “load average” attached to the upper corner of the
laptop display, and display fixeccontrol panel window for the hypermedia system
(the window at the bottom). Notice that, as the person moves from working on the
laptop to sitting to the left of it, the control panel window does not move, but the
others do.

and Feiner, 1991] to interactively design the graphics and simple textual callouts that

make up the virtual world. Figure 2-1 shows some images created with our prototype.

2.1.2 Windows on the World

Windows on the World [Feiner et al., 1993a] was our first attempt at integrating 2D text
and graphics into a 3D virtual world. As with the KARMA system, the goal was to present
virtual information that built on, and leveraged, the real world perceived by the user of the
system. At the time, when people thought of using head-mounted displays and 3D interac-
tion devices to present virtual worlds, it was usually in terms of totally synthetic environ-

ments populated solely by 3D objects. There are many situations, however, in which 2D

16

text and graphics of the sort supported by current window systems can be useful compo-
nents of these environments, especially when this information is being merged with the
real world. To explore this idea, we developed support for a full X11 window system
server within our augmented reality testbed. The user head orientation was used to index
into a large X bitmap, which effectively placed the user inside a display space mapped
onto part of a surrounding virtual sphere. By also tracking the user’s body, and interpreting
head motion relative to it, a portable, see-through information surround was created that
enveloped the user as they moved about. In this system, we supported three kinds of win-
dows implemented on top of the X server: windows fixed to the head-mounted display,
windows fixed to the information surround, and windows fixed to locations and objects in
the 3D world. We also supported the ability to track arbitrary objects, allowing windows to
move with them. To demonstrate the utility of this model, we developed a small hyperme-
dia system that allowed links to be made between windows and windows to be attached to

objects, as shown in Figure 2-2.

2.1.3 Architectural Anatomy

The Architectural Anatomy prototype was a collaboration between our group and the
Building Technologies Group in Columbia’s Graduate School of Architecture. In this
project, we exposed a building’s “architectural anatomy,” allowing the user to see its oth-
erwise hidden structural systems [Feiner et al., 1995].The prototype application overlaid a
graphical representation of portions of a building’s structural systems over a user’s view of
the room in which they were standing, as shown in Figure 2-3. The overlaid virtual world
typically showed the outlines of the concrete joists, beams, and columns surrounding the
room. In addition, because we built on the Windows on the World prototype’s support for
combining 2D X11 windows and 3D graphics in augmented reality, the system also
allowed information about these support structures (such as the structural analysis of the

column in Figure 2-3(b)) to be spatially positioned near the structure.

17

(b) An image taken through the see-

(a) A mock-up of the AR
information display. through head-worn display.

Figure 2-3: The Architectural Anatomy prototype. Two images showing a col-
umn in the corner of our lab. Image (a) is a mock-up done by a design student (Ed
Keller), showing a vision of what the system might display, while (b) is an actual
image created by the system, including a 2D window containing a structural anal-
ysis of the column spatially attached to the column’s center.

2.2 Motivation

Before starting work on this testbed, we had attempted to extend a number of our single-
user, client-server prototypes (described in the previous section) in a variety of originally
unforeseen ways: Architectural Anatomy was built on top of some components of the
Windows on the World system, which was in turn built on top of some of KARMA'S com-
ponents. Unfortunately, that approach was becoming increasingly infeasible with each
modification. These prototypes were built using a then common style of distributed pro-
gramming, in which each logical component of the system is implemented as a separate
process, and for any given application, the necessary components are linked together.
Communication between the processes was done with a combination of custom RPC and
message passing (both to replicate data that was needed in multiple processes, and to
ensure that the data was distributed quickly without the need for polling of the data serv-
ers). Figure 2-4. shows the architecture of one of our systems [Feiner et aI.,11993b]

Unfortunately, adding new processes to systems such as this often involved the need to

1. See the paper for a more complete description of each of the components.

18

Trackers

Head Tracker

] Server
Object <
Tracker il Tracker

Processes| ——p, | Body Tracker
Servers Zerver

Hypermedia Application

Y
Link Werjd—fixed Display
Manager incow > X Server [X Bitmap —
Control Server Server

Y
A
y

Display-fixed
Window
Server

Private Eye

y

Link Link
Manager Display

Figure 2-4: An example architecture diagram. The architecture of the Windows on the
World system [Feiner et al., 1993b]. Each of the small labeled rectangles represents a
process in the system (the larger rectangles represent logical groups of processes).
Most of these processes are RPC and message stream servers. Many of them are also
RPC and message stream clients. The arrows show data flow.
share previously unshared data, over time turning many of the clients into RPC servers
and/or message stream sources. This resulted in an unmanageable welter of client-server
relationships, with each of a dozen or more processes needing to create and maintain
explicit connections to each other and to explicitly handle the inevitable crashes. This web
of connections can be seen in Figure 2-4, where each rectangle is a process and the arrows

show the information flow.

We spent a sufficiently large portion of our time reengineering client-server code
that it became clear that (at least our implementation of) the client-server model was
unsuitable, by itself, for exploratory programming of distributed virtual environment
research prototypes. The heart of the problem was a lack of support for data sharing that
was both efficient and easy for programmers to use in the face of frequent and unantici-
pated changes. Other problems we identified included the overhead of prototyping with
compiled programming languages, the unsuitability of heavy-weight processes for
implementing fine-grained parallelism and a lack of high level tools for building new
applications. Our group was not alone in our frustration. For example, Pausch’s group at

the University of Virginia tackled the problem of rapid prototyping by creating the Alice

19

system [Pausch et al., 1995]. Alice, which is aimed at non-distributed, totally immersive
VEs on the Windows 95 platform, includes fine-grained parallelism and an interpreted lan-
guage. Alice is designed for use by world developers, and provides very high-level tools,
whereas Coterie is aimed at system developers and provides more general, lower-level
tools. Therefore, while the Alice designers do not concern themselves with distribution or
with support for complex, multi-user applications, they do go farther than us in simplify-
ing the development of single-user virtual environments: for example, they have a pol-

ished graphical interface for building worlds, whereas Coterie contains only APIs.

2.3 Requirements for the Testbed

The requirements we set forth for the testbed reflect our group’s desire to experiment with
distributed, multi-user AEs that combine a variety of paradigms, including opaque, see-
through, desktop, and handheld displays. To effectively explore different design alterna-
tives for this new paradigm, it is essential that programmers are able to create robust proto-
types quickly and easily. Therefore, the infrastructure to support this exploration should

satisfy the following requirements.

Data replication. Many of the objects in a VE or AE system must be replicated, rather

than merely shared, because the programs using the data cannot afford to pay the price of
remote access. A good example is the description of a graphical scene. The programs that
update the displays must redraw their scenes as often as possible. Programs that do colli-
sion detection or other time sensitive computations must likewise access their databases

on a continual basis and are often themselves distributed over multiple machines.

Uniform treatment of data. To build a distributed system, some data-sharing mecha-

nism, such as remote procedure or method calling, is needed. Our experience has demon-
strated that creating a distributed system that provides facilities for distributing only

“virtual environment data,” such as tracker readings or graphical objects, is far too restric-
tive. By treating some kinds of data differently than others, we occasionally found our-

selves in the situation where one piece of data we needed, such as a tracker record, could

20

be easily distributed to a new component of the system, but another piece of data, such as

the layout of a user’s information space, could not.

Furthermore, the data types seen by programmers should have a high degree of
network transparencythe programmer should be aware that a data value is not local to
their machine only when absolutely necessary, and should be able to use remote and local
data objects interchangeably whenever possible. Furthermore, the system should enable
programmers to share resources and data objects easily and efficiently and have multiple
threads of control in one or more processes concurrently access these shared resources. To
provide this level of transparency requires the data sharing system to be tightly integrated

with the programming language.

Responsive asynchronous data propagatioRemote procedure or method calls are
unsatisfactory for propagating rapidly changing information because they are synchro-
nous, and are therefore too slow, even when used with a small number of clients. The sys-
tem should therefore provide a method of asynchronous data propagation, preferably one

that would scale well as the number of distributed processes increased.

Asynchronous update notification.When many threads distributed over many processes
share data, it is unacceptable for them to have to poll the data to check for changes.
Instead, there must be some facility for interested threads to be notified of changes to rele-
vant data items. For example, the thread that renders a graphical scene should be automat-

ically notified of changes to the data structure representing the scene.

Embedded interpreted languageAs has been demonstrated by a number of VE systems
[Bricken and Coco, 1994, Pausch et al., 1995, Singh et al., 1995], if a system is to support
rapid prototyping, the programmer should be provided with an embedded general-purpose
interpreted language in which entire applications can be developed, without writing com-
piled code. While byte-compiled languages, such as Java [Arnold and Gosling, 1998],
ameliorate some of the overhead of compilation, they do not support interactive modifica-

tion of running programs in the same was that interpreted languages do.

21

Furthermore, since it will occasionally be necessary to rewrite some code in the
compiled language (often for efficiency), the interpreted and compiled components of the
system should be tightly integrated, should have similar programming models, and all data
structures should be equally accessible from both. Our preference is to have both lan-
guages be strongly typed, either statically or dynamically, so the programming language
can be leveraged as much as possible to assist programmers in creating reliable and robust

programs.

Object-oriented and multithreaded environment.Conceptually, AE systems are com-
posed of many independent objects that perform tasks such as monitoring trackers, render-
ing to displays, and controlling the entities that populate the environment. These map well
to an object-oriented, multithreaded environment. However, using heavy-weight processes
for all threads of control is unacceptable because of communication and context switching
overhead. Creating processes that are inherently multithreaded without programming lan-
guage or operating system thread support is error prone and requires considerable work to
ensure all conceptual threads are serviced fairly. Furthermore, adding new conceptual
threads in this fashion can be extremely difficult. Therefore, thread support should be inte-
grated into the interpreted and compiled programming languages so threads may be used

cleanly and uniformly across all operating systems and architectures.

High-level, platform-independent, extensible, 3D graphics packagk.is essential that

the environment support a wide variety of hardware and operating systems without the
application programmer having to use a different graphics package on each. Furthermore,
we want to be able to cleanly integrate new kinds of graphical objects, such as the work-

station windows of [Feiner et al., 1993a].

Other desirable distributed system characteristicsln [Coulouris et al., 1994], the

authors assert there are six key characteristics which determine the usefulness of a distrib-
uted system: resource sharing, scalability, openness, concurrency, fault tolerance and net-
work data transparency. As discussed above, network data transparency is one of our

primary requirements.

22

While the remaining features were deemed less important when trade-offs had to
be made, they are obviously still desirable. Most importantly, the system should be
designed to potentially scale well as more users, or processors per user, are added, and be
open (if not to external programming languages, at least within the context of the environ-
ment) so that it can be extended in new and interesting directions. Basic fault tolerance is
an absolute requirement: as the number of machines and processes per machine increases,
so does the likelihood that one of them will crash, especially during development. At the
very least, the system should allow programmers to construct applications that can recover

from a single failure in a reasonably straightforward manner.

2.4 Related Research Areas

In this section, we shall look at approaches that have been taken to supporting distributed
applications in two areas that are close to our application domain: virtual environments
and groupware. Other areas of related work will be discussed in the chapters to which they

are more directly relevant.

2.4.1 Virtual Environment Systems

A large number of VE toolkits have been created, of which only those that are intended to
support distributed environments will be discussed: MR [Shaw and Green, 1993], DIVE
[Carlsson and Hagsand, 1993], VEOS [Bricken and Coco, 1994], SIMNET [Calvin

et al., 1993], NPSNet [Zyda et al., 1992], VERN [Blau et al., 1992], VR-DECK [Codella
et al., 1993], WAVES [Kazman, 1993], RING [Funkhouser, 1995], BrickNet [Singh

et al., 1995], dVS [Grimsdale, 1991] and Spline [Waters et al., 1997].

MR implements a simple shared virtual memory model. Raw memory locations
can be marked as shared and local changes explicitly flushed to the other copies, which
must then explicitly receive the changes. MR has no facilities for handling heterogeneous
architectures and provides a single, fully replicated VE, in which each process has a com-
plete copy of the same world. DIVE is built on top of the ISIS [Birman, 1993] fault-toler-
ant distributed system, and is similar to MR in supporting only fully replicated VEs.

VEOS is an extensible environment for prototyping distributed VE applications. MR,

23

VEQOS, and DIVE all use point-to-point communication, with all processes directly con-
nected to all others. This prevents these systems from scaling beyond a relatively small

number of distributed processes.

SIMNET is perhaps the best known large-scale distributed VE system. It uses a
well-defined communication protocol (DIS) that is also used by NPSNet and VERN. SIM-
NET was designed to support a single, large-scale, shared, military VE. Broadcasting is
used to send messages between nodes. While this cuts down on network traffic, all pro-
cesses must handle all messages, preventing SIMNET from scaling beyond a few hundred
users. NPSNet has recently been extended to accommodate a significantly larger number
of simultaneous users (thousands instead of hundreds) by spatially partitioning its world to
reduce message traffic [Macedonia et al., 1995]. Unfortunately, the SIMNET protocol is

not general enough for our use, nor is a flexible SIMNET client program available.

VR-DECK allows multiple users to share a single simulation on a set of homoge-
neous workstations, but cannot be easily extended to support heterogeneous workstations.
Message traffic is reduced by sending events only to machines known to be interested in

them, but all machines potentially talk to each other, reducing scalability.

WAVES uses message managers to mediate communication between processes.
Each message manager controls a group of clients. All messages are distributed by the
message managers to interested clients. WAVES supports the ability to filter messages to a
given client, reducing the type and frequency of updates sent. However, it supports only
coarse parallelism, with each process performing one well-defined function. Its single
shared world comprises a set of objects that encapsulate the behavior and state of the enti-
ties in the world. Each object is owned and updated by only one client, but can move

freely between clients.

RING and BrickNet both use a communication mechanism similar to that of
WAVES, with centralized servers each controlling a set of clients, and communication
routed through the servers. All message traffic goes through the servers, with no provision
made for direct client-client propagation for time-critical data. RING is geared toward

realistic simulations and uses physical visibility to limit message traffic. Its VE is a set of

24

shared entities, each with a geometric description and a behavior. Each entity is owned by
one client, and only that client may update it. RING can support a large number of simul-
taneous users. BrickNet is geared toward creating multi-user distributed VEs in which

each client has its own world composed of a combination of local and shared objects. Like

WAVES, its objects have behaviors as well as state and can move between clients.

dVS is a commercial distributed VE system for single-user applications. Its com-
ponents and message formats are fixed and not extensible, making it unsuitable for non-

exclusive VEs.

Spline is a system that adopted object sharing and data flow features similar to
ours, and is aimed at efficient creation of immersive VESs. It achieves scalability by spa-
tially partitioning its distributed database to reduce message traffic, starting with a scheme
similar to [Macedonia et al., 1995] and extending it by partitioning the object space based
on this spatial partition. While Spline has powerful data replication facilities, they do not
provide the level of network data transparency we desire, primarily because Spline takes a

distributed database, rather that distributed language, approach to object distribution.

None of these systems came sufficiently close to supporting enough of the features
we needed to justify attempting to extend them to support the rest. With the exception of
DIVE and Spline, none provide true preemptive threads, but use only heavyweight UNIX
processes. With the exception of BrickNet and Spline, none support more than a single
shared VE. In addition, these systems are geared toward VEs in which each user has only
a single (stereo) display, and interacts with an entirely virtual world composed of 3D
objects. In contrast, consider the hybrid window manager [Feiner and Shamash, 1991], a
simple example of the kind of application we would like to support. It combines a flat-
panel display with a see-through head-worn display to create a workspace with one dis-
play’s image embedded in the other’s. This would be difficult to implement with any of the

VE systems mentioned here.

25

2.4.2 Distributed Groupware

A number of groupware systems have been built using shared object techniques. Colab
[Stefik et al., 1987] uses a fully replicated database in which changes are broadcast to all
sites without synchronization. Colab relies on social and application solutions to avoid, or
recover from, inconsistencies. For example, if inconsistencies arise when multiple people
are working on the same area of a document, they will quickly become obvious because of

the nature of these applications. The users can then decide how best to deal with them.

GroupKit [Roseman and Greenberg, 1996] applications run the same program at
all sites and communicate by usinlticast remote procedure calis execute procedures
at all sites. Data is shared via shared data directories eal@dnmentsWhile support-
ing notification of the addition, deletion or modification of items in an environment, there
is no support for concurrency control. As with Colab, social solutions are relied upon to

solve this problem.

Object World [Tou et al., 1994] implements shared objects in LISP, and defines
shared operations by allowing programmers to define broadcast methods. These methods
are executed at any site that has a copgrofof the object parameters, with all additional
parameters automatically copied to that site. Object World does not provide any consis-
tency guarantees, but accomplishes consistency detection by requiring that all broadcast
methods operate on the same version of their object parameters at all sites. Correction of
inconsistencies is performed at an application level, possibly with the assistance of the

user.

DistView [Prakash and Shim, 1994] allows window and application objects to be
replicated. When an object is replicated, it is wrapped in a proxy that implements the rep-
lication semantics, such as sending method invocation messages to remote copies for exe-
cution. There is no distinction between read and write methods, and consistency is
guaranteed by requiring locks to be acquired for all object accesses. While DistView has a
fairly intelligent scheme to minimize the cost of acquiring global locks, the system would
not scale well and would not perform well in the face of continuous access from multiple

sites.

26

The techniques for object sharing implemented in the newer groupware toolkits
share some of our goals, particularly automatic replication of data to ease construction of
distributed applications (e.g., Prospero [Dourish, 1996]). However, none have integrated
the distribution of data into the object model of their respective programming languages as
tightly as we desire. Furthermore, many of them do not provide sufficiently strong consis-
tency guarantees. In groupware applications, inconsistencies tend to arise from multiple
users attempting to perform conflicting actions: the results are usually obvious to the users
and can be corrected using social protocols. This is not an acceptable solution for VE
applications. Finally, none of these object systems provide any support for asynchronous
update notification, nor are they designed to support the kind of large scale distribution we

have in mind.

2.5 Implementation Overview

Coterie was written in the Modula-3 programming language [Harbison, 1992]. The deci-
sion to use Modula-3 was based on the language itself and the availability of a set of pack-

ages that provided a solid foundation on which to base our research.

Modula-3 is a descendent of Pascal that corrects many of its deficiencies. In partic-
ular, Modula-3 retains strong type safety, while adding facilities for exception handling,
concurrency, object-oriented programming, and automatic garbage cofleGimnof its
most important features for our work is that it gives us uniform access to these facilities
across all architectures. The availability of three packages strongly influenced our decision

to use Modula-3:

« Network Objects. The Network Object package [Birrell et al., 1993] supports a client-
server model of distributed data sharing through remote method calls that are virtually

transparent to the programmer. These include distributed garbage collection, exception

2. The Modula-3 compiler was developed at DEC’s (now Compagq’s) Systems Research
Center. We used a commercially supported version of the SRC compiler, developed by
Critical Mass, Inc. and distributed as part of the Reactor programming environment.
The compiler, and thus our system, runs on all the operating systems we use: Solaris,
IRIX, Linux, Windows NT and Windows 95.

27

propagation back to the calling site, and automatic marshalling and unmarshalling of

method arguments and return values of virtually any data type. We also enhanced this

package to provide automatic data conversion between heterogeneous machines, as this

facility (although advertised) did not exist. (Our enhanced package is distributed with

both the commercial and free versions of the Modula-3 compiler.)

« Oblig. Obliq [Cardelli, 1995] is a lexically-scoped untyped language for distributed
object-oriented computation that is tightly integrated with Modula-3. Like Modula-3, it
supports multiple threads of control within a single process. Oblig’s distributed compu-
tation mechanism is based on Network Objects, allowing transparent support for multi-
ple processes on heterogeneous machines. Objects are local to a site, while

computation can roam over the network.

« ODblig-3D. Oblig-3D [Najork and Brown, 1995] is a high-level 3D animation system
that consists of two parts: a Modula-3 library that provides a basic set of 3D graphical
objects and animation primitives, and those same primitives embedded in Oblig. Oblig-
3D programs can be written in Modula-3, Oblig, or any combination of the two because
all data structures are simultaneously available from both languages. Oblig-3D’s struc-

ture and interface also make it relatively easy to extend.

Together, these packages provided a good starting point for our work. Modula-3
and Obliq gave us a compiled and interpreted language with closely matched program-
ming models supporting object-oriented, multi-threaded programming. Network Objects
(and therefore Obliq) also provided a clean basis for reliable distributed programming via
a simple client-server DOM based on transparent remote method calls. Finally, Oblig-3D

gave us the high-level, platform independent 3D graphics library we required.

The development of Coterie took place on two fronts. Initially, a (primarily) sin-
gle-process testbed was created that enabled our group to begin building prototypes, some
examples of which will be discussed in Section 2.6. Simultaneously, the facilities for
building distributed applications were designed and implemented so that the techniques
and packages built using the initial version would extend naturally into the distributed
domain. This latter work is the topic of the bulk of this dissertation, and can be divided

into three major parts. First, the need for transparent data replication was satisfied through

28

the creation of a replicated object system, called the Shared Object package, that also pro-
vides asynchronous update propagation and notification of changes to the replicated
objects. When combined with the Network Object package, the resulting DOM satisfies

the majority of our data sharing needs. The Shared Object package is the topic of

Chapter 3. The second component of this work, discussed in Chapter 4, involved using the
Shared Object package to extend Obliq to support replicated data, resulting in a new inter-

preted language called Repo (for Replicated Obliq).

The final component of this research was to create a distributed graphics library
called Repo-3D, a redesign of Oblig-3D that fits cleanly within the DOM programming
model presented to the programmer in Modula-3 and Repo. Since both the development
time and code structure of the prototypes being built are dominated by the manipulation of
the graphical scenes, Repo-3D simplifies development by making all graphics objects
directly distributable and extensible and adding facilities to support the peculiarities of

building distributed graphical applications. Repo-3D is discussed in Chapter 5.

2.5.1 Virtual Environments: Tracker Support

One major component of Coterie that is needed to facilitate the creation of (even non-dis-
tributed) virtual environment applications, which we will draw on in subsequent chapters
as a source of examples, is support for various tracking systems. The tracker package was
initially built in Modula-3 and exposed into Oblig, with the intent of eventually building
Repo wrappers around the tracker objects to support easy distribution of tracker data. The
distribution of tracker reports serves as the basis for a simple example of the use of Shared
Objects in Chapter 3. We return to this example in Chapter 4, both to show how simple
replicated objects are created in Repo, and as a vehicle for illustrating more complex
behaviors. Finally, in Chapter 5 we show how the location of a tracker can be embedded
directly in a graphical scene and therefore distributed transparently. The Repo help files

for all of the modules in the Tracker package are contained in Appendix B.

To support the goal of providing modular, reusable components, a generic tracker

object and a hierarchy of tracker report objects were developed. The aim is to encapsulate

29

Tracker Report Object Type Tracker Description
Tracker.Report
Scanner.Report Barcode scanner
Tracker.Report2D
L > MSMouse.Report | Microsoft mouse
Tracker.Report3D
—® Logitech.Report Logitech ultrasonic 6DOF tracker
— vIO.Report Virtual I/O 3DOF orientation tracker
— PTU.Report Directed Perception 3DOF Pan/Tilt unit
—» RingMouse.Report| RingMouse ultrasonic 3DOF position tracker
— Trimble.Report Trimble GPS 3DOF position tracker
— FOB.Report Ascension Flock of Birds 6DOF tracker
— Dynasight.Report I Origin Instruments optical radar

Figure 2-5: The generic Tracker Report Object hierarchy. The basic tr&dqaort

object is returned by the geneficacker.T object and many clients. Those that spe-
cifically need two or three dimensional reports would use the next level in the hierar-
chy, and those that need to know details of the specific devices would use the reports
specific to the devices. More objects will be added to the hierarchy as more devices are
supported.

support for all our tracking systems into one common object hierarchy, as done by other
systems such as the UNC Tracker Library [Holloway, 1991]. The gehexoker. T
object, from which any object representing a tracking device inherits, supports a set of

common methodsead() ,reset() andclose()

Theread() method of anyfracker.T object returns dracker.Report
object, which is the root of a hierarchy of objects representing progressively more
specialized kinds of tracker reports. The curiigacker.Report hierarchy is shown
in Figure 2-5, along with a description of the tracking devices that return them. Clients are
written to use the most general kind of report they can. The dynamic type system of
Modula-3, Oblig and Repo allows clients to be written that accept the generic
Tracker.Report and handle specific parts of the hierarchy differently. The most
common case is that a client accepts a reasonably specific object, such as the
Tracker.Report3D , and does something useful with it. For example, a client that

associates a three dimensional position with an ofgjbrtvould accept

30

Tracker.Report3D objects and position the obje®bj in the virtual world relative to
the position of the 3D tracker. Such a client would be able to use all devices that report 3D

positions.

2.6 Initial Prototypes

As mentioned in Section 2.5, our group continued its AR research while Coterie was being
developed, building a number of (mostly) non-distributed new prototype systems. We will
close this chapter by discussing four of them: a reimplementation of the Architectural
Anatomy system, a maintenance application for telephone company crossboxes, a space
frame construction assistant for the Augmented Reality for Construction (ARC) project,

and the Touring Machine, a mobile tour guide.

These systems demonstrate the utility of the initial version of Coterie for develop-
ing simple AE prototypes. The first three prototypes were each implemented in a few
hundred lines of code, illustrating the ease with which ideas can be explored in Coterie.
The last prototyping is the most complex prototype we implemented with the non-distrib-
uted version of Coterie, and illustrates how the system supports complex systems to be

built as well.

2.6.1 Architectural Anatomy

The first non-trivial program built with Coterie was a reimplementation of the Architec-
tural Anatomy system, discussed in Section 2.1. This version of the system is different
from the previous version (Figure 2-3) in two ways: the implementation is much simpler,
and the graphical representation of the architectural structures is more complex. The sim-
plicity of the implementation is due to the power of both the infrastructure and the hard-
ware the system runs on, allowing the entire prototype to be implemented in a few
hundred lines of code and run on a single machine. Since Coterie supports full color 3D
graphics, we provide more graphical cues to help the user spatially locate the architectural
structures behind the walls of the room, as shown in Figure 2-6. The images of the col-

umns show a representation of the column as well as the reinforcement bars, or “rebar”,

31

Figure 2-6: The new Architectural Anatomy prototype. This image shows two
columns in a corner of our lab.

inside the column. The transparent box representing the column extends from the ceiling
to the floor, helping the user place the column visually behind the room walls. The walls,

floor and ceiling of the room are also shown transparently, to further help orient the user.

2.6.2 Telephone Crossbox Maintenance

The one feature that was missing in our reimplementation of the Architectural Anatomy
system was the integration of 2D windows, that allowed us to include external 2D infor-
mation such as the structural analysis of the column shown in Figure 2-3. We added this
facility into Coterie when we began to explore how AR could be used for maintenance of
telephone company crossboxes, in cooperation with Nynex Science and Technology.
Drawing on discussions with Nynex workers, we found that one useful application of AR
is to allow 2D information to be attached to groups of terminals inside the crossbox, as
shown in Figure 2-7. The notes could be used by the workers to make virtual “post-it”
notes, or by the system to communicate information to the workers. For example, the sys-
tem could ensure that all terminals are periodically tested by attaching notes to those that

have not been tested recently, prompting the workers to test them at their convenience.

32

(a) The bottom of a phone company “crossbox” that connects customer phone
lines to company wiring. The terminals in half of the box are connected to phone
company wires, and those in the other half are connected to subscriber lines. No

wires are connected in this picture.

(b) The top of the crossbox with a
graphical overlay designed to be pre- (c) The view when the user looks down
sented to the field service person on and to the left from (b).
the head-worn display.

Figure 2-7: A prototype AR application for crossbox maintenance. The overlay
highlights major blocks of the crossbox and a number of user-defined groups of
connection posts. It also contains 2D information windows connected to the post
groups by stretchable leader lines that allow selected windows to be pulled into and
out of view.

2.6.3 Spaceframe Construction

As part of the Augmented Reality for Construction (ARC) project, we built an AR system
to assist with the construction of space frame buildings. Our system prompted the worker
by displaying the next part to be installed in the correct location on the partially completed

space frame, as shown in Figure 2-8. Like the Architectural Anatomy system, this proto-

33

Y|
)

Install stnut 11, Then ﬁan it

(a) A worker using thé ARC systemto (b) What the worker sees through their
construct a space frame. head-worn display.

Install stnut 11, Then scan it

(c) The real world (d) The virtual world

Figure 2-8: A prototype AR application for space frame construction. This sys-
tem was built with the non-distributed version of Coterie, and is designed to lead a
worker through a construction sequence to ensure the correct pieces are installed in
the correct locations in the proper sequence. (a) shows the system in use. (b) shows
what a worker would see when using the system. The elements of the real and
virtual world that are combined to form the image in (b) are shown (c) and (d),
respectively.
type ran on a single computer and took a few hundred lines of code to implement. The ini-
tial version of this prototype was built by an undergraduate student with no prior

experience using Coterie, over the course of a few months.

2.6.4 Automated Tour Guide

The Touring Machine prototype [Feiner et al., 1997] was designed to assist the user in
exploring various kinds of information as they move freely about a relatively large envi-
ronment (in this case, the Columbia University campus). By displaying information in

context using a combination of displays (in this case, a see-through head-worn display and

34

(b) Labels increase in brightness as
they near the center of the display.

—

(a) The user wears a backpack and
headworn display, and holds a
handheld display and its stylus.

(c) The Philosophy Building with the
“Departments” menu item highlighted.

Figure 2-9: A prototype campus information system. The physical prototype is
shown in (a), while (b) and (c) show images of campus buildings with overlaid
names, shot through the see-through headworn display. The handheld display has a
trackpad on the back that can be used to select from the context-sensitive menu
presented at the top of the head-worn display.

a hand-held tablet computer, as shown in Figure 2-9(a)) and allowing the user to select
from a small set of currently relevant information cued to their current location and inter-
ests, the system allows the user to explore a complex space in a relatively straightforward
manner. The system was designed to operate in an environment of low precision position
tracking (provided by differential GPS) and take advantage of the different characteristics
of the two display devices. For example, we label buildings, not specific building features,
overcoming registration problems that would otherwise occur, as shown in Figure 2-9(b).
Furthermore, when a menu item is selected, the detailed information about that item is
presented on the (easier to read) handheld. To inform the user when this display transition

is occurring, the selected menu item label is animated to fly toward the handheld, as shown

35

(a) After the “Departments” menuitem (b) The image in (a) also shows the

in Figure 2-9(c) is selected, the beginning of the label animation
department list for the Philosophy sequence, a fraction of a second after
Building is added to the world, selection. Here is the animation,
arrayed about the building. approximately half a second later.

(c) Selecting the “Departments” menu (d) Actual home page for the English
item causes an automatically-generated and Comparative Literature depart-
URL to be sent to the web browser on ment, as selected from either the gener-
the handheld computer, containing the ated browser page or the department
department list for the building. list on the handheld web browser.

Figure 2-10: Additional images of the Touring machine. (a) through (c) illustrate the

results of selecting the “Departments” item from the context-sensitive menu for the
Philosophy building: the department list is added to the world near the building in (a),
an animated label flies off the bottom of the display, starting in (a) and continuing in
(b), and the list of departments is presented on the handheld in an automatically gen-

erated web page. If the user selects one of the departments, they are taken to its web

page in (d).

in Figure 2-10(a) and (b). The handheld displays information via a web browser, as shown
in Figure 2-10(c) and (d).

36

Backpack Tour data
PC

™ GPS
Tour application >7— Trackpad
| » Orientation

tracker
—Headworn
display
URL Other COTERIE
requests object communications
Cached
Eéndheld external@@
/ HTTP server \
A
Uncached
external
Campus Proxy URLS
information server
server $
Local External WWW
K URLs [URLs /
URL
requests HTTP
URL — Stylus
pusher Web browser _
— Display

Figure 2-11: Software design of the prototype campus information system. There
are two instances of Coterie, one running on each of the two machines (labelled
“Tour Application” and “HTTP server”). The URL pusher and Web browser are
external programs. The two web servers in the HTTP server application are
embedded within an Obliq program that is tightly integrated with the tour application
via client-server object sharing. The campus information server is responsible for the
dynamic generation of HTML pages, and the caching proxy server exists to mitigate
the slowness of the radio network link.

This prototype is the first distributed application built with Coterie. Since it was
built prior to Repo, it does not take advantage of any data replication. It comprises two
applications, one running on each of the two machines, implemented in approximately
3600 lines of commented Obliq code. Figure 2-11 shows the overall software structure.

Thetour applicationrunning on the backpack PC is responsible for generating the graph-

37

ics and presenting it on the headworn display. The application running on the handheld PC
is a custonHTTP serveiin charge of generating web pages on the fly and also accessing
and caching external web pages by means of a proxy component. By running our own
HTTP server on the handheld display, we can react to user input from the web browser and
head-worn display simultaneously in a straightforward manner. For example, when a URL
is selected on the handheld display, the HTTP server can call a network object method that
selects corresponding graphical items on the headworn display. Thus data selection works
in both directions: from the backpack PC to the handheld PC (by launching relevant URLSs
from the headworn display’s menus) and vice versa (selecting buildings, departments, etc.

on the headworn display from a link on the handheld’s browser).

Even though there is a relatively small amount of data sharing going on between
these two programs, we did run into the need to replicate data between the two: both appli-
cations needed a copy of the Tour Data database (shown near the Tour application in
Figure 2-11). Fortunately, in this simple prototype, the data does not change while the pro-
gram is running, so we arranged to copy the database from the Tour application to the
HTTP server application when the system is started. While this is a far from ideal solution,

it serves to illustrate the need for flexible and general-purpose data replication.

38

cnerers Shared Objects

As was discussed in the previous chapters, one of the primary motivations for designing
Coterie was to create an environment that presents an easy to understand model of distrib-
uted data sharing to the programmer, cleanly integrated into a mainstream programming
language. An obvious way to make distributed programming easy to understand is to
present a model of data sharing that is familiar to the audience and compatible with the
style of programing in which they typically engage. Distributed Shared Memory (DSM),
and Distributed Object Memory (DOM) in particular, satisfy these criteria. However, pro-
viding the programmer with a conceptually easy-to-understand model is only part of the
solution; we must also present it to them in a way they can use, by integrating it with a
familiar programming language. In our case, the language is Modula-3, but the techniques
discussed here are equally applicable to other languages, such as Java [Arnold and
Gosling, 1998] or C++ [Ellis and Stroustrup, 1992].

The utility of presenting a DOM programming model via a tightly integrated dis-
tributed programming package has proved to be very useful, and is not new: many pack-
ages exist that present the programmer with client-server data distribution in this way
(e.g., Network Obijects [Birrell et al., 1993] and Java RMI [Wollrath et al., 1996]). Others
exist that present a less integrated model with the same basic purpose (e.g, RPC [Birrell
and Nelson, 1984], CORBA [OMG, 1992], ILU [Janssen et al., 1998]). However, none of
these packages provide facilities for object replication, especially replication that is fast
and geared toward the needs of highly interactive, graphical applications such as ours. It is

this problem that the Shared Object package addresses.

We will begin this chapter by presenting the concepts of DSM and DOM in
Section 3.1, and discuss other systems that have been built using this model in Section 3.2.

In Section 3.3 we will discuss the design of the Shared Object package, beginning with a

39

summary of the benefits provided by tightly integrating an object replication package with

a strongly typed language such as Modula-3. In this section we also present the details of
the totally-ordered, write-update replication model we use, and discuss the facilities pro-
vided to allow programmers to be notified of changes to a local replica of a Shared Object.
This latter facility is important for our applications, as it enables an event-driven control

flow that obviates the need to poll objects, looking for changes.

In Section 3.4 we will discuss the implementation of the Shared Object package.
In this section, we present a detailed example of the package in use, and use this example
to discuss the various implementation choices we made. Finally, in Sections 3.5 and 3.6
we discuss the performance and usability of the system, and our observations and experi-

ences using Shared Objects to implement interactive application prototypes.

3.1 Distributed Shared Memory

DSM allows a network of computers to be programmed much like a multiprocessor, since
the programmer is presented with the familiar paradigm of a common shared memaory.
DSM mechanisms use message-passing protocols between machines to implement some

model of shared memory access that is used by the programmer.

The idea of DSM was introduced by Li in his doctoral work [Li, 1986], in a system
called Ivy [Li and Hudak, 1989]. DSM presents the programmer with the illusion that the
memory of all machines in the distributed system belongs to one large shared address
space. The approach used in Ivy, and that of a number of other subsequent systems, was to
implement shared memory at the operating system level, by leveraging the virtual memory
architecture and integrating memory distribution with the paging system. Unfortunately,
this approach suffers from a number of performance problems, as well as difficulty of

implementation. The two fundamental problems with page-based DSM are:

« Memory coherence, and therefore distribution, is at the granularity of a page, which
may not match the granularity of application data. It falls to the applications to solve
the problems of granularity and placement of shared data in order to avoid false sharing

of data and the associated unnecessary network messages this implies.

40

« Application access patterns do not guide the DSM coherence mechanism that is repli-
cating and invalidating pages, so optimizations such as prefetching and relaxed mem-

ory consistency are less effective.

The lack of a programming model that allows application semantics to influence data shar-

ing is the Achilles Heel of page-based DSM.

An alternative approach, often referred to as Distributed Object Memory (DOM),
presents the illusion of one large shared memory at the programming language level, by
encapsulating the shared data in programming language objects and using the language
constructs to ensure all access to that data is through method calls on those objects. The
distributed address space is partitioned implicitly by the application programmer, with an
object being the smallest unit of sharing. Typically, references to objects exist only in pro-
cesses that are interested in the object. Unlike page-based DSM, semantics may vary on a
per object basis: some objects may be replicated, while others could exist at one site with
proxies at other sites that access the single copy via remote method invocation. Access to
objects is uniform: at the language level, local, remote and replicated objects are accessed
in the same way. Distribution semantics (whether an object is replicated, when to migrate
single-copy objects, etc.) may be hidden, or language features may be used to control
them. By implementing the distribution mechanisms at the application level, the problems
caused by page-level granularity in DSM are avoided. The advantages of this model over
techniques that expose the shared memory at a lower layer are discussed further in [Levelt
etal., 1992].

While there have been a number of DOM systems built over the years, none are
suitable for our work. On one hand, most of the systems are part of non-mainstream pro-
gramming languages (e.g., Argus [Liskov, 1988], Amber [Chase et al., 1989], Emerald
[Jul et al., 1988], Munin [Bennett et al., 1989], and Orca [Bal et al., 1992]). On the other
hand, those systems that have been designed to work with mainstream languages have all
supported client-server data, where a single copy of each object exists at some site and all
other sites have a proxy that performs (more or less) transparent remote access to that sin-
gle copy (e.g., RPC [Birrell and Nelson, 1984], Distributed Smalltalk [Decouchant, 1986],
Network Obijects [Birrell et al., 1993], Java RMI [Wollrath et al., 1996], CORBA

41

[OMG, 1992], ILU [Janssen et al., 1998]). Unfortunately, client-server data is not suffi-
cient for highly interactive application domains such as ours. Replicated data is needed as
well, since any data required to respond to users actions in real time must be local to the
site processing that response. However, since not all replicated data needs to remain syn-
chronized over time (for example, it may be immutable), and the synchronization proto-
cols add overhead to data access, we need to support both synchronized and
unsynchronized replicated data. Therefore, there are three basic data distribution seman-
tics needed for our domain: client-server, unsynchronized replication, and synchronized

replication.

Building a custom language, or working with an obscure one, is not feasible, pri-
marily because of the lack of existing software that would be available: one of the main
reasons we chose Modula-3 [Harbison, 1992] for this work was the variety of useful soft-
ware packages readily available for it. In particular, the Network Objects package provides
an elegant solution for distributed objects with client-server semantics [Birrell
et al., 1993]. This package also provides unsynchronized replicated objects though auto-
matic marshalling of arbitrary data structures: any non-Network Object parameter or
return value of a Network Object method call is automatically copied between processes,
creating a new copy (replica) of the data that has no further relationship to the original
copy. The goal of our work on the Shared Object package was to create a complementary
package that satisfies the need for tightly synchronized replicated data, that is cleanly inte-
grated with Modula-3 and the Network Objects package, and is designed with the needs of

our application domain in mind.

The Shared Object package described here meets this goal. It is tightly integrated
with the language, using a compile-time code generator that takes annotated Modula-3
source code as input and generates the necessary code to provide strictly consistent repli-
cated objects. The design was inspired by an approach to object replication used by Bal
and his colleagues [Bal and Tanenbaum, 1988, Levelt et al., 1992]. In their formulation,
implemented in the Orca programming language [Bal et al., 1992], objects are replicated
across machines as needed and the semantics of object replication are enforced by the lan-

guage. Replication consistency is accomplished by write-updatetaily-ordered func-

42

tion shipping where the runtime ensures all methods that update objects are executed in
the same order on all replicas of the objects. As it turns out, this approach is extremely
well suited to implementation as an add-on to a programming language (see Section 3.3).
Furthermore, the performance characteristics of this approach are appropriate for highly
interactive graphical systems, where the objects tend to have a high read/write ratio, need

local reads to be fast, and demand low latency update distribution.

By encapsulating application state in the language objects and having the seman-
tics enforced transparently, both Network and Shared Objects satisfy one of our primary
goals by exhibiting a high degree of network data transparency. This is extremely impor-
tant for exploratory programming, as changes in the distribution patterns of data (for
example, when client-server data needs to becomes replicated data) should then have a
minimal impact on the structure of the code. Because they are tightly integrated into the
programming language, objects with different distribution semantics can be mixed in arbi-
trary ways with predictable, and sometime novel, results. Furthermore, the Shared Object
package was designed with an eye towards accommodating additional semantics in the
future, as they are identified. This is extremely important, as initial experience has born
out our suspicion that additional semantics would be needed after we gained experience
using the system. Examples of additional semantics will be discussed in Chapters 4 and 5.

These results have been reported in [Macintyre, 1995, Macintyre and Feiner, 1996D].

3.2 Related Work

The majority of work on distributed, object-based programming systems has focused on
client-server semantics [Decouchant, 1986, Jul et al., 1988, Bal et al., 1992, Bennett

et al., 1989, Birrell and Nelson, 1984, Birrell et al., 1993, Wollrath et al., 1996,

OMG, 1992, Janssen et al., 1998]. One of the reasons that client-server data packages are
common is that the distribution semantics are straightforward and relatively simple to
implement; each object exists at one site, and all other copies access that object remotely.
While the model can be complicated by support for additional features, such as caching
and object migration, the fundamental concept remains simple. Packages supporting data

replication, on the other hand, have a variety of possible semantics and design trade-offs,

43

Coterie
Shared Network] Dist.
Objects Objects] Penumbra Orceémalltalk Emerald
client-server [[O O O
caching proxies n/a N
synchronized replicatiory [0
unsynchronized replicaticl/n U O []
user-defined consistenc N n/a n/a
object migration n/a [0 O [
update 0 n/a [O n/a n/a
invalidation n/a N n/a n/a
mainstream language 0 [[U

Table 3-1: A comparison of distributed object-based programming systems. Coterie
includes both Shared and Network Objects, allowing it to support both replicated and
client-server data sharing. Caching proxies, such as offered by Penumbra [Kristensen
and Low, 1995], can be thought of as a kind of replication, but do not support auto-
matic data propagation, and the first read of an object (after any change) requires net-
work access. As can be seen, only Orca and Coterie support both client-server and
replicated data, but Coterie is integrated into a mainstream programming language.
The table also shows that the areas of improvement for Coterie are in the area of user-
defined consistency and object migration.

and even the simplest useful designs are significantly more difficult to implement than a
client-server package. Table 3-1 shows a comparison of some representative distributed

programming environments.

Emerald [Jul et al., 1988] is a typical example of a language designed from the
start with distribution in mind. Like most of the early distributed languages (e.g., Argus
[Liskov, 1988]), it supports client server distribution of objects. Unlike earlier languages,
it presents the programmer with a uniform programming model for both local and remote

object manipulation. It also supports object migration.

RPC [Birrell and Nelson, 1984], CORBA [OMG, 1992], ILU [Janssen
et al., 1998], Distributed Smalltalk [Decouchant, 1986], Network Objects [Birrell
et al., 1993] and RMI [Wollrath et al., 1996] are all client-server distributed programming
toolkits that are either designed to work with, or are enhanced versions of, existing lan-
guages. RPC, Corba and ILU are designed to be language independent, whereas Network
Objects, Distributed Smalltalk and RMI are designed to work with a specific language

(Modula-3, Smalltalk and Java, respectively). Because they are tightly integrated with a

44

single programming language, these toolkits typically provide the features of that lan-
guage on a distributed scale, such as distributed garbage collection, exception propagation
between sites, support for marshalling of complex arguments, and so on. Distributed

Smalltalk also provides facilities for object migration.

While there have been a number of languages created that support replicated data
(e.g., Orca [Bal et al., 1992], Distributed Oz [Haridi et al., 1997], Mentat
[Grimshaw, 1993]), most DSM systems are implemented as libraries that can be linked
with programs written in an existing sequential language. A large number of parallel and
distributed languages exist that extend sequential object-oriented languages such as C++
(many are discussed in [Wilson and Lu, 1996]). Mentat is a good example. Unlike our
approach, and that of Orca, Mentat does not aim at tight integration with the object model
of the C++. Instead, it lets programmers express what should be executed in parallel and
uses a macro data-flow model to allow methods to execute in parallel and block access to
variables that have not yet had values assigned to them. Like Mentat, Distributed Oz
(which extends the Oz language) uses a programming model that is not tightly integrated
into the object model of the language [Haridi et al., 1997]. It uses single-assignment logic
variables and abstractions such as ports and cells to express distribution. In designing the
distributed extensions to Oz, Haridi et al. were explicit in their choice not to integrate the
distributed semantics transparently into Oz because they do not feel that it is possible to

provide tight integration and efficient, fault-tolerant, scalable distribution mechanisms.

The most similar attempt to ours at creating a language preprocessor (or extension)
to tightly integrate replicated data into a mainstream language is the Penumbra toolkit for
C++ [Kristensen and Low, 1995]. Penumbra is based on the notion of Problem-oriented
Object Memory (POOM), an object-oriented extension to the notion of problem-oriented
shared memory [Cheriton, 1986], where application semantics are taken into account to
relax consistency and improve distribution efficiency. Unlike Coterie, Penumbra does not
provide symmetric replicated objects, but instead retains the notion of a single master
object and supports caching the object data in the distributed proxies. Techniques are pro-
vided to manipulate those caches, to create methods that operate on the cache locally to

minimize network message traffic, and for the master object to retrieve information from

45

the caches when needed. Their approach has the drawback that significant work is
required by the programmer to implement subtypes of their baselisis®utable :

and a greater burden is placed on the shoulders of the programmers to ensure consistency.
Furthermore, the objects are not truly distributed, and maintaining strictly consistent
caches is less efficient than in Coterie. While their system is more flexible, the perfor-
mance gains are aimed at objects whose read/write ratio is extremely low (i.e., primarily
write operations) and is most dramatic on those objects. As they point out, the approach
taken by languages such as Orca is well suited to objects whose read/write ratio is high.
Penumbra is also not particularly well integrated into C++: only subty{desiwib-

utable can be distributed as parameters or return values to method calls, and specialized
object-factories and process representations must be used by the programmer to build dis-

tributed programs.

The approach to replication most closely related to ours is Orca, a distributed lan-
guage developed by Bal and others [Bal and Tanenbaum, 1988]. As discussed earlier, it is
their approach to object replication that we used as a model for the Shared Object pack-
age. In Orca, like other DOM systems, shared state is encapsulated in objects and that state
can only be accessed through object methods. An important characteristic of Orca objects
is that all method accesses are atomic, creating a distributed programming model much
like monitors in local shared memory. Unlike most DSM and DOM implementations,

Orca uses a write-update protocol based on function shipping and totally ordered group
communication: methods that update an object are applied to all replicas in the same

order. Methods that do not change an object are applied only at the site that executed them.

An update protocol was chosen for implementing write operations over the more
common invalidation protocol for a number of reasons. First, invalidation protocols are
commonly used in page-based DSM schemes because each logical update to a data struc-
ture usually modifies multiple memory locations, and each modification is considered a
separate update. Thus, using an update scheme would be wasteful, because a single logical
update would result in significant unneeded network traffic as intermediate updates were
distributed. Updates in Orca, however, are method calls and are therefore much more com-

plex. Broadcasting these updates makes sense, and turns out to be relatively efficient,

46

especially if network broadcasting is used. Function shipping (where the arguments to a
method are distributed and the method executed at all sites) was chosen over data shipping
(where the method is applied once and the object state distributed) to avoid transferring
the entire object state after each update, because, for the applications Bal is interested in,
objects are often much larger than the arguments to the methods. To update replicated
objects in a coherent way, each operation is sent using totally ordered group communica-

tion, so all updates are executed in the same order at all machines.

The Orca system supports both replicated and single-copy client-server objects.
An interesting feature of Orca is that it replicates only objects that are expected to have a
high read/write ratio, thus reducing the overhead of updates. The runtime can make this
determination based on programmer specification, static compiler analysis, dynamic eval-
uation of the runtime behavior of the program, or a combination of the latter two. When
the read/write ratio of the object is low, replication is inefficient, so the object in question
is stored on a single machine, with other machines accessing the object via remote method

calls. We will discuss the Orca system further throughout this chapter.

While the main difference between Orca and the Shared Object package is that the
Shared Object package is designed as an extension to an existing language, they also differ
in a number of other ways. For example, in both systems, total ordering is enforced
through the use of sequencers (see Section 3.3.2), but in Orca a running application has
one sequencer, while the Shared Object package allows any number to be used and distrib-
utes data hierarchically through them. This is the only general-purpose replication system
of this kind that we know of that supports multiple sequencers, although a number of dis-
tributed virtual environment systems have architectures of this sort (see Section 3.3.2).
Another important difference is that the Shared Object package supports notification of
changes to replicated objects, which Orca does not. Finally, the Shared Object package is
much more flexible in practice than a language such as Orca. This is partially by design,
and partially an outgrowth of its implementation as a language add-on, which allows pro-
grammers, when necessary, to circumvent the restriction that data must be accessed

through methods. This latter feature ends up being quite important when large systems are

a7

being built, as will be seen in the discussion of the implementation of Repo-3D in
Section 5.5.

3.3 Shared Object Package Design

The primary goal of the design of Shared Object package is to provide a structured,
strongly-typed method to replicate state that is tightly integrated with Modula-3 and the
Network Object package. In this section we will discuss our reasons for choosing a
distribution mechanism that is tightly integrated with our programming language and
describe the model of totally ordered, write-update objects in greater detail. We will also
describe the Callback Objects that provide us with support for notification of changes to

Shared Objects and discuss the communication architecture of the system.

3.3.1 Goal: Tight Integration

The decision to tie distribution to programming language objects was driven by the
benefits this approach provides the programmer, none of which are specific to VE

programming:

« Debugging distributed applications is non-trivial. Taking advantage of the type system

of a strongly typed language helps ensure that distributed data is used correctly.

« Tight integration raises the level of network transparency and simplifies learning the

system because there is only one programming model to master.

« Data is passed between processes as arguments to, or return values from, method calls.

Therefore, the programmer has direct control over what data is distributed where.

 Arbitrary data structures can be passed between processes, and synchronized replicated
objects can be embedded within other data structures. Therefore, the programmer does
not have to be directly aware of all replicated objects for them to be distributed. Rather,
logical data structures are distributed as a unit, and changes to the internal organization

of those data structures does not necessarily require changing how they are used.

« Only objects that are referenced in a process have their state replicated in (and updates

sent to) that process. When all references to an object are dropped at a given site, it is

48

garbage collected and the replica removed. The runtime notices and updates are no

longer delivered to that process.

In addition to these anticipated benefits, the design was also influenced by the
Modula-3 environment for which it was being developed. In particular, the Network
Objects client-server data-sharing package already existed and provided a clean solution
to client-server data distribution. Since we wanted to use this package, it is important that
the Shared Object package provide a similar experience to the programmer. This was real-

ized by following the design of the Network Object package in three ways:

« Shared Objects are tightly integrated with the full range of Modula-3 language features,
including supporting distributed garbage collection and handling exceptions in a clean

and obvious way.
« Shared Objects behave as much like normal programming language objects as possible.

« Shared Objects are defined by inheriting from a certain, distinguished object type pro-
vided by the package and following a few programming conventions. To enforce the
distribution semantics, a compile-time code generator checks these conventions and

creates related objects.

3.3.2 Model: Totally Ordered, Write-Update Objects

Recall that the important attributes of the Shared Object approach to data replication are
the use of an object as the most basic unit of distribution, and of a write-update protocol
based on function shipping and totally ordered group communication to enforce consis-

tency.

By designating an object as the smallest granularity of distribution, each object is
either fully replicated at a site or not; there is no support for the notion of partial replica-
tion of an object. Adopting this restriction greatly simplifies the implementation of object
replication, while not sacrificing much power in practice. When used in conjunction with
the Network Object package, partial replication can be mimicked using a combination of
the two types of objects. Indeed, since most of the application development with our sys-

tem is done in Repo (see Chapter 4), where all objects (aside from basic types such as inte-

49

gers or booleans) can be Network or Shared Objects, creating hybrid objects that combine

both is straightforward.
A write-update consistency protocol satisfies the requirements set out in Chapter 2:

« A write-invalidation protocol violates the requirement of fast read access to replicated
data because the first read that takes place after the local replica is invalidated requires a

network access to fetch the updated object.

« This extra network access slows down the propagation of updates through the system,

which violates the need for low latency data propagation.

« While an invalidation protocol allows the programmer to be notified that a local replica
has changed, it is not possible to provide any additional semantic information about
what has changed, as this information is contained in the update. Without this semantic
information, the programmer would have to examine the object, requiring it to be
fetched from the network immediately, degrading the system to an extremely inefficient

simulation of a write-update protocol.

The semantics of this model are embodied in the following two principles, that

also describe the Orca system:

1. All operations on an instance of an objectat@micandserializable All operations
are performed in the same order on all copies of the object. If two methods are invoked

simultaneously, the order of invocation is non-deterministic.

2. Property 1 applies to operations on single objects. Making sequences of operations

atomic is up to the programmer.

The property of serializability allows an important simplification to be made to
Property 1. By distinguishing between methods that update an object (update methods),
and those that do not (read methods), the read methods can be executed locally and the
object replicas remain valid. Since reads are always executed locally, the model guarantees
fast read-access to shared data. Furthermore, this model fits the design considerations dis-
cussed in Section 3.3.1 quite well, and is quite easy for programmers to understand and
use: all methods are executed locally in the order they are called by the programmer, and

all methods that update an object are executed everywhere in the same order. For example,

50

if two update methods are invoked simultaneously at different sites, the order of execution

of the two updates is non-deterministic, but is guaranteed to be the same at both sites.

The implicit atomicity of method calls further enhances the understandability and
predictability of program behavior because no explicit locks are required. The importance
of this observation should not be underestimated: without atomic method invocation, the
likelihood of programmers implementing unreliable objects with hidden race conditions is

quite high.

It should also be noted that while the model says much about the order of execu-
tion of methods, it says relatively little about the actions performed by those methods
(except to distinguish between methods that update the object state or not). This is possi-
ble because of the use of function shipping, as opposed to data shipping. This choice is

important both for the reasons given in Section 3.2, and for the following reasons:

« Since the state of an object is not shipped around after each update, the state does not
need to be examined after the updates, which would be a tricky and difficult endeavor in
a language postprocessor. The alternative, examining the data itself after each update,
can be extremely time consuming, especially if an object contains complex data struc-
tures. Without analyzing the side- effects of the methods, the entire state would have to

be shipped each time, which would be inefficient.

« Data shipping implies that the only important side effect of method application is the
changes to the internal state of an object. However, when a programmer is watching an
object for changes, knowing what methods are executed, and what the arguments to
those methods where, often provides sufficient information to react to that update with-

out analyzing the contents of the object.

« Data shipping implies that all object state is global. As will be seen in the examples in
Sections 4.6.4 and 4.6.5, and in the implementation of Repo (Section 4.7) and Repo-3D
(Section 5.5), there is often a need for non-replicated, “local” state to be maintained

within the objects.

« Data shipping implies there is internal state that can be shipped. With function ship-

ping, stateless replicated objects can be used to mimic structured message ports, where

51

calling update methods corresponds to message distribution. Since message passing is a
commonly used approach in distributed virtual environments, being able to mimic it is
important, since flexibility, not dogmatic adherence to any one programming model, is
our goal. Examples of using a replicated object as a structured message port can be
found in Sections 4.6.1 and 4.6.3.

Given these factors, it is no surprise that we know of no existing distributed VE
systems that uses an invalidation-based replication scheme. A hybrid update/invalidation
scheme would give some additional benefit, such as allowing programmers to choose to
trade off update latency for reduced network utilization, but would have significantly

increased the implementation complexity of the system.

To ensure all update methods are applied to all replicas of an object in the same
order, the messages containing the data for each update method (the method identifier and
the arguments) are delivered to each replica using totally-ordered group communication.
While there are many approaches to group communications [Birman, 1993, Coulouris
et al., 1994], the Shared Object package adopts the same approach used in Orca. A total
order on updates to an object is enforced by having all updates to that object send an event
to a distinguished process called seguencerThe sequencer for an object assigns a
sequence number to each update event it receives in the order it receives them, and for-
wards the update messages to all processes containing a replica of that Shared Object.
Updates are applied only after they are received from the sequencer. Any process may

serve as a sequencer for one or more objects, in addition to its other tasks.

Currently, each process is associated with a particular sequencer and all objects
created in that process have their updates sequenced by that sequencer. We call the set of
processes associated with the same sequetgstar The sequencer sends direct
updates only to processes in its cluster. If a process in another cluster has a copy of this
Shared Object, the update is sent to its sequencer, which will then forward the update to
the processes in its cluster that have a copy of the object. Thus, all update messages
between clusters are sent through the sequencers, which communicate directly with each

other.

52

Figure 3-1: Control and data flow for a Shared Object update. Prggesals an
update method at tinte. It blocks after a message is sent to the sequentée
message arrives at timeand is sent to all interested clierps, (o, andps). p;
receives the message back at ttgyés unblocked, executes the original method
call and continues.

Consider what happens when a thread initiates an update by calling an update
method. The thread is blocked until the update event is received back from the sequencer,
at which time it applies the update to the object and returns. Figure 3-1 shows the control
and data flow of a typical update method call. A similar connection topology is used by
many VR systems (e.g., WAVES, BrickNet, and Ring) to reduce network traffic, but none
have isolated it in this fashion. For example, in BrickNet and Ring, the low-level function-
ality of the sequencer is combined with other high-level functions such object lookup and
management. In WAVES, these functions are assigned to separate processes, but these pro-

cesses exist in a one-to-one relationship with each other.

Overlapping high- and low-level functionality like this is undesirable. For exam-
ple, all these systems have a one-to-one relationship between the number of sequencers
and application level object management servers. In contrast, in Coterie application level
object management can be partitioned based on conceptual process groupings, while
sequencer duties can be partitioned based on physical network characteristics. These two

partitions are not always identical, as illustrated in Figure 3-2.

53

Figure 3-2: The relationship between clients, sequencers and object managers.
The partitioning of clients (C) between sequencers (S) can be based on efficiency
considerations, whereas the partitioning of clients between object managers (OM)
can be based on the semantic grouping of processes, which are generally not the
same.

3.3.3 Event Driven Control Flow: Callback Objects

In order to satisfy the need for asynchronous notification of changes to replicated objects,
we introduce the notion of Callback Objects into the replication model. Callback Objects
allow the programmer to receive notification of changes to a Shared Object in an struc-
tured fashion. For any Shared Object, the compile-time code generator creates an associ-
ated Callback Object that has a set of methods corresponding to the update methods of the
Shared Object.

Callback Objects are used as follows. An insta@€of a Callback Object is asso-
ciated with an instanc®@Oof a Shared Object by passi8@to the constructor aZO.
When an update method $0is invoked, the corresponding methodd# is called.
Since the internal representation of a Shared Object is hidden, the details of the change are
indicated toCO by passing the arguments of the original method ca8©to the corre-
sponding method o€ O. To receive notification of an update, a programmer creates a new
object and overrides the method<a8, corresponding to the changesSiOfor which

notification is desired, with methods that react appropriately to those changes. Callback

54

OBJ The programmer declares an undefined
objectOBJ.The code generator defines it.
Public OBJ
Public OBJ and the types between it
F——— — — q andSharedODbj.T , define the object.
| - |
L - - — |

SharedObj.T

Figure 3-3: Object hierarchy for a Shared Object. The programmer implements
the objectdPublic OBJand all the supertypes up$tmaredObj.T . The Shared
Object code generator generates the Modula-3 code to impl@Bdnivhich
overrides all the methods &ublic OBJto implement the Shared Object semantics.

Objects remove the need for object polling and enable a “data-driven” flow of control. A
concrete example, showing how tracker date can be distributed and changes reacted to in a
timely fashion, will be given in Section 3.4.1. Manny of the other examples of the useful-

ness of Callback Objects will be given in later chapters.

The Callback Objects contain two methods for each update method in the corre-
sponding Shared Object. These methods can be overridden to receive notification before
(“pre_ " methods) or after fost_ " methods) an update to the Shared Object. An addi-
tional pair of “catch-all” notification methods can be overridden to receive notification,
before or after an update, of any changes not handled by the more specific notification

methods.

3.4 Implementation

There are two components to the implementation of the Shared Object package: the com-
pile-time code generator, and the Shared Object Runtime. Before describing these, we will

give an overview of the package from the programmer’s viewpoint.

From the view of a Modula-3 programmer, a Shared Object @Béis created, as
shown in Figure 3-3. The programmer defi@d] as a subtype of some other Modula-3

object Public OBJ with no publicly accessible data field®ublic OBJinherits (possibly

55

via other objects) from a distinguished obj&ttaredObj.T .1 The programmer anno-

tates the source code to tell the system which of the meth@BJsthould be treated as
update methods. The Modula-3 source code implementing the Shared Object semantics is
automatically generated and consists of the definitiddBthat overrides the methods

of Public OBJto implement the shared object semantics, and a Callback Obj&xBJor

(see Section 3.3.3). The generated code also contains a set of proxy objects@@Xype

to facilitate embedding the objects in an interpreted language such as Repo.

Access to an object is controlled by a single writer, multiple reader paradigm.
Update methods are executed on an object within an exclusive lock and non-update meth-
ods are executed inside a shared lock. This allows multiple non-update methods to execute
in parallel, while ensuring that update methods have exclusive access to the object while
they are updating its internal state. The locking scheme we implemented ensures that read-

ers cannot hold off writers indefinitely.

3.4.1 Object Definition and Runtime Code Generation

When defining a Modula-3 Shared Object, there are some restrictions that the programmer

must obey, which are quite similar to those imposed by the Network Object package:

« The programmer must leave a “hole” at the end of the object hierarchy, by declaring the
last object to be a subtyzbef some other object, and not defining this final type any-

where in the code. It is this type that is defined by the Shared Object code generator.

« The remaining objects in the hierarchy must not have any visible data elements
declared in this interface, which is assumed to be the primary interface for the object.
This is enforced because, according to the model, all access to the data fields must take

place through the object methods.

1. In Modula-3, when a type in an interface is used, it must be qualified by the interface
name. Thus, th& type in Figure 3-4 is used elsewheréelesckerPosition.T

2. Modula-3 supports the notion of defining an object as a subtype of another object with-
out providing the details of this new subtype. Such subtypes are referred to as opaque
subtypes and written using the notation “T<:S”, which is read as “T is a subtype of S.”
These partial declarations can be revealed elsewhere in the code using the REVEAL
statement.

56

« The object hierarchy must be rooted at$maredObj.T type.

« All methods must be defined as raising thiearedObj.Error exception. If there is
a problem with object communication, or if the replica has been rendered invalid, that

exception will be raised.

« Subtypes of a Shared Object are not considered valid Shared Objects. If a programmer
wishes to create a Shared Object that is a subtype of another Shared Object, the new
object should inherit from the non-Shared Objéutlic Objabove, andracker-

Position.S in the example below) and have the code generator generate a new
Shared Obiject for this type.

3.4.1.1 Example Object Definition

To make these restrictions clearer, let us return to Coterie’s Tracker package, discussed in
Section 2.5.1. The package defines two kinds of objects, subtypescer. T and
Tracker.Report . The former are interfaces to the various tracking devices, and the
latter are the reports periodically generated by these device interfaces. None of these
objects, however, are Shared Objects. The device interfaces only exist in the process that
communicates with the actual hardware device, and the reports are considered to be

immutable data elements, similar to integers, characters or text strings.

To support distribution of the tracker reports throughout the system, the tracker
package contains a simple Shared Object that implements a replicated container for
tracker reports. The definition of the object, calldldackerPosition for historical

reasons, is shown in Figure 3-4.

The state of the object being defined contains a single tracker report. To distribute
tracker reports, an instance of theckerPosition.T object is passed to all inter-
ested processes. When the thread that reads the tracker device obtains a new tracker report,
it calls theset() method of this instance to update the replicated object state with the
new report value. The implementation of this object, and a private interface that exposes

the internal details of the implementatfpis shown in Figure 3-5.

57

INTERFACE TrackerPosition;
IMPORT Tracker, SharedObj, Thread;

CONST Brand = “TrackerPosition”;

TYPE
Data = Tracker.Report;

T<'S;
S <: Public;
Public = SharedObj.T OBJECT
METHODS
init (): T RAISES {SharedObj.Error};
set (READONLY val: Data) RAISES {SharedObj.Error};
get (): Data RAISES {SharedObj.Error};
<* SHARED UPDATE METHODS T.set, T.init *>
END;

END TrackerPosition.

Figure 3-4: The Modula-3 interface definition fdrackerPosition . The public
portion of the tracker object is defined to have three methiods (, set andget), of
which one §et) is an update method on the objedit is also technically an update
method, but it is generally only called during object creation). Th&rdekerPo-
sition.i3 would contain this definition.

In this example, as with all our code, we will follow the Modula-3 convention that
the main type in an interface (the one a programmer would use) is naiftleds requiring
it be referred to a§rackerPosition.T , In this case). Before looking at the definition
of theTrackerPosition object, consider a typical Modula-3 package containing a
typeT that the designer wishes to have both public and private parts. To partition the
object, the designer declares thas a subtype of a second typiblic , via the decla-

ration:

3. Having the details of the implementation exposed in an interface is currently required
because the code generator needs this information and it is not possible to extract it
from a Modula-3 implementation (.m3) file. This is not a serious problem, because
Modula-3 supports the notion of private interfaces that cannot be accessed outside a
package.

58

INTERFACE TrackerPositionF;
FROM TrackerPosition IMPORT T, S, Public, Brand, Data;

REVEAL
S = Public BRANDED Brand OBJECT

data: Data := NIL;

OVERRIDES
init := Init;
set := Set;
get := Get;

END;

PROCEDURE Init (self: S): T;
PROCEDURE Set (self: S; READONLY val: Data);
PROCEDURE Get (self: S): Data;

END TrackerPositionF.
(a) A private interfacelrackerPositionF.i3 , containing
the internal definition of th&rackerPosition object.

MODULE TrackerPosition EXPORTS TrackerPosition, TrackerPositionF,
TrackerPaositionProxy;

PROCEDURE Init (self: S) : T =
BEGIN
IF self.data = NIL THEN
self.data := NEW(Data);
END;

RETURN self;
END Init;

PROCEDURE Set (self: S; READONLY val: Data) =
BEGIN
self.data := val;
END Set;

PROCEDURE Get (self: S): Data =
BEGIN
RETURN self.data;
END Get;

BEGIN
END TrackerPosition.

(b) The implementation of thErackerPosition module,
TrackerPosition.m3 , containing the definition of the object methods.

Figure 3-5: The Modula-3 implementation fdirackerPosition . These two files
implement the private parts of theackerPosition Shared Object; (a) a private
interface and (b) the implementation.

59

TYPE
T <: Public;
Public = OBJECT ... END;

Public is fully defined in the interface and would contain the public parts of the
object. The private parts dfwould be defined in the private implementation of the pack-

age, by revealing the relationship betwdesndPublic as follow$:

REVEAL
T = Public BRANDED “Some brand” OBJECT ... END;

Now, let us look at how this prototypical object declaration is changed to define the
TrackerPosition Shared Object. Recall that the Shared Object code generator must
override all of the methods of an object in the generated code: these overrides are used to
enforce the Shared Object semantics. Therefore, the code generator must dégnep-
level object used by the programmer, which prevents the programmer from using the
“T <: Public " relationship to define the private parts of the object. Consequently, the
programmer must create an additional opaque subtype for that purpose. Furthermore,
since the base type of the object must be the shared objecshgredObj.T , the above

prototypical declarations become:

4. TheBRANDEMeyword tells the Modula-3 type system that this is a unique type, even
if there is another type in the program with the same structure (unlike its ancestor Pas-
cal, Modula-3 uses structural type equivalence). The type system requires that one and
only one revelation of an opaque type be branded. The BRANDED keyword can be
optionally followed by a string (“Some brand” in this case) that names the branded type,
otherwise a unique string will be supplied by the compiler. Brand names must be unique
across the entire program.

60

TYPE
T<:S;
S <: Public;
Public = SharedObj.T OBJECT ... END;

The proper use of the package also requires that the types used in the main inter-
face do not reveal the internal data fields of the object. As aBabéc would contain
those parts of the object that the package designer wished the user of their package to see,
and the internal details afwould be defined in the private implementation of the pack-

age, by revealing the relationship betw&sandPublic , as follows:

REVEAL
S = Public OBJECT ... END;

Finally, when an object is defined, the interface must be annotated with the
<*SHARED UPDATE METHODS*>pragma to inform the code generator which of the

object methods are update methods. FoiTtlaekerPosition object, the pragma is:

<*SHARED UPDATE METHODS T.set, T.init *>

Given these declarations, collected in Figure 3-4, the code generator would define

the objectl in the generated code using the following revelation:

REVEAL
TrackerPosition.T = TrackerPosition.S BRANDED
TrackerPosition.Brand OBJECT ... END:;

Six files are created by the code generator, the code for which can be found in

Appendix A.TrackerPositionCB.i3 andTrackerPositionCB.m3 (Sections

61

A.2 and A.3) implement the callback object used for notification of changes to an instance
of the Shared ObjecT.rackerPositionSO.m3 (Section A.1) contains the implemen-
tation of theTrackerPosition.T object, including the dispatch function

(ApplyUpdate T) that processes incoming updates by relaying them to the individual
dispatch stubsStub_*). The file also contains the method wrapp8&isafed_*) that

enforce the Shared Object semantics. Automatically generated code in these stubs and
wrappers takes care of marshalling and unmarshalling arbitrarily complex method argu-
ments and return values (such as large recursive data structures) between heterogeneous

machines across the network.

In Modula-3, the process of marshalling data is knowpiakling and is provided
by the Pickle module. TherackerPositionSO.m3 file contains the necessary pick-
ling routines used to copy the object state between sites. These routines do much of the
work required to set up the synchronization protocol when new objects are copied to a pro-
cess, and take care of ensuring that only one copy of an object exists in any given process.
They also support the ability for a programmer to define their own routines to read and
write the object data: the default set of routines simply pickles all the internal data fields,
as discussed in Section 3.4.1.3. TackerPositionPickle.i3 (Section A.6)
interface is used to define these custom pickling routines. FirlakykerPosition-
Proxy.i3 andTrackerPositionCBProxy.i3 (Sections A.4 and A.5) contain the

proxy objects used to embed the Shared Object in an interpreted language such as Repo.

3.4.1.2 Callback Object Usage

The declaration of the Callback ObjdaetckerPositionCB.T is shown in Figure 3-
6(a). To use the Callback Object, the programmer must declare a subtype of it that over-
rides the appropriate methods with procedures that perform whatever action is desired to
handle notification of that update. A simplified version of such an object is shown in

Figure 3-6(b). This subtype would be used as follows:

62

INTERFACE TrackerPositionCB;
IMPORT Tracker, SharedObj, TrackerPosition;

TYPE
T <: PublicT;
PublicT = SharedObj.Callback OBJECT
METHODS
init (obj: TrackerPosition.T): T;
cancel ();
pre_anyChange (READONLY obj: TrackerPosition.T);
post_anyChange (READONLY obj: TrackerPosition.T);
pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
pre_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN,;
post_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN;
END;

END TrackerPositionCB.

(a) The generated interfaceackerPositionCB.i3 , containing
the definition of the TrackerPosition Callback Object.

TYPE
Callback = TrackerPositionCB.T BRANDED "My Callback" OBJECT
OVERRIDES
pre_set := Pre_set;
post_anyChange := Post_anyChange;
END;

PROCEDURE Pre_set (self: Callback;
READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN =
BEGIN
(* do something right before “set()” is called *)
END Pre_set;

PROCEDURE Post_anyChange (self: Callback;
READONLY obj: TrackerPosition.T) =
BEGIN
(* do something right after “set()” or “init()” are called *)
END Post_anyChange;

(b) An example Callback Object.

Figure 3-6: The TrackerPositionCB.T Callback Object. (a) contains the auto-
matically generated interface to the Callback Objecfli@ckerPosition.T , and

(b) shows a simplified example of the Callback Object in use. In this example, the pro-
grammer would insert the code to be executed just befosetfle method is called

in the body of thePre_set() procedure. Similarly, the code to be executed after any
update method would be inserted in the body offlest_anyChange() procedure.

63

VAR cbObj: Callback;

trackerPos: TrackerPosition.T;

cbObj := NEW(Callback).init(trackerPos);

In this simple example, aftebObj is initialized, all updates twackerPos
will result in the appropriate methods dbObj being called. Notification stops when the

object is garbage collected, or when notification is explicitly cancelled:

cbObj.cancel();

3.4.1.3 Passing State Between Processes

When a reference to a Shared Object is passed between processes, the Shared Object
Runtime must copy the current state of the object to this new process. As discussed in
Section 3.4.1.1, the Shared Object code generator defines the necessary routines to do this,
and also provides a facility for programmers to define their own routines to read and write
the internal state. The generated code for this example is shown in Figure 3-7. To redefine
what is done to copy an object between sites, the programmer creates a subtype of the
appropriateSpecial variable (defined in the generafBdckerPositionPick-

ler.i3 , shown in Figure 3-7(a)), overriding thead andwrite routines with the

actions they desire. The routines are registered with the Shared Object Runtime using the
RegisterSpecial routine (defined in the same interface). The default definition,

extracted from th@rackerPositionSO.m3 file, is shown in Figure 3-7(b).

The ability to define exactly what code is executed to copy the state between pro-
cesses is important for both efficiency and usability reasons. The efficiency concerns usu-
ally focus on saving network bandwidth. For example, with some objects it might be

possible to copy a small portion of the state and recreate the rest at the remote site. While

64

INTERFACE TrackerPositionPickle;
IMPORT SharedObj;

TYPE
TSpecial <: SharedObj.Special;

PROCEDURE RegisterSpecial_T(sp: TSpecial);
END TrackerPositionPickle.

(a) The generated interfaceackerPositionPicler.i3 , containing
the definition of the TrackerPosition Pickle Objé&pecial

REVEAL
TSpecial = SharedObj.Special BRANDED
“TrackerPosition.TSpecial”
OBJECT OVERRIDES
write := DefaultSpWrite_T;
read := DefaultSpRead_T,;
END;

PROCEDURE DefaultSpWrite_T (<*UNUSED*>self: TSpecial;
shobj: SharedOb.T;
out: Pickle.Writer)

RAISES {Pickle.Error, Wr.Failure, Thread.Alerted} =
VAR

obj := NARROW(shobj, S);
BEGIN

PickleStubs.OutRef(out, obj.data);
END DefaultSpWrite_T;

PROCEDURE DefaultSpRead_T (<*UNUSED*>self: TSpecial;
shobj: SharedOb.T;
in: Pickle.Reader)
RAISES {Pickle.Error, Rd.EndOfFile, Rd.Failure,
Thread.Alerted} =
VAR
obj := NARROW(shobj, S);
BEGIN
obj.data := PickleStubs.InRef(in, TYPECODE(Tracker.Report));
END DefaultSpRead_T,;

(b) The default Pickle Object fdrackerPosition.T , taken
from theTrackerPositionSO.m3 file.

Figure 3-7: The defaulfTrackerPosition.T marshalling code. The Shared
Object system must know what to copy when objects are passed between machines.
The code generator provides a default set of reading and writing routines that copy the
state of an object. In this case, the intedah field is copied.
the system would function without this facility it efficiency was the only concern, there are
times when the ability to define exactly what happens when objects are passed between

processes is necessary.

65

Typically, this happens when the object contains data fields that can not, or should
not, be copied between processes (see Section 3.4.3); for example, if an object contained
pointers to data structures created by the operating system or external libraries (such as
OpenGL display lists, or Windows NT/X11 window handles). These objects cannot be
copied because they are meaningless in the destination process. Instead, the information
needed to recreate them would be passed to the new process, where the appropriate operat-
ing system or external library routines could be called to recreate the data. Another exam-
ple of the need for custom picklers is when an object contains state that is (conceptually)
local to each process. This state should not be copied, but rather initialized to some default
values in the destination process. An example of this will be seen in the implementation of
Repo-3D in Section 5.5.

3.4.1.4 Additional Tracker Examples

In the previous sections, we presented a detailed example of the creation of a Shared
Object, taken from Coterie’s Tracker package. While this object itself is extremely simple,
more advanced tracker objects can be implemented using it. For example, assume a
tracker is being handled by some process, and its reports are distributdaachex-

Position object, which we will caltobj . Now, suppose a client wants to receive at

most one tracker report per second. A secoratkerPosition. T , calledslowobj

could be created in the process reading the tracker device. It would be updated less often
by associating a simple callback object wdbj , whosepost_set method is overrid-

den to updatslowobj at most once per second (recall thatgbst set method is

called just after the associated objesetmethod is called, as discussed in Section 3.3.3).
The Modula-3 code implementing the callback object, calmdFreqTracker ,is

shown in Figure 3-8(a), and code showing how a programmer would use it to create a low
frequencyTrackerPosition.T object is shown in Figure 3-8(b). Local copies of
slowobj can now be obtained by clients who want to have updates sent to them less fre-
guently. Notice that this approach allows great flexibility. For example, the process in

which slowobj is created determines where the filtering is done; in this case it is being

66

TYPE LowFreqTracker = TrackerPositionCB.T OBJECT
slow: TrackerPosition.T;
interval, next: REAL := 0.0;
OVERRIDES
post_set := LFSet;
END;

PROCEDURE LFSet(READONLY obj: TrackerPosition.T;
READONLY val: Data): BOOLEAN =
BEGIN
IF self.next < Time.Now() THEN
self.slow.set(val);
INC(self.next, interval);
END;
END LFSet;

(a) ATrackerPositionCB used to create a
slowly changingl'rackerPosition.T

(* assume tobj is the normal tracker object *)
slowobj := NEW(TrackerPosition.T).init();

slowch := NEW(LowFreqTracker,
slow := slowobj,
interval := 1.0).init(tobj);

(b) The new callback,owFreqTracker ,
is used to create the n&wackerPosition.T

Figure 3-8: A low frequency tracker object. (a) A simple use of TrackerPo-
sitionCB.T callback object from Figure 3-6(a), used to create a variation of a
tracker that is updated at most once a second. Each tinpoieset method is
called, it checks to see if the time interval has passed. If it has, it updatstothe
object and increments timext field to wait for the next interval to expire. (b)

These two lines of code allocate a nEsaickerPosition. T object and the
LowFreqTracker callback object that updates it basedaly , the full fre-
guencyTrackerPosition.T object.

done in the local processes, but it could just as easily be done in the remote process or

some other process in between.

3.4.2 The Shared Object Runtime

There are a number of aspects of the Shared Object runtime that are interesting, especially
with respect to the lessons learned during its development. Among other things, the
Shared Object runtime is responsible for ensuring that there is one and only one instance

of any Shared Object in a process, performing distributed garbage collection, maintaining

67

a set of threads to process incoming events, sequencing updates (if the process is the
sequencer for the object in question), and forwarding update requests to the sequencer (if

the process is not that object’s sequencer).

We ensure there is one and only one instance of a Shared Object in any process pri-
marily for efficiency reasons: multiple copies would waste memory, as well as require that
all update methods would have to be executed multiple times (once for each copy of the
object). Furthermore, allowing multiple copies would complicate the runtime by requiring
it to keep track of multiple copies of an object in each process. To ensure that there is only
one copy, the runtime maintains a table of all the replicated objects in a process, indexed
by the unique global object identifiers. By using the pickling facilities discussed in Sec-
tions 3.4.1.1 and 3.4.1.3, the runtime checks for the prior existence of an object whenever
it is passed to a process: if the object already exists in the destination, the current one is
used, otherwise a new object is created and entered into this table. This table is also used

to dispatch incoming updates to the local objects.

We take further advantage of this check for the prior existence of a Shared Object
in a process to improve network bandwidth utilization by only sending the global object
identifier when a Shared Object is embedded in an argument to an update method, rather
than pickling the entire object state. Therefore, if the object already exists in that process,
the existing copy can be used without having needlessly copied the object state across the
network. If the object does not exist at the destination site, the Shared Object runtime
makes a remote method call to its sequencer to obtain the object, which may in turn
require the sequencer to make remote method calls to other sequencers, or to one of its cli-
ents to obtain the object. These additional network accesses may increase the time taken to
pass objects between processes, but can result in a significant savings when an object

already exists in the destination processes, especially when the object state is large.

Distributed garbage collection takes advantage olvirek referencéacility pro-
vided by the Modula-3 runtime. A weak reference is a reference to an object that the Mod-
ula-3 garbage collector does not consider when determining if an object is referenced in a
process. When a weak reference is created, a cleanup routine can be provided; when there

are no longer any non-weak references to an object, all weak reference cleanup routines

68

are called just prior to the object being garbage collected. The Shared Object system only
maintains weak references to the local objects in its object table (mentioned in the previ-
ous paragraph). When all real references to a Shared Object are removed from a process,
the runtime notifies the sequencer that this process no longer has a copy of the object,
allowing the sequencer to keep track of where real copies of an object are and to stop rout-

ing updates to those processes that no longer have copies of an object.

In the next two subsections, we will discuss two issues in greater depth: the man-
agement of threads by the runtime, and the handling of exceptions and return values in

update methods.

3.4.2.1 Thread Management

Figure 3-3 shows a simplified representation of the data flow through the system. Each
process maintains a connection to its sequencer, represented as an Event Port in the dia-
gram. If a process is a sequencer, it would also maintain a connection to each of the clients
in its cluster. All Shared Object communication is performed through these communica-
tion channels. As shown in the diagram, each port uses two threads to process events read
from, and written to, the Event Port. While this may seem like an excessive use of threads,
especially for a sequencer that may be talking to a large number of peers, it results in a
cleaner, more robust, and more efficient implementation. One of the lessons learned from
this implementation is that a judicious use of multi-threading increases the responsiveness
and robustness of the system. Since these lessons were learned during the development

process, no quantitative results are available to illustrate them.

This lesson is especially true when deciding how to handle incoming update

events. To apply a sequenced update to an object, the following actions must be taken:

1. An exclusive write lock is acquired for the object.

2. All * pre_ " methods are called for each Callback Object associated with the object.
3. The update method is executed.

4. All “post_ ” methods are called for each Callback Object associated with the object.

5. The write lock is released.

69

Work Queue

Ui

Thiéad P60

Method
Dispatch

1

‘_’ Event Broadcast

Port Queue
1]
1

L]
L]

Shared Object]
Runtime

—

\\\\\\\\\\\\‘
\\\\\\\R\\\\'

4

Event Multicast Abstraction

O
[%))]

(T) Thread A Shared Object% Queue

Figure 3-9: Data Flow in the Shared Object System. The Shared Object package is
built on top of an Event package that presents both unicast and multicast event dis-
tribution abstractions. (Currently, the event layer is implemented with TCP sock-
ets.) Each Event Port in a process uses two threads, one to read events from the port
and add them to an event queue, the other to read events from a queue and write
them to the network. The Shared Object package maintains a Thread Pool to pro-
cess incoming events. Each Shared Object maintains a queue of out-of-sequence
events that have arrived, but cannot yet be processed. An update method call may
require a message to be sent to the network, and wait for a reply to unblock it and
allow it to continue.

Unfortunately, of these steps, only the last one is guaranteed to happen in a timely
manner. If there are readers accessing the object, step 1 will block until they exit. While
this will usually result in at most a short delay, steps 2—4 could take a significant amount of
time. Even though programmers are encouraged not to write update methods or Callback
methods that do substantial amounts of work, there is no way to ensure that this does not
happen. Therefore, multiple threads must be used to ensure incoming updates are pro-

cessed in a timely manner.

However, too many threads results in too much parallelism, which is also undesir-
able, as the process will then spend substantial amounts of time context switching between

these threads. To provide some control over this parallelism, we implemented a Thread

70

Pool abstraction for use in processing incoming eVeWden a Thread Pool is created,

the programmer specifies the maximum number of running threads, the maximum number
of idle threads and a queue to obtain “work” from. In this case, the work queue is the
incoming event queue, as shown in Figure 3-9. The application programmer can interact

with this Thread Pool in two ways, to tune the performance of the system:

« The programmer can cause a thread to block until all the queued Shared Object events
are processed. This allows more processor time to be devoted to incoming updates, and
Is needed primarily because Modula-3 threads are all executed at the same priority. Ide-
ally, higher priority threads would handle incoming updates so that the system would

guarantee all replicated objects get updated in a timely manner

 If a method is known to take a significant amount of time (i.e. blocking on I/O, access-
ing a network service, etc.), the current thread can be removed from the Thread Pool.
The current thread will no longer be included in the Thread Pool’s thread count, allow-

ing an additional thread to be created if necessary.

This latter facility is needed because we want Callback Object methods to be able
to call update methods of other Shared Objects. Since we want Callback methods to be
executed synchronously with the corresponding update methods, rather than being added
to a queue for later processing, the Callback Objects are executed by the same thread that
executes the update method. When the update is being executed by a thread from the
Thread Pool, this threadustbe released from the pool, or the system may deadlock, as

follows:
« An update method is called and a message is sent to the sequencer to put that update in
sequence.

« The thread invoking the method blocks until the sequencer returns the sequenced

update to the process.

« The number of threads in the Thread Pool handling incoming messages is limited, so if

all of those threads block by calling update methods, the system will not be able to han-

5. The Thread Pool abstraction turned out to be so useful, we eventually exposed it into
Repo, as will be seen in the examples in Chapter 4.

71

dle replies from the sequencer to unblock those threads, and the system will be dead-

locked.

Therefore, the runtime automatically removes any thread from the thread pool
before it blocks waiting for an update to be sequenced. The alternative would be to allow
an unlimited number of threads to handle incoming Shared Object events, but this is a bad
idea: if the system could not handle events as fast as they arrived, a progressively larger
number of threads would be created. This would slow the system down further, causing

more threads to be created, and so on until resources were exhausted.

3.4.2.2 Exception and Return Value Handling

Since update methods are executed on every replica of an object, the Shared Object
runtime must deal with the values returned from, and exceptions raised by, those methods.
No special handling is required for non-update methods: when a non-update method
returns a value or raises an exception, it is simply passed on to the calling method, as
would be expected. Similarly, in the process that initiates an update method, return values
and exceptions are also passed back to the calling method; since the runtime arranges to
have the thread that initiated the call execute the method when the sequence number is
returned from the sequencer, the exceptions will propagate through the call stack in the

normal manner.

When a value is returned by an update method in a process aside from the one that
initiated the update, it is simply ignored. Similarly, for the vast majority of object update
methods, if an exception is raised in the initiating process, it will be raised when the
method is executed in all replicas. In this case, since the exception is passed on to the
caller in the process that initiated the update, it can be safely ignored in all other processes
because the initiating process can take whatever action is necessary to deal with the excep-
tional condition; therefore, the runtime catches these exceptions and ignores them in all

processes aside from the initiating process.

There are cases, however, when an exception will only be raised in some subset of
the replicas. For example, if a method needs to acquire local resources (such as memory,

or space in a local file system), the request for that resource may fail in some replicas, but

72

not in others. If the update succeeds in the process that initiated it, the calling thread has
no way of knowing that the update failed in one of the replicas because it does not receive
an exception; update distribution is asynchronous, and no information is returned to the
process that invokes an update method regarding the invocation of that method in other
processes. The Shared Object system requires that the programmer decide which excep-
tions will be raised in all replicas (i.e., those that depend only on the global object state)
and which might be raised in a subset of the replicas. To help the programmer deal with
these latter situations, the Shared Object package provides the programmer with a special
exception calle®haredObj.Fatal . If a programmer raises this exception in a

method, the Shared Object runtime assumes that something has failed in this replica that

may not have failed in all others, and marks this replica as invalid.

While the process that issued the update has no way of knowing that one or more
of the other replicas may now be invalid, any attempt to access an invalid replica, or to
pass it to another process, will fail wittsharedODbj.Error exception. How to pro-
ceed is then up to the process containing the invalid replica. While this is not an ideal solu-
tion, it is sufficient for our needs. For example, the process could attempt to acquire a new
copy of the object, or follow any other reasonable course of action. The runtime does not
attempt to acquire a new copy of the object for the programmer because whatever resource
was unavailable when the update method failed will probably still be unavailable, and pro-

grammer intervention will be required to properly handle this situation.

3.4.3 Restrictions

As with Network Objects, there are restrictions on what Modula-3 types are valid for use
as arguments to method calls. For Shared Objects, the restrictions arise from the need to
package arguments to update methods into the update messages distributed to all replicas.
Therefore, no data value can be used that is specifically associated with one process (e.g.,
a thread or a condition variable) or that has state that cannot be accessed repeatedly with

consistent results (e.g., a file reader or writer).

While Network and Shared Objects are allowed to be used as arguments to update

methods (so that data structures such as distributed lists can be constructed), these objects

73

Benchmark Time (milliseconds)
Simple Access (read or write) 0.03
Replicated Read 0.05

Table 3-2:Local method call performance. A comparison of performance for repli-
cated object read methods for synchronized (Replicated) and unsynchronized (Sim-
ple) objects. Times are an average of 10 successive calls of the given type.

should never be accessed from within update methods, as the results are both inefficient
and unpredictable. Accessing Network Objects from an update method is inefficient
because each of the replicas will need to perform the same remote access to the Network
Object. Accessing both Shared and Network Objects from an update method can result in
unpredictable behavior, as the object being accessed may change between the accesses,
and therefore return different information to some of the replicas, potentially causing the

replicas to become inconsistent.

3.5 Performance and Usability

While performance was not the primary concern when designing and building the Shared
Object package, it was definitely a factor in our design. Usability, on the other hand, was a
significant concern, and was the primary motivation for tightly integrating data replication
with a programming language. While we have not done extensive performance or usability
analysis, we would like to show two things in this section. First, that the performance of
the system falls within our expectations, and is acceptable for the kinds of applications for
which we designed Coterie. Second, based on the similarities between our object system
and that of Orca, we will argue that the recent usability and performance analyses of Orca
[Wilson and Bal, 1996, Bal et al., 1998] justify the approach taken for Coterie, namely to
implement replicated data using objects based on a write-update protocol with function

shipping and totally ordered group communication.

3.5.1 Shared Object Performance

We measured the performance of the Shared Object system, the results of which are

shown in Tables 3-2 and 3-3. The tests were performed between a group of Sun Ultra2

74

Benchmark Time (milliseconds)
Remote Access (read or write) 1.04
Replicated Write (2 clients) 4.57
Replicated Write (4 clients) 4.75
Replicated Write (8 clients) 8.2

Table 3-3: Distributed method call performance. A comparison of performance for
network access methods for each of client-server (Remote) and synchronized (Rep-
licated) object calls. Times are an average of 10 successive calls of the given type.
For the Replicated Writes, the time taken is shown for 2, 4 and 8 clients of a single
sequencetr.

machines, connected via a 10baseT ethernet hub, and were implemented in Repo
(Chapter 4). For each of the six tests, 10 calls of the given type were performed and the
average time for a single call obtained as an average over total time. This is the worst per-
formance situation a Coterie programmer would typically encounter: Repo has more over-
head per call than Modula-3, and a 10Mb/sec hub is the slowest network configuration that
would be used for the system. We use this configuration, however, because Coterie pro-
grammers typically build replicated objects in Repo, not in Modula-3. Therefore, the
slower, hubbed network limits the scalability (as seen in the last measurement in Table 3-

3) rather than the speed of individual calls.

Each call sets a data field in the corresponding object to an integer value. The Sim-
ple measurement is a call to a local, unsynchronized object, and represents the minimum
time needed to make a Repo method call. The Remote measurement is for a client-server
access to a second process, and represents the best time we could hope to achieve for a
round trip message, since the Network object package has been optimized for the case of
repeated method calls between processes (TCP connections are cached, so each subse-
guent call typically reuses an existing connection). The Replicated measurements corre-
spond to read and write access to synchronized, replicated objects, which are implemented

by the Shared Object package.

As can be seen, the Shared Object package achieves its primary goal of fast local
read access to the replicated data, as the reads are only slightly slower than reads of non-
synchronized objects. The price to be paid for these fast reads is significantly slower

writes: the Shared Object package is currently over four times slower than the Network

75

Benchmark (milliseconds) Fast Ethernet Myrinet
Remote Access (read or write) 0.242 0.0406
Replicated Write (8 clients) 0.244 0.0647
Replicated Write (32 clients) 0.385 0.0847

Table 3-4:Orca Method call performance. A comparison of latencies introduced
in object access for remote and replicated objects. The measurements are taken
from Table Il in [Bal et al., 1998].

Object package when updating a Shared Object, for 2 or 4 replicas. The performance
drops off substantially after that. There are a variety of reasons for this poor performance,
all of which have to do with the simplistic nature of the current implementation. For exam-
ple, with a large number of clients, our use of TCP (instead of multicast UDP) causes a
significant increase in network activity, and therefore collisions, on a shared ethernet.
Even on a switched network, the sequencer must send the update to each client in
sequence, which causes significant performance degradation. Other aspects of the imple-
mentation hurt the performance and could also be improved, such as the user-level thread
performance of Modula-3. However, since the system performs well enough for our appli-
cations, this was deemed a low priority. An optimized implementation, on fast networks
and computers, should be able to achieve update performance (for a small number of cli-

ents) similar to the Remote Access numbers.

This is exactly the kind of performance obtained by the Orca system, as shown by
the performance analysis recently done by its designer [Bal et al., 1998]. Table 3-4 con-
tains their measurements, taken from Table Il in the paper. The authors measured the per-
formance of their system on a network of 200Mhz Pentium Pro machines, connected by
either Fast Ethernet or Myrinet (a 1.28Gb/sec network with extremely low latency). As
can be seen, their performance numbers for Remote Access are approximately 1/5th of
ours, and their Replicated Write times are in line with the Remote Access ones. Orca uses
three different protocols for distributing updates, all of which rely on efficient multicast.
The protocol used for a given update is chosen dynamically to optimize network perfor-
mance, based on the size of the update message and other factors. The Myrinet perfor-
mance is further optimized by having the sequencers implemented in the Myrinet network

switches. Furthermore, Orca is a compiled language and optimizes its runtime at multiple

76

levels, from the operating system up to the application. This contrasts sharply with our

simple, TCP-based implementation of the Shared Object runtime s@stem.

However, the performance measurements for individual calls are not the focus of
[Bal et al., 1998]. Instead, they focus on a quantitative performance analysis of 10 applica-
tions implemented in Orca, and a comparison of Orca to two other DSM systems: Tread-
Marks, an optimized page-based DSM [Keleher et al., 1994], and CRL, an object-based
DSM that uses a directory-based write-invalidation scheme [Johnson et al., 1995]. The lat-
ter analysis demonstrates that for a wide range of applications, Orca’s approach to DSM is
superior to either of the other two. This is an important finding, because common wisdom
typically holds that write-update protocols are inefficient.The reason Orca defies this com-
mon wisdom, and also why it performs well for the ten applications analyzed in the first

part of the paper, turns out to be its intelligent approach to object placement.

Like Coterie, and unlike most DSM or DOM systems, Orca uses a combination of
replication and single-site client-server objects. In Orca, objects that have a high read/
write ratio are replicated, and those with a low read/write ratio are migrated to the process
that is updating them and accessed remotely by other processes. Bal observed, as we also
did, that it is these latter objects, with a low read/write ratio, that are responsible for the
typical poor performance of write-update protocols. However, when replicated objects are
read a least once in each process between writes (which is what Bal considers to be a high
read/write ratio), a write-update protocol performs quite well, for two reasons: first, it is
more efficient to send an update to a process, instead of just an invalidation message, if
that process is going to request the updated object before it is changed again, and second,
if many processes are going to request a copy of the updated object, an update protocol
will allow the update to be broadcast to all processes at once, instead of unicast to each

host as they request it.

Interestingly, the authors also found that for their applications, the best perfor-

mance was achieved when programmers manually chose which objects were replicated

6. The runtime is designed to support a more efficient implementation, if it becomes nec-
essary, without necessitating any visible changes at the programming layer.

77

and which were to be accessed via client-server semantics (and where those objects should
be located), rather than having the system make those choices dynamically. While the
Orca runtime system will make decisions similar to those made by the programmers
regarding object placement and replication, it invariably makes incorrect initial choices
that must subsequently be corrected. They point out that since these corrections are typi-
cally made relatively quickly, the difference is typically insignificant for a long running
program, and they prefer to have Orca make the choices to free programmers from such

decisions.

The results presented in this paper are relevant to our work because of the similar-
ity between Coterie’s combination of Shared (replicated) and Network (client-server)
Objects and Orca’s object system. The point that manual placement is more efficient, if
slightly less convenient, is encouraging because a programmer must make these manual
decisions in Modula-3 when they define an object: an object is either a Network or Shared
Object based on the class it inherits from, and there is no facility to convert between the
two (either manually or automatically). Bal and his colleagues point out that in the typical
case, it is desirable to have the system make the placement decisions, since the idea of
DSM is to hide the details of distribution from the programmer, and the optimal choice
may be machine-dependent. We agree with them, but do not provide this facility because
of the implementation overhead. We also decided early on to keep the Network and Shared
Object packages separate since the Network Object package is already widely used: sup-

porting conversion between the two would be difficult without integrating them.

It might seem that a write-update protocol based on total global ordering of
updates via a centralized sequencer would be inefficient because all updates must be
broadcast to all replicas, and that they must pass through a centralized sequencer (which
would be a potential bottleneck). However, the analysis by Bal shows that this criticism is
simply unfounded when replicated objects are used in concert with client-server ones, as
we have done in Coterie. First, when objects with a high read/write ratio are replicated, a
write-update protocol turns out to be more efficient than any other protocol, as described
above (primarily because the objects would end up being refreshed after each write any-

way, but the systems would not be able to take advantage of network broadcasting to dis-

78

tribute those updates). By using client-server semantics for objects with a low read/write
ratio, we avoid sending around frequent updates that will not be read. Second, because
update operations are done at a high level (the level of the method call, instead of the level

of memory access), a single update method can encapsulate a set of updates to the object,
reducing the number of updates to be distributed in practice. Finally, there will only be a
possibility of contention at the centralized sequencer when objects have many, frequent
updates applied to them. In this case, however, the objects can be changed to client-server

objects because their read/write ratio will probably be low.

Other performance issues with Orca have been discussed in the context of an
analysis Wilson did of its usability [Wilson and Bal, 1996] (we will return to the usability
issues raised by this paper in the next section). Chief among the issues, and one that we
have also experienced, is the slowdown incurred by always blocking the issuer of an
update message for the duration of the round trip to the sequencer. Their proposed solu-
tions focus on figuring out how to pipeline multiple update calls at the compiler level,
without violating the serializability of the model. It is not clear how to solve this problem
without doing code analysis, which is prohibitive to do at the level of a language add-on

such as the Shared Object package.

Wilson also identified a number of performance problems with Orca that have
been addressed to a certain extent by our design. One performance problem their students
complained about was the inefficiency of unsynchronized replicated objects. While Orca
supports defining objects as unsynchronized (they call th@msharedl these objects go
through the same protocols as synchronized ones, making them too inefficient for use in
simple sequential programs. Coterie does not suffer from this problem because, since the
Shared Object package is a tightly integrated extension of Modula-3, programmers are

free to use normal Modula-3 data objects.

Another performance problem encountered while using Orca arises from its strict
enforcement of the dictum that internal data can only be accessed via methods. Even when
performance becomes a problem and a programmer is sure they can safely access the
internal data fields without violating the model, there is no facility for them to do this. In

the Shared Object system, on the other hand, the internal interface that exposes an object’s

79

internal structure (e.g., Figure 3-5(a)) can be made public and used by programmers if
they need to. It is up to the programmer to ensure they know what they are doing, so this
facility is not to be used lightly. We make use of this ability in the implementation of
Repo-3D (see Section 5.5).

3.5.2 Shared Object Usability

While we have provided well-reasoned justifications for the design of the Shared Object
package, we have not done any formal experimentation to measure the package’s ease-of-
use as a distributed programming system for exploratory programming, except anecdot-
ally. More importantly, most of the researchers who have built applications using Coterie
have never ventured into Modula-3 or used the Shared Object package directly, instead
confining themselves entirely to Repo. The two major programming tasks that have been
undertaken using the Shared Object package are the implementations of Repo and Repo-
3D, and both of these were done by the author. While we can attest to the ease with which
these packages were created using the Shared Object system, the experiences of system

designers using their own system should be taken with a grain of salt.

More convincing support for the hypothesis that this is a useful programming
model can be found by again turning to Orca, this time looking at an analysis Wilson did
of its usability [Wilson and Bal, 1996]. As with the performance analysis in [Bal
et al., 1998], this usability analysis was published after our work was completed, so that
we could not take advantage of their experiences when we designed the Shared Object

package. However, the similarity of our experiences is compelling.

Wilson proposed a suite of medium-sized, realistic applications that can be used
together to evaluate the usability of parallel and distributed languages and systems, called
the Cowichaf problems [Wilson, 1994]. These problems are intended to determine the

usability of programming systems for writing efficient parallel programs. In contrast, the

7. The problem set is named after a place and tribal name from the Canadian Northwest,
and was chosen by Wilson to acknowledge the debt his work owed to the Salishan Prob-
lems of Feo [Feo, 1992], which is also a tribal name and the name of the conference
center in Oregon where the Salishan Problems were formulated.

80

benchmarks typically done by system developers, and supported by other suites, tend to
assess only the performance of programming systems (or hardware), and not the usability.
The suite was selected to cover a wide spectrum of application domains and parallel pro-

gramming idioms.

To assess the usability of Orca, the authors had six different students each imple-
ment one of the Cowichan problems. They first implemented a sequential version in C to
familiarize themselves with the problem, and then implemented a parallel version in Orca.
What is interesting is that the lessons and experiences related by the authors are quite sim-
ilar to the experiences related to us by those who have been using Coterie, although there
are some we had not discovered because of the nature of our application domain. For
example, while we had discovered that the atomicity of objects is a problem in certain
cases, we had not encountered problems based on the inability to partition objects. Wilson
found that this was a problem for some of the numerical problems in the suite, which
would benefit from partitioning matrices over multiple sites. To overcome this problem,
programmers had to partition the objects themselves and use the shared objects for com-
municating changes: in this case, the programming model effectively drops down to a

form of message passing.

While Coterie shares this problem with Orca, the fact that the model supports a
fall-through to a style of programming that is best described as “structured message pass-
ing” supports our claims about its flexibility. While this approach may not be transparent
to the programmer, implementing a kind of message passing by communicating via
Shared Objects takes only a few lines of code (in Repo) and allows the programmer to “get

the job done,” which is exactly what is needed for exploratory programming.

The other major problem that Wilson, and others, found with Orca is the inability
to apply an operation to multiple objects atomically. In contrast to the partitioning prob-
lem, this is something we have noticed with Coterie. There are a number of approaches to
dealing with this issue that we have considered, but none is particularly clean, efficient or
easy to implement. We will return to this issue in Chapter 7 when we discuss future

research directions.

81

One final usability problem we have encountered with Coterie is caused by the
synchronous nature of the Callback Objects. While synchronous execution of the methods
of the Callback Objects is often necessary to guarantee that the Shared Objectis in a
known state, or (in the case of thee_ methods) to be able to access the state just before
the update is applied, asynchronous notification of updates is often sufficient. More impor-
tantly, it is often necessary: since the Callback Object methods and the update methods are
currently executed synchronously by the same thread, programmers are not supposed to
do any significant work in the Callback Object methods as access to the object is blocked
while the methods are being executed. Since programmers often wish to execute arbitrary
actions from the Callback Object methods, they often end up building their own asynchro-
nous event notification queues in Repo. It would be useful if the system were to support

asynchronous notification directly.

Despite the problems raised, Wilson and Bal conclude that Orca is a useful and
easy to learn parallel programming environment. They found that, while programmers do
have to concern themselves with communication and synchronization, the language and
model encourage them to think about these issues in a highly structured manner. This cor-
responds to our anecdotal findings: by putting distribution concerns into the object design,
programmers deal with it once in a structured way, and then spend the rest of their devel-
opment time dealing with application development without concerning themselves too

much with distribution.

Therefore, based on both the similarities in the programming model of the Shared
Objects and Orca, and our experiences and lessons learned, it seems reasonable to draw
similar conclusions about the Shared Object package. In both systems, programmers do
occasionally have to concern themselves with communication and synchronization, but
the language and model encourage them to think about these issues in a highly structured
manner. This was one of our original motivations: prior to this work, we had observed that
much of our programming time was being spent implementing communication and syn-
chronization protocols, with a surprisingly small amount of time and code devoted to other

aspects of the programs we were building. With the Shared Object package, the opposite is

82

now true. While the distribution issues can not (and should not) be ignored, they now

occupy a relatively small amount of time and code.

3.6 Discussion

There are four factors behind the design of the Shared Object package: efficiency, simplic-
ity, transparency, and flexibility. From the previous discussion, it should be apparent that
the package satisfies our efficiency concerns, both in terms of the timely distribution of
updates and fast local read access. We have also found that the package is simple to use.
First, by following a few simple guidelines, listed at the beginning of Section 3.4.1, build-
ing replicated objects is a straightforward task. Second, once the objects are created, they
can be used just like any other Modula-3 object. This allows the programmer to deal with
the issues of data replication in one place (when the object is defined) and ignore distribu-

tion elsewhere, instead concentrating on other application details.

The Shared Object package also offers almost complete network transparency:
once an object is defined, it can then be used the same way as any other Modula-3 object.
The objects differ from normal Modula-3 objects in a few subtle ways: there is an implicit
lock around all method access (which programmers only need to be aware of when imple-
menting the object methods), and the methods may all raiShtdredObj.Error
exception without the programmer raising it in any of the method bodies. This network
transparency is especially important when the distribution semantics of an object must
change, so a programmer needs to change the definition of an object from a Shared Object
to a Network Object or to some other kind of object: aside from changing the type that the
object in question inherits from, and perhaps making other changes to the implementation
that are required based on its new usage, the effects of the change will be minimal (typi-
cally, the programmer will have to catch and handle the 8eéaredObj.Error excep-

tion).

The final factor in the design is our desire to create a system that is as flexible as
possible, motivated by our focus on exploratory programming. The Shared Object pack-
age turns out to be very flexible because we define consistency in terms of method execu-

tion (both the order of execution and whether they modify the global state), but say almost

83

nothing about the contents of the objects data fields. For example, the programmer of an
object has great flexibility in partitioning the work into parts executed once (at the calling
site) and parts executed at all sites, by taking advantage of the fact that update methods are
broadcast and executed at all sites, while read methods are not. Work can therefore be par-
titioned by having a read method call an update method after performing some work
locally. This same technique can be used to lessen the impact of the restrictions on update
method argument types, for example, by having a read method manipulate the restricted

argument locally and use the results as arguments to an update method call.

We make use of the ability to perform arbitrary actions in methods in the imple-
mentation of both Repo and Repo-3D, but especially in Repo-3D. Since part of the state of
each graphical object is global, and part is local to each machine (both the part that associ-
ates the conceptual graphical object state with the concrete state used by the rendering
subsystem, and the local variations to the graphical state), we can manage these data struc-
tures in a straightforward and efficient manner by manipulating local data within the read
methods and global data within the update methods. See Chapters 4 and 5 for more details

on how we took advantage of the model in the implementation of those packages.

84

CHAPTER 4 Repo

“The life of a repo man is always intense'Miller, from Repo Man

A commonly used approach to exploratory programming is to provide the programmer
with an interpreted language with which they can build their applications. Interpreted lan-
guages offer two benefits for exploratory programming. First, they allow the programmer
to avoid the compile-link cycle. Second, they allow programmers to incrementally (and
interactively) develop and test applications. The former benefit is declining in importance
as computers become faster and byte-compiled languages such as Java (that do not require
applications to be linked into a single program) become more popular. The latter benefit,

however, is significant, and is our primary motivation for using an interpreted language.

Unfortunately, when Coterie was being designed, there were no interpreted lan-
guages that satisfied our needs. While a number of interpreted languages provide simple
client-server access to distributed data (e.g., Python [van Rossum, 1995] combined with
ILU [Janssen et al., 1998], TCL-DP [Perham et al., 1997], and Obliq [Cardelli, 1995]),
none support replicated data. Of these languages, Obliq has the most elegant and powerful
model for distributed programming, relying on distributed lexical scoping as its key mech-
anism for managing distributed computation. For our purposes, Obliq also has the advan-
tage of being implemented in Modula-3, and having its data distribution based on the
Network Object package; as was pointed out in Chapter 2, the existence of Oblig was one

of the factors that influenced our decision to use Modula-3 in the first place.

From the perspective of researchers developing interactive graphical applications,
the major shortcoming with Oblig, as with Modula-3, is the lack of support for data repli-
cation: in Oblig, all data items (objects, arrays, and variables) have client-server distribu-
tion semantics. In Modula-3, we solved the problem by creating the Shared Object

replicated data distribution package (the topic of Chapter 3) that, when combined with the

85

Network Object package, presents the programmer with a DOM programming model sup-
porting both client-server and replicated data distribution semantics. Since we want to
support one common programming model throughout the system, we uniformly extended
the type system of Obliqg so that all its data items can be distributed using synchronized
and unsynchronized replicated distribution semantics, in addition to the client-server
semantics already supported by the language. The resulting language is calleddpepo (
licatedObliq).

Unlike the Modula-3 DOM, in which only the programming language objects (and
not other data items) are distributable with all three semantics, in Repo all data items (i.e.,
objects, arrays and variables) can take on any of the distribution semantics. In addition,
Repo’s objects are more general than Modula-3’s since the object data fields are exposed
and updates to them are distributed without the need to define update methods. As with the
Modula-3 DOM, the objects can be mixed and matched in arbitrary ways, but because the
distribution semantics extend across the entire type system, a wider range of interesting
data structures can be developed. Repo also includes new libraries, and enhanced versions
of a number of Oblig ones, that are needed to support exploratory programming in our
domain. These include simple support for reflection, HTTP clients and servers, regular
expressions and so on. By allowing distributed applications to be developed in a few lines
of interpreted code, Repo turns out to be an excellent language for exploratory program-

ming of distributed interactive applications.

In the rest of this chapter, we will describe Repo, often by contrasting it with
Oblig. While we will provide enough information about Oblig that the reader can appreci-
ate Repo’s design, there are many aspects to Oblig that are not changed in Repo, and will
therefore not be discussed in depth. For a more in depth discussion of Oblig, and examples
of it in use, see [Cardelli, 1995]. The importance of Repo is both as an interpreted lan-
guage supporting replicated data, and as an example of how a complex application can be

built with the Shared Object package. We will discuss both of these topics in this chapter.

First, in Section 4.1, we will discuss other distributed interpreted languages. We
will then turn our attention to the design of Repo, focusing on how it cleanly extends

Oblig to support replicated data. An overview of Oblig and Repo will be presented in Sec-

86

tion 4.2, followed in Section 4.3 by a discussion of how support for replication in Repo
changes the distributed semantics of Oblig. In Section 4.4, the syntax changes to Obliq
object declarations to add support for replication will be discussed, and a new built-in

module for controlling object replicas is described briefly in Section 4.5.

In Section 4.6, we will present a number of illustrative examples of Repo in use.
Some interesting aspects of the implementation will be discussed in Section 4.7, including
an overview of how the Shared Object package was used to implement Repo’s replicated
objects. Finally, Section 4.8 will close the chapter with a discussion of Repo’s usability,

based on discussions with the programmers in our lab who have been using it.

4.1 Related Work

There have been many interpreted procedural languages created over the years, and a
number of them have supported, or been extended to support, client-server data distribu-
tion. For example, two of the most popular interpreted languages, Tcl [Ousterhout, 1990]
and Python [van Rossum, 1995], include support for distribution via client-server seman-
tics. Python supports CORBA compatible client-server distribution via ILU [Janssen

et al., 1998], whereas a number of different extensions to Tcl have been implemented that
support RPC-style distribution (e.g., [Nog et al., 1996] and Tcl-DP [Perham et al., 1997]).
Unlike these language extensions, Oblig was designed from the start for distributed pro-
gramming [Cardelli, 1995]. Oblig’s model of computation is built around the use of lexi-
cal scoping and higher-order functions in a distributed context, as will be explained in

Section 4.2. Unfortunately, Oblig supports only client-server data sharing.

We are interested in interpreted languages that present an object-oriented or proce-
dural programming model, similar to that of Modula-3, including support for data replica-
tion. To our knowledge, no other such languages exist. There have been distributed
interpreted languages that present the programmer with programing models that differ
from the usual procedural style, especially in the Agents community (e.g., Telescript
[White, 1994], and Agent Tcl [Gray, 1996]). However, these languages provide support
for distributing computation through code mobility, and do not support building complex

distributed applications needing efficient replicated data.

87

4.2 An Overview of Oblig and Repo

Obliq is a lexically-scoped, untyped, interpreted language for distributed object-oriented
computation. It is implemented in, and tightly integrated with, Modula-3. Oblig uses, and
supports, the Modula-3 thread, exception, and garbage-collection facilities. Its distributed-
computation mechanism is implemented using Modula-3 Network Objects, allowing
transparent support for multiple processes on heterogeneous machines. An Oblig compu-
tation may involve multiple threads of control within an address space (process), multiple
address spaces on a machine, heterogeneous machines over a local network, and multiple

networks over the Internet.

The guiding principle that separates Obliq from other distributed procedural lan-
guages is its adherence to lexical scoping in a distributed higher-order context. This princi-
ple is conceptually simple and has a number of interesting consequences: it supports a
natural and consistent semantics of distributed computation, and it enables elegant tech-
niques for distributed programming. Lexical scoping ensures that the binding location of
every identifier can be determined by simple analysis of the program text surrounding the
identifier. Therefore, the meaning of program identifiers can be determined when they are
introduced, not when they are used, allowing programmers to reason about the behavior of
their programs, even when they are widely distributed and involve many simultaneous

threads of control.

It does not matter where an identifier is used, since it always refers to the binding
locationand network site at which it was created. This is especially important when
higher-order functions with free identifiers are transmitted over the network. Lexical scop-
ing implies that these free identifiers are bound to variables when the higher-order func-
tion is analyzed, not when the function is executed. Therefore, higher-order functions are
always self-contained as they move around the network, carrying along references to the

variables referenced by their free identifiers.

Obliq supports uniform semantics across all data types, including objects, arrays
and variables. As we noted during the discussion of the Shared Objects package in

Section 3.5.2, and as Wilson and Bal point out in their evaluation of Orca, this ability to

88

share not only objects, but arrays and variables, simplifies many standard programming
tasks. Unfortunately, unlike the Shared Objects package and Orca, Oblig does not support
replicated data; all Obliq data values have client-server distribution semantics because

they are built on top of the Network Objects package.

Repo is a descendant of Oblig that extends the Obliq data model to include both
synchronized and unsynchronized replicated objects. Therefore, Repo objects have state
that may be local to a site (as in Obliq) or replicated across multiple sites. The syntax and
semantics of Repo differs as little as possible from Obliq, although the addition of repli-
cated data does involve some conceptual differences. We will discuss the changes to the
semantics of Oblig in Section 4.3, and to the syntax in Section 4.4. There are also a num-
ber of differences between Repo and Obliq that are unrelated to these enhancements to the

type system, which will be discussed in Appendix D.

4.3 Distributed Semantics

As discussed above, Repo is a descendant of Oblig that extends the Obliq object model to
include replicated objects, both synchronized and unsynchronized. In this section we will
discuss the distributed semantics of Repo, focusing on how they differ from Obliq as a
result of the addition of replicated data. In this discussion, a network address is a pair con-
sisting of asite addresgthe process running on some machine) ametaory addresat

that site. The semantics of Oblig data can be described consistently by considering all
addresses to be unique network addresses. Obliq data structures are assembled out of net-
work addresses, just like ordinary data structures are assembled out of local addresses
(more precisely, the implementation is designed to create this illusion). As data structures
are passed around the network, the embedded network addresses do not change. For exam-
ple, if an object is passed to another site, the value received at the remote site is a network
address referring to the object at the original site. Data items can be explicitly copied
between sites (creating new objects at new network addresses), but are never copied

implicitly.

89

The semantics of Repo data are slightly more complicated because of the introduc-
tion of replicated data. Repo supports the following three distribution semantics when

objects are transmitted from one site to another:

» remoteobjects, whose state exists at one site and are accessed remotely via remote

method calls. In Obliq, all objects are remote.

« replicatedobjects, whose state is replicated at all sites that have references to them,
with consistency enforced across all sites by ensuring all updates are applied in the
same order to all replicas. When transmitted between sites, these objects are implicitly

copied and new network addresses are created.

« simpleobjects, whose state is replicated at all sites to which they are transmitted, but do
not have consistency enforced across these sites. When transmitted between sites, these

objects are implicitly copied and new network addresses are created.

In Repo, we use the termplicatedto refer to synchronized replicated objects, and
the termsimpleto refer to unsynchronized replicated objects. We selected these terms
because Obliq already used the taymnchronizedo refer to objects with an implicit
mutex around all method calls. The tesimplearises from the fact that these objects cor-
respond to the simplest of all possible distribution semantics, in which data is copied

between sites with no further action required.

As mentioned above, when Obliq data is transmitted around the network, the net-
work addresses embedded in the data do not change, always referring to the original data
item at the original site. Repo objects, however, can have embedded network references to
replicated data. When a reference to an unsynchronized replicated data item is transmitted
across the network, a new copy of the data referred to, with a new network address, is cre-
ated at the destination site. Therefore, any embedded network references to this unsyn-
chronized replicated data will be changed to refer to the new local address. If a reference
to the same unsynchronized replicated data item is sent to a process multiple times, multi-

ple new, independent replicas will be created.

When a reference to a synchronized replicated data item is transmitted across the

network, the system first checks to see if a replica of this object exists in the destination

90

el e el el e el

. Process 1 R . Process 1 R
—»

il
l

N
gt

\\ * . 4 \\ .L' lI II . 4
TTTTm o oo mmmmmmt S iy il
.~~~ 71 Process 2 “\ e Progess 2 “\

/
7

' 4
A U 1
1 7

(a) ObjectA has (b) ObjectA has
client-server semantics replicated semantics

Figure 4-1: The effect of different distribution semantics. When an olfect

is copied fromProcess 1o Process 2the result depends on the distribution
semantics. For simplicity, assume all of the embedded references inAbject
are to client-server objects. In (&)js a client-server object, so the network
address is copied frocess 2and all access to obje&trefers back to the

original object. In (b)Ais a replicated object, so a new replica is created and
the embedded referencesArare copied recursively. In this case, since the
references are to client-server objects, their network addresses are copied and
all access refers back to the original objects.

site. If a replica exists, its network address is substituted for any embedded references to
this data object. If a replica does not exists, a new replica, with a new network address, is
created and substituted for any embedded references to this data object. All replicas of a
synchronized object maintain an association with each other, even though they have differ-

ent network addresses.

Consider the following example, to help clarify the differences in the semantics,
illustrated in Figure 4-1. Assume we have an array that we wish to distribute to a number
of processes. If the array has client-server semantics, when references to it are passed
around the network, only its network address is distributed, and all access is to the original
array. If the array is replicated, when references to it are passed around the network, it is

replicated. The process of replication causes its elements to be sent to the new site, which

91

causes the process to be repeated recursively: if an element is a client-server data value,
only its network reference is sent to the new site, but if the element is a simple constant or
a replicated data value, it is copied to the new site, with its elements in turn copied recur-
sively, and so on. Since arrays and objects with different semantics can be mixed arbi-

trarily, interesting and powerful data structures can be built in a few lines of code.

The different distribution semantics also manifest themselves to the programmer
by weakening the guarantee of correct execution that Obliq provides: in Oblig, computa-
tions are guaranteed to give the same result no matter where they are executed on the net-
work?. Oblig can provide this guarantee because of the use of client-server data and
lexical scoping: when program code is evaluated (either within object methods or proce-
dures), its free variables are bound to data items and the network addresses of those data
items are embedded in the function closure (the data structure representing the evaluated
code). As the closure is passed around the network, it carries these network references
with it, and they refer to the same data objects no matter where the closure is executed.
Therefore, evaluating this closure always gives the same results, independent of the execu-

tion site.

The introduction of unsynchronized replicated data weakens this guarantee. If a
function closure is sent to a remote site for execution, and some of its free variables are
bound to unsynchronized data, those data values will be replicated at the remote site and
the new network addresses substituted for the old ones in the closure. If the function does
not modify the data object, the correct execution guarantee holds. However, if the function
modifies one of these data items, the replicas at the original site will not reflect these
changes, resulting in program execution that differs depending on the execution site (since

data at different network addresses is being modified).

While programmers need to be careful when they use unsynchronized replicated
data, the loss of this correctness guarantee is largely a pedagogical one; this guarantee is

primarily a useful way of explaining and understanding how lexical scoping affects pro-

1. While this guarantee is useful, it is a simplistic one, since it necessarily assumes no
built-in libraries are accessed that give different results at different sites. For example, if
a computation accesses the file system, it may not find the same files at different sites.

92

objects: {xi=>a j,..x n=>a p}
every field of an object has state
access: a.x, ax@ 1,..,a n)
update: a.x := b, delegate a to b end
arrays: [agq,..,a

]
every element of an array has state
access: a[n]
update: a[n] :=b

variables: varx=a
variables have state (identifiers declarediby " do not)
access: x
update: x :=b

Table 4-1: Entities with state in Obliq. There are three kinds of entities that have
state in Obliq: objects, arrays and variables. These entities are declared, accessed
and updated as shown. Tikelegate update syntax redirects the fieldsaato

access the fields of objdet(in this case), and is used to support a simple form of
object migration.

gram behavior. We will return to this point in Section 4.8. The primary reason unsynchro-
nized replicated data is provided is for efficient access to immutable data objects, which
(by definition) will not be modified. We have also found other uses for unsynchronized

data, some of which will be shown in Section 4.6.

4.4 Replication Syntax

When Repo was original designed, we made a decision to retain as much of the Obliq syn-
tax as possible, with the goal of having all Oblig programs be valid Repo programs. With
one small exception (that is unrelated to data replication, and will be discussed in
Appendix D.1), we succeeded. In this section we will describe the differences between
Oblig and Repo syntax introduced to support replicated data, including new declaration
syntax, support for changing distribution semantics while cloning data, and new facilities

for user-defined object picklers (analogous to those discussed in Section 3.4.1.3).

4.4.1 Declarations

Repo syntax differs from Oblig syntax primarily in the way data items are declared. In

Obliq, there are three kinds of data items that can have state (shown in Table 4-1), and are

93

Objects
client-server: {xi=>a q,.. X n=>a p}
protected: {protected, x 1=>a 1, ...X n=>a .}
serialized: {serialized, x 1=>a 1, .. X hn=>a o}
synchronized: {replicated, x 1=>a 1, .. X n=>a .}

unsynchronizedy{simple,x ;=>a 1, ... X n=>a n}

Arrays
client-server: [agq,..,a nl
synchronized: replicated [a 1y -, @ nl
unsynchronized:isimple[a 4,...,a N

Variables
client-server: varx=a
synchronized: var replicated x = a
unsynchronized:var simple x = a

Table 4-2: Declaring entities with state in Repo. Repo has the same three kinds of
entities with state as Obliq: objects, arrays and variables. These entities are
accessed and updated in the same was as they are in Obliq. By default, these enti-
ties have Oblig’s client-server distribution semantics. Additional keywords are

used to declare synchronized and unsynchronized replication semantics, as shown.
If an object is declared to Ipeotectedits data fields can only be changed inter-

nally by its own methods and it cannot be cloned. If an object is deckanat

ized there is an implicit lock around its methods that limits access to one thread at

a time. Replicated objects can also be declared as protected and are automatically
serialized (using the Shared Object mutex). Simple objects can be declared as pro-
tected and/or serialized.

thus affected by the addition of support for replication. These declarations are also valid

Repo declarations, and create client-server entities.

To allow programmers to select different distribution semantics, we added the
simple andreplicated modifiers to these declarations, as shown in Tablé 4-2.
Since replicated objects are implemented using the Shared Objects package, we also need
to decide which actions update these entities. In the case of arrays and variables, the deci-
sion is straightforward and intuitively obvious: the access operations shown in Table 4-1
read from the entities, and the update operations update them. In the case of objects, the

decision is slightly more complex.

2. The exact positioning of the keywords in the declarations of Figure 4-2 was determined
by the implementation of the Obliq interpreter.

94

object declaration:
xi1=>a ¢, ...x n=>a pn}
where
x; Is a field name
a; is one of
method: meth(pn 1, ..., pn n) ... end
update method: umeth(pn 4, ..., pn n) ... end
aliases: alias x of a end
data: proc(pn 1, ..., pn) ... end
[ae i, ..., ae nl
constants: 1 (numeric) “strings”,
true, false (boolean)

Figure 4-2: Declaring objects in Repo. Repo objects have four kinds of fields:
methods (declared with tlmeeth keyword), update methods (declared with the
umeth keyword), aliases (that redirect the access to a field of a different object)
and data values (all other fields). Data value fields can contain constants, arrays,
objects or closures (higher-order functions declared witpribe keyword).

The access operations for objects shown in Table 4-1 correspond to reading fields
and invoking methods, while the update operation corresponds to changing the value of a
field. Like arrays and variables, we define the operations of reading and updating fields as
read and update actions, respectively. Notice that this differs from the way Shared Objects
are defined in Modula-3; since we define the action of updating a field as an update opera-
tion, if the object is synchronized, this update will be distributed to all replicas. Updates to
the fields of Shared Objects are not normally distributed in this way. However, being able
to create simple replicated objects without the need to define methods to update the data
fields is convenient, and if the programmer wishes to restrict access to the data fields, they
can declare the object psotected , which prevents the data fields from being modified
from outside the object methods. Alternatively, lexical scoping can be used to define
object data that is not contained in the object fields, and can therefore not be accessed

from outside of the object.

The other access operation on an object is method invocation. As with Shared
Objects at the Modula-3 level, methods are the primary means of updating and accessing
objects. To differentiate between methods that update an object, and those that do not, we

added an update method declaration, denoted withntle¢h keyword. Methods created

95

with the original Oblig method syntax, denoted with iteth keyword, are treated as
read methods, and those defined using theumseth keyword are update methods, and

are therefore applied to all replicas of the object.

4.4.2 Cloning Data

In Oblig, once an object is declared it cannot have fields added to it, nor can it be moved
from the site at which it was created. However, Obliq supports ali@gthg When an

object is cloned, a new object is created with the same field names, and the fields are ini-
tialized to refer to the same values (methods, data or aliases) as the original object. Multi-
ple objects can be cloned together to form a single new object, with the restrictions that all
of the field names must be unique across the set of objects. Similarly, arrays cannot have
their size changed. To change the size of an array, it must have a second array concate-
nated to it to create a new array containing the elements of bbkie new object or array

is created at the site where the operation is executed, which need not be the same site as

that of the objects or arrays being copied.

The decisions to have objects and arrays be immobile and structurally immutable
were made to simplify the implementation and to keep the language clean and predictable.
Cloning objects and concatenating arrays result in the creation of new data elements. If the
old elements are in use, they will continue to exist unchanged; if they are not longer used,

they will eventually be garbage collected.

In Repo, we must define what happens when multiple objects are cloned, or when
multiple arrays are concatenated, and they do not all have the same distribution semantics.
For example, what happens when we concatenate a remote alay @ replicated array
(a2) (.e.a3:=a2 @ al)? When concatenating arrays, we have the new array adopt
the semantics of the array to which it is concatenated: in this example, thea&pidtq
replicated array. The decision is not so simple with objects, because we need a way of

specifying update methods for replicated objects: for example, if we clone a simple object

3. A copy of an array that is the same size can be created by concatenating the array to the
empty array. New arrays are also created by extracting a subarray of an array, but we
will only refer to concatenation for simplicity.

96

to a replicated object to create a replicated object, we may want some of the fields of the

simple object to be considered update methods in the resulting replicated object.

Therefore, we require that all objects have the same semantics if they are to be
cloned together, and provide operators to convert an object from one distribution semantic
to another. These new operatiorenote(al) , replicated(al, umeth-lis} , and
simple(al)) do not modify the semantics of an existing objects; rather, they each take
their object argument() and return a clone of that object with the appropriate distribu-
tion semantics (client-server, synchronized replicated or unsynchronized replicated,
respectively). In addition, theplicated operator takes a second parameter, which is
a list of the field names of methods to be converted from methods (created wittethe
keyword) to update methods (that would have been specified witimién keyword
had this object been originally created as a replicated object). For example, consider the

following object:

let 01 = {simple,
data => 1,
get => meth (s) s.data end,

set => meth (s, val) s.data := val end};

We could create a replicated version of this object as follows:

let 02 = replicated (01, [“set”]);

This would give us the same object as this definition:

97

let 02 =
{replicated,
data => 1,
get => meth (s) s.data end,

set => umeth (s, val) s.data := val end};

For convenience, we also allow arrays to be used as arguments to these three con-
version operators, in which case all three of the operators take the array to be cloned as

their single parameter.

4.4.3 User-defined Picklers

In Oblig, copying an object from one site to another is always the result of an intentional
action by the programmer (either cloning an object or concatenating an array). Therefore,
it is left to the programmer to control what data is copied between processes when they

create new objects or arrays in different processes.

In Repo, on the other hand, replicated data can be copied implicitly when data is
passed between machines. Therefore, we need to provide some way for programmers to
control what is copied, analogous to the Modula-3 custom pickling routines that were dis-
cussed in Section 3.4.1.3. To support pickling of replicated objects, we define the
objectpickler command. In Modula-3, pickling is done by two routines, one that
writes the object to a byte stream, and one that reads the object from a byte stream. Rather
than write two routines for reading and writing objects from and to byte streams, which
would be cumbersome and inefficient in Repo, the programmer creates two simple objects
for reading and writing the object, with a field in these objects for each data field in the

object being pickled. The syntax is as follows:

objectpickler object reader read-actions-object

writer write-actions-object ;

98

Read-actiongndwrite-actionsare the simple objects that define how an object is

to be pickled. For each data fieldahject these two objects must have a corresponding
method that takes a single parameter and returns a Repo value. When the object is being
pickled out to the network, the writer object methods are passed the current value of the
corresponding field in the object, and the return value is written to the network. When the
object is being pickled in from the network, the reader object methods are passed the value
that was read in from the network (the value returned by the corresponding writer object
method), and the return value is assigned to the corresponding field in the object. As an

example, consider the custom pickler that is used by the replicated mutex in Figure 4-8:

objectpickler ret
reader {simple,
cv => meth (s,c) thread_condition() end,
g => meth (s,q) g end}
writer {simple,
cv => meth (s,c) ok end,

g => meth (s,q) q end};

This pickler is needed because the condition variable iovHeeld cannot be
passed across the network. Therefore cthenethod in the writer ignores its parameter
(the condition variable) and returak (which is the Repo null value). Tlog method in
the reader ignores its parameter (thek value read from the network) and creates a new
condition variable and returns it. Thus, each replica of the object has its own local condi-

tion variable. They field is to be passed across the network without being modified.

4.5 The Replication Module

In addition to the changes to the language syntax and semantics required by the addition of
replicated data, we added a builtr@plica module to Repo to give the programmer
additional control over replicated objects. This module defines the Repo equivalents of the
two Shared Object exceptioBsaredObj.Error andSharedObj.Fatal , Which

99

arereplica_failure andreplica_fatal , respectively. It also provides functions

to create and destroy the Repo equivalents of the Shared Object callbacks,
replica_notify andreplica_cancelNotifier . Thereplica_notify

function takes the replicated object and a simple (unsynchronized replicated) object to use
as its notifier. The methods of the notifier object correspond to the pre and post updates
that the programmer wishes to be informed of. See Section 4.6.2 for an example of this
module in use. Finally, the module also exposes the Shared Object runtime routines to

flush the update queue, as described in Section 3.4.2.1.

4.6 Examples

In this section we will give a number of examples to show the simplicity and flexibility of
Repo’s object distribution semantics. First, in Section 4.6.1 we will show how the simple
tracker report distribution object from Section 3.4.1 can be reimplemented straightfor-
wardly in Repo, and extended in a number of interesting ways in a small number of lines
of code. Will we then use these simple objects to illustrate how a programmer would
request notification of changes to the replicated objects in Section 4.6.2. Next, in Section
4.6.3 we take an example from one of our augmented reality prototypes that shows how
flexible and general purpose data distribution allows simple distributed applications to be

built with a minimum of fuss.

In Section 4.6.4 we will address the issue of distributed synchronization, showing
how a simple distributed mutual exclusion lock (mutex) can be implemented using repli-
cated objects. Finally, in Section 4.6.5 we will discuss the design of a hierarchical object
directory that we have used as a central data structuring mechanism in some of our a dis-
tributed virtual environment prototypes.These examples illustrate how all three distribu-
tion semantics are important and can be linked together in straightforward and powerful

ways.

4.6.1 Simple Tracker Report Distribution

In Section 3.4.1, we showed how to implement a simple replicitadkerPosition

object using the Shared Object package. The public interface for this object is shown in

100

let rep = {simple,
x=>0.0,y=>0.0,,z=>0.0}

let trackerDist = {replicated,
data => rep,
set => umeth (self, val)
self.data ;= val;
end,
get => meth (self)
self.val;
end
2
(a) Repo objects mimickingrackerPosition.i3.

let rep = {simple,
x=>0.0,y=>0.0,,z=>0.0};

let trackerDist = {replicated,
data =>rep
h
(b) An alternate implementation, without methods.

let rep = {simple,
x=>0.0,y=>0.0,,z=>0.0};

let trackerDist = {replicated,
set => umeth (self, val) end

3

(c) A stateless implementation.

Figure 4-3: An example of synchronized replicated objects in Repo. This simple
example is based on the tracker distribution object in Figure 3-4. An object analo-
gous to the one implemented in Modula-3 is shown in (a), with a prototype report
objectrep . Of course, any valid Repo object could be used here, but this object is
shown for clarity. Notice thatp is asimple(unsynchronized replicated) object.
Since data fields of Repo’s synchronized replicated can be manipulated directly,
the object could also be defined with no methods, as in (b). Finally, in (c) a stateless
version of the object is shown, in which the data is distributed viasé&ie method

but is not stored in the object.

Figure 3-4 and the private interface and implementation are shown in Figure 3-5. In this
section, we will show how this object, and a few variations of it, can be implemented with
Repo. The version of th€rackerPosition object, calledrackerDist , that corre-
sponds most closely to the object in Chapter 3, is shown in Figure 4-3(a). The most obvi-
ous difference between ttrackerDist andTrackerPosition is the amount of

code requiredTrackerPosition , the Modula-3 version, used almost 48 lines of code

spread over three files, whiteckerDist , the Repo version, required just 9. This

101

translates into an immediate times savings during implementation. While both objects are
easy to understand, the clarity of the Repo implementation is significantly greater due to
the terseness of the code. Of course, in Repo we lose the data hiding and separation of
interface from implementation that exists in Modula-3, but for prototyping and explor-

atory programming, this is not a significant issue.

In Figure 4-3(b), we see an even simpler versiomaakerDist that takes
advantage of the fact that updates to the data fields of a synchronized replicated Repo
object are distributed. In this case, since the only purpose of the two object methods was to
read and write thdata field, we can remove the methods and allow the programmer to

simply access the field directly.

The final variation of th&rackerDist object highlights an interesting feature
of the replication model. Occasionally, when an object such as this is created, the pro-
grammer only cares about changes to the data field, but never accesses the data directly. In
this case, we can create an object wited method that does nothing with its argument.
When this method is invoked, the arguments are marshalled and distributed to all pro-
cesses containing replicas of the object, where the method is invoked on the replicas, caus-
ing any callback objects to have their appropriate methods invoked as well, as discussed in
Section 4.6.2. In effect, one can view such objects as simple message ports: calling the
set method sends a message to all replicas informing them of the new value of the data

item, with the callback objects being used to receive these messages.

4.6.2 Asynchronous Change Notification

One of the features of the Shared Object package, and thus of Repo’s synchronize repli-
cated objects, is that they support asynchronous change notification. The change notifica-
tion is analogous to that provided in Modula-3, and described in Section 3.3.3. An
example of change notification is shown in Figure 4-4. Notice that the structure of the
notifier objects is not substantially different than that of Modula-3 notifier objects. Change

notification is supported by functions in tfeplica module, discussed in Section 4.5.

102

let trackerCB = {simple,

pre ‘set => meth (self, obj, val)
(*do something before set is called*)
true;
end,

post‘anyChange => meth (self, obj)
(* do something after any update *)
end

h

replica_notify(trackerDist, trackerCB);

(a) Repo callback notifier for objects in Figure 4-3(a) and (c).
This object is equivalent to the one in Figure 3-6 (b).

let trackerCB = {simple,
post‘data => meth (self, obj, val)
(*do something after data changes*)
end

k

replica_notify(trackerDist, trackerCB);

(b) Repo callback notifier for objects in Figure 4-3(b).

Figure 4-4: An example of notifier callback objects in Repo. Callback objects for
the Repo tracker distribution objects in Figure 4-3. Notice that they are very similar
in content to the Modula-3 callback objects shown in Figure 3-6 and discussed in
Section 3.3.3. The only noticeable difference is that the names use a bacKqguote (
instead of an underscore)(after thepre andpost keywords in the method

names (e.gpre‘set instead opre_set). This is because underscore is not a
valid character in identifiers, with backquote begin used where underscore nor-
mally would be.

4.6.3 Multi-person Spaceframe Construction

In this section we present a simple example of how Repo’s general purpose data sharing
satisfies our goal of supporting exploratory programming of distributed augmented envi-
ronments. The example illustrates both the ease of sharing arbitrary application state and

the simplicity of modifying an application to share previously unshared state.

As part of the Augmented Reality for Construction (ARC) project, we built an AR
system to assist with the construction of space frame buildings. Our system prompted the
worker by displaying the next part to be installed in the correct location on the partially
completed space frame, as shown in Figure 4-5(a). This prototype was built with the initial

version of Coterie that did not have distributed object support, and is discussed in

103

o

Install strut 11, Then scan it

(a) What the worker sees through their (b) What a remote consultant sees on
head-worn display during the their desktop display when the
installation of strut 11 (see Figure 2-8). worker is installing strut 10.

Figure 4-5: Extending the space frame prototype for remote consultation. To
experiment with the idea of having a remote expert consult with a worker, we
implemented a simple remote viewer for our space frame construction assistant. In
this version, the remote viewer can change the construction step the worker is
performing.

Section 2.6. After this support was added, via the creation of Repo, we wished to explore
how an AR construction assistant could be leveraged in other ways, ranging from monitor-
ing the progress of the project to allowing workers to discuss problems with a remote
expert. The first step in this exploration was to create a new visualization of the construc-
tion site, showing the status of the space frame, the location of the worker and the next

piece they should install, as shown in Figure 4-5(b).

The new visualization prototype first needed to share the state of the construction
task with the ARC prototype. Therefore, we modified the ARC prototype to move its
single state variablestep , representing the current task step) into a replicated object, and
exported this variable to the network. We imported this variable into our remote monitor-

ing prototype, and allowed both programs to change the construction step.

However, we noticed that this did not give us all the information a remote monitor
would need, especially information about when the worker performed incorrect actions.
To distribute this information, we added routines to the replicated object that are called
when various interesting conditions are noticed, shown in Figure 4-6(a). These conditions

include the task being completatb(e), the user scanning the wrong part

104

let initialStepNumber = 28;

let stepObj = {replicated,
step => initialStepNumber,
done => umeth (s) s.step := -1 end,
wrongPart => umeth (s, barcode) end,
wrongPosition => umeth (s) end

h
(a) The replicated state variable. In our demonstration setup,
the worker starts with the spaceframe partially completed,
which is why the initial step number is 28.

let stepCB = {simple,
post'step => meth(s,0,v)
goToStep(v);
end,
post done => meth(s,0)
let oldGo = dummy.findName(stepName);
if oldGo isnot ok then
dummy.remove(oldGo);
dummy.add(congratsText);
congratsText.setName(stepName);
end;
goToStep(-1);
end,
post'wrongPart => meth(s,0,v)
doWrongBC(v);
end,
post 'wrongPosition => meth(s,0)
doWrongPos();
end

2
let stepNotify = replica_notify(stepObj, stepCB);

(b) The notifer for the replicated state variable.

Figure 4-6: The replicated state for the distributed ARC prototype. By moving the
state of the ARC prototype into a replicated variable, we can share it between mul-
tiple processes. Each process can create a notifier variable, similar to the one shown
in (b) to perform whatever action is desired to react to the change. In this example,
taken from the prototype code, the notification methods contain a mixture of inline
code and calls to other procedures defined elsewhere in the code.

(wrongPart) and the user scanning the correct part in the wrong locairomgPo-

sition). Notice that thevrongPart andwrongPosition methods do nothing; they

are simply used to distribute a message, which can be noticed and reacted to in a callback

notification object (as is done in Figure 4-6(b)).

This example illustrates the simplicity of prototyping with Repo. Modifying the
code to access the construction step variable from the replicated object was trivial, as was

105

adding thevrongPart andwrongPosition notification methods. In addition, none

of this information is “typical” distributed virtual environment data, of the sort that would

be supported by a distributed VE toolkit, but Repo allows us to distribute the information
and react to changes in the various programs in a few lines of code that took a few minutes

to write.

4.6.4 Distributed Mutexes

In the original design of the Shared Object package, we had intended to support locking
objects globally. The main motivation for this feature was to allow the programmer to
invoke multiple methods atomically by ensuring no update methods aside from their own
would be executed while the object was locked. However, this facility was never imple-
mented, partially because the implementation effort was non-trivial, but mostly because
the need for it rarely arises: since locking an object globally is expensive, it is more effi-
cient to implement a new method that encapsulates the functionality of a set of existing

methods.

However, while this approach allows programmers to circumvent the need to
atomically call multiple methods on a single object, it is not possible to use similar tech-
niques to atomically invoke methods on a group of objects. While there are a number of
ways this could be done, the simplest approach is to create a distributed mutual exclusion
lock (mutex). In this section, we will describe a number of ways of creating a distributed
mutex in Repo, and use this example to illustrate a number of useful programming tech-
nigues. This example is also important since the Shared Object replication model does not
provide any distributed synchronization primitives, leaving it to the programmer to imple-

ment them. It is therefore instructive to see how this might be done.

A simple implementation of a distributed mutex is shown in Figure 4-7, and is
implemented using a client-server object that contains a normal mutex. The object can be
transmitted to any number of sites, and when they want to acquire the lock they will call
back to the original object and attempt to acquire the local mutex. Similarly, to release the

mutex, they will make a remote call and release the local mutex at the original site.

106

module mutex;
let new = proc ()
let ret = {
mu => thread_mutex(),
acquire => meth (s)
thread_acquire(s.mu);
end,
release => meth (s)
thread_release(s.mu);
end
3
ret;
end;
end module;

Figure 4-7: A simple client-server mutex. The external routiresgire and
release) allow the mutex to be acquired and released by any site. The mutex
exists at one site and all other sites make remote method calls to the object.

This implementation is fine for simple programs, but suppose we wanted to imple-
ment a mutex that represents a lock around some important piece of state, and we wanted
to include information about the state of the mutex on a graphical display, perhaps show-
ing if the lock is held and who holds its. In this case, it would be more appropriate to
implement the mutex with a replicated object, so that the state is local and can be queried
at any time, and callback notification objects can be used to asynchronously notify the user
when the state of the mutex changes. A simple implementation using a replicated object is
shown in Figure 4-8. This object implements a mutex by having the acquire method
enqueue amd in a replicated queue (tlyedata field) and waiting until itsl has reached
the head of the queue before returning to the caller. The release method simply removes
the top element from the queue. We enqueue events in the distributedjqoezresure
the mutex is fair and will not give preferential access to sites close to the sequencer. An
unfair implementation might have an internal update method that tries to acquire the
muteXx, and raises an exception if the mutex is held. The acquire method would wait until
the mutex is released and then try again to acquire it. Such an implementation would give
preferential access to sites that have a faster network connection to the sequencer for the

mutex object, which is undesirable.

Notice that in both these implementations, the mutex can be released by any pro-

cess, not just the one that acquired it. This may seem odd, but it is analogous to the behav-

107

module mutex;
let held = exception("held mutex");
let new = proc ()
let ret = {replicated,
cv => thread_condition(),
id => meth (s)
sys_address & "." & fmt_int(process_myld) &
"" & fmt_int(thread_id(thread_self()))

end,
q=>],
enqueueld => umeth (s,id)
s.q:=s.g @ [id];
end,

dequeueld => umeth (s)
s.q :=s.q[1 for (#(s.q)-1)];
thread_signal(s.cv);
end

acquire => meth (s)
let id = s.id();
if #(s.q) > 0 then
if s.q[0] is id then raise(held) end;
end;
s.enqueueld(id);
watch s.cv until (s.q[0] is id) end;
end,
release => meth (s)
s.dequeueld();
end

objectpickler ret
reader {simple,
cv => meth (s,c) thread_condition() end,
g => meth (s,q) g end}
writer {simple,
cv => meth (s,c) ok end,
g => meth (s,q) g end};
ret;
end;
end module;

Figure 4-8: A simple replicated mutex. The external routinesguire and
release) allow the mutex to be acquired and released by any site.

ior of a non-distributed mutex, which can be released by any thread, not just the one that

acquired the mutex. In fact, the implementation in Section 4-7 would not work if the

mutex had to be released by the same thread that acquired it, because there is no way to
guarantee that the thread servicing the remote method call for the acquire would also ser-

vice the remote method call for the release.

However, this feature creates a potential problem with both of these distributed

mutexes: if the process holding the mutex terminates without releasing it, it will never be

108

unlocked. While this behavior is also analogous to a non-distributed mutex, it may be con-
sidered undesirable in many cases because processes in a distributed system are much
more likely to terminate unexpectedly than threads in a process. Therefore, we have
implemented a version of the replicated mutex in Appendix E that will release the mutex if
the process that acquired the mutex terminates without releasing it. This version uses a cli-
ent-server object (rather than a text string) asdhavhen acquiring the mutex, and if the

id object becomes unreachable, the mutex is automatically unlocked.

The version of the mutex in Appendix E also implements another useful method,
tryAcquire . This method attempts to lock the mutex, but if the mutex is locked, the
method fails and raises an exception instead of blockingtryAequire method is
useful when creating distributed, interactive applications where you do not want to block
the user-interaction for any significant length of time. For example, imagine implementing
an interactive, multi-user graphical editor. If we want to ensure that only one person can
manipulate an object at a time, we may use a distributed mutex such as this for each
object. When the user clicks on an object to modify it, the system could issée-a
quire on that object’s mutex. If the mutex is available, it would be locked, and the pro-
gram could change the object to indicate that user may modify it. If the mutex is already
locked, theryAcquire would fail, and the program could beep (or issue some other

notification), indicating that the object is not available for updating by the user.

4.6.5 Hierarchical Object Directories

In this section, we will describe how hierarchiobject directoriefHOD) would be
implemented in Repo. The goal of the object directories is to provide a mechanism for
structuring applications that is useful for both stand-alone and distributed applications.
The HOD is similar in flavor to directories in a file system, the hierarchical environments
used in dVS [Grimsdale, 1991], or the name spaces used in many different application

domains. We will not include the code for our HOD, as it is fairly long.

The purpose of a HOD is to handle object lookup and management. It was
designed to be analogous to a file-system, with a single object directory (OD) containing a

set of key-value pairs that associate objects with textual names. An OD can contain refer-

109

ProcessA ProcesB
/ OD Server \ / OD Client\
a d
b <]
s [~ T [
[855558
C [
;\588888?4 — — =

3 =/

3 =/

Figure 4-9: A single Object Directory (OD). The server on the left consists of (a)

an unsynchronized replicated object acting as a wrapper, (b) a synchronized, repli-
cated object implementing the notifier directory and (c) a client-server object
implementing the storage directory. The client on the right has (d) its own copy of
the wrapper object, (e) a shared copy of the natifier directory, and (f) a remote ref-
erence to the storage directory.

ences to other ODs, allowing arbitrary hierarchies to be created. References to virtually
any kind of object can be stored in an OD. The OD can contain the actual objects or refer-

ences to entries in other ODs (the equivalent to symbolic links in a file-system).

In addition to providing a general solution to tieming problenthow to mean-
ingfully assign names to services and resolve those names to computer addresses) [Cou-
louris et al., 1994], the HOD can serve as the primary structuring metaphor for a family of
distributed applications. By allowing an OD to contain references to other ODs, we can
organize the HODs into a single global name space that allows applications to communi-
cate with each other in a meaningful way. Within this hierarchy, data can be organized in
well-defined subhierarchies so that applications know where to look for particular kinds of
data and services. Furthermore, by allowing clients to watch one or more ODs for
changes, such as the addition or deletion of entries, clients can react to changes in the
world without the need for direct communication with the instigator of those changes.
Such shared data-space techniques are widely used in Al blackboard systems and pro-

gramming languages such as Linda [Carriero and Gelernter, 1992].

To build a simple OD, each of the three types of objects is used, as shown in

Figure 4-9. The OD itself is implemented using an unsynchronized replivedpger

110

object (Figure 4-9(a) and (d)). This object has data fields and methods to implement the
OD functionality. For example, there would be methods to add elements to, or delete ele-
ments from, the OD. In addition to any other incidental data, the OD contains references to
two important objects in its data fieldsstarage directoryand anotifier directory The

storage directorys a client-server object that implements a centralized object store using
key-value pairs (Figure 4-9(c)). It contains the actual data objects stored in the OD. The
notifier directoryis a synchronized replicated object that contains a small, constant-size
piece of information for each entry in the directory, such as the type of the object, and is

also used to receive notification of changes to the directory (Figure 4-9(b) and (e)).

Because the storage directory is implemented with a client-server object, it is not
replicated. The single copy is accessed via remote method calls from any process that
receives a copy of the OD. Conversely, since the notifier directory is implemented with a
synchronized replicated object, it is fully replicated in all processes that receive a copy of
the OD, with any updates to the OD distributed to it. There are three things to understand
about why the OD is designed this way: what happens when an OD is passed to a remote
process, how OD methods are implemented, and how Callback Objects are used by the
OoD.

First, consider what happens when an OD is passed from one process to another, as
a parameter or return value of a client-server or replicated object method call. Since the
OD is an unsynchronized replicated object, a new, independent copy of the object is cre-
ated in the second process. As part of the process of creating that copy, the data fields of
the object are copied using their semantics. Therefore, the new process will contain a new
replica of the notifier directory, and a remote reference to the storage directory (Figure 4-
9(f)). All of this happens automatically when a reference to the OD is transmitted to a new

process.

Given the structure shown in Figure 4-9, how are OD methods implemented? Con-
sider adding an element to an OD with a sinplemethod, put(name, objecf) which
storesobjectin the OD under the kegame Theputmethod of the OD would perform the

following actions:

111

« store the object in the storage directory using the corresponding storage dpattory

method, and

« store the type of the object in the notifier directory using the corresponding notifier

directoryput method, which has been designated as a shared update method.
No matter which process performs the operation, the outcome is the same:

« aremote procedure call is performed to store the object in the central storage directory,

and

 the type of the object is stored in the shared notifier directory in all replicas, causing
any Callback Objects registered for these replicas to haveptiieiotifier methods

invoked.

The wrapper object would use the Callback Objects associated with the notifier
directory to monitor an object directory for changes on behalf of local clients that have

requested notification when the OD changes.

4.7 Implementation

In this section, we will discuss the implementation of Repo. In particular, we will use the

implementation of Repo as an example of using the Shared Object package to add repli-
cated data to a complex application. Another interesting aspect of our experience imple-
menting Repo, how we dealt with an efficiency problem of Obliq that was exacerbated by

the addition of replicated data, will be discussed in Appendix D.3.

To create Repo, there were three kinds of objects (representing objects, arrays and
variables) in the Oblig runtime that needed to be updated to support the two additional
replicated distribution semantics. We shall look at the implementation of the Obliq and
Repo array objects in detail, and then comment on an interesting aspect of the object rep-

resenting Repo objects.

The definitions for the Obliq array object are shown in Figure 4-10. All objects
that represent Oblig values inherit from tal object. The array objedtalArray is an

Obliq value that contains a single fietdmote , that holds a reference to a client-server

112

Val = BRANDED "Val* OBJECT END;
ValArray = Val BRANDED "ValArray" OBJECT
remote: RemArray;
END;

RemArrayServer <: RemArray;
RemArray = NetObj.T BRANDED "RemArray" OBJECT METHODS
Size(): INTEGER RAISES {NetObj.Error};
Get(i: INTEGER): Val RAISES {ServerError, NetObj.Error};
Set(i: INTEGER,; val: Val)
RAISES {ServerError, NetObj.Error};
Sub(start,size: INTEGER): ValArray
RAISES {ServerError, NetObj.Error};
(* Extract the subarray self[start for size]. *)
Upd(start, size: INTEGER; READONLY other: REF Vals)
RAISES {ServerError, NetObj.Error};
(* Update self[start for size] with other[0 for size]. *)
Obtain(): REF Vals RAISES {NetObj.Error};
(* Return self.array if local, or a copy of it if remote.
Modifying the result of Obtain may violate network
transparency. *)
END;

Figure 4-10: The internal definition of an Obliq arrayalArray is an Obliq

value object, which contains a reference to the client-server éGtgechrray .
RemArrayServer is the concrete local implementation of the array object that
serves the remote method calls. Methods are invoked througéntiote field.

Network ObjectRemArray , implementing the actual array. When an instancéabf
Array is transmitted over the network, the Network Object runtime system substitutes a
proxy object foremote that redirects all access across the network to the original object.

Oblig objects and variables are implemented in exactly the same way.

To convert the Oblig runtime to support replicated data, we added a level of indi-
rection, as shown in Figure 4-11. In the Oblig runtime, when an array method (such as
Size orObtain) needed to be invoked, the code would explicitly dereference the
remote field of theValArray object. In the Repo runtime, the methods have been
pushed out to th¥alArray object, and the runtime code modified to invoke those meth-
ods directly without referring to themote field, which is removed from the object.
Three subtypes dfalArray are defined, which represent the three object semantics.
Each of these objects has a field, analogous trethete field of ValArray in the
Obliq objects, that contains an object of the appropriate type (a Network Object for the

client-server array, a Shared Object for the synchronized replicated array, and a plain

113

Val = BRANDED "Val" OBJECT END;
ValArray = Val BRANDED "ObValue.ValArray" OBJECT METHODS
Size(): INTEGER RAISES {SharedObj.Error, NetObj.Error,
Thread.Alerted};
Get(i: INTEGER): Val RAISES {SharedObj.Error, ServerError,
NetObj.Error, Thread.Alerted};
Set(i: INTEGER; val: Val) RAISES {SharedObj.Error,
ServerError, NetObj.Error, Thread.Alerted};
Sub(start,size: INTEGER): ValArray RAISES {SharedObj.Error,
ServerError, NetObj.Error, Thread.Alerted};
Upd(start, size: INTEGER; READONLY other: REF Vals)
RAISES {SharedObj.Error, ServerError, NetObj.Error,
Thread.Alerted};
Obtain(): REF Vals RAISES {SharedObj.Error, NetObj.Error,
Thread.Alerted};
END;

ValRemArray <: ValRemArrayPublic;
ValRemArrayPublic = ValArray OBJECT remote: RemArray END;

ValReplArray <: ValReplArrayPublic;
ValReplArrayPublic = ValArray OBJECT replica: ReplArray END;

ValSimpleArray <: ValSimpleArrayPublic;
ValSimpleArrayPublic = ValArray OBJECT simple: SimpleArray END;

... RemArray is unchanged ...
... SimpleArray is defined analogously ...

ReplArrayStd <: ReplArray;
<* SHARED UPDATE METHODS ReplArrayStd.init, ReplArrayStd.Set,
ReplArrayStd.Upd *>
ReplArray <: ReplArrayPublic;
ReplArrayPublic = SharedObj.T BRANDED
"ObValue.ReplArrayServerPublic" OBJECT METHODS
init (): ReplArray RAISES {SharedObj.Error};
Size(): INTEGER RAISES {SharedObj.Error};
Get(i: INTEGER): Val RAISES {ServerError, SharedObj.Error};
Set(i: INTEGER,; val: Val)
RAISES {ServerError, SharedObj.Error};
Sub(start,size: INTEGER): ValArray
RAISES {ServerError, SharedObj.Error};
Upd(start, size: INTEGER; READONLY other: REF Vals)
RAISES {ServerError, SharedObj.Error};
Obtain(): REF Vals RAISES {SharedObj.Error};
END;

Figure 4-11: The internal definition of a Repo array. We move the methods for
accessing the array to the Repo value oby&iArray , and create three subtypes

for the three distribution semantics. The methods of these subtypes invoke the
methods of their appropriate internal objeenfote , replica orsimple).

The Obliq runtime code was modified to invoke the methods of the array value
object (ValArray), instead of dereferencing themote field directly. The code

to generate new arrays also had to be changed to generate the appropriate subtype,
but aside from these well defined changes, the code was not substantially modified.

114

ReplObjStd <: ReplObj;
<* SHARED UPDATE METHODS ReplObjStd.init, ReplObjStd.InvokeUpdate,
ReplObjStd.Update, ReplObjStd.RedirectFields *>
ReplObj <: ReplObjPublic;
ReplObjPublic = SharedObj.T BRANDED "ObValue.ReplObjServerPublic"
OBJECT METHODS
init (): ReplObj RAISES {SharedObj.Error};
Who(VAR(*out*) protected: BOOLEAN): TEXT
RAISES {SharedObj.Error};
Select(swr: SynWr.T; label: TEXT; VAR hint: INTEGER): Val
RAISES {Error, Exception, ServerError, SharedObj.Error};
Invoke(swr: SynWr.T; label: TEXT; argNo: INTEGER;
READONLY args: Vals; VAR hint: INTEGER): Val
RAISES {Error, Exception, ServerError, SharedObj.Error};
Update(label: TEXT; val: Val; internal: BOOLEAN;
VAR hint: INTEGER)
RAISES {ServerError, SharedObj.Error};
Redirect(val: Val; internal: BOOLEAN)
RAISES {ServerError, SharedObj.Error};
Has(label: TEXT; VAR hint: INTEGER): BOOLEAN
RAISES {SharedObj.Error};
Obtain(internal: BOOLEAN): REF ObjFields
RAISES {ServerError, SharedObj.Error};
... other methods, needed by the reflection package ...

END;
(a) The replicated object definition.
REVEAL
ReplObj = ReplObjPublic BRANDED "ObValueRep.ReplObjServerRep”
OBJECT
... data fields ...
METHODS

InvokeUpdate(swr: SynWr.T; label: TEXT; argNo: INTEGER,;
READONLY args: Vals; VAR hint: INTEGER): Val
RAISES {Error, Exception, ServerError, SharedObj.Error} :=
ReplObjlinvokeUpdate;
... Oother internal methods ...
OVERRIDES
... external method overrides ...
END;

(b) Excerpts from the private part of the replicated object definition.

Figure 4-12: The internal definition of a Repo replicated object. This object is
interesting because, unlike the array object in Figure 4-11, it makes use of internal
update methods.

Modula-3 object for the unsynchronized replicated array). When these objects are trans-
mitted across the network, the Network or Shared Object runtimes handle implementing

the semantics.

Repo objects and variables are implemented in an analogous way. However, there

is one detail of the implementation of Repo objects that is interesting, concerning the

115

implementation of update methods to Repo objects. If we look at the Modula-3 object rep-
resenting Repo objects, shown in Figure 4-12, we see that there is one method for invok-
ing Repo methoddr{voke). Since some Repo object methods need to be invoked as
Shared Object non-update methods and some need to be invoked as Shared Object update
methods, we add a new methdavpkeUpdate) for invoking update methods, and

denote it as a Shared Object update method. However, since we do not want to require the
runtime code to know if the method they are calling is an update method or not, we make
thelnvokeUpdate method an internal method, and add a check insidevioke

method to see if the method being invoked is an update method. If it isytheUp-

date method is called to handle the method invocation. In this way, the external interface
of theRepoObj object is unchanged from Oblig to Repo, reducing the changes required

in the rest of the code.

4.8 Usability of Repo

We have used Repo to build a number of prototypes, including those described throughout
this dissertation, and our experiences have been mostly positive. The ability to quickly and
effortlessly create distributed applications using arbitrary combinations of objects, arrays
and variables with both client-server and replicated distribution semantics has allowed us
to concentrate on the applications and the interaction techniques we are interested in

exploring, and take the distribution of data largely for granted.

While programmers can also build data structures in Modula-3 that combine these
distribution semantics, courtesy of the Shared and Network Objects packages, exploratory
programming in an interpreted language such as Repo is significantly faster. Furthermore,
Repo’s dynamic type system, and the ability to distribute arrays and variables in addition
to objects, gives the programmer greater flexibility. While Shared and Network Objects
can be used just as normal objects, Modula-3’s strong static typing combined with the
requirement that these objects inherit from different distinguished types means that a pro-
grammer can not mix them quite so freely as objects can be mixed in Repo. For example,

in Modula-3, a procedure must be defined to take one of a Network or Shared Object as a

116

parameter, but in Repo any data value can be passed as a parameter to the same procedure

(it is up to the programmer to ensure that correct values are used in the correct locations).

However, there is a price to be paid for the increased flexibility of a dynamically
typed language, and that is the greater difficulty in tracking down bugs; since procedures
are untyped, incorrect usage may not cause errors immediately, since the variables them-
selves may not be used immediately. While the prototypes we have been creating have
typically only been a few hundred to a few thousand lines of code, we have experienced
problems debugging some of the larger ones. It was these problems that motivated us to
create the reflection module (see Appendix D.2) to allow programmers to add type check-
ing and controlled object access to their programs when they see fit. By judiciously check-
ing parameters in a few key locations in a program, debugging of programs has been

greatly simplified.

We have also learned some lessons about our design of Repo. One relates to the
usefulness of the custom pickling facilities. It turns out that programmers need to be told
that the pickling facilities in Repo are much less efficient than in Modula-3, and should not
be used to try and obtain small performance improvements. In Modula-3, picklers are
associated with objects of a certain type, and are compiled into all instances of the pro-
gram. Therefore, aside from sending a small value to identify the type, only the data gen-
erated by the pickling routine is sent across the network. In Repo, on the other hand, there
are no object types, so these pickling objects are associateidstéhcef Repo
objects. Therefore, before these pickling object methods are run, the infrastructure must
copy the basic object structure, including the pickling objects themselves and all the object
methods, between processes. As a result, attaching custom pickling objects to an object
initially increases the amount of information that is sent over the network, and is therefore
useful primarily for situations, such as the example in Section 4.4.3, where correctness
(i.e., a condition variable can not be copied over the network), rather than efficiency, is the

motivation for creating the custom pickler.

Finally, we have noticed a recurring problem with novice programmers that has led
us to desire changing our decision to aim for backward compatibility with Obliq. We have

found that novice programmers tend to forget to specify the distribution semantics of data

117

values as they are programming, implicitly assuming that the default is unsynchronized
replication because that is what they are used to in traditional programming languages. We
suspect that if we required all data values (arrays, objects and variables) to have their dis-
tribution semantics specified, instead of having objects default to client-server sharing
with replication as an option, novices would learn to think about the semantics of the
objects they are creating more quickly, and experienced programmers would not introduce
bugs into their programs by forgetting to specify the semantics. However, this problem,
and the others mentioned in this section, are relatively minor, especially in relation to

Repo’s advantages for building distributed applications.

118

CHAPTER 5 RepO-BD

“It's part of the lattice of coincidence that lays on top of everything”

— Miller, from Repo Man

In the previous chapters, we have discussed the design of various components of Coterie.
We started with the Shared Object package, a flexible system for exploratory program-
ming of distributed interactive applications, and showed examples of its usefulness. We
then discussed Repo, the interpreted language built on top of the Shared Object package,
in which all Coterie applications are written. Repo presents the programmer with a distrib-
uted language and a set of libraries for doing various common tasks, such as interacting
with trackers or file systems, or building 3D graphical scenes using Oblig-3D. (Oblig-3D
was introduced in Section 2.5 and will be discussed in greater depth in Section 5.2.) In this
chapter, we will discuss Repo-3D, a novel distributed graphics package that is the final

significant component of Coterie.

Looking back at the prototypes described in Section 2.6, it turns out that the bulk
of our development time, and the bulk of the resulting code, involved using Oblig-3D to
create 3D graphical displays. Unfortunately, since Oblig-3D data structures are not
directly distributed, if we use it to build distributed prototypes programmers will be forced
to build their own distributed graphical data structures in Repo and synchronize them to
the ODblig-3D scenes in each process. This is a tedious and error prone endeavor, and is
contrary to our original goal of having distributed prototypes be as simple and straightfor-
ward to implement as non-distributed ones. To address this problem, we created Repo-3D,
a successor to Oblig-3D in which most of the objects in the graphical scene are built using
Shared Objects and are therefore directly distributable. Repo-3D is aimed at simplifying

the creation of the graphical components of our distributed applications.

119

(a) (b)

Figure 5-1: Two meanings oflistributed graphics(a) a single logical graphics system
with distributed components, and (b) multiple distributed logical graphics systems. We
use the second definition here.

Traditionally,distributed graphicias referred to the architecture of a single
graphical application whose components are distributed over multiple machines (e.g., our
initial single-user AR prototypes, discussed in Section 2.1, as well as the work of others,
such as [Fairen and Vinacua, 1997], [Holbrook et al., 1995], and [Phillips et al., 1989])
(Figure 5-h). By taking advantage of the combined power of multiple machines, and the
particular features of individual machines, otherwise impractical applications became fea-
sible. However, as machines have grown more powerful, application domains such as
Computer Supported Cooperative Work (CSCW) and Distributed Virtual Environments
(DVEs) have been making the transition from research labs to commercial products. In
addition, it is finally becoming feasible to experiment with more heavily distributed appli-
cation domains, such as augmented environments (AES). As a result, tiestabuted
graphicsis increasingly used to refer to systems for distributing the shared graphical state
of multi-display/multi-person, distributed, interactive applications (Figure 5-1b). This is

the definition that interests us, and that we use here.

While many excellent, high-level programming libraries are available for building
stand-alone 3D applications (e.g., Oblig-3D, Inventor [Strauss and Carey, 1992], Per-
former [Rohlf and Helman, 1994] and Java 3D [Sowizral et al., 1998]), there are no simi-

larly powerful and general libraries for building distributed 3D graphics applications. All

120

CSCW and DVE systems with which we are familiar (discussed in Section 2.4) use the
approach mentioned above: a mechanism is provided for distributing application state
(either a custom solution or one based on a general-purpose distributed programming
environment, such as ISIS [Birman, 1993] or Repo), and the state of the graphical display
is maintained separately in the local graphics library. As we have found, keeping these

“dual databases” synchronized is a complex, tedious, and error-prone endeavor.

This problem is similar to the “dual database” problem encountered when building
non-distributed graphical applications, where application and graphical state must be
maintained separately and manually synchronized by the programmer. The dual database
problem is addressed by the designers of modern non-distributed 3D graphics libraries,
such as Oblig-3D and Inventor, by allowing programmers to extend the graphical scene
objects to encode application state. Extending this approach to a distributed context is the
basis for our design of Repo-3D; Repo-3D’s distributed objects can be extended to include
application state, helping the programmer avoid the dual database problem when building

distributed graphical applications.

However, no matter how simple the construction of a distributed application may
be, a number of differences between distributed and monolithic graphical applications

must be addressed. These include:

« Distributed control In a monolithic application, a single component can oversee the
application and coordinate activities among the separate components by notifying them
of changes to the application state. This is not possible in a non-trivial distributed appli-
cation. Therefore, we must provide mechanisms for different components to be notified

of changes to the distributed state.

« Interactivity.Updates to distributed state will be slower than updates to local state, and
the amount of data that can be distributed is limited by network bandwidth. If we do not
want to sacrifice interactive speed, we must be able to perform some operations locally.
For example, an object could be dragged locally with the mouse, with only a subset of

the changes applied to the replicated state.

121

« Local variations.There are times when a shared graphical scene may need to be modi-
fied locally. For example, a programmer may want to highlight the object under one

user’s mouse pointer without affecting the scene graph viewed by other users.

Repo-3D addresses these problems in two ways. First, as with any Shared Object,
a programmer can associate a Shared Object Callback Object with most Repo-3D objects.
When combined with Repo’s general purpose programming facilities, this allows reactive
programs to be built in a straightforward manner. To deal with the second and third prob-
lems, we introduce the notion lofcal variationsto graphical objects. That is, we allow
the properties of a graphical object to be modified locally, and parts of the scene graph to

be locally added, removed, or replaced.

In Section 5.1 we will discuss related work, followed by a more in-depth overview
of Oblig-3D in Section 5.2. The design of Repo-3D is covered in Section 5.3, followed by
some examples of Repo-3D in use in Section 5.4. The implementation will be discussed in
Section 5.5, and some performance issues in Section 5.6. We will close the chapter with a

discussion of our experiences using Repo-3D.

51 Related Work

There has been a significant amount of work that falls under the first, older definition of
distributed graphics. A large number of systems, ranging from established commercial
products (e.g., IBM Visualization Data Explorer [Lucas et al., 1992, IBM

Corporation, 1993]) to research systems (e.g., PARADISE [Holbrook et al., 1995] and
ATLAS [Fairen and Vinacua, 1997]), have been created to distribute interactive graphical
applications over a set of machines. However, the goal of these systems is to facilitate
sharing of application data between processes, with one process doing the rendering.
While some of these systems can be used to display graphics on more than one display,

they were not designed to support high-level sharing of graphical scenes.

Most high-level graphics libraries, such as UGA [Zeleznik et al., 1991], Inventor
[Strauss and Carey, 1992] and Java 3D [Sowizral et al., 1998], do not provide any support

for distribution. Others, such as Performer [Rohlf and Helman, 1994], provide support for

122

distributing components of the 3D graphics rendering system across multiple processors,
but do not support distribution across multiple machines. One notable exception is TBAG
[Elliott et al., 1994], a high-level constraint-based, declarative 3D graphics framework.
Scenes in TBAG are defined using constrained relationships between time-varying func-
tions. TBAG allows a set of processes to share a single, replicated constraint graph. When
any process asserts or retracts a constraint, it is asserted or retracted in all processes. How-
ever, this means that all processes share the same scene, and that the system’s scalability is
limited because all processes have a copy of (and must evaluate) all constraints, whether
or not they are interested in them. There is also no support for local variations of the scene

in different processes.

Machiraju [Machiraju, 1997] investigated an approach similar in flavor to ours, but
it was not aimed at the same fine-grained level of interactivity and was ultimately limited
by the constraints of the implementation platform (CORBA and C++). For example,
CORBA objects are heavyweight and do not support replication, so much of their effort
was spent developing techniques to support object migration and “fine-grained” object
sharing. However, their fine-grained objects are coarser than ours, and, more importantly,
they do not support the kind of lightweight, transparent replication we desire. A program-
mer must explicitly choose whether to replicate, move, or copy an object between pro-
cesses when the action is to occur (as opposed to at object creation time). Replicated
objects are independent new copies that can be modified and used to replace the original—
simultaneous editing of objects, or real-time distribution of changes as they are made is

not supported.

Of greater significance is the growing interest of this sort of system in the Java and
VRML communities. Java, like Modula-3, is much more suitable as an implementation
language than C or C++ because of its cross-platform compatibility and support for
threads and garbage collection: Without the latter two language features, implementing
complex, large-scale distributed applications is extremely difficult. Most of the current
effort in these communities has been focused on using Java as a mechanism to facilitate
multi-user VRML worlds (e.g., Open Communities [Open Communities, 1997]). Unfortu-

nately, these efforts concentrate on the particulars of implementing shared virtual

123

environments and fall short of providing a general-purpose shared graphics library. For
example, the Open Communities work is being done on top of SPLINE [Waters

et al., 1997], which supports only a single top-level world in the local scene database.

5.2 Oblig-3D: An Overview

Oblig-3D is composed of Anim-3D, a 3D animation package written in Modula-3, and a
set of wrappers that expose Anim-3D to the Obliq programming language (see

Section 2.5). Anim-3D is based on three simple and powerful conagyaighical objects

for building graphical scenegropertiesfor specifying the behavior of the graphical
objects, and input evenallbacksto support interactive behavior (these callbacks are
unrelated to the Shared Object Callback Objects). Anim-3D usesuthage-repair

model: whenever a graphical object or property changes (is damaged), the image is

repaired without programmer intervention.

Graphical object§GOSs) represent all the logical entities in the graphical scene:
geometry (e.g., lines, polygons, spheres, polygon sets, and text), lights and cameras of var-
ious sorts, and groups of other GOs. One special type of grouRdbt50, represents a
window into which graphics are rendered. GOs can be grouped together in any valid

directed acyclic graph (DAG). The GO class hierarchy is shown in Figure 5-2

A propertyis defined by amameand avalue The name determines which attribute
is affected by the property, such as “Texture Mode” or “Box Cornerl”. The value specifies
how it is affected and is determined by dishavior a time-varying function that takes the
current animation time and returns a value. Properties, property values, and behaviors are
all objects, and their relationships are shown in Figure 5-3. When a property is created, its
name and value are fixed. However, values are mutable and their behavior may be changed
at any time. There are four kinds of behaviors for each type of properstantdo not
vary over time)synchronougfollow a programmed set séquestssuch as “move from A
to B, starting at time t=1 and taking 2 secondsi§ynchronougexecute an arbitrary time-
dependent function to compute the value) depgendenfasynchronous properties that

depend on other properties). Synchronous properties are linkedhtation handleand

124

RootGO
GroupGo ChoiceGroupGO
OrthoCameraGO
{ PerspCameraGO
AmbientLightGO
VectorLightGO
PointLightGO
SpotLightGO
LineGO ——{IndexedLineSetGO
NonSurfaceGO —{ MarkerGO
TexttGO — {Text2DGO
PolygonGO
BoxGO
SphereGO
CylinderGO
DiskGO
TorusGO
QuadMeshGO
IndexedPolygonSetGO

CameraGO ————

LightGO

GO ——

SurfaceGO

Figure 5-2: The Repo-3D GO class hierarchy. Most of the classes are also in Oblig-
3D. The italicized ones were added to Repo-3D. The bold classes are abstract.

do not start satisfying their requests until the animation handle is signalled. By linking
multiple properties to the same handle, a set of property value changes can be synchro-

nized.

Associated with each G@is a partial mapping of property names to values deter-
mined by the properties that have been associatedywittproperty associated witi
affects not onlhyg but all the descendants gthat do not override the property. A single
property may be associated with any number of GOs. It is perfectly legal to associate a
property with a GO that is not affected by it; for example, attaching a “Surface Color”
property to a GroupGO does not affect the group node itself, but could potentially affect
the surface color of any GO contained in that group. A RootGO sets an initial default

value for each named property.

125

Figure 5-3: The relationship between properties, names, values, and behaviors. Each
oval represents an object and arrows show containment.

There are three types of input event callbacks in Anim-3D, corresponding to the
three kinds of interactive events they handieusecallbacks (triggered by mouse button
events)motioncallbacks (triggered by mouse motion events)kayiboardcallbacks
(triggered by key press events). Each object has three callback stacks, and the interactive
behavior of an object can be redefined by pushing a new callback onto the appropriate
stack. Any event that occurs within a root window associated with a Raot@Che
delivered to the top handler o callback stack. The handler could delegate the event to
one ofr’s children, or it may handle it itself, perhaps changing the graphical scene in some

way.

DistAnim-3D is the Modula-3 3D graphics and animation library underneath
Repo-3D. Itis a direct descendant of Anim-3D in which many of the graphical objects are
distributed by being implemented with the Shared Object package. In addition to the
objects being distributed, it has had many additional facilities added to it to support gen-
eral-purpose 3D graphical applications, which are discussed in Appendix G. These
include the addition of new GOs supporting indexed line and polygon sets, choice groups,
and text (as shown in Figure 5-2), plus new properties to support these new nodes (such as
font name or text style) and to enhance existing GOs with features such as texture map-
ping. DistAnin-3D also includes a new pair of callbagk®jectionandtransformation

callbacks) and support for 2D picking.

Since DistAnim-3D is embedded in Repo instead of Obliq (see Chapter 4), the

resulting library is called Repo-3D. The interfaces for all of Repo-3D’s modules can be

126

found in Appendix H. In the rest of this chapter, we will refer to either DistAnim-3D or

Repo-3D, as appropriate.

5.3 Design Of Repo-3D

Repo-3D’s design has three logical parts: the conversion to Shared Objects, the introduc-
tion of local variations, and support for extensibility. These are the topics of Sections 5.3.1
through 5.3.3. Local variations are introduced to handle two issues mentioned in

Section 5.1: transient local changes and responsive local editing.

5.3.1 Conversion to Shared Objects

The Anim-3D scene-graph model is well suited for adaptation to a distributed environ-
ment. First, in Anim-3D, properties are attached to nodes, not inserted into the graph, and
the property and child lists are unordered (i.e., the order in which properties are assigned
to a node, or children are added to a group, does not affect the final result). In libraries that
insert properties and nodes in the graph and execute the graph in a well-defined order
(such as Inventor), th&blingsof a node (or subtree) can affect the attributes of that node
(or subtree). In Anim-3D, and similar libraries (such as Java 3D), properties are only
inheriteddownthe graph, so a node’s properties are a function of the node itself and its
ancestors—its siblings do not affect it. Therefore, subtrees can be added to different scene

graphs, perhaps in different processes, with predictable results.

Second, the interface (both compiled Anim-3D and interpreted Oblig-3D) is pro-
grammatic and declarative. There is no “graphical scene” file format per se: graphical
scenes are created as the side effect of executing programs that explicitly create objects
and manipulate them via the object methods. Thus, all graphical objects are stored as the
Repo-3D programs that are executed to create them. This is significant, because by using
the Shared Object package to make the graphical objects distributed, the “file format” (i.e.,

a Repo-3D program) is updated for free.

Converting Anim-3D objects to Shared Objects involved three choices: what

objects should be replicated using Shared Objects, what methods update the state of those

127

objects, and what the global, replicated state of each of those objects is. Since Shared
Objects have more overhead (e.g., method execution time, memory usage, and latency
when passed between processes), not every category of object in Repo-3D is replicated
using them. We will consider each of the object categories described in Figure 5.2 in turn:
graphical objects (GOs), properties (values, names, behaviors), animation handles, and
input callbacks. For each of these objects, the obvious methods are designated as update
methods, and, as discussed in Chapter 3, the global state of each object is implicitly deter-
mined by those update methods. After discussing those three classes of objects, Repo-

3D’s support for change notification will be discussed.

5.3.1.1 Graphical Objects

GOs are the most straightforward to address. There are currently twenty-one concrete
types of GOs, as shown in Figure 5-2, and all but the RootGOs are replicated. For com-
plete details of all the Repo-3D GOs, see Appendix H.1. Since RootGOs are associated
with an onscreen window, they are not replicated—window creation remains an active
decision of the local process. Furthermore, if replicated windows are needed, the general-
purpose programming facilities of Repo can be used to support this in a relatively straight-

forward manner.

A GO’s state is comprised of the properties attached to the object (manipulated by
the methodsetProp , getProp andunsetProp), its name (manipulated by the
methodssetName , getName andfindName), and some other non-inherited property
attributest The update methods are those that modify the propesé&2rop and
unsetProp) or change the nama¢tName). The class definition for the base GO class
is shown in Figures 5-10 and 5-11, and an example of a concret8@x@0 is shown in
Figure 5-12.

1. Some attributes of a GO, such as the arrays of Point3D properties that define the verti-
ces of a polygon set, are not attached to the object, but are manipulated through method
calls. This was an outgrowth of the original Oblig-3D design that we decided not to
change because the benefit of doing so would be small compared to the implementation
effort.

128

Group GOs also contain a set of child nodes, and have additional update methods
that modify that setadd, remove , replace ,flush andcontent). Each of these
methods, excemontent , is an update method. The class definition for the Group GO

class is shown in Figure 5-13.

5.3.1.2 Properties

Properties are more complex. There are far more properties in a graphical scene than there
are graphical objects, they change much more rapidly, and each property is constructed
from a set of Modula-3 objects. There are currently 101 different properties of seventeen
different types in Repo-3D, and any of them can be attached to any GO. For complete
details of all the Repo-3D properties, see Appendix H.2. A typical GO would have any-
where from two or three (e.g., a BoxGO would have at least two properties to define its
corners) to a dozen or more. And, each of these properties could be complex: in the exam-
ple in Section 5.4, a single synchronous property for a long animation could have hun-

dreds of requests enqueued within it.

Consider again the object structure illustrated in Figure 5-3. A property is defined
by a name and a value, with the value being a container for a behavior. Only one of the
Modula-3 objects is replicated using Shared Objects, the proauy.Property values
serve as the replicated containers for property behaviors. To change a property, a new
behavior is assigned to its value s&tBeh , which is a property value’s only update

method. The state of the value is the current behavior.

The other Modula-3 objects that make up a property are not replicated using

Shared Objects, for the following reasons:

« Propertiesrepresent a permanent binding between a property value and a name. Since
they are immutable, they have no synchronization requirements and can simply be cop-

ied between processes.

« Namegepresent simple constant identifiers, and are therefore also replicated by simple
copying.

« Behaviorsandrequestsare not replicated. While they can be modified after being cre-

ated, they are treated as immutable data types for two reasons. First, the vast majority of

129

behaviors, even complex synchronous ones, are not changed once they have been cre-
ated and initialized. Thus, there is some justification for classifying the method calls
that modify them as part of their initialization process. The second reason is practical
and much more significant. Once a scene has been created and is being “used” by the
application, the bulk of the time-critical changes to it tend to be assignments of new
behaviors to the existing property values. For example, an object is moved by assigning
a new (often constant) behavior to@®_Transform property value. Therefore, the
overall performance of the system depends heavily on the performance of property
value behavior changes. By treating behaviors as immutable objects, they can simply be
copied between processes without incurring the overhead of the replicated object sys-

tem.

5.3.1.3 Animation Handles

Animation handles are also replicated using Shared Objects. They tie groups of related
synchronous properties together, and are the basis for the interaction in the example in
Section 5.4. For the details of the Repo-3D animation handle modules, see Figure 5-14
and Appendix H.3. In Anim-3D, handles have aaremate method, which starts an ani-
mation and blocks until it finishes. However, since update methods are executed every-
where, and block access to the object while they are being executed, they should not take
such an extended period of time. Therefore, in Repo-3@rtimeate method is a non-

update method that simply calls two new methods in sequence: an update method that
starts the animation and returns immediatstarfAnimation), and a non-update

method that waits for the animation to finigéiniEhAnimation).

Repo-3D animation handles also include methods to pgaseéAnimation)
and resumecpntinueAnimation) an animation, to retrievg¢tAnimation-
Time) and changegotoAnimationTime) the current relative time of an animation
handle, to retrieve the length of the animatigetAnimationLength), and to stop an
animation earlygtopAnimation). The global state of an Animation handle is two
boolean values that indicate if it is active and/or paused or not, plus two real values corre-

sponding to the start and current times of the animation.

130

Aside from these changes, there is another important difference between animation
handles in Oblig-3D and Repo-3D, resulting from the distributed context. In Oblig-3D, an
animation handle “finishes” (i.e., thi@ishAnimation method returns in that pro-
cess) when it reaches the end of the animation, which is defined to be the time at which all
of the synchronous properties attached to the handle have finished their animations. In
Repo-3D, since animation handles might be replicated across a set of processes, and indi-
vidual properties are only distributed to processes that need them, it is unlikely that
exactly the same set of synchronous properties will exist, and thus be associated with the
handle, in all processes. This implies that the finishing time for the set of synchronous
properties associated with an animation handle may vary across the replicas of that anima-

tion handle.

Therefore, when an animation handle is signalled, there are two options for what
time to use as the “end” of the animation: when the local properties finish their animations
(thelocal time), or when all properties attached to the animation handle in all processes
finish their animations (thglobal time). If we choose to enforce a common global end
time, that end time may be significantly different at each replica than the length of the syn-
chronous properties at that site, causing the animation handle not to “finish” until before
or after the local animations have completed. Furthermore, there are other issues to con-
sider if we use a uniform global end time, such as whether or not to count the time used by

local property variations in the “total time” of the animatfon.

We opted for the local solution, where the animation handle is considered finished
in some process when the synchronous properties that exist in that process have finished
their animations. We chose this option for three reasons. First, this was by far the simplest

solution to implement and easiest for programmers to understand. Second, this useful

2. There are other choices, such as having all the replicas of the animation handle use the
local animation length of the replica at the site that signaled the animation handle. This
would allow all sites to see a uniform ending time, without needing to determine the
global animation length. However, this option has the main disadvantage of the global
time (the animation handle “finishes” in most processes at a different time than the local
animations finish) with the further disadvantage that the animation handle’s end time in
most processes is meaningless with respect to the animations in that process. Therefore,
we decided not to use options such as this.

131

piece of information (when are the animations in the local process finished?) would be
hard to obtain in any other way. Finally, if a programmer needs to know when the anima-
tions have finished at all sites, they can use Repo’s general programming facilities to

implement such a feature in an application specific way.

5.3.1.4 Input Callbacks

In Repo-3D, input event callbacks are not replicated. As discussed in Section 5.2, input
events are delivered to the callback stacks of a RootGO. Callbacks attached to any other
object receive input events only if they are delivered to that object by the programmer, per-
haps recursively from another input event callback (such as the one attached to the
RootGO). Therefore, the interactive behavior of a root window is defined not only by the
callbacks attached to its RootGO, but also by the set of callbacks associated with the graph
rooted at that RootGO. Since the RootGOs are not replicated, the callbacks that they dele-
gate event handling to are not replicated either. If a programmer wants to associate call-
backs with objects as they travel between processes, Repo’s general-purpose programming
facilities can be used to accomplish this in a straightforward manner. For the details of the

Repo-3D input callback modules, see Appendix H.4.

5.3.1.5 Change Notification

The final component of Repo-3D is support for notification of changes to distributed
objects. For example, when an object’s position changes or a new child is added to a
group, some of the processes containing replicas may wish to react in some way. Fortu-
nately, as discussed in Chapter 3, the Shared Object package automatically generates Call-
back Object types for each replicated object type, which provide the required

functionality.

The Callback Objects are exposed into Repo via three moduesiHandleCB
GOCRBRandPropCB. The animation handle Callback Object is exposed directly into Repo
via theAnimHandleCB module, and is used analogously to the Modula-3 object (see
Appendix H.3.2). Unlike the animation handle Callback Object, the multitude of Callback
Objects for the various GO and property value Shared Objects are not exposed into indi-

vidual modules; while each has a separate Callback Object generated for it, they are

132

PropCB_New(obj: Prop, overrides: Obj): T;
PropCB_Cancel(cbobj: T): T;
WHERE

T <: {simple} & overrides;

overrides contains one or more of these callback methods:
pre’init(obj: Prop, beh: PropBeh): bool;
post’init(obj: Prop, beh: PropBeh): bool;
pre'setBeh(obj: Prop, beh: PropBeh): bool;
post'setBeh(obj: Prop, beh: PropBeh): bool;
pre anyChange(obj: Prop);
post anyChange(obj: Prop);

Where Prop is a Property and PropBeh is a Property Behavior of
the appropriate types

(a) The Repo help for tHeropCB module.

GOCB_New(obj: GO, overrides: Obj): T;
GOCB_Cancel(cbobj: T): T;
WHERE

T <: {simple} & overrides;

overrides contains one or more of these callback methods:
pre propagatelLocalProps(obj: GO, add del: [Prop_T]): Bool
post propagateLocalProps(obj: GO, add del: [Prop_T]): Bool
pre'setProp(obj: GO, prop: Prop_T): Bool
post setProp(obj: GO, prop: Prop_T): Bool
pre’unsetProp(obj: GO, name: Prop_Name): Bool
post unsetProp(obj: GO, name: Prop_Name): Bool
pre’setName(obj: GO, name: Text): Bool
post'setName(obj: GO, name: Text): Bool
pre anyChange(obj: GO);
post anyChange(obj: GO);

If T is GroupGO or ChoiceGroupGO overrides may also contain:
pre*add(obj new: GO): Bool
post add(obj new: GO): Bool
pre ‘remove(obj old: GO): Bool
post remove(obj old: GO): Bool
pre ‘replace(obj old new: GO): Bool
post replace(obj old new: GO): Bool
pre-flush(obj: GO): Bool
post flush(obj: GO): Bool
pre propagateLocalChildren(obj: GO, add remove: [GO]): Bool
post propagateLocalChildren(obj: GO, add remove: [GO]): Bool

... and so on for object specific methods of other GOs ...

(b) Excerpts from the Repo help for t6B©CBnodule.
The type of the GO determines which methods obtregrides
objects will actually be used, and what parameters they should have.

Figure 5-4: The GOCBandPropCB modules. There are two commands in each mod-
ule, one to create a new callback and another to cancel an existing oogefFhe
rides parameter is a simple object containing the callback methods.

133

merged into th&OCHfor notification of changes to GOs) aRtbpCB (for notification

of changes to property values) modules. This is primarily done for simplicity, since pro-
grammers frequently want to be notified of some change that is independent of the type of
the GO or property value (e.g., the attachment of a new property to the object, or the

assignment of a new behavior to a property value).

Hiding the property value callbacks insiBeopCB is straightforward, since all of
the property value Callback Objects have exactly the same set of methods, differing only
in the type of their parameters (as shown in Figure 5-4(a) and Appendix H.2.2). Similarly,
the GO callback objects share many methods because most of the commonly used update
methods are part @O.T, the root of the object hierarchy (as shown in Figure 5-4(b)).
However, many GOs have additional update methods, se@@&Bnodule is more com-
plex; the additional callback methods for group GOs are shown in Figure 5-4(b). (The
complete specification of tht@OCBnodule can be found in Appendix H.1.2.)

By integrating these change notification callbacks into a pair of modules, a pro-
grammer need not know the specific kind of GO or Property for which they are creating a
Callback Object, as long as the object is a subtype of the one they are expecting; the wrap-
per modules look at the type of the GO or Property and create the appropriate type of Call-
back Object.

53.2 Local Variations

Repo-3D’slocal variationssolve a set of problems particular to the distributed context in
which Repo-3D lives: maintaining interactivity and supporting local modifications to the

shared scene graph.

If the graphical objects and their properties were always strictly replicated, pro-
grammers would have to create local variations by copying the objects to be modified, cre-
ating a set of Callback Objects on the original objects, the copies of those objects, and all
their properties (to be notified when either change), and reflecting the appropriate changes
between the instances. While this process could be automated somewhat, it would still be

tedious and error prone. More seriously, the overhead of creating this vast array of objects

134

and links between them would make this approach impractical for short transient changes,

such as highlighting an object under the mouse.

To overcome this problem, Repo-3D allows the two major elements of the shared
state of the graphical scene—the properties attached to a GO and the children of a group—
to havelocal variationsapplied to them. Local variations on property values or animation

handles are not currently supported.

Conceptually, local state is the state added to each object (the additions, deletions,
and replacements to the properties or children) that is only accessible to the local copies
and is not passed to remote processes when the object is copied to create a new replica.
The existence of local state is possible because the shared state of a replicated object is not
a function of the data elements of the object, but is instead defined implicitly by the meth-
ods that update the object, as discussed in Chapter 3. Therefore, since the new methods
that manipulate the local variations do not modify the shared state, they are added to the
GOs asnon-updatemethods; notice that in Figure 5-13, none of the GO or group GO local
variation methods are denoted as update methods in the SHARED UPDATE METHODS
pragma. Repo-3D combines both the global and local state when creating the graphical
scene using the underlying graphics package. Repo-3D ensures that the local state is not
copied when an object is first passed to a new process by defining custom pickling rou-
tines that pass the global state and initialize the local state on the receiving side to empty

values (recall the discussion of custom pickling routines in Section 3.4.1.3).
As mentioned above, local variations come in two flavors:

« Property variationsThere are three methods to set, unset, and get the global property
list attached to a GO. We added the following methods to manipulate local variations:
add or remove local properties (overriding the value normally used for the object), hide
or reveal properties (causing the property value of the parent node to be inherited), and
flush the set of local variations (removing them in one step) or atomically apply them to
the global state of the object. See Figure 5-10 for the specification of the Modula-3 GO
object that includes these methods, and Appendix H.1.1 for the Repo-3D module inter-

face.

135

« Child variations.There are five methods to add, remove, replace, retrieve, and flush the
set of children contained in a group node. We added the following ones: add a local
node, remove a global node locally, replace a global node with some other node locally,
remove each of these local variations, flush the local variations (remove them all in one
step), and atomically apply the local variations to the global state. See Figure 5-13 for
the complete specification of the Modula-3 group GO object that includes these meth-

ods, and Appendix H.1.10 for the Repo-3D module interface.

This set of local operations supports the problems local variations were designed

to solve, although some possible enhancements are discussed in Section 7.1.

5.3.3 Extensibility

Repo-3D objects are extensible so that the application state can be added to the Repo-3D
objects, allowing programmers to avoid the dual database problem (as discussed at the
beginning of the chapter). Objects can be extended at both the compiled and interpreted
levels of Coterie. At the Modula-3 level, DistAnim-3D objects can be subtyped and

extended to create new Shared Objects, as discussed in Chapter 3.

Programmers can extend the Repo-3D objects as well, but care must be taken
because of the way DistAnim-3D’s replicated objects are embedded in Repo. In particular,
programmers must keep two restrictions in mind when extending Repo-3D objects. First,
Repo-3D objects cannot be extended like other Repo objects (by cloning them, as dis-
cussed in Section 4.4.2). Instead, programmers must use a Repo-3D ekjeats
method for this purpose. Second, the Repo-3D object that exposes the DistAnim-3D repli-
cated object into Repo isample (unsynchronized replicated) Repo object, so if a data
field is to be changed after an object is distributed, the data field itself must be a synchro-

nized replicated object or the changes will not be distributed to all replicas.

To understand where these restrictions come from, we need to explain the way in
which the DistAnim-3D objects are embedded in Repo (shown in Figure 5-5). The Repo
object that exposes a DistAnim-3D object into Repo has methods corresponding to the

various methods of the DistAnim-3D object, and a single data fehd)(that points at

136

DistAnim-3D [_] Opaque
GO - Repo Obje

%4 l proxiedObjl
|proxy|

\

Repo [fields
Object

|

“raw”

Proxy

Figure 5-5: Embedding DistAnim-3D objects in Repo. Anim-3D (and, therefore,
DistAnim-3D) was designed to be embedded in an interpreted language, which in our
case is Repo. Therefore, each DistAnim-3D object (i.e., GOs, properties, behaviors,
etc.) has @roxy field that will point to aProxy object when the representation of the
object in Repo (the “proxy”) has been created (this proxy can be created when the
graphical object is created, or deferred until the object is accessed from Repo). The
Proxy object contains an untyped reference fadgect that points at the Repo
wrapper object. To allow the DistAnim-3D object to be retrieved from the Repo object,
an opague Repo type is created for every type of graphical object. This object contains
asingle fieldproxiedObj , that points at the original graphical object. An instance of
the appropriate type is assigned to a field namad * in the Repo object.

I

the underlying DistAnim-3D object. The choice of whether a given object (i.e., a GO,
property value, property behavior, etc.) is synchronized or unsynchronized is made at the
DistAnim-3D level, and all of the Repo objects are unsynchronized (regardless of the type

of the underlying DistAnim-3D object).

The primary reason for having the Repo wrapper object unsynchronized is as fol-
lows: if both the Repo and DistAnim-3D objects were synchronized, invoking an update
method in the wrapper object would result in that method being invoked everywhere, but
the action taken at every site by that method would typically include invoking a method on
the underlying DistAnim-3D objeett every siteEach invocation of the DistAnim-3D
method would cause the method to be invoked on all replicas. The result would be to have
the DistAnim-3D method invokel? times (if there ar@&l replicas) N times for each of

theN invocations of the Repo update method.

137

The structure of the Repo-3D object in Figure 5-5 is also the reason that Repo-3D
objects should only be extended to contain additional fields by calling the object’s
extend method. This method takes a single argument, an object containing the fields to
be added to the Repo-3D object. The method creates a new Repo object combining the old
Repo object and these new fields, and updateRrthey object’'sobject field to point
at this new Repo object. If the Repo object were extended using Repws operator,
the internal Proxy object would continue to point at the original Repo object, breaking the
circular reference structure. This structure also implies that Repo-3D objects should only
be extended before they are first passed out of their original process, because the structure

would only be updated at the local site.

The final implication of the way DistAnim-3D objects are embedded in Repo
arises because the Repo objects are unsynchronized. If a programmer wishes to add appli-
cation data fields to the Repo-3D objects, and then distribute the Repo-3D object around
the network, subsequent changes to the application data fields will not be propagated glo-
bally because the Repo objects are not synchronized. To get around this limitation, the
programmer should add synchronized data fields to these unsynchronized Repo-3D
objects. These replicated data objects would be pulled around the network with the Repo-
3D object, and any changes made to those data values would be propagated. See the exam-

ple in Section 6.2 for an illustration of extending objects in this way.

54 Examples

In this section we will give a number of examples that demonstrate the utility of Repo-3D.
First, we will give a simple tutorial example that shows how to build a simple distributed
graphical scene. In Section 5.4.2, we will return to the tracker report distribution example
introduced in Section 2.5.1, and discuss how tracker data can be transparently distributed

using Repo-3D properties.

Next, we will show how the ability to embed application state in replicated objects
neatly solves the dual database problem, using an example of the creation of a new Trun-
cated Pyramid GO taken from our integration of the Brown Sketch system into Coterie

(this integration will be discussed further in Section 6.2). Finally, in Section 5.4.4 we will

138

discuss the design of a distributed animation viewer, and show how local variations

address a number of common problems in distributed, collaborative applications.

5.4.1 A Tutorial Example

The first example we will give, shown in Figure Fagjhlights the simplicity of using

Repo-3D to create a distributed graphical scene. In this example, two processes are run-
ning, each containing a Repo-3D root GO. One process creates a group GO and exports it
to the network, and the other process imports it. When both link this group GO to their
root GO, they now have a symmetric, shared graphical scene. Any changes made to one

are reflected in the other (e.g., adding an object, such as the sphere in the figure).

While one could imagine writing a simple distributed data structure to mimic this
behavior, by sharing a group of objects and changing the local root GO to reflect changes
to the contents of this shared data structure, realistic applications require more complex
data sharing, which Repo-3D also provides in a straightforward manner. For example, if
one wanted to ensure the objects in our hypothetical shared data structure were accurately
reflected in our local root GO, we would also have to watch for all possible changes to the
properties of those objects and apply those changes locally. Since Repo-3D’s objects are
fully replicated, it provides this behavior transparently. Similarly, if the objects being
shared were more complex than the simple sphere in the example, perhaps containing a
complex hierarchy of group GOs, the programmer creating our hypothetical shared data
structure would have to watch the entire hierarchy for changes. Repo-3D provides this

behavior for free as well.

5.4.2 Yet Another Tracker Example

Now, we shall return to the tracker distribution example introduced in Section 2.5.1. A
simple tracker distribution object was implemented as a Modula-3 Shared Object in Sec-
tion 3.4.1, and reimplemented a number of different ways using Repo replicated objects in
Section 4.6.1. Repo-3D properties provide a simple way of distributing the position and

orientation of a tracker, which is more appropriate than the approaches discussed in previ-

139
p t t3 t
1 2 3 4 >
: : local
. add . scale : changes
(a) The timeline of the simple animation, showing the two windows at different
times, with arrows indicating data flow between the processes.

let r = RootGO_NewsStd(); let r = RootGO_NewsStd();
let g = GroupGO_New(); let g = net_import(“g”, host);
net_export(“g”, host, g); r.add(g);

r.add(g);

(b) The code executed at tintg=n windowRy, (left) andR; (right)

let s = SphereGO_New(]0,0,0],1);
g.add(s);

(c) The code executed in windd®y at time=;

GO_SetTransform(g,Matrix4_Scale(Matrix4_ld, 2,2,2));
(d) The code executed in winddiy at time=

s.setLocalProp(SurfaceGO_Color,ColorProp_NewConst(“purple”));
lett = Text2DGO_New([0,1.1,0], “Big Purple Ball", “Center”);
g.localAdd(t);

(e) The code executed in winddry at time=s

Figure 5-6: A simple Repo-3D example. In this example, for which all the code is
shown, we have two windowR{ andR;) in two separate processes. The two win-
dows are initialized at timg, as shown, so that they contain a shared group GO. If
either processes changes the GO, the changes will be reflected in both. Therefore,
when a sphere is addedRg (at timet,), the update is distributed and applied in the
process containing; (at timet,). This sphere is also shared; when it is scald?} in

(at timety), it is also scaled iRy (at timet,). However, local updates can be applied
to either without requiring network traffic: when the color of the sphere is locally
changed and a 2D text object locally addeRyirfat timets), these changes are not
sent to, or reflected iR,.

140

ous chapters in certain situations, such as when the position and orientation of the tracker

are only used to position objects in the graphical scene.

In those cases, Repo-3D properties can be used to transparently distribute the
tracker data. Instead of setting the value of a shared tracker position object, the process
reading and processing the tracker can create Repo-3D constant transformation property
behaviors, and assign each new behavior to one or more transformation properties. These
properties can be attached to any number of GOs and distributed to any number of pro-

cesses, and those GOs will transparently follow the tracker.

5.4.3 A Truncated Pyramid Object

One of the common things to do when building graphical applications is to create new
domain-specific objects that can be treated like the built-in graphical objects, but contain
addition semantic information specific to that domain. In this section, we will present one
such object, a Truncated Pyramid, that was created for the Sketch example presented in
Section 6.2. In that example, we created four new Repo-3D, objects representing Trun-
cated Pyramids and Cones, Extrusions and Surfaces of Revolution. While the Truncated
Pyramid is quite simple, it serves as an example of how to extend Repo-3D objects to con-

tain application specific state.

A Truncated Pyramid is defined as follows. The pyramid is centered around the
origin, with its bottom face being a square from (-1,-1,-1) to (1,-1,1). The top face of the
pyramid can be of any size, but will always lie in ¥y plane. Theapervector deter-
mines how much the top face of the pyramid should be tapered in from the default position
of (x=1,z=1) and ¥=—1,z=—1). Theshearvector determines how much the center of the
top face of the pyramid should be offset from thaxis. We define the Truncated Pyramid
as an extension to tHedexedPolygonSet object, as shown in Figure 5-7. By using a
replicated object to contain the taper and offset information (as discussed in Section
5.3.3), and defining the polygon set using asynchronous point properties that reference the
fields of this object, the offset and taper values of the truncated pyramid object can be

modified at any time by simply changing the corresponding field of this replicated object.

141

module TruncPyrGO;
let New = proc (taper, offset)
let obj = {replicated, offset => simple(offset),
taper => simple(taper)};
IndexedPolygonSetGO_NewWithShapeHint(
[[-1.0,-1.0,-1.0],[1.0,-1.0,-1.0],
[1.0,-1.0, 1.0], [-1.0,-1.0, 1.0],
PointProp_NewAsync(meth (s,t)
[(obj.offset[0] - obj.taper[0]), 1.0,
(obj.offset[1] - obj.taper[1])]
end),
PointProp_NewAsync(meth (s,t)
[(obj.offset[0] + obj.taper[0]), 1.0,
(obj.offset[1] - obj.taper[1])]
end),
PointProp_NewAsync(meth (s,t)
[(obj.offset[0] + obj.taper[0]), 1.0,
(obj.offset[1] + obj.taper[1])]
end),
PointProp_NewAsync(meth (s,t)
[(obj.offset[0] - obj.taper[0]), 1.0,
(obj.offset[1] + obj.taper[1])]
end)],
[[0,1,2,3], [7,6,5,4], [1,0,4,5],
[2,1,5,6], [3,2,6,7], [0,3,7,4]],
1.57, "Convex").extend({simple, data => obj});
end;
end module;

addhelp TruncPyrGO short "A truncated pyramid GO" full
" TruncPyrGO_New(taper: Point2, offset: Point2):
IndexedPolygonSetGO

Figure 5-7: The TruncPyr object. The Truncated Pyramid object is an indexed
polygon set with eight vertices and six faces. The bottom four vertices are con-
stants, defining the square from [-1,—-1,—1] to [1,—1,1]. The top four vertices are
asynchronous point properties, that compute their values using the current values
of the offset and taper fields of the replicated obujt . The objecbbj is added

to the indexed polygon set object as a new faddia . When either the taper or

offset field of the replicated object is changed, the changes are reflected in all repli-
cas and the indexed polygon set immediately changes its appearance to reflect the
new values.

54.4 An Animation Examiner

A more complex and complete example of prototyping distributed applications with Repo-
3D is the distributed animation examiner we created for the CATHI animation generation

system. CATHI generates short informational animation clips to explain the operation of

142

technical devices [Butz, 1997]. The scripts it generates describe full-featured animations,

including camera and object motion, color and opacity effects, and lighting setup.

It was reasonably straightforward to modify CATHI to generate Repo-3D program
files. The Repo-3D program creates two scene graphs: a camera graph and an animation
scene graph. The objects in these graphs have synchronous behaviors specified for their
surface and transformation properties. An entire animation is enqueued in the requests of

these behaviors, and can last anywhere from a few seconds to a few minutes.

We built a distributed, multi-user examiner for these animations over the course of

a weekend. The examiner allows multiple users to view the same animation while discuss-
ing it (e.g., via electronic chat or on the phone). Figure 5-8 shows images of the examiner
running on four machines, each with a different view of the scene. The first step was to
build a simple “loader” that reads the animation file, creates a root GO, adds the animation
scene and camera to this GO, and exports the animation to the network. This required ten
lines of Repo-3D code. A “network” client, which imports the animation from the network
instead of reading it from disk, replaced the two lines of code to read and export the ani-
mation with a single line to import it, but was otherwise identical to the loader program.

Figure 5-8(a) shows an animation being viewed by one of these clients.

An animation examiner program is loaded by both these simple clients, and is

about 450 lines long. The examiner supports:

« Pausing and continuing the animation, and changing the current animation time using
the mouse. Since this is done by operating on the shared animation handle, changes
performed by any viewer are seen by all. Because of the consistency guarantees, all
users can freely attempt to change the time, and the system will maintain all views con-

sistently.

« Opening and closing a second “overview” window (Figure 5-8(b)), where a new
camera watches the animation scene and camera from a distant viewpoint. A local
graphical child (representing a portion of the animation camera’s frustum) is added to
the shared animation camera group to let the attributes of the animation camera be seen

in the overview window.

(@) (b)

Fepn =10 W ey EEg@ia— 11 wiiari

EDT TG

(€) (d)

Figure 5-8: The distributed CATHI animation viewer. Simultaneous images from a
session with the viewer, running on four machines, showing an animation of an engine.
(a) Plain animation viewer, running on Windows NT. (b) Overview window, running on
Windows 95. (c) Animation viewer with local animation meter, running on IRIX. (d)
Animation viewer with local transparency to expose hidden parts, running on Solaris.

« Alocal animation meter (bottom of Figure 5-8(c)), that can be added to any window by
pressing a key, and which shows the current time offset into the animation both graphi-
cally and numerically. It is added in front of the camera in the animation viewer win-
dow, as a local child of a GO in the camera graph, so that it is fixed to the screen in the

animation viewer.

144

« Local editing (Figure 5-8(d)), so that users can select objects and make them transpar-
ent (to better see what was happening in the animation) or hide them completely (useful
on slow machines, to speed up rendering). Assorted local feedback, such as highlight-
ing the object under the mouse and flashing the selected object, is done with local prop-

erty changes to the shared GOs in the scene graph.

Given the attention paid to the design of Repo-3D, it was not necessary to be
overly concerned with the distributed behavior of the application (we spent no more than
an hour or so). Much of that time was spent deciding if a given operation should be global
or a local variation. The bulk of programming and debugging time was spent implement-
ing application code. For example, in the overview window, the representation of the cam-
era moves dynamically, based on the bounding values of the animation’s scene and camera
graphs. In editing mode, the property that flashes the selected node bases its local color on
the current global color (allowing a user who is editing while an animation is in progress

to see any color changes to the selected node.)

5.5 Implementation

In this section, we will discuss the implementation of DistAnim-3D’s shared graphical
objects, highlighting the changes made to Anim-3D during the move to a distributed con-

text based on the Shared Object programming model.

The differences in the internal structure of Anim-3D and DistAnim-3D result from
both the rendering optimizations (discussed in Appendix G), and the conversion to Shared
Objects, shown in Figure 5-@/hile the data structures have changed considerably, the
basic structure of the code has not; user threads update the graphics objects, and there is an
animation server threathat is responsible for rendering the graphical scene and handling
input. The package has two global locks, referred to asxtieenal lockand thenternal
lock Each time through its rendering loop, the animation server thread acquires the exter-
nal lock and the internal lock in sequence, reacts to input from the user, handles any

changes to the scene graph, and then renders the windows (if needed).

145

Graphics Objects

Animation
Server
Thread

User Threads

-

(a) The internal structure of Anim-3D. User threads and the animation
server thread access the graphical objects. The animation server thread
renders the scene directly from the graphical objects.

Shared Graphics Objects Object State
Rendering Cache
Stat —

Stat
Animation
Server
Stat Thread
=
Zal

User Threads

Shared Object
Update Threads

T

(b) The internal structure of DistAnim-3D. The user-threads access the Shared Graph-

ical Objects, and any changes they make are immediately reflected in the State objects.

The animation server thread accesses only the State objects, using them to build and
update the rendering cache used to refresh the graphics display

A

HEOE

Stat

Figure 5-9: The internal structure of Anim-3D and DistAnim-3D. The Rendering
Cache was created to enhance the performance, and the Object State was separated out
during the conversion to Shared Objects.

The external lock is available to programmers, and can be acquired when it is nec-
essary to make multiple changes to the scene graph atomically; since the animation server

thread needs to acquire the lock to render the scene, all changes made while the external

146

lock is held are atomic from the local viewers point of view. The internal lock is acquired
by the graphical object methods when they update the scene graph data structures. (Two
locks are needed because Modula-3 mutexes are not reentrant; if there was only one lock
and the programmer acquired it to perform multiple actions atomically, the GO methods
that would be called to perform those actions would deadlock the system when they tried

to acquire the same lock before modifying the internal data structures.)

The straightforward part of the conversion to using Shared Objects was selecting
which object methods should be update methods, as discussed in Section 5.3.1, and
changing the definitions in the object class hierarchy to follow the guidelines for the
Shared Object package, as discussed in Section 3.4.1. However, the Anim-3D data struc-
tures are complex, and, like most thread-safe libraries, were already designed to safely
handle multiple simultaneous access to the objects through the use of the two global locks
mentioned above. This means that the additional locks supplied by the Shared Object
package for its objects are unnecessary to ensure the safe access to the global state. While
the overhead incurred by these locks is not normally significant, in this case it is cause for
concern; the animation server thread will potentially access hundreds of objects to repair
and redisplay the graphical scene, and these graphical objects have over three dozen inter-
nal methods that are called repeatedly during this repair and redisplay process, with each
call needing to reaquire the object’s lock. Since we had previously gone to great lengths to

make this repair process as efficient as possible, we want to avoid this additional overhead.

To allow the animation thread to avoid having to repeatedly acquire these locks,
we moved the internal methods and all the state of the graphical objects to a second set of
parallelState objects, as illustrated in Figure 5-9 (and can be seen in Figures 5-11 and
5-14(b)).3 Each GO and property value now has a corresponding state object. All of the
methods called by the animation server thread are in th&tades objects, and are

therefore not subject to the Shared Object locks. The methods relating to the modification

3. While we could have left the state data in the graphical objects and moved only the
methods, moving both allowed us to automate the resulting modifications to the code
(since both the internal method and data access now go through the state objects).

147

of, and access to, the global state (and only those methods) remain in the graphical

objects, and are subject to the Shared Object locks.

While these modifications and optimizations required much of the code for
DistAnim-3D to be touched and modified, the changes were not conceptually difficult and
serve to illustrate the usefulness of the programming model. Since the Shared Object sys-
tem only examines the method definitions, not the internal data, and because the package
it tightly integrated with the programming language (including following the predominant
Modula-3 programming style) it was straightforward to apply the model to an existing,
complex software package such as Anim-3D. To further illustrate this, we will highlight
some of the main objects in DistAnim-3D and show how the package fit in with the exist-

ing code.

The Anim-3D and DistAnim-3D definitions GO.T, the base class for all GOs,
are shown in Figure 5-10. Notice that we do not declare update methods here (using the
SHARED UPDATE METHODOSagma), as this is an abstract type. Therefore, this object
does not have the characteristic “hole” in the inheritance hierarchy (described in Section
3.4.1) that is to be filled in by the Shared Object code generator; this hole will be left in the
concrete subtypes. The only changes from Anim-3D are the object inherited from, and the
addition of the new methods for local property manipulation. Some of the internal details
of this object are shown in Figure 5-11. The one new method defined here,
globalPropagateLocalProps , Is an update method used internally by the external
setLocalPropsGlobally method; the external method extracts the lists of proper-
ties to be added and removed, and calls the internal method with these two lists as param-

eters.

This is an excellent example of the flexibility and power of the Shared Object
package design, illustrating how update and non-update properties can work together:
conceptually, the external metha®{LocalPropsGlobally) is an update method,
but it must do some work locally to package up the data needed for the update, since this

data is local to the process where the method is invoked. The internal method

148

TYPE
T <: Public;
Public = ProxiedObj. T OBJECT METHODS
... methods ...
END;

(a) The Anim-3D definition o60.T. We omit the methods here.
ProxiedObj.T is used to embed objects in an interpreted
language, such as Repo or Obliqg.

TYPE
T <: Public;
Public = SharedObj.T OBJECT METHODS
init(): T,
setName (name : TEXT);
getName () : TEXT;
findName (name : TEXT) : T;

getProp (pn : Prop.Name) : Prop.Val;
setProp (p : Prop.T);

I
:
|
unsetProp (pn : Prop.Name); Global Property Manipulatior]

| |
| setLocalProp (p : Prop.T); |
: unsetLocalProp (pn : Prop.Name); :
| getLocalProp (pn : Prop.Name) : Prop.Val; |
| hideGlobalProp (pn : Prop.Name); |
: revealGlobalProp (pn : Prop.Name); :
| isPropHidden (pn : Prop.Name) : BOOLEAN; |
| |

setLocalPropsGlobally (); Local Property Manipulation

pushMouseCB (cb : MouseCB.T);
popMouseCB ();
removeMouseCB (cb : MouseCB.T);
invokeMouseCB (mr : MouseCB.Rec);
same four methods for PositionCB’s and KeyCB's ...

addProjectionCB (cb : ProjectionCB.T);
removeProjectionCB (cb : ProjectionCB.T);
invokeProjectionCB (READONLY pr : ProjectionCB.Rec);
same three methods for TransformCB's ...
END;
(b) The DistAnim-3D definition o&0.T. The newGO.T inherits from
SharedObj.T (which is a subclass éfroxiedObj. T).

Figure 5-10: The GO.T class. This is the Modula-3 base class for all DistAnim-

3D GOs. In this, and all other code in this chapter, we have removed the RAISES
clauses from the method and procedure declarations for clarity. We have high-
lighted the groups of methods used to manipulate the local and global properties.

(globalPropagateLocalProps) can then be called with this additional data sup-

plied in its arguments.

149

REVEAL
T = Public BRANDED "GO.T" OBJECT
state: State := NIL;
METHODS
globalPropagateLocalProps (add, remove: PropList.T);
OVERRIDES
. method overrides ...
END;

Figure 5-11: Excerpts fromGOPrivate.i3 . As with TrackerPosi-

tionF.i3 , the internal details of th@O.T object are exposed in this private
interface. We define one additional method on the objéuibélPropagate-
LocalProps), which is an update method that is used internally, and define a
separate object to hold the state. Btate object contains the local and global
state, as well as methods to manipulate that state.

TYPE
T <: Private;
Private <: Public;
<* SHARED UPDATE METHODS T.init, T.setProp, T.unsetProp,
T.globalPropagateLocalProps, T.setName *>
Public = SurfaceGO.T OBJECT

METHODS
init(): T;
END;
(a) BoxGO.T
REVEAL
Private = Public BRANDED "BoxGO.T" OBJECT
OVERRIDES

method overrides ...

END:

(a) Excerpts fronBoxGOPrivate.i3

Figure 5-12: BoxGO.T class definitions. Most of the GOs are similar to the
BoxGO.T definition, and have no other methods. The internal details of the
BoxGO.T object, including method overrides, are exposed in the private
BoxGOPrivate.i3 interface.

The definition of one of the concrete GO tyd@sxGO.T, is shown in Figure 5-
12.BoxGO.T is a representative example of the majority of GOs, since, like most GOs,
its state is defined entirely by the properties attached to it. Therefore, no additional meth-
ods are defined (aside from an initialization methit{)). TheSHARED UPDATE
METHOD$®ragma includes all of the update methods defin&{rT. Notice that, as
discussed aboveglobalPropagatelLocalProps is an update method, but

setLocalPropsGlobally is not.

150

TYPE

T <: Private;

Private <: Public;

<* SHARED UPDATE METHODS T.init, T.setProp, T.unsetProp,
T.globalPropagateLocalProps, T.setName, T.add, T.remove,
T.replace, T.flush, T.globalPropagateLocalChildren *>

Public = GO.T OBJECT METHODS
init (initSize := 5) : Public;

’ add{o : GO.T); 1
| remove (0 : GO.T);

! replace (new, old: GO.T);
| flush ();

| __ _content (): REFARRAY.OF GO.T,________ _ Global Children Manipulation,
o Fo [I Yor= 1 I (o Y€1 2N 1) X 1
removelLocal (0 : GO.T);

replaceLocal (new, old: GO.T);

removeLocalAddition (o : GO.T);

removelLocalRemoval (0 : GO.T);

removeLocalReplacement (old: GO.T);

flushLocal ();

localContent () : REF ARRAY OF GO.T;

L gpergelocalToGlobal O: . Local Children Manipulation

I
4

Figure 5-13: The GroupGO.T class definition. This is the Modula-3 class for
DistAnim-3D grouping objects. We have highlighted the groups of methods used
to manipulate the local and global child lists. ThergeLocalToGlobal

method causes the local properties to be merged into the global state, through the
use of an internal update methgidbalPropagateLocalChildren (the

internal details are not shown here, for brevity).

The definition ofGroupGO.T, the class for Repo-3D group objects, is shown in
Figure 5-13. This object serves as a more complex example of a Shared Object, since it
inherits fromGO.T, but also defines a new set of methods. Itincludes aBOfT’s global
and local state manipulation methods, and adds additional methods for manipulating the
global and local children of a group GO. As with @®.T object, one of the local meth-
ods fnergeLocalToGlobal) uses a private update methgtbpalPropagate-
LocalChildren) to propagate the local child variations into the global state;
mergeLocalToGlobal extracts the lists of children to be added and removed, and
calls the internal method with these two lists as parameters. As can be seen in Figure 5-13,
all of the update methods GO.T andGroupGO.T, including the two private methods,
are listed in the SHARED UPDATE METHODS pragma.

151

The definition ofProp.Val , the base class for all Repo-3D property values, is
similar in spirit to those o60.T andBoxGO.T. Like the GO objects, the property value
objects have an internal state object so that the animation server thread can avoid the
Shared Object locks. Each of the seventeen different properties is defined in a similar,

straightforward way, so we will not include the details here.

The final Shared Object in DistAnim-3D is the animation handle object,
AnimHandle.T , which is shown in Figure 5-14. This object presents another interesting
example of the use of private update methods, as well as being the one component of
Anim-3D that was substantially changed during the conversion to DistAnim-3D (as
discussed in Section 5.3.1.3 and Appendix G). As was noted in those sections, one of the
reasons we chose to have firesshAnimation method return when the synchronous
behavior animations finish at the local site, as opposed to having it return when the anima-
tions at all sites finish, is because the implementation of the global version is difficult. The
difficulty arises because of the asynchronous nature of the object updates; it would be hard
to determine the current total animation length at all sites at exactly the point when the

animation is signalled.

The most interesting aspect of the implementation of the animation handle object,
however, is how the private update methods are used to guarantee that the distributed ani-
mations stay synchronized. Before looking at the implementation, considering the follow-
ing scenario. If an animation handle is signaled at tijgey having itssignal method
invoked), the animation update will not be executed until the message has returned from
the sequencer, say at timyeIn addition, the update message invoking this method will not
arrive at a remote replica until some other time,tsajherefore, the animation will start
with a time difference of,-t; at these two sites. Whilg andt, are likely to be close, they
will not, in general, be equal. If the two sites have different sequencers, there will be an
even greater delay caused by the additional hop on the network as the message travels

between the sequencers.

There are two problems here that must be addressed: the animation starts at differ-

ent times at different sites, and the animation does not start at any site at the time it is sig-

152

TYPE
T <: Private;
Private <: Public;

T.pauseAnimationTime, T.stopAnimation,

Public = SharedObj.T OBJECT METHODS
init () : T,
startAnimation();
finishAnimation();
animate ();
stopAnimation();
pauseAnimation();
continueAnimation();
getAnimationTime(): LONGREAL;
goToAnimationTime(time: LONGREAL);
getAnimationLength(): LONGREAL;
END;

<* SHARED UPDATE METHODS T.init, T.startAnimationTime,

T.continueAnimationTime, T.goToAnimationTimeTime *>

(a) FromAnimHandle.i3

. The definition of the animation

handle object. Notice that many of the update methods are variations of
the externally visible methods, with “Time” added to their names.

REVEAL
Private = Public BRANDED "AnimHandle.T" OBJECT
state : State;
METHODS

continueAnimationTime(time: LONGREAL) :=
ContinueAnimationTime;

GoToAnimationTimeTime;
OVERRIDES
method overrides ...
END;

startAnimationTime(time: LONGREAL) := StartAnimationTime;
pauseAnimationTime(time: LONGREAL) := PauseAnimationTime;

goToAnimationTimeTime(time, relTime: LONGREAL) :=

(b) FromAnimHandlePrivate.i3

. Excerpts from

the revelation of thdnimHandle.Private

Figure 5-14: The AnimHandle class. Unlike the GO and property value classes,
the animation handle class was changed substantially from the Oblig-3D version,

which had one methodnimate

nalled, including the site at which the animation han

dle was signalled. We address both

problems by using private update methods that take an additioreggbarameter that is set

to the time the action was invoked at the callingsRegardless of when the update

arrives and is executed at a site, the animation handle behaves as if it were signaled at the

4. In the current implementation, we assume that all of the machines have their clocks syn-
chronized using a time-synchronization protocol such as NTP, the Network Time Proto-

col [Mills, 1992]

153

time specified by this time parameter, ensuring that the animation appears to start and stop
at exactly the same time at all sites. The network delays manifest themselves by having the
animation appear to “jump” when it is started or paused: because the update method will
not be invoked until time; in the above scenario, the animation corresponding to the time
range {g ... t;) will simply be skipped at the invoking site, and the rarnge.[t,) will be

skipped at the second site. Similarly, if freuseAnimation method was invoked in

the same way, the animation at both sites will appear to “jump back” a small amount when

it is finally invoked.

5.6 Performance

In this section, we will discuss the performance of Repo-3D. When looking at an applica-
tion written using Repo-3D, it is useful to differentiate between two phases of its life

cycle: the “set-up” period, when the application is building up (possibly large) shared data
structures, and the “steady state” period, when the bulk of the data structures have been
distributed and users are interacting with the system. Repo-3D has been optimized to per-
form well during the application steady state, at the expense of performance during the

set-up period.

This performance trade-off can be traced back to the design of the Shared Object
package. Recall from Section 3.4.2, when a Shared Object is embedded in the arguments
to a Shared Object update method, only the universal identifier of the object is included in
the message. This makes passing Shared Objects very efficient when the object already
exists in the destination process, but slows down object transfer somewhat when the object
does not yet exist. Where the application is in its steady state, and most of the Shared
Objects already exist in all the processes in which they will be used, the system performs
quite well. However, when the objects are initially distributed to the processes, the perfor-

mance is not as good as it might otherwise be.

Consider the example above, where an object is the root of a complex scene graph.
Imagine that we want to swap the location of two such complex graphs in a graphical
scene. Because of the above optimization, the arguments to the groepléc@

method will only have their global identifiers sent, each of which is 8 bytes long, resulting

154

in a small update message. Without the above optimization, both of the complex graphs
would need to be pickled into the update message, making it much larger. This large mes-
sage would then need to be copied across the network, and unpickled in the remote pro-
cesses, only to have these objects thrown away because they already exist in the

destination processes.

If we look at the steady state behavior of our shared graphical applications, the
time critical activities that occur involve manipulating existing objects, changing their
position or appearance, and so on. We have discussed above how the system is optimized
for the manipulation of objects that already exist in the destination processes. However,
the design is also geared toward efficient manipulation of the properties of objects, as dis-
cussed in Section 5.3.1. When we change the behavior of a property (to move an object or
change it's appearance, for example) the only data sent over the network is the behavior
object, which is an unsynchronized replicated object and is therefore passed relatively

quickly (because there is little overhead required to create a new unsynchronized replica).

Unfortunately, when large Repo-3D objects are passed across the network, we
have found that the performance is relatively poor. There are a number of reasons for this.
First, the objects themselves are quite large because of relatively verbose data structures
used to embed the DistAnim-3D objects in Repo (see Figure 5-5). While we optimize the
transfer of objects somewhat by passing as little information as possible (recreating it in
the destination process), there are times when we cannot get around sending complex
Repo objects over the network. This is compounded by the unoptimized message transfer
protocols of the Shared Object runtime system, which require all messages to be sent to
the sequencer and then forwarded to the clients. If the message is large, reading it from,
and writing it to, the network inside the sequencer is costly, especially since we are imple-
menting these activities at the application layer, which requires the data to be copied

between memory buffers multiple times.

A third reason for the poor performance is that most of the objects in Repo-3D
scene graphs (i.e., GOs, property values, and animation handles) are synchronized, and
there is currently no facility for programmers to create unsynchronized versions of these

objects, even when they know it is safe to do so. This is a problem because there is a non-

155

trivial amount of overhead involved in setting up new replicas of synchronized replicated
objects, whereas there is little overhead involved in setting up new replicas of unsynchro-
nized replicated objects. As programmers design, and later optimize, their applications,
there are often significant portions of the graphical scene that do not change, and therefore

do not need to be implemented using synchronized objects.

Consider the Distributed CATHI example in Section 5.4.4. The main animation
object is a complex data structure with many GOs and properties embedded within it.
When one of the CATHI viewers starts up, it typically takes about 30 seconds for this
object to be copied across the network from the viewer that reads it from disk. However,
none of these GOs or properties are modified while the viewer is running; the only
changes made are to the animation handle, or are local variations. If it was possible to have
unsynchronized Repo-3D objects, only the animation handle object would need to be syn-

chronized in this example.

A final performance issue arises when dealing with collaborators who are far apart.
Since all of the updates to an object must pass through that object’s sequencer, when a pro-
cess updates an object whose sequencer is located far away, there is likely to be a signifi-
cant delay associated with that update. Local variations, and clever design, can ameliorate
this problem somewhat, but, this problem will exist, in some form, in any system that

enforces strict consistency across replicas.

57 Discussion

In this chapter, we have discussed the design, implementation and performance of Repo-
3D, the distributed, interactive 3D graphics component of Coterie. Since Repo-3D’s
objects are directly distributed, Repo-3D simplifies rapid prototyping of distributed, inter-
active 3D graphics applications by circumventing the “dual database” problem and allow-
ing programmers to concentrate on the application functionality of a system, rather than
its communication or synchronization components. We have introduced a number of
issues that must be considered when building a distributed 3D graphics library, especially
concerning efficient and clean support for data distribution and local variations of shared

graphical scenes, and discussed how Repo-3D addresses them. We have shown how Repo-

156

3D builds on the Shared Object package, and how its implementation is a good example of

the flexibility and usefulness of the Shared Object package design.

However, while we have found the Repo-3D facilities to be extremely useful, they
are not a panacea for all the problems of building distributed graphical applications. While
it is possible to ignore the existence of the network during the initial exploratory program-
ming phase, programmers must still be conscious of their design choices if they wish to
achieve good network performance. In particular, when using Repo-3D, programmers

need to keep the limited bandwidth of the network in mind.

Network bandwidth is an important issue because Repo-3D data structures are
often large, so passing them around the network can be costly. When designing stand-
alone applications, complex scene graphs can be added to or removed from a graphical
scene with little thought to their size (aside from possible rendering performance implica-
tions). This is not true in a distributed application, as distributing new scene graphs to a
process can take significant amounts of time. This impacts the design of Repo-3D pro-

grams in a number of ways:

« Data should be distributed early. As discussed above, programmers should arrange to
distribute large data structures and scene graphs during program initialization, so that

they do not need to pay the price during the steady state of program execution.

« Data should be distributed once. If a scene graph that is being removed from the graph-
ical scene may need to be added back later, a programmer should arrange to hold a ref-

erence to it in the process, so that it does not get garbage collected.

- Data should be distributed incrementally. If a large data structure needs to be passed
around the network, programmers should consider breaking the scene graph up and
passing parts around separately. For example, if it is necessary to provide feedback on
the progress of copying a large data structure, the data structure must be broken up
because each method call made to pass an object is atomic, and there is no way to pro-
vide feedback as to its progress. If a complex scene graph is broken down, the program
can provide feedback as each piece is transferred. Consider the CATHI animation

viewer in Section 5.4.4; the animation used in the example takes approximately 30 sec-

157

onds to send across the network during program initialization. Many people who saw
the system being demonstrated commented that it would be useful if we provided feed-
back about the progress of the initial transmission of the animation between processes,

which we can not do because it is transferred as a single object.

While these design decisions are necessary because we are in a distributed context,
they are not substantially different than the kinds of activities programmers engage in
when optimizing stand-alone applications, such as initializing data structures at the begin-
ning of program execution, caching objects that are expensive to recompute, and so on. In
general, we have found that optimizing Repo-3D programs is similar in flavor to what pro-
grammers are used to doing with non-distributed applications, but requires thinking about
different kinds of performance issues and bottlenecks than one would think about when

optimizing stand-alone applications.

158

cerers CoOterie Examples

“Simple things should be simple, complex things should be possif&in-Kay

In the previous chapters, we have discussed the Shared Object package, Repo and Repo-
3D. Repo and Repo-3D are built on top of the Shared Object package and are two of the
key components of Coterie, our system for exploratory programming of distributed aug-
mented environments, introduced in Chapter 2. For each of these components, we have
given examples of their use in the corresponding chapter. In this chapter, we will describe
two examples of current work in our lab, created with Coterie, that illustrate how these

components work together.

6.1 Of Vampire Mirrors and Privacy Lamps

One of the current research projects in the Computer Graphics Lab is called EMMIE
(Environment Management for Multi-user Information Environments), and is concerned
with the exploration of user-interface issues that arise in collaborative augmented reality
systems, such as how one deals with information privacy [Butz et al., 1998]. The proto-
type is an interesting example of the use of Repo and Repo-3D. We will focus our discus-
sion of EMMIE on one aspect of the system, namely how replicated object directories (the
ODs from Section 4.6.5) are used as the basis for information sharing. In the course of that
discussion, we will show how Repo-3D is used to construct the main objects for this sys-

tem.

An EMMIE application is built around a data structure the authors call alvuB
which is an OD containing Repo objects with a well defined structure. The objects con-

tained in the VUB are replicated objects representing both the virtual and physical items in

1. The origin of this name is lost, but it has been retained for historical reasons.

159

Figure 6-1: The EMMIE system for collaborative augmented environments. Here we
see a view of a user of the system, taken from the viewpoint of a second user. Both are
wearing see-through head-worn displays, and see a shared augmented environment. In
this scene, there are generic icons in the world representing images (the photographic
slide) and movies (the video cameras), as well as other objects, such as the model of
our lab currently being manipulated by the user. EMMIE integrates this virtual infor-
mation with other displays. This allows, for example, the information associated with

the icons to be viewed on the laptop that is sitting on the desk.

the world. The EMMIE clients can be thought of as viewers that allow people to interact

with these objects. An image of the current prototype is shown in Figure 6-1. Each of the
virtual items (the model being manipulated by the user, the two small video cameras and
the photographic slide) are VUB items. Any process can create a new VUB item and add it

to the shared OD, which will cause it to appear in all other viewers.

The routine used to create a VUB item is shown in Figure 6-2. When a process cre-
ates an item, some informational attributes are specified (such as a symbolic name, a type,
and the owner), in addition to a Repo-3D graphical representldmal®O) and an ini-
tial 3D position. In addition, arbitrary data can be added to a VUB item usimgvihe
field. Since the VUB item is replicated, clients can update these values at any time (in an

object or application dependent manner) and all copies will receive the changes.

160

let hilitGO = proc(go)
let res = GroupGO_New();
let box = GroupGO_New();
res.add(go);
box.add(go);
res.add(box);

GO_SetTransform(box, Matrix4_Scale(Matrix4_1d,1.4, 1.4, 1.4));
SurfaceGO_SetTransmissionCoeff(box, 0.6);
SurfaceGO_SetEdgeColor(box, "white™);
SurfaceGO_SetEdgeVisibility(box, true);
res;

end;

let newltem = proc (hame, itype, owner, localGO, pos, raw)
(* the GO itself is a choice group, O=visible, 1=hidden *)
let publicgrp = ChoiceGroupGO_New(0);
let invgo = GroupGO_New();
publicgrp.add(localGO);
publicgrp.add(invgo);

(* the hilightable GO is a choice group, 0O=normal, 1=hilit *)

let highlightgroup = ChoiceGroupGO_New(0);

let hilitgrp = hilitGO(publicgrp);

highlightgroup.add(publicgrp);

highlightgroup.add(hilitgrp);

highlightgroup.setName(name);

GO_SetPickable(highlightgroup,true);

GO_SetTransform(highlightgroup,
(Matrix4_Translate(Matrix4_ld, pos[0], pos[1], pos[2])));

{replicated,

name => name,
type => option itype => 0 end,
owner => owner,
GO => highlightgroup,
filename => ok,
raw => raw}

end;

Figure 6-2: The routine to create a VUB item. In EMMIE, well defined objects are

contained in an OD (referred to as a VUB). These items are replicated objects con-
taining a name, a type, an owner, a filename (initially unset) and a field containing

arbitrary dataaw). The GO for the object is embedded in a hierarchy of GOs that

encode the visual representation of the highlit/normal and public/private states of

the item using ChoiceGroups.

Before adding the new item to the OD, a new GO scene graph is created to support
the needs of the EMMIE system, as described in Figure 6-3. This hierarchy is created once
at the site where the item is created, freeing the viewers from having to create the hierar-

chy for each item they import from the OD. More importantly, the choice groups are repli-

161

Properties
______________ | Scale by 140% |

hilitgrp /. | Make 40% transparent
box) | Turn on white edges |

.............

1 invgo
T g

highlightgroup HO)—————a=| publicgrp

localGO e

Figure 6-3: The structure of a VUB item’s GO. The names in this diagram refer to
the variable names in the code that creates this hierarchy (shown in Figure 6-2).
localGO s the arbitrary hierarchy of GOs representing the item, passed into the
newltem procedurehighlightgroup andpublicgrp are ChoiceGroups.
publicgrp chooses between displaying the object (choice 0) or hiding it by dis-
playing the empty groumvgo (1). highlightgroup chooses between dis-
playing the object (0) or displaying the highlighted object (1). Highlighting is
accomplished by giving the grougs two children, the object to be highlighted
and another group nodegx , that creates the highlightox has one child, the

object to be highlighted, and has properties that scale it, make it transparent and
turn on white polygon edges. Thus, no matter what the child looks like, or how it
changesbox will be a enlarged ghost with white edges around it.

cated with the objects, which allows one of them fihielicgo choice group) to be
used by the clients to experiment with privacy techniques. The two choice groups are used

as follows:

« highlightgroup is used for highlighting objects as the user interacts with them.
Each user has a 3D selection device that they use to manipulate objects in the virtual
world. For example, the user in Figure 6-1 is manipulating the room model with their
3D device. The globaChoiceGroupGO_Display property of this node is set to O,
selecting theublicgrp node for display. As they move the pointer through the
scene, objects are highlighted by locally settingGheiceGroupGO_Display
property to 1, selectinkilitgrp instead.

« publicgrp is used for hiding and revealing the objects. In this implementation of

EMMIE, an item is visible everywhere unless it is somehow made private by one of the

162

users (the various ways of managing privacy is the topic of [Butz et al., 1998]). The
globalChoiceGroupGO_Display property of this node is normally set to 0, select-
ing thelocalGO node for display. When a user makes an item private, they set the
globalChoiceGroupGO_Display property ofpublicgrp to 1, selecting the
emptyinvgo group node for display everywhere, and set the local value of the

ChoiceGroupGO_Display property to 0, making it visible locally.

As can be seen, fairly complex and interesting interaction behaviors have been
implemented by combining a relatively simple object hierarchy with a judicious use of
local and global property values. Also, notice that while these techniques are well suited
for experimentation with these interaction issues, they are not well suited for creating a
final, deployable system, as these techniques reply on cooperation between the various
processes and provide no security. For example, there is nothing to stop one of the clients
from changing the GO hierarchies arbitrarily, breaking the system. Or, more subtly, one of
the clients could set their loc@hoiceGroupGO_Display property on th@ub-
licgrp node to 0, thus ignoring the global setting and always making the object visible.
However, these issues do not concern us at this stage of interface design, as we are inter-

ested in building and evaluating prototypes to explore different interaction techniques.

The example also demonstrates how simple, well defined objects can be used with
the ODs to create a relatively powerful application. By combining the ODs with Repo-3Ds
graphical objects, the graphical components of the application are straightforward to cre-
ate, and the programmers can focus on other tasks, such as how to specify privacy, how to

integrate other displays such as laptop computers into the environment, and so forth.

6.2 Shared Sketch

One of the tasks that we would like to perform in our augmented environment prototypes
is informal collaborative creation of 3D objects. Unfortunately, intuitive and powerful
interfaces for this task are non-trivial to implement. One example of an interface for infor-
mal creation of 3D objects, using a sketching metaphor, is the Brown University Sketch

system [Zeleznik et al., 1996]. Rather than develop a new system (which would have been

163

Object Specification

Cube Parameters: none
The canonical cube between [-1,-1, -1] to [1, 1, 1]
Parameters: none

Cylinder The canonical cylinder with base at [0,-1, 0], tip at [0, 1, 0] and
radius of the base of 1
Parameters: none

Cone The canonical cone with bottom at [0,-1, 0], top at [0, 1, 0] and
radius of 1
Parametersad

Truncated The cone is centered around the origin, with its bottom face a

Cone circle of radius 1 centered at (0,-1,0). The top face of the
truncated cone will always be in the plane Y=1, centered on the
Y axis, and will have a radius cdd .
ParameterdaperX taperZ shearX shearZ
The pyramid is centered around the origin, with its bottom face
a square going from [-1,-1,-1] to [1,-1,1]. The top face of the

Truncated pyramid can be of any size, but will always lie in the plane

Pyramid Y=1. The taper vector determines how much the top face of the
pyramid should be tapered in from the default of [1,1]. The
shear vector determines how much the top face of the pyramid
should be offset from the Y axis.

Parametersaum_pts x1 z1 x2 z2 x3 z3 ...

Extrusion The profile lies in the plane Y=-1. The length of the extrusion
should always be 2 units, up the Y axis to the plane Y=1.
Parametersaum_pts x1 z1 x2 z2 x3 z3 ...

Surface of T = " .

Revolution The profile lies in the half plane X>0, Z=0. The axis of

revolution is the Y axis, and the profile is swept 360 degrees

Table 6-1: Sketch Object Definitions. Sketch supports seven objects. All Sketch
scenes are created using these basic objects, and Boolean set operations between

them.

a prohibitive amount of work), we worked with members of the Brown Computer Graph-

ics Lab to integrate the Sketch system into our environment.

The Sketch system allows the user to sketch 3D scenes using gestures. The system

allows the user to create seven basic types of objects, detailed in Table 6-1. More complex

objects are created by performing the Boolean set operations of constructive solid geome-

try (CSG) operations on instances of these seven object types, such as taking the union of

two objects or subtracting one object from another object. All operations, including object

164

creation, deletion and CSGs, are done using gestures. The system infers object grouping
based on how and where the objects are created and allows interactive and intuitive speci-
fication of CSG.

To integrate Sketch with Coterie, we defined a TCP protocol that describes all of
the logical operations Sketch can perform, such as creating, deleting, hiding or showing
objects, changing their position or color, changing object grouping, performing CSG oper-
ations, and so on. Loring Holden (a researcher at Brown) implemented this protocol inside
the Sketch application, and we implemented it in Repo. The Repo module we developed
uses a Repo-3D GO for each object in Sketch, and a Repo-3D group GO to hold all of the
objects in a Sketch scene. The module is symmetric, ensuring that the contents of that
group match the contents of the Sketch world, regardless of which side changes the scene.
When the system is started, it obtains the current scene from Sketch and creates an initial
set of Repo-3D objects corresponding to the Sketch objects. When the Sketch user modi-
fies the scene in any way, the corresponding changes are made to the Repo-3D objects.
The module watches the Repo-3D objects for a well defined set of changes (of the sort that

the module itself would perform) and issues commands to Sketch to reflect these changes.

From a Coterie programmers point of view, this module maintains a group GO cor-
responding to a Sketch scene. This group GO contains all the information needed to recre-
ated the scene in a running instance of the Sketch program. Therefore, after the module is
initialized and connected to a running Sketch, a group GO containing a valid Sketch scene
can be passed to the module, and the associated Sketch will have its current objects
removed and the new objects (corresponding to the group GO) loaded into it. New scenes
can be created by passing an empty group GO to the module. Therefore, we can maintain

many different Sketch scenes in Coterie and switch between as needed.

Since the group GOs representing Sketch scenes are Repo-3D object hierarchies,
they may be passed to any Coterie process and used like any other Repo-3D objects.
Currently, a group GO representing a Sketch scene should be treated as an immutable
object to ensure that it remains a valid Sketch scene, since the objects in a Sketch scene are
defined in relation to one another (including their grouping and CSG specification). How-

ever, the group GO can still be added to other Repo-3D scenes, watched for changes, and

165

so on. It may also have other non-Sketch objects added to it, as these will be ignored by

the Sketch synchronization module.

As described so far, this is an interesting example of software engineering and
“program reuse”. We have created a module within Coterie that is a black box and appears
to bethe Sketch system, from the viewpoint of the Coterie programmer. However, if we
look at how the Sketch objects are implemented in Coterie, we will see that this is also an
interesting example of how Repo-3D’s distributable and extensible objects are used in

practice.

Since the group GOs containing Coterie Sketch scenes can be passed around the
network, and will continuously reflect the changes made by the Sketch user, we can see
how the distributability of Repo-3D objects is useful. However, the mere fact that the
objects are distributable is not sufficient to allow them to be used to represent the Sketch
scenes. As mentioned above, a Sketch scene is composed of a set of the seven basic
objects listed in Table 6-1, plus CSG operations on them. Furthermore, objects can be
grouped together, used to interactively perform CSG operations on each other (referred to
as the object being a “cutter”), and be visible or hidden. Therefore, if we want to fully rep-
resent the Sketch scene with a Repo-3D group, this additional information needs to be

embedded in the Repo-3D objects.

To carry this information with the Sketch scene, each Repo-3D object representing
a Sketch object is extended with a field nanméal that contains a replicated object
holding this additional state, as shown in Figure 6-4. Every Sketch object is represented as
a choice group GO with two children, one for the Repo-3D object corresponding to the
Sketch object, and one to hold the CSG result if this object is used in a CSG operation.
The objects created in Figure 6-4 contain sufficient information to recreate the Sketch
scene. Furthermore, since the additional information is contained in replicated objects,
when any site changes a Sketch object, all sites will be notified of the change. Further-
more, if multiple processes are editing the same Sketch scene, changes made by one user
will be forwarded to the other users’ Coterie processes, and from there into their Sketch

programs. Thus, each user will see changes made by other users in real time.

166

let obj = ChoiceGroupGO_New(-1).extend(
{simple, info => {replicated,
name => name, (* our sketch object name *)
type => typ, (* our sketch object type *)
group => simple[], (* which objects we are grouped with *)
cutter => false, (* are we a cutter? *)
cutting => ok, (* the name of the object we are cutting *)
data => objData, (* object data *)
visible => false, (* are we visible? *)
csgOp => ok, (* are we CSGed? *)
csgGeom => ok (* the geometry of our CSG result *)
}
Dk

let t = TransformProp_NewConst(Matrix4_Id);
obj.setProp(GO_Transform, t);

let ¢ = ColorProp_NewConst("white");
obj.setProp(SurfaceGO_Color, c);
obj.setProp(SurfaceGO_BackColor, c);

let 0bjGO = GroupGO_New();

let csgObjGO = GroupGO_New();
obj.setName(name);
0bjGO.setName("go");
¢csgObjGO.setName("csg™);
obj.add(data.objGO);
obj.add(data.csgObjGO);

Figure 6-4: The definition of a Coterie Sketch object. The Sketch object is
represented as a Repo-3D choice group GO, where the two possible children of the
group are the object itself, and a CSG result object. The object is extended with a
replicated object containing the information needed to reconstruct the object in
Sketch. A transformation property and color property are assigned to the object,
and the property value is set to the new value when any instance of Sketch changes
it.

The extensibility of Repo-3D objects is also used to create four of the seven basic
Sketch objects. If we look at the list of Sketch objects in Table 6-1 and compare them to
the Repo-3D objects in Appendix H.1, we see that only the first three (cones, cylinders
and cubes) are available in Repo-3D. We created a new module for each of the other four,
using group and indexed polygon set GOs (see Appendix H.1.12 for a description of

indexed polygon sets).

The implementation of one of these new objects, the Truncated Pyramid, is
described in Section 5.4.3. A truncated pyramid is created as an indexed polygon set, and

extended with a newata field holding a replicated object that contains the parameters

167

Figure 6-5: Distributed Sketch in use. The wall-sized display shows the shared
Sketch world, containing four sketchpads. In this image, the two client worksta-
tions in the foreground are editing the same sketchpad (the one in the foreground of
the shared world), but they could also be editing different ones. The system
supports any number of simultaneous clients editing the sketchpads in any combi-
nation.

defining the truncated pyramid. The vertices of the indexed polygon set representing the
pyramid are defined using asynchronous properties that compute their values based on the
values of the items in thaata field. Therefore, when the values in tteda object are
changed, the pyramid changes shape accordingly. And, sinciathefield is replicated,

if we pass the object around the network, the values can be changed at any site and all sites
will be updated (and have the shape of their pyramid changed accordingly). The other
three objects are defined similarly, with the parameters that define the objects contained

within them.

As we described above, the goal of the module is to allow the Brown Sketch sys-
tem to be used to create 3D models that can be easily integrated with our research proto-
types. To demonstrate the ease with which this can be done, we created a simple
demonstration program that allows any number of users to cooperatively edit a group of

four Sketch scenes, represented as colored “sketchpads”. An image of this demonstration

168

Coterie Client: ~40 lines of code Coterie

Object Communication

Coterie (Server)

(create and export 4 Groups) Sketch

Sketch

Figure 6-6: The structure of the Distributed Sketch prototype. The organization of
the Distributed Sketch prototype shown in Figure 6-5. The server creates four
sketchpads as group GOs and exports them to the network. Each client is composed
of a Coterie program and a Sketch program, connected together by a symmetric
TCP protocol that keeps their sketchpad synchronized. Therefore, if the client
switches sketchpads, by importing a different one, the sketchpad in the Sketch pro-
cess is loaded with the new scene. Conversely, if the user modifies the scene in
Sketch, the sketchpad in the Coterie process is updated. In this case, all other repli-
cas of the sketchpad are also changed (such as the one in the server, or in any client
that is also editing the same sketchpad), because the sketchpad objects in Coterie
are built using Repo-3D objects.

program is shown in Figure 6-5, where a wall-sized projection screen is displaying the
four Sketch scenes on their sketchpads, and two clients are running on the smaller displays
in the lower corners of the image. In this image, the two clients are editing the same scene
in their Sketch programs (the one on the sketchpad in the foreground of the large, rear
image). Each client screen contains a large Sketch window, and a small Repo-3D window
(in the upper right corner of the display). This small Repo-3D window is used to select

which of the four sketchpads should be edited in the local Sketch program.

The structure of this application is shown in Figure 6-6. There are two simple pro-
grams in this prototype, a server (implemented in about 90 lines of Repo code), and a cli-

ent program (implemented in about 40 lines of Repo code). The server code creates four

169

sketchpads, exports them to the network and creates the display shown. The client creates
a small window and waits for input telling it which of the sketchpads to import from the
network and pass to the Coterie Sketch module (causing it to be loaded into Sketch). This
trivial prototype took very little time to write, and allows any number of clients to edit the
shared sketchpads, including have more than one editing the same sketchpad simulta-
neously. Any changes made to a sketchpad are reflected on the large server display, and in

any clients sharing that sketchpad, in real time.

What this prototype does notimplement is any form of floor control. While Coterie
guarantees that the objects will remain synchronized, it is up to the programmer to imple-
ment whatever kind of shared editing policies they desire. For example, the replicated
mutexes of Section 4.6.4 can be used to allow one site to lock a sketchpad, or objects
within the sketchpad, when they want to edit them. The important thing to remember here
is that Coterie supports the programmer in creating whatever policies they desire, but does

not impose any on them.

170

ciarrerz CoNclusions and Future Work

In this dissertation, we have examined the design and implementation of various
components of Coterie, our research platform for building prototypes to explore the user-
interaction issues of multi-user augmented environments (AEs). We based our design on
our previous experience building single-user augmented reality (AR) prototypes, some

examples of which were discussed in Section 2.1.

Based on this previous experience, it was obvious to us early on that exploring
multi-user AEs would be unusually challenging. On one hand, the physical environments
themselves are extremely difficult to work with. Multiple users, multiple displays of
different kinds (from see-through head-worn to wall-mounted to hand-held), and a wide
variety of input devices (from pens and mice to voice to three and six degree-of-freedom
sensors) must be integrated into a single cohesive system. On the other hand, these devices
and displays are attached to an assortment of computers, requiring that even the simplest
of applications be distributed over many machines. It is this latter problem that most con-
cerns us, as building distributed applications can be extremely difficult, especially in
highly interactive application domains such as ours. This difficulty is exacerbated by the
exploratory nature of prototyping systems to investigate a completely new interaction par-
adigm: neither the structure of the applications, the kind of data being shared, nor the dis-
tribution characteristics of that data are necessarily known ahead of time, and will likely

be modified continuously as the applications are developed.

Our solution to this problem is embodied in our Coterie testbed. The fundamental
design choice we made with Coterie was to first create a general purpose, easy-to-use,
flexible and efficient programming environment as the lowest level of our system, and then
build the other tools we need on top of it. To ensure flexibility and ease of use, we built

this lowest layer by tightly integrating transparent support for data distribution into the

171

object system of Modula-3. We elected to integrate data distribution with a popular pro-
gramming language so that we can take advantage of both existing software and program-

ming skills.

Transparent integration is only possible if the programming language supports a
programming model that is suitable for distributed programming. Modula-3’s program-
ming model—multiple threads of control communicating via shared objects—is ideal. By
providing an object-based implementation of distributed shared memory (DSM), often
called a distributed object memory (DOM), both stand-alone and distributed programs are
built the same way, with local and distributed data being used transparently and inter-
changeably, and with threads on the same or different machines communicating through

shared objects.

The DOM approach is not revolutionary in and of itself: over the past two decades,
many others have recognized the importance of integrating data distribution into the pro-
gramming languages they use. Starting with the popularity of the Remote Procedure Call
system (RPC) [Birrell and Nelson, 1984], client-server data sharing packages have been
built for many programming languages, and have become more tightly integrated and eas-
ier to use along the way. Packages for modern, multi-threaded languages, such as Java
RMI [Wollrath et al., 1996] or Modula-3 Network Objects [Birrell et al., 1993] are almost

transparent to the programmers using them.

Unfortunately, these popular packages are not sufficient for our needs because we
require both client-server and replicated data, and none of the DOM packages created for
popular languages support replicated data. This is understandable, as replicated data
sharing is significantly harder to implement than client-server data sharing. All client-
server data sharing packages use the same general approach: a data item exists in one pro-
cess, and any access to that data in any other process is forwarded to the process contain-
ing the data. Support for replicated data is not as simple, as a variety of design trade-offs
must be made that do not arise with client-server data, affecting the latency of update dis-
tribution, efficiency of access and network usage, data consistency, fault tolerance, and so

on.

172

The first contribution of this dissertation, therefore, is the creation of the Shared
Objects DOM package for Modula-3. The Shared Objects package supports replicated
data, and the design trade-offs mentioned above have been made with the needs of our
application domain in mind. In particular, the Shared Objects package focuses on provid-
ing a high degree of flexibility to support exploratory programming, as well as providing
low latency update distribution and strictly consistent data. When combined with the exist-
ing Network Objects client-server package, we have the solid foundation we need for dis-
tributed programming: a DOM programming system supporting client-server,

unsynchronized replicated and synchronized replicated data.

On this foundation, we built the other major components of Coterie, the most
important of which are Repo and Repo-3D. Repo is an interpreted language supporting the
same DOM programming model provided by the Shared and Network Objects packages.
Repo-3D is a novel, high-level 3D graphics package in which all the graphical objects are
both extensible and directly distributable (since they are implemented with Shared
Objects). This allows graphical application programmers to encode application state in the
3D graphics objects and use these objects directly as part of the distributed data structures

of their application.

The combination of Repo and Repo-3D allow distributed, interactive graphical
applications to be built with a minimum of effort because programmers do not need to
overly concern themselves with issues of data distribution, and can therefore expend the
vast majority of their programming and design efforts on application development. Since
more time and effort can be expended on the applications themselves, rather than the

mechanics of data distribution, previously impractical applications become possible.

Repo and Repo-3D are both contributions for two reasons: each is an new and
interesting research result in and of itself, and both are examples of how a flexible and
easy to use infrastructure, combined with an existing programming language, enables pre-
viously difficult problems to be tackled in a straightforward manner. Both Repo and Repo-
3D are based on existing Modula-3 packages (Oblig and Oblig-3D, respectively), and
modifying them to support replicated data was feasible because of the flexibility of the

Shared Object package, and its tight integration with Modula-3.

173

If we had chosen to build a new language, or had added support for replicated data
to Modula-3 in a way that was inflexible or not compatible with the predominant program-
ming style, creating these packages would have been significantly more difficult. Given
the usefulness of Repo and Repo-3D, we hypothesize that the main reason no similar
packages have been built previously is the lack of data replication facilities such as those
provided by the Shared Objects package; building them is simply too hard without such
facilities, because the details of managing replicated data are too complex. As a result, the
people who would benefit most from these tools (researchers and developers of distributed
interactive applications such as ourselves) do not embark upon building them, but rather

focus on building custom solutions to solve their immediate problems.

The flexibility of the Shared Objects package derives primarily from the fact that
consistency is defined in terms of method execution (both the order of execution and
whether the method modifies the global state), with almost nothing being said about the
contents of an object’s data fields. For example, the programmer of an object has great
flexibility in partitioning the work into parts executed once (at the calling site) and parts
executed at all sites, by taking advantage of the fact that update methods are broadcast and
executed at all sites while read methods are not. A read method can therefore perform
some work locally, and then call an update method to perform the rest of the work glo-
bally. This same technique can be used to lessen the impact of the restrictions on update
method argument types; for example, a read method can manipulate the restricted argu-

ment locally and use the results as arguments to an update method.

We make use of the ability to perform arbitrary actions in methods in the imple-
mentation of both Repo and Repo-3D, but especially in Repo-3D (as discussed in
Section 5.5). Since part of the state of each graphical object is global, and part is local to
each machine (both the part that associates the conceptual graphical object state with the
concrete state used by the rendering subsystem, and the local variations to the global
state), we can manage these data structures in a straightforward and efficient manner by
manipulating local data within the read methods and global data within the update meth-

ods.

174

Throughout this dissertation, we have demonstrated the simplicity and flexibility
of the various components of Coterie through illustrative examples. These include simple
examples that demonstrate important techniques, such as the recurring example of tracker
report distribution, the distributed mutex examples of Section 4.6.4 and Appendix F, and
the complete single and multi-user prototypes of Section 2.6 and Chapter 7 that members
of our research group have built using Coterie over the past few years. We have found that
having a system in which distributed and stand-alone applications can be built using a
common high-level programming model has greatly simplified development, and allowed
us to explore applications and domains that would otherwise have been intractable. Per-
haps more importantly, programmers with varying levels of experience, especially those
with little distributed programming experience, have used the system successfully. Our

programmers have included undergraduate, masters, doctoral and post-doctoral students.

7.1 Future Work

In this dissertation, we have developed a system that is well suited to exploratory program-
ming of tightly-coupled, distributed, highly interactive systems. Our choice of the distrib-
uted object memory (DOM) programming model, and the approach we took to providing
replicated data within that model, were guided by both the application domain and the
exploratory style of programming in which we engage. In the future, we hope both to con-
tinue building on this approach to prototyping distributed interactive applications, and to
explore different programming models that may be more appropriate to different domains

and programming styles.

This latter question is an important one. While tightly-coupled, strictly consistent
objects that are distributed using a DOM programming style are useful for exploratory
programming, they may not be the most appropriate choice for other domains. For exam-
ple, if one is building long lived, production quality systems, the trade-offs made between
ease-of-use and efficiency might be different; efficiency of execution and network utiliza-
tion are likely to be much more important than the ease of changing objects from one dis-

tribution semantic to another, not to mention the increased importance of other issues such

175

as fault tolerance. Therefore, the transparency with which the objects are integrated into

the programming languages may not be the most important issue, as it is for us.

However, returning to the programming style with which we are familiar, there are
a number of ways we envision improving our implementation of the DOM programming
model: by decreasing the latency of update distribution, improving network awareness,
adding additional per-object replication semantics, extending the programming model to
support multi-object operations, improving the flexibility of the consistency guarantees,
and improving the handling of time. Finally, we would like to explore these ideas in other

programming languages, especially Java.

7.1.1 Shared Object Update Latency

When designing the Shared Objects package, we were extremely concerned that update
distribution might be too slow because of the requirement that all updates travel over the
network at least twice, passing through one or more sequencers on the way. As it turned
out, this has never been a significant problem with the applications we have developed, so

we have not needed to address it.

However, we did design one possible solution into the runtime, which has been
partially implemented. Our solution is to allow a programmer to designate a replica of a
Shared Object as requiring updates timreely fashion. By either designating a replica as
the primary updater, or by having the runtime notice that one site is performing most of
the updates, the system would be able to arrange for update events to be sent directly from
the primary updater to those replicas requesting timely updates. By having the primary
updater handle the sequencing for this object, we would bypass the sequencer and
decrease the typical network hops from two to one. (Updates by any process other than the
primary updater will now take longer, having their network hops increased from two to

four because the sequencer must now route update events through the primary updater.)

This facility is only needed in cases where minimizing lag is critical. For example,
it may be used when a head tracker is connected to a different machine than the graphics

display. In this case, only the primary updater will update the object, so the increased num-

176

ber of network hops for other updaters is not an issue. This facility was not implemented
because Moore’s Law obviated the need for it: between the time we designed the system,
and the time it would have been implemented, the machines being used became suffi-
ciently powerful that it was always the case that a head tracker could be attached to the
same machine (and thus read from the same process) that generated graphics for that

user’s display.

An alternative approach, which would obviate the need for the above facility,
would be to support per-object sequencer migration. In the general case, as an application
evolves over time, it is possible that the sequencer for an object may no longer be located
in a cluster that contains processes issuing updates on that object. For both performance
and network utilization, it would be best if the sequencer for an object is located in the
cluster that contains the processes that are issuing most of the updates on that object.
Therefore, the system should be able to migrate the sequencing duties for an object to the
sequencer for the cluster where the updates are being performed. Given such a facility, and
the fact that all processes are capable of sequencing updates, it would be a small step to
notice that one particular process is issuing most, or all, of the updates for an object, and
allow it to do the sequencing for that object. Such techniques are in many ways similar to
the optimistic locking of objects done in many CSCW and distributed systems, where an
object is allowed to be updated only if the process holds the lock on the object, and the
system arranges to acquire the lock when the process attempts to update the object. No
sequencer-based systems that we know of allow the sequencing duties to migrate into a

client process in this manner.

7.1.2 Network Awareness

Another area that we would like to address is thatetivork awarenes®r the amount of
information a programmer can obtain about the network behavior of the program. Cur-
rently, the Shared Object package provides a basic level of network awareness, following
the approach of the Network Object system: when a distribution problem is detected, the
runtime raises &haredObj.Error exception, analogous to thietObj.Error

exception raised by the Network Object package. This allows a programmer to react to

177

problems, but does not require using a radically different programming model than they
are used to. The Shared Object package further exposes the network to the programmer by
supporting the definition of custom pickling routines, allowing a programmer to perform

(arbitrary) special actions when an object is passed between processes.

One facility that would enhance network awareness, and that we have found a need
for, is to allow the programmer to specify cleanup code to be run in a process when an
object is removed from that process: if a programmer wishes to do arbitrary things in the
pickling routines when a new replica is created in a process, it is sometimes necessary to
be able to undo some of these actions when the object is removed from the process. Cur-
rently, this is not a major drawback because the prototypes being developed tend not to be

long-lived and situations where this is absolutely necessary are rare.

Network awareness is more of an issue when designing objects that need to deal
directly with the fact that they are replicated. Unlike Network Objects, Shared Objects
exist simultaneously in multiple processes, and it occasionally turns out to be useful to
know where these replicas reside, and to be notified when additional replicas are created
or removed. Furthermore, we have found that it is also sometimes useful to know if an
update was initiated locally or remotely, as well as which remote process initiated the
update. This information could be made available to one or both of the Shared or Callback
Object methods. These facilities can be useful in implementing permissions and capabili-
ties inside objects, for example, allowing them to present different information to different

clients.

Recall the discussion of a distributed mutex from Section 4.6.4. In that section, we
describe how to create a fair mutex that will not give preferential access to sites closer to
the sequencer. To do this, we need to enqueue requests for the mutex, rather than have sites
try to reacquire the mutex when they notice it has been released. But, if we enqueue
requests for locking the mutex, we then require notification if a site crashes so that we can

remove that site’s outstanding requests from the queue in the replicas at all other sites.

178

7.1.3 Additional Replication Semantics

Currently, a Shared Obiject is created by inheriting fronStieredObj. T type and fol-
lowing a few simple rules. There are two alternatives for supporting additional semantics.
On one hand, procedures could be provided in the Shared Object package, or methods
added to th&haredObj.T type, that allow the programmer to control the replication
semantics of a generic “replicated” object type. Alternatively, new semantics could be pro-
vided by creating subtypes 8haredObj.T and having the programmer inherit from
them as appropriate. We prefer this latter approach, as it is cleaner and more in line with

our goal of tight integration with the type system of Modula-3.

Ideally, we would like to extend the replication semantics to be as flexible as the
Penumbra system is for client-server objects, allowing programmers to define their own
consistency semantics [Kristensen and Low, 1995]. However, while this may be difficult
to accomplish while keeping the system easy to use for novice programmers, a number of
specific new replication semantics could be provided without supporting programmer-
defined consistency. We are particularly interested in replication semantics that fit with the
current write-update scheme. Currently, the Shared Objects runtime assumes all updates
must be applied to all replicas, and ensures that all updates are applied to all replicas in the
same order. During our work, we have discovered two additional semantics that would be
particularly useful for distributed interactive applications, which we will axat-order

updateandlatest-only update

An any-order updatscheme asserts that the object in question will remain consis-
tent regardless of the order the updates are applied, as long as all updates are applied. The
most obvious example of such an object is an up-down counter that supports increment
and decrement operations: as long as all operations are executed, all replicas of the object

will be consistent. independent of the order of execution of the operations.

A latest-only updatscheme asserts that each update operation completely speci-
fies the state of the object, and that only the most recent update is of interest. Such a
scheme is useful for rapidly changing objects that satisfy these properties, as missed

messages can be thrown away, instead of retransmitted. Furthermore, incoming updates

179

need never be queued up, since an update can be executed immediately if it is newer than
the current state of the replica, and thrown away if it is not. Such an update scheme is also
very well suited for efficient implementation using UDP or multicast UDP. Examples of
applicable objects include the TrackerPosition object used as an example in Section 3.4.1,
and Repo-3D property values. The TrackerPosition object eit§)a method that com-
pletely updates the state of the object, ame{) method that retrieves the current posi-

tion of a tracker. The Repo-3D property values are similar: the current behavior can be set,
used or retrieved, but is independent of any other behaviors that might be assigned to the

property value at any other time.

The addition of new replication semantics to the Shared Objects package will also
affect the other layers of Coterie. Most importantly, such semantics would need to be
exposed into Repo to be truly useful to the programmer. Fortunately, adding new seman-
tics to Repo, such as the two described above, would only require that new keywords be
added to the language to allow programmers to create (and convert between) objects with
the new replication semantics. Currently, Repo usesitgle andreplicated key-
words to modify object, array and variable creation, and to convert between distribution
semantics. New keywords, and thus new semantics, could be added in a similar manner.
For examplelatest andanyorder keywords that could be used in the same way as
simple andreplicated , with no other changes being required. These new semantics
would be particularly useful for arrays, as many uses of arrays in our programs access and

update array elements independently.

Additional replication semantics would also improve Repo-3D. For example, if it
were possible to specify tHatest-only updatesemantics, the efficiency of the distribution
of property values would improve significantly; in this case, updates could be applied (or
discarded) when they arrive, without waiting for all previous updates to be applied, and
could be applied locally without waiting for the round trip to the sequencer. While pro-
grammers may occasionally want all updates to a property value to be applied at all sites
(for example, if the changes to the value are being recorded via callbacks), typically only

the latest value of a property is of interest.

180

7.1.4 Multi-object Consistency

There are times when it would be useful to support some sort of consistency or synchroni-
zation guarantee across multiple objects. One end of the spectrum we would be to support
causal orderingas provided by systems such as Isis [Birman, 1993]), so that we could
ensure that multiple updates to distinct objects would appear to happen in the same order
in distributed processes if they were causally related. However, the causal ordering algo-
rithms with which we are familiar require full replication, and do not scale well, soitis not

clear how one would provide efficient causal order in a system such as ours.

Another option would be to provide a more well defined, restricted multi-object
consistency guarantee by allowing the programmer to explicitly specify the group of
actions that are to be applied as a unit. Based on our current experiences, it seems reason-
able to provide this facility by allowing a thread to mark the beginning and end of a group
of actions that should be associated in this way. Since we do not want to modify the lan-
guage, we would have to use procedure calls to implement this in Modula-3. However, we
could easily modify Repo to add a structured statement to support this model, to make the
process clearer to the programmer. It may also be useful to implement a transaction model,

so that large groups of changes could be applied atomically, or not at all.

7.1.5 More Flexible Consistency Guarantees

Another issue we have encountered with our use of the Shared Object package is that of
strict consistency. While we have found the model useful, the local variations we imple-
mented in Repo-3D point out the need for local variations to be directly supported by the
object system. Similarly, while many of the data structures we build in Repo benefit
strongly from the guarantees provided by strict consistency, we often find ourselves need-
ing to support local variations to replicated objects. Instead of implementing such facilities
on an object by object basis, it would be useful if the object system provided these facili-
ties directly. This would greatly benefit exploratory programming, as more applications
would then be able to encode their state using the distributed objects, instead of requiring

a combination of distributed and local objects.

181

Another problem we would like to address relates to the transparent use of the
Modula-3 type system to enforce consistency. Since we create replicas by passing objects
between sites, it is impossible to create replicated objects without creating the object at
one site and passing it to the others. As we have found in some of our more complex appli-
cations, large objects (such as Repo-3D scene graphs) take a significant amount of time to
pass between processes. This is particularly annoying when these objects are statically
defined on disk, and the only reason we pass them between processes is to tie the replicas

in these processes together.

This is important for both efficiency and software engineering reasons: it is tedious
and time consuming (both during program development and execution) to arrange for
these replicas to be downloaded from other processes. What we need is a facility to be able
to name an object, effectively saying “object A is the same as object B” without having to
pass it across the network. Such a facility would allow local object caches to be stored on

disk and reloaded on demand, objects to be created from local program files, and so on.

7.1.6 Better Handling of Time

In the current implementation of Coterie, we assume that all of the machines have their
clocks synchronized using a time-synchronization protocol such as NTP (the Network
Time Protocol [Mills, 1992]). The library uses an internal animation time dffsettead

of the system-specific time offset) because different OSs (e.g., NT and UNIX) start count-
ing time at different dates. Unfortunately, this assumption is not always reasonable, espe-
cially when mobile computers are involved. We have found that even in our controlled lab
environment, the clocks on our machines do not always remain synchronized. This prob-

lem is most apparent when using time-based animations in Repo-3D.

To address this problem, hooks have been provided iartime3D module (see
Appendix H.7.1) to allow a programmer to specify their own function to compute the
“current” animation time offset within a process. Using this facility, it is possible to build

inter-process time synchronization protocols; we have implemented a version of the Sim-

1. Computed as an offset from January 1, 1997.

182

ple Network Time Protocol (SNTP) [Mills, 1996] using approximately a hundred lines of
Repo code (shown in Appendix I). Future systems should integrate more advanced solu-
tions, such as adjusting time values as they travel between machines, so that users of com-
puters with unsynchronized clocks can collabofakais will become more important as
mobile computers increase in popularity, as it may not be practical to keep their clocks

synchronized.

7.1.7 Generalized Local Variations in Repo-3D

Another way the current implementation could be improved is in the specification of local
variations, which could benefit from adopting the notiopaths(as used in Java 3D and
Inventor, for example). A path is an array of objects leading from the root of the graph to
an object; when an object occurs in multiple places in one or more scene graphs, paths
allow these instances to be differentiated. By specifying local variations using paths,
nodes in the shared scene graphs could have variatibims a process as well dgetween

processes.

One other limitation of Repo-3D, arising from our use of the Replicated Object
package, is that there is no way to be notified when local variations are applied to an
object. Recall that the methods of an automatically generated Notification Object corre-
spond to the update methods of the corresponding Replicated Object. Since the methods
that manipulate the local variations are non-update methods (i.e., they do not modify the
replicated state), there are no corresponding methods for them in the Notification Objects.
Of course, it would be relatively straightforward to modify the Replicated Object package

to support this, but we have not yet found a need for these natifiers.

7.1.8 Application to Other Languages

While Modula-3 was a popular programming language when this work started, it has

declined in use over the years. If we want to popularize these techniques, we need to

2. Implementation details of the combination of Network and Shared Objects made it dif-
ficult for us to adopt a more advanced solution.

183

implement them in a more widely used language, such as Java. Java shares many of the
advantages of Modula-3 (e.g., threads and garbage collection are common across all archi-
tectures) and the packages needed to create a Coterie-like platform are beginning to

appear.

While Java does not yet have a replicated object system as powerful as the Repli-
cated Object package, a package such as JSDT [Sun Microsystems, Inc., 1998] (which
focuses more on data communication than high-level object semantics) may provide a
good starting point. Work is also being done on interpreted, distributed programming
languages on top of Java (e.g., Ambit [Cardelli and Gordon, 1998]). Finally, Java 3D is
powerful enough to serve as the basis for a library such as Anim-3D, even though its
design leans toward efficiency instead of generality when there are trade-offs to be made.
For example, the designers chose to forgo Anim-3D’s general property inheritance mecha-
nism because it imposes computational overhead. By combining packages such as Java
3D, JSDT, and Ambit, it should be possible to build a prototyping testbed such as Coterie

in Java.

184

References

Arnold, K. and Gosling, J. (1998Yhe Java Programming Languaga&ddison Wesley,
Reading, MA, USA, second edition.

Bal, H., Kaashoek, M., and Tanenbaum, A. (1992). Orca: A language for parallel
programming of distributed system&EE Transactions on Software Engineering
18(3):190-205.

Bal, H. E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Ruhl, T., and
Kaashoek, M. F. (1998). Performance evaluation of the orca shared object system.
ACM Transactions on Computer Systef@{1):1-40.

Bal, H. E. and Tanenbaum, A. S. (1988). Distributed programming with shared data. In
Proc. of the 1988 Int’'l Conf. on Computer Languagesyes 82-91.

Bennett, J. K., Carter, J. B., and Zwaenepoel, W. (1989). Munin: Shared memory for
distributed memory multiprocessors. Technical Report COMP TR89-91, Dept. of
Computer Science, Rice University.

Birman, K. P. (1993). The process group approach to reliable distributed computing.
Communications of the ACN36(12):36-53.

Birrell, A. and Nelson, B. (1984). Implementing remote procedure cali3M Trans.
Computer System2(1):39-59.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. (1993). Network object®rivc. 14th
ACM Symp. on Operating Systems Principles

Blau, B., Hughes, C. E., Moshell, M. J., and Lisle, C. (1992). Networked virtual
environments. IrProc. 1992 ACM Symp. on Interactive 3D Graphipages 157—
164.

Bricken, W. and Coco, G. (1994). The VEOS projéttesence: Teleoperators and Virtual
Environments3(2):111-129.

Butz, A. (1997). Anymation with CATHI. IrProceedings of AAAI/IAAI '97pages 957—
962. AAAI Press.

Butz, A., Beshers, C., and Feiner, S. (1998). Of vampire mirrors and privacy lamps: Privacy
management in multi-user augmented environmentBrac. ACM UIST 98 pages
171-172, San Francisco, CA.

Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D. (1993). The
SIMNET virtual world architecture. IRroc. IEEE VRAIS '93pages 450-455.

Cardelli, L. (1995). A language with distributed scopemputing System8(1):27-59.

185

Cardelli, L. and Gordon, A. D. (1998). Mobile ambients. Pnoceedings of the First
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCsS '9%)ages 140-155.

Carlsson, C. and Hagsand, O. (1993). DIVE—a multi-user virtual reality systeRron
IEEE VRAIS '93pages 394-400.

Carriero, N. and Gelernter, D. (1992). Linda in conteommunications of the ACM
32(4):444-458.

Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littlefield, R. J. (1989).
The amber system: Parallel programming on a network of multiprocessd?sodn
of the 12th ACM Symp. on Operating Systems Principles (SOSPddd)s 147-158.

Codella, C. F., Jalili, R., Koved, L., and Lewis, J. B. (1993). A toolkit for developing multi-
user, distributed virtual environments.Rnoc. IEEE VRAIS '93pages 401-407.

Coulouris, G., Dollimore, J., and Kindberg, T. (199B)stributed Systems: Concepts and
Design Addison Wesley.

Decouchant, D. (1986). Design of a distributed object manager for the Smalltalk-80
systemACM SIGPLAN Notice®1(11):444-444.

Dourish, P. (1996)Open Implementation and Flexibility in CSCW ToolkRD thesis,
University College Londen.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (1994). TBAG: A high level
framework for interactive, animated 3D graphics application€dmputer Graphics
(Proc. ACM SIGGRAPH '94Annual Conference Series, pages 421-434.

Fairen, M. and Vinacua, A. (1997). Atlas, a platform for distributed graphics applications.
In Arbab, F. and Slusallek, P., editorBroc. VI Eurographics Workshop on
Programming Paradigms in Graphicgages 91-102.

Feiner, S., Maclintyre, B., Haupt, M., and Solomon, E. (1993a). Windows on the world: 2D
windows for 3D augmented reality. Rroc. ACM UIST '93pages 145-155.

Feiner, S., Macintyre, B., Hollerer, T., and Webster, A. (1997). A touring machine:
Prototyping 3D mobile augmented reality systems for exploring the urban
environmentPersonal Technologied(4):208-217.

Feiner, S., Macintyre, B., and Seligmann, D. (1993b). Knowledge-based augmented
reality. Communications of the AGN6(7):52—63.

Feiner, S. and Shamash, A. (1991). Hybrid user interfaces: Breeding virtually bigger
interfaces for physically smaller computers.RPnoc. ACM UIST '9] pages 9-17,
Hilton Head, SC.

Feo, J.T., editor. (1992). A Comparative Study of Parallel Programming Languages: The
Salishan Problems, Special Topics in Supercomputing, Volume 6, Elsevier Science
Publishers, North-Holland.

Feiner, S., Webster, A., Krueger, T., Macintyre, B., and Keller, E. (1995). Architectural
anatomyPresence: Teleoperators and Virtual Environme#(8):318—-325.

186

Funkhouser, T.A. (1995). RING: A client-server system for multi-user virtual
environments. IfProc. 1995 ACM Symp. on Interactive 3D Graphpages 85-92.

Gray, R. S. (1996). Agent Tcl: A flexible and secure mobile-agent systedthidnnual
Tcl/Tk Workshop '96pages 9—-23, Monterey, CA.

Grimsdale, G. (1991). dvS—distributed virtual environment systenierisc. Computer
Graphics '91 Conference

Harbison, S. P. (1992Modula-3 Prentice-Hall.

Holbrook, H., Singhal, S., and Cheriton, D. (1995). Log-based receiver-reliable multicast
for distributed interactive simulation. IAroceedings of SIGCOMM’'9%pages 328—
341.

Holloway, R. (1991).Trackerlib User's Maunal UNC Chapel Hill Computer Science
Department.

IBM Corporation (1993)IBM visualization Data ExplorerIBM Corporation, Yorktown
Heights, NY, fourth edition.

Janssen, B., Spreitzer, M., Larner, D., Jacobi, C. (1998). ILU Reference Manual. Xerox
Palo Alto Research Center, Palo Alto, CA.

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grained mobility in the
Emerald systemACM Trans. on Computer Syster6gl):109-133.

Kazman, R. (1993). Making WAVES: On the design of architectures for low-end
distributed virtual environments. Proc. IEEE VRAIS '93pages 443-449.

Kristensen, A. and Low, C. (1995). Problem-oriented object memory: Customizing
consistency. IfProc. ACM OOPSLA '95pages 399-413.

Levelt, W., Kaashoek, M., Bal, H., and Tanenbaum, A. (1992). A comparison of two
paradigms for distributed shared memoi§oftware Practice and Experience
22(11):985-1010.

Li, K. (1986). Shared Virtual Memory on Loosely Coupled MultiprocessetD thesis,
Department of Computer Science, Yale University.

Li, K. and Hudak, P. (1989). Memory coherence in shared virtual memory syste¢ing.
Trans. on Computer Systeni$4):321-359.

Liang, J., Shaw, C., and Green, M. (1991). On temporal-spatial realism in the virtual reality
environment. IrProc. ACM UIST '91pages 19-25.

Liskov, B. (1988). Distributed programming in Argu€ommunications of the ACM
31(3):300-312.

Lucas, B., Abram, G. D., Collins, N. S., Epstein, D. A., Gresh, D. L., and McAuliffe, K. P.
(1992). An architecture for a scientific visualization systemPrtoc. Visualization
'92, pages 107-114, Boston, MA.

Macedonia, M. R., Zyda, M. J., Pratt, D. R., Brutzman, D. P., and Barham, P. T. (1995).
Exploiting reality with multicast groupsEEE Computer Graphics and Applicatigns
15(5):38-45.

187

Machiraju, V. (1997). A framework for migrating objects in distributed graphics
applications. Masters dissertation, University of Utah, Department of Computer
Science, Salt Lake City, UT.

Maclintyre, B. (1995). A testbed for distributed augmented reality systen@ORSLA '95
Workshop on Reliability and Scalability in Distributed Object Systémstin, TX.

Macintyre, B. (1997). COTERIE: Columbia object-oriented toolkit for exploratory
research in interactive environmentsIlHEE WETICE '97 Workshop on Distributed
Systems Aspects of Sharing a Virtual Realigmbridge, MA.

Maclintyre, B. and Feiner, S. (1994). New multimedia user interfaces: Virtual environments
and ubiquitous computing. Technical Report Proc. Schloss Dagstuhl Seminar on
Fundamentals and Perspectives on Multimedia Systems, Seminar No. 9427, Report
No. 92, Schloss Dagstuhl, Germany.

Macintyre, B. and Feiner, S. (1996a). Future multimedia user interfadakimedia
Systems4(5):250—-268.
Macintyre, B. and Feiner, S. (1996b). Language-level support for exploratory

programming of distributed virtual environments.Rnoc. UIST '96 pages 83-94,
Seattle, WA.

Macintyre, B. and Feiner, S. (1998). A distributed 3D graphics libraryComputer
Graphics (Proc. ACM SIGGRAPH '98A\nnual Conference Series, pages 361-370,
Orlando, FL.

Macintyre, B. and Mynatt, E. (1998). Augmenting intelligent environments: Augmented
reality as an interface to intelligent environments. Iitelligent Environments
Symposium, AAAI Spring Symposium Se8ésnford University.

Manasse, M. S. (1993). The Trestle ToolKite X Resour¢é(1):107-112.

Manasse, M. S. (1995). The millicent protocols for electronic commercerdneedings
of the First USENIX Workshop of Electronic Commerce

Mills, D. L. (1996). RFC 2030: Simple network time protocol (SNTP) version 4 for IPv4,
IPv6 and OSI.

Mills, D. L. (1992). RFC 1305: Network time protocol (version 3) specification,
implementation.

Najork, M. A. and Brown, M. H. (1995). Oblig-3D: A high-level, fast-turnaround 3D
animation systemlEEE Transactions on Visualization and Computer Graphics
1(2):175-145.

Nog, S., Chawla, S., and Kotz, D. (1996). An RPC Mechanism for Transportable Agents.
Technical Report PCS-TR96-280, Dartmouth College, Computer Science, Hanover,
NH.

OMG (1992).The Common Object Request Broker: Architecture and Specific&inject
Management Group, Inc., Framingham, MA, 1.1 edition.

Open Communities (1997). The OpenCommunities Initiative. Information available at
http://www.meitca.com/opencom.

188

Ousterhout, J. K. (1990). Tcl: An embeddable command languageSENIX Conference
Proceedingspages 133-146.

Pausch, R., Burnette, T., Capehart, A., Conway, M., Cosgrove, D., DeLine, R., Durbin, J.,
Gossweiler, R., Koga, S., and White, J. (1995). Alice: A rapid prototyping system for
3D graphicslEEE Computer Graphics and Applicatiorib(3):8—-11.

Perham, M., Smith, B. C., Janosi, T., and Lam, I. K. (1997). Redesigning Tcl-D&thin
Annual Tcl/Tk Workshop '9pages 49-53, Boston, MA.

Phillips, D., Pique, M., Moler, C., Torborg, J., and Greenberg, D. (1989). Distributed
graphics: Where to draw the lines? SIGGRAPH 89 Panels, Boston, MA. Available at
http://lwww.siggraph.org/publications/panels/siggraph89/.

Prakash, A. and Shim, H. S. (1994). DistView: Support for building efficient collaborative
applications using replicated objectsAroc. ACM CSCW '94pages 153-162.

Ronhlf, J. and Helman, J. (1994). IRIS performer: A high performance multiprocessing
toolkit for real-time 3D graphics. Il€omputer Graphics (Proc. ACM SIGGRAPH
'94), Annual Conference Series, pages 381-394.

Roseman, M. and Greenberg, S. (1996). Building real-time groupware with GroupKit, a
groupware toolkit ACM Transactions on Computer-Human Interacti®@(l):66—
106.

Seligmann, D.D. and Feiner, S. (1991). Automated generation of intent-based 3D
illustrations. INComputer Graphics (SIGGRAPH '91 Proceedingsges 123-132.

Shaw, C. and Green, M. (1993). The MR toolkit peers package and experim&rbdn
IEEE VRAIS '93pages 18-22.

Shivers, O. (1994). A scheme shell. Technical Report MIT-LCS//MIT/LCS/TR-635,
Massachusetts Institute of Technology, Laboratory for Computer Science.

Singh, G., Serra, L., Png, W., Wong, A., and Ng, H. (1995). BrickNet: Sharing object
behaviors on the net. Proc. IEEE VRAIS '95pages 19-25.

Sowizral, H., Rushforth, K., and Deering, M. (1998he Java 3D API Specification
Addison Wesley, Reading, MA.

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., and Suchman, L. (1987).
Beyond the chalkboard: Computer support for collaboration and problem solving in
meetingsCommunications of the ACN30(1):32—-47.

Strauss, P. S. and Carey, R. (1992). An object-oriented 3D graphics toolKibriputer
Graphics (Proc. ACM SIGGRAPH '92)\nnual Conference Series, pages 341-349.

Sun Microsystems, Inc. (1998). The Java Shared Data Toolkit.

Tou, I., Berson, S., Estrin, G., Eterovic, Y., and Wu, E. (1994). Prototyping synchronous
group applicationdEEE Computer27(5):48-56.

van Rossum, G. (1995). Python library reference. Technical Report CS-R9524, CWI -
Centrum voor Wiskunde en Informatica.

Waters R.C, Anderson D.B., Barrus J.W., Brogan D.C., Casey M.A., McKeown S.G., Nitta

189

T., Sterns 1.B., Yerazunis, W.S. (1997). Diamond Park and Spline: Social Virtual
Reality with 3D Animation, Spoken Interaction, and Runtime Extendability,
Presence: Teleoperators and Virtual Environme6{d):461--480.

Webster, A., Feiner, S., Macintyre, B., Massie, B., and Krueger, T. (1996a). Augmented
reality in architectural construction, inspection and renovatioRrtrc. ASCE Third
Congress on Computing in Civil Engineerjpgges 913-919, Anaheim, CA.

Webster, A., Feiner, S., Maclintyre, B., Massie, W., and Krueger, T. (1996b). Augmented
reality applications in architectural construction. In Bertol, D., ediidesigning
Digital Space: An Architect’s Guide to Virtual Realifyages 193—200. John Wiley
& Sons, New York, NY.

White, J. E. (1994). Telescript technology: The foundation for the electronic marketplace.
White paper, General Magic, Inc., 2465 Latham Street, Mountain View, CA 94040.

Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed object model for the Java
system Computing System9(4):265—-290.

Zeleznik, R. C., Conner, D. B., Wloka, M. M., Aliaga, D. G., Huang, N. T., Hubbard,
P. M., Knep, B., Kaufman, H., Hughes, J. F., and van Dam, A. (1991). An object-
oriented framework for the integration of interactive animation techniques. In
Computer Graphics (SIGGRAPH '91 Proceedings)ges 105-112.

Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. (1996). SKETCH: An interface for
sketching 3D sceneSIGGRAPH 96 Conference Proceedingsnual Conference
Series, pages 163-170.

Zyda, M.J., Pratt, D.R., Monahan, J.G., and Wilson, K.P. (1992). NPSNET:
Constructing a 3D virtual world. IrProc. 1992 ACM Symp. on Interactive 3D
Graphics pages 147-156.

190

sweeoix s EXample Generated Code

In Section 3.4.1, a detailed example of a Shared Object is presented. In order to use this
shared object, a code generator is run at compile time, and six source files are created,

which are presented here for the interested reader.

Section A.1 contains the implementation of the Shared Object, including the
update event dispatch functiodpplyUpdate_T), the dispatch stubS{ub_*), and
the method wrappersShared_*). The file also contains the “pickling” routines that are
used to marshal the object between sites. These pickling routines support the ability for a
programmer to define a set of routines to read and write the object data. A default set of
routines that marshall all the internal data fields are supplied. The object that programmers

use to define custom marshalling routines is defined in the interface in Section A.6.

Sections A.2 and A.3 contain the module defining the Callback objects, used by
programmers to receive notification of changes to an object instance. Sections A.4 and A.5
contain the interfaces defining proxy objects that can be used to embed both the Shared

Object and its associated Callback object in an interpreted language such as Repo.

A.l TrackerPositionSO.m3

kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhhkkkkkkkkkkkkkkkkkhkhkhkkkkkkx

* TrackerPositionSO.m3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

***)

MODULE TrackerPositionSO EXPORTS TrackerPositionPickle,
TrackerPosition, TrackerPositionProxy;

IMPORT ThreadF, Rd, Tracker, SharedObjError, SharedObjStubLib,
EventStubLib, SharedObjRep, TrackerPositionF, Wr,

TrackerPositionCB,
EventProtocol, Event, PickleStubs, WeakRef, SharedObj, AtomList,
EmbProxiedObj, Thread, Pickle2 AS Pickle, TrackerPosition,
ObjectSpace;

191

CONST SharedObj_Protocol: EventProtocol.StubProtocol = 1;
EXCEPTION DuplicateSpecial;
TYPE T_SOMethods = {init, set};

REVEAL
T = S BRANDED “Shared TrackerPosition.T v1.0” OBJECT
OVERRIDES
makeProxy := MakeProxy T;
applyUpdate := ApplyUpdate_T;

init ;= Shared_init T,

set := Shared_set_T;

get := Shared _get T;
END;

PROCEDURE MakeProxy_T (self: T) =
BEGIN
IF MkProxyT # NIL THEN
MkProxyT(self);
END;
END MakeProxy_T;

PROCEDURE ApplyUpdate_T (self: T; ev: Event.T; h: EventStubLib.Handle)
RAISES {SharedObj.Error, Event.Error, Rd.Failure, Thread.Alerted} =
BEGIN

IF ev.prot # SharedObj_Protocol THEN
EventStubLib.RaiseUnmarshalFailure();
END;
WITH meth = SharedObjStubLib.InInt32(h) DO
TRY
SharedObjStubLib.AcquireWriteLock(self);
self.updating := ThreadF.Myld();
CASE meth OF
| ORD(T_SOMethods.init) => Stub_init_T(self, h);
| ORD(T_SOMethods.set) => Stub_set_T(self, h);
ELSE
EventStubLib.RaiseUnmarshalFailure();
END;
FINALLY
self.updating := -1;
SharedObjStubLib.ReleaseWriteLock(self);
END;
END;
END ApplyUpdate_T;

PROCEDURE Shared_init_T(self: S): T RAISES {SharedObj.Error} =
VAR out: SharedObjStubLib.Handle;
id := ThreadF.Myld();
dataPresent: BOOLEAN; <* NOWARN *>
BEGIN

(**)

(* This get’s done once. After that, it's a noop. *)
kkkkkkkkkkkkkkkkkkkkkkkhkhkhkkhkkkkkkkkkkkkkkkhkhkhkhkhkkk

self := NARROW(SharedObij.Init(self), T);

self.makeProxy();
(**)

IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
TRY

SharedObjStubLib.AcquireReadLock(self);

IF self.updating = id THEN
(* do a simple, non-update call to the method *)

RETURN S.init(self);

END;

FINALLY

SharedObjStubLib.ReleaseReadLock(self);

END;
TRY

out := SharedObjStubLib.StartCall(self);

IF SharedObjStubLib.MarshalArgs(out) THEN
SharedObjStubLib.OutInt32(out, ORD(T_SOMethods.init));
END;

SharedObjStubLib.SequenceCall(out, SharedObj_Protocol);

TRY
SharedObjStubLib.AcquireWriteLock(self);
self.updating :=id;

Callback_pre_init_T(self);

WITH res = S.init(self) DO
Callback_post_init_T(self);
RETURN res;

END;

FINALLY
self.updating := -1;
SharedObjStubLib.ReleaseWriteLock(self);
SharedObjStubLib.EndCall(out);

END;

EXCEPT
| Wr.Failure (ec) => SharedObjError.RaiseCommpFailure(ec); <*ASSERT

FALSE*>
| Thread.Alerted => SharedObjError.RaiseAlerted(); <*ASSERT FALSE*>
END;
END Shared_init_T;

PROCEDURE Shared_set_T(self: S; READONLY val_arg: Tracker.Report)
RAISES {SharedObj.Error} =
VAR out: SharedObjStubLib.Handle;
id := ThreadF.Myld();
dataPresent: BOOLEAN; <* NOWARN *>
BEGIN
IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
TRY

SharedObjStubLib.AcquireReadLock(self);

IF self.updating = id THEN
(* do a simple, non-update call to the method *)

S.set(self, val_arg);
RETURN;

END;

FINALLY

SharedObjStubLib.ReleaseReadLock(self);

END;
TRY

out := SharedObjStubLib.StartCall(self);

IF SharedObjStubLib.MarshalArgs(out) THEN
SharedObjStubLib.OutInt32(out, ORD(T_SOMethods.set));
SharedObjStubLib.OutRef(out, val_arg);

END;
SharedObjStubLib.SequenceCall(out, SharedObj_Protocol);
TRY

192

193

SharedObjStubLib.AcquireWriteLock(self);
self.updating := id;
Callback_pre_set T(self, val_arg);
S.set(self, val_arg);
Callback_post_set T(self, val_arg);
FINALLY
self.updating := -1;
SharedObjStubLib.ReleaseWriteLock(self);
SharedObjStubLib.EndCall(out);
END;
EXCEPT
| Wr.Failure (ec) => SharedObjError.RaiseCommFailure(ec);
| Thread.Alerted => SharedObjError.RaiseAlerted();
END;
END Shared_set T,;

PROCEDURE Shared_get_T(self: S): Tracker.Report RAISES {SharedObj.Error,
Thread.Alerted} =
BEGIN
IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
TRY
SharedObjStubLib.AcquireReadLock(self);
RETURN S.get(self);
FINALLY
SharedObjStubLib.ReleaseReadLock(self);
END;
END Shared_get T;

PROCEDURE Stub_init_T(self: S; <* NOWARN *> in: EventStubLib.Handle)
RAISES {SharedObj.Error} =
BEGIN
Callback_pre_init_T(self);
EVAL S.init(self);
Callback_post_init_T(self);
END Stub_init_T,;

PROCEDURE Stub_set_T(self: S; <* NOWARN *> in: EventStubLib.Handle)
RAISES {SharedObj.Error, Rd.Failure, Thread.Alerted} =
VAR val_arg: Tracker.Report;
dataPresent: BOOLEAN <* NOWARN *>;

BEGIN
val_arg := SharedObjStubLib.InRef(in, TYPECODE(Tracker.Report));
Callback_pre_set_T(self, val_arg);
S.set(self, val_arg);
Callback_post_set T(self, val_arg);

END Stub_set T;

PROCEDURE Callback_pre_init_T(self: T) =
VAR cbs := self.callbacks;
BEGIN
WHILE cbs # NIL DO
IF cbs.head.ready THEN
WITH ref = WeakRef. ToRef(cbs.head.weakRef) DO
IF ref # NIL THEN
WITH cb = NARROW(ref, TrackerPositionCB.T) DO
IF NOT cb.pre_init(self) THEN
cb.pre_anyChange(self);
END;
END;

194

END;
END;
END;
cbs := cbs.tail;
END;
END Callback_pre_init_T;

PROCEDURE Callback_post_init_T(self: T) =
VAR cbs := self.callbacks;
BEGIN
WHILE cbs # NIL DO
IF cbs.head.ready THEN
WITH ref = WeakRef. ToRef(cbs.head.weakRef) DO
IF ref # NIL THEN
WITH cb = NARROW(ref, TrackerPositionCB.T) DO
IF NOT cb.post_init(self) THEN
ch.post_anyChange(self);
END;
END;
END;
END;
END;
cbs := cbs.tail;
END;
END Callback_post_init_T;

PROCEDURE Callback_pre_set T(self: T; READONLY val_arg: Tracker.Report)
VAR cbs := self.callbacks;
BEGIN
WHILE cbs # NIL DO
IF cbs.head.ready THEN
WITH ref = WeakRef. ToRef(cbs.head.weakRef) DO
IF ref # NIL THEN
WITH cb = NARROW(ref, TrackerPositionCB.T) DO
IF NOT cb.pre_set(self, val_arg) THEN
cb.pre_anyChange(self);
END;
END;
END;
END;
END;
cbs := cbs.tall;
END;
END Callback_pre_set T;

PROCEDURE Callback_post_set_T(self: T, READONLY val_arg: Tracker.Report)
VAR cbs := self.callbacks;
BEGIN
WHILE cbs # NIL DO
IF cbs.head.ready THEN
WITH ref = WeakRef. ToRef(cbs.head.weakRef) DO
IF ref # NIL THEN
WITH cb = NARROW(ref, TrackerPositionCB.T) DO
IF NOT cbh.post_set(self, val_arg) THEN
cb.post_anyChange(self);
END;
END;

195

END;
END;
END;
cbs := cbs.tail;
END;
END Callback_post_set T;

(* The pickling routine for this shared object. We will register a
pickler for TrackerPosition.S, and then handle both S and T.
Pickling subtypes of T is illegal. *)

REVEAL
TSpecial = SharedObj.Special BRANDED “TrackerPosition. TSpecial” OBJECT
OVERRIDES

write ;= DefaultSpWrite_T;
read := DefaultSpRead_T,;
END;

TYPE
T_Special = Pickle.Special OBJECT

mu: MUTEX;
sp: TSpecial;
registered: BOOLEAN := FALSE;

OVERRIDES
write := Write_T;
read := Read_T,;

END;

PROCEDURE DefaultSpWrite_T (<*UNUSED*>self: TSpecial; shobj:
SharedObj.T;
out: Pickle.Writer)
RAISES {Pickle.Error, Wr.Failure,
Thread.Alerted} =
VAR
obj := NARROW(shobj, S);
BEGIN
PickleStubs.OutRef(out, obj.data);

END DefaultSpWrite_T;

PROCEDURE Write_T (<*UNUSED*>ts: T_Special; ref: REFANY;
out: Pickle.Writer)
RAISES {Pickle.Error, Wr.Failure, Thread.Alerted} =
VAR
obj: S;
sp: TSpecial;
tc := TYPECODE(ref);
BEGIN
IF tc # TYPECODE(S) AND tc # TYPECODE(T) THEN
RAISE Pickle.Error(“Can’t pickle subtypes of TrackerPosition.T”);
END;
obj := NARROW(ref, S);
out.writeType(tc);
SharedObjStubLib.StartWritePickle(obj, out);
LOCK spT.mu DO
sp := spT.sp;
END;
sp.write(obj, out);
SharedObjStubLib.EndWritePickle(obj, out);
END Write T;

196

PROCEDURE DefaultSpRead_T (<*UNUSED*>self: TSpecial; shobj: SharedOb;.T;
in: Pickle.Reader) RAISES {
Pickle.Error, Rd.EndOfFile, Rd.Failure, Thread.Alerted} =
VAR
obj := NARROW(shobj, S);
BEGIN
obj.data := PickleStubs.InRef(in, TYPECODE(Tracker.Report));

END DefaultSpRead_T;

PROCEDURE Read_T (<*UNUSED*>ts: T_Special; in: Pickle.Reader;
id: Pickle.RefID):REFANY RAISES {
Pickle.Error, Rd.EndOfFile, Rd.Failure, Thread.Alerted} =

VAR
space: ObjectSpace.T;
obj: S;
sp: TSpecial;
proxy: EmbProxiedObj.Proxy;
tc ;= in.readType();
BEGIN
IF tc = TYPECODE(T) THEN
obj := NEW(T);
ELSIF tc = TYPECODE(S) THEN
obj := NEW(S);
ELSE
RAISE Pickle.Error(“Can’t unpickle subtypes of TrackerPosition.T");
END;
space :=in.read();
SharedObjStubLib.StartReadPickle(obj, in, space);
LOCK spT.mu DO
sp :=spT.sp;
END;
sp.read(obj, in);
IF tc = TYPECODE(T) THEN
obj := SharedObjStubLib.SetupNewCopy(obj, in, id, space);
proxy := PickleStubs.InRef(in);
IF obj.proxy = NIL THEN
obj.proxy := proxy;
END;
obj.makeProxy();
ELSE
obj.proxy := NIL;
obj.proxy := PickleStubs.InRef(in);
END;
RETURN obj;
END Read T,;

PROCEDURE RegisterSpecial_T (sp: TSpecial) =
<* FATAL DuplicateSpecial *>
BEGIN
(* we will need to NEW it here if RegisterSpecial_T
is called from TrackerPosition *)
IF spT = NIL THEN
spT := NEW(T_Special, sc := TYPECODE(S), mu := NEW(MUTEX));
END;
LOCK spT.mu DO
IF spT.registered THEN
RAISE DuplicateSpecial;

END;
spT.registered := TRUE;
spT.sp = sp;

END;

END RegisterSpecial_T;

VAR
spT: T_Special := NIL;

BEGIN
IF spT = NIL THEN
spT := NEW(T_Special,
sc := TYPECODE(S),
mu := NEW(MUTEX),
sp := NEW(TSpecial));
END;
Pickle.RegisterSpecial(spT);
END TrackerPositionSO.

A.2 TrackerPositionCB.i3

kkkkkkkkkkkkkkkkkkkkkkhhhhhhhhkkkkkkkkhkhhhhhhhhhhhrkkkkkkkhhhhhhhriirx

* TrackerPositionCB.i3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

***)

INTERFACE TrackerPositionCB;
IMPORT Tracker, SharedObj, TrackerPosition;

TYPE
T <: PublicT;
PublicT = SharedObj.Callback OBJECT
METHODS
init (obj: TrackerPosition.T): T;
cancel ();
pre_anyChange (READONLY obj: TrackerPosition.T);
post_anyChange (READONLY obj: TrackerPosition.T);
pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
pre_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN;
post_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN;
END;

END TrackerPositionCB.

A.3 TrackerPositionCB.m3

*% * * *% * * *% * * *% * *% *% * *%

* TrackerPositionCB.m3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

197

198

***)

MODULE TrackerPositionCB EXPORTS TrackerPositionCB,

TrackerPositionCBProxy;

IMPORT Tracker, SharedObjStubLib, SharedObjRep, WeakRefListFuncs,
WeakRefList, WeakRef, TrackerPosition, WeakerRef;

REVEAL

T = PublicT BRANDED OBJECT
obj: TrackerPosition.T;
wref: WeakerRef.T;

OVERRIDES
init ;= Init_T;
cancel ;= Cancel_T;
pre_anyChange := Pre_anyChange_T,;
post_anyChange := Post_anyChange_T;
pre_init := Pre_init_T;
post_init := Post_init_T;
pre_set := Pre_set_T;
post_set := Post_set T,

END;

PROCEDURE Init_T (self: T; obj: TrackerPosition.T): T =
VAR
wref := NEW(WeakerRef.T,
weakRef := WeakRef.FromRef(self, Cleanup_T_CB),
ready := TRUE);
BEGIN
self.obj := obyj;
self.wref := wref;
IF MkProxyTCB # NIL AND self.proxy = NIL THEN
MkProxyTCB (self);
END;
SharedObjStubLib.AcquireWriteLock(obj);
TRY
obj.callbacks := WeakRefList.Cons(wref, obj.callbacks);
FINALLY
SharedObjStubLib.ReleaseWriteLock(obj);
END;
RETURN self;
END Init_T;

PROCEDURE Cancel_T (self: T) =
BEGIN
SharedObjStubLib.AcquireWriteLock(self.obj);
TRY
EVAL WeakRefListFuncs.DeleteD(self.obj.callbacks, self.wref);
FINALLY
SharedObjStubLib.ReleaseWriteLock(self.obj);
END;
END Cancel_T;

PROCEDURE Cleanup_T_CB (READONLY wref: WeakRef.T; ref: REFANY) =
VAR
cb := NARROW(ref, T);
weakerRef := NEW(WeakerRef.T, weakRef := wref);
BEGIN
SharedObjStubLib.AcquireWriteLock(cb.obj);
TRY

199

(* Callback is gone, so delete it *)
EVAL WeakRefListFuncs.DeleteD(cb.obj.callbacks, weakerRef);
FINALLY
SharedObjStubLib.ReleaseWriteLock(cb.obj);
END;
END Cleanup_T_CB;

PROCEDURE Pre_anyChange_T (self: T; READONLY obj: TrackerPosition.T) =
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
NARROW (self.proxy, CBProxyT).pre_anyChange (obj);
END;
END Pre_anyChange_T;

PROCEDURE Post_anyChange_T (self: T; READONLY obj: TrackerPosition.T) =
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
NARROW (self.proxy, CBProxyT).post_anyChange (obj);
END;
END Post_anyChange_T,;

PROCEDURE Pre_init_T (self: T; READONLY obj: TrackerPosition.T): BOOLEAN
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
RETURN NARROW (self.proxy, CBProxyT).pre_init (obj);
END;
RETURN FALSE;
END Pre_init_T;

PROCEDURE Post_init_T (self: T; READONLY obj: TrackerPosition.T):
BOOLEAN =
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
RETURN NARROW (self.proxy, CBProxyT).post_init (obj);
END;
RETURN FALSE;
END Post_init_T;

PROCEDURE Pre_set T (self: T; READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN =
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
RETURN NARROW (self.proxy, CBProxyT).pre_set (obj, val);
END;
RETURN FALSE;
END Pre_set_T,

PROCEDURE Post_set T (self: T; READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN =
BEGIN
(* Default calls proxy or does nothing. *)
IF self.proxy # NIL THEN
RETURN NARROW (self.proxy, CBProxyT).post_set (obj, val);

200

END;
RETURN FALSE;
END Post_set_T;

BEGIN

SharedObjStubLib.InhibitTransmission(TYPECODE(T), "default T callback
cannot be transmitted/duplicated");

END TrackerPositionCB.

A4 TrackerPositionProxy.i3

(***

* TrackerPositionProxy.i3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

*kkhkkkhkkk *kkkkk *hkkkkkkkkk *kkkkkkkhkkk *kkkkkkkkkk *% n)

INTERFACE TrackerPositionProxy;
IMPORT TrackerPosition;

VAR
MkProxyT : PROCEDURE(x: TrackerPosition.T) := NIL;

END TrackerPositionProxy.

A.5 TrackerPositionCBProxy.i3

(***

* TrackerPositionCBProxy.i3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

***)

INTERFACE TrackerPositionCBProxy;
IMPORT Tracker, TrackerPositionCB, EmbProxiedObj, TrackerPosition;

VAR
MkProxyTCB : PROCEDURE(x: TrackerPositionCB.T) := NIL;

TYPE
CBProxyT = EmbProxiedObj.Proxy OBJECT METHODS
pre_anyChange (READONLY obj: TrackerPosition.T);
post_anyChange (READONLY obj: TrackerPosition.T);
pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
pre_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN,;
post_set (READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN;
END;

END TrackerPositionCBProxy.

A.6 TrackerPositionPickle.i3

(***

* TrackerPositionPickle.i3
* DO NOT EDIT --> generated by shobjcodegen
* Fri Aug 28 22:02:36 EDT 1998

***)

INTERFACE TrackerPositionPickle;
IMPORT SharedObj;

TYPE

TSpecial <: SharedObj.Special;

PROCEDURE RegisterSpecial_T(sp: TSpecial);
END TrackerPositionPickle.

201

202

spenoixe Tracker Modules

In this appendix, we present the Repo help files for the various modules related to the
tracker system, first discussed in Section 2.5.1 and used as the basis of the examples in
Section 3.4.1, Section 4.6.1 and Section 5.4.2.

B.1 The Basic Modules

B.1.1 Kalman

Kalman_New(): T
Kalman_Filter(T, Quaternion): Quaternion
WHERE
Kalman <: EmbProxiedObj &
{ filter: (Quaternion) => Quaternion }

This module implements a simple Kalman predictive filter, based on the approach used in
[Liang et al., 1991].

B.1.2 Tracker

Tracker_EndOfFile: Exception
Tracker_Error: Exception
Tracker_NewReport(ReportProto): Tracker_Report
Tracker_NewReport2D(Report2DProto): Tracker_Report2D
Tracker_NewReport3D(Report3DProto): Tracker_Report3D
Tracker_GetTimestamp(Tracker_Report): Real
Tracker_GetButtons(Tracker_Report, Buttons): Ok
Tracker_GetPosition2D(Tracker_Report2D): Point2
Tracker_GetPosition3D(Tracker_Report3D): Point3
Tracker_GetPosition3DError(Tracker_Report3D): Real
Tracker_GetOrientationM(Tracker_Report3D): Matrix4
Tracker_GetOrientationQ(Tracker_Report3D): Quaternion
Tracker_GetOrientationError(Tracker_Report3D): Real
WHERE

203

Tracker <: EmbProxiedObj &
{ calculateStatistics: () => Text,
reset: () => Ok ! Tracker_Error thread_alerted,
read: () => TrackerReport ! Tracker_EndOfFile Tracker_Error
thread_alerted,
close: () => Ok ! Tracker_Error }

Tracker_Report <: EmbProxiedObj

Tracker_Report2D <: Tracker_Report

Tracker_Report3D <: Tracker_Report

ReportProto = { ts: Real, buttons: Buttons }

Report2DProto = ReportObj & { pos: Point2 }

Report3DProto = ReportObj & { pos: Point3, pos_error: Real,
orientation: Orientation,
orientation_error: Real }

Buttons = [n*Bool]

Point2 = [2*Int]

Orientation: Quaternion & Matrix4

This is the abstract Tracker module. It defines the basic methods that must be supported by
the concrete trackers in Section B.2, and defines the basic Tracker Report, as well as the

prototype 2D and 3D Reports used by the concrete trackers.

B.1.3 TrackerPosition

TrackerPosition_New(): T;
WHERE
T <: SharedObj_T & { init: () => T ! SharedObj_Error Thread_alerted,
get: () => Tracker_Report ! SharedObj_Error
Thread_alerted,
set: (Tracker_Report) => Ok ! SharedObj_Error
Thread_alerted }

This module exposes the replicated Tracker Position object, discussed in Section 3.4.1,

into Repo.

B.1.4 TrackerPositionCB

TrackerPositionCB_New(obj: TrackerPosition_T, overrides: Obj): T;
TrackerPositionCB_Cancel(cbobj: T): T;
WHERE

T <: SharedObj_T & overrides;

overrides contains one or more of these callback methods:
pre’init(obj: TrackerPosition_T): bool;
post’init(obj: TrackerPosition_T): bool;
pre’set(obj: TrackerPosition_T, val: Tracker_Report): bool;
post'set(obj: TrackerPosition_T, val: Tracker_Report): bool;

204

pre anyChange(obj: TrackerPosition_T);
post anyChange(obj: TrackerPosition_T);

This module exposes the replicated Tracker Position Callback object, discussed in

Section 3.4.1, into Repo.

B.1.5 TrackerServer

TrackerServer_New(Tracker): T;

TrackerServer_NewLatest(Tracker): T;

TrackerServer_NewLatestMulti(Tracker): Multi;
WHERE

T <: SharedObj_T &

{ add: (TrackerPosition) => Ok,
remove: (TrackerPosition) => OK,
start: () => Ok,
stop: () => Ok }

Multi<: T &
{ addSingle: (TrackerPosition, index) => Ok }

This module defines a simple “tracker server,” which is a thread that continuously reads
from a tracker and stores the Reports read in one or more Tracker Position objects. There
are three forms of the server: the basic one (createdivattkerServer_ New), one

that only reads the latest value if it cannot read the reports as fast as the tracker hardware
produces them (created witihackerServer _NewlLatest), and one that reads from

a multi-device tracker (such as the Flock of Birds in Section B.2.2 or the DynaSight in
Section B.2.1).

B.2 The Tracking Device Modules

This section contains the help files for each of the concrete tracking devices we currently

support.

B.2.1 Dynasight

Dynasight_Open(path: text; mode: Mode): T ! Tracker_Error
Dynasight_GetStatus(Dynasight_Report): SensorStatus
Dynasight_GetSync(Dynasight_Report): Bool
Dynasight_GetTargetNumber(Dynasight_Report): Int

205

WHERE
Dynasight <: Tracker
Dynasight_Report <: Tracker_Report3D
SensorStatus = Text (one of "Search", "Coast", "Caution”, "Track")
Mode = Text ("Passive", "ATAL", "ATA2", "ATA3", "ATA4",
"ATA3T", "ATA4T", "ATA4Y2", or "ATA4Y3")

There are no buttons

The Origin Instruments DynaSight optical radar system.

B.22 FOB

FOB_Open(path: Text, num: Int, fast: Bool): T ! thread_alerted
Tracker_Error
FOB_GetTargetNumber(FOB_Report): Int
WHERE
FOB <: Tracker &

{ demandReporting: () => Ok ! thread_alerted Tracker_Error,
streamReporting: () => Ok ! thread_alerted Tracker_Error,
enableTransmitter: () => Ok ! thread_alerted Tracker_Error,
disableTransmitter: () => Ok ! thread_alerted Tracker_Error,
flipHemisphere: (unit: Int) => Ok ! thread_alerted Tracker_Error,
setHemisphere: (hemi: Hemi) => Ok ! thread_alerted Tracker_Error

}
FOB_Report <: Tracker_Report3D
Hemi = Text ("Foward", "Aft", "Left", "Right", "Upper", "Lower")

The Ascension Technologies Flock of Birds magnetic tracking system.

B.2.3 Logitech

Logitech_Open(path: text): T ! thread_alerted Tracker_Error

Logitech_GetStatus(Logitech_Report): SensorStatus

Logitech_GetButtons(Logitech_Report, Buttons): Ok
WHERE

Logitech <: Tracker &

{ demandReporting: () => Ok ! thread_alerted Tracker_Error,
streamReporting: () => Ok ! thread_alerted Tracker_Error,
enableTransmitter: () => Ok ! thread_alerted Tracker_Error,
disableTransmitter: () => Ok ! thread_alerted Tracker_Error,
incrementalReporting: () => Ok ! thread_alerted Tracker_Error,
setFilterCount: (count: FilterCount) => Ok ! thread_alerted

Tracker_Error }
FilterCount = 0...10
Logitech_Report <: Tracker_Report3D
SensorStatus = Text (one of "Fringe", "Out", "Track")
Buttons = { left: Bool, right: Bool, middle: Bool, suspend: Bool }

206

The Logitech 6DOF ultrasonic tracking system.

B.2.4 MSMouse

MSMouse_Open(path: text): T ! Tracker_Error

MSMouse_GetButtons(MSMouse_Report, Buttons): Ok
WHERE

MSMouse <: Tracker

MSMouse_Report <: Tracker_Report2D

Buttons = { left: Bool, right: Bool, middle: Bool}

The Microsoft 2D 3-button mouse.

B.25 PTU

PTU_Open(path: text): T ! thread_alerted Tracker_Error
WHERE
PTU <: Tracker &

{ hardReset: () => Ok ! Tracker_Error thread_alerted,
awaitExecution; () => Ok ! thread_alerted Tracker_Error,
moveAbsPanAngle: (pan: Real) => Bool ! thread_alerted

Tracker_Error,
moveADbsTiltAngle: (tilt: Real): => Bool ! thread_alerted
Tracker_Error,
moveAbsAngle: (pan, tilt: Real) => Bool ! thread_alerted
Tracker_Error,
moveOffsetAngle: (pan, tilt: Real)=> Bool ! thread_alerted
Tracker_Error,
haltPan: () => Ok ! thread_alerted Tracker_Error,
haltTilt: () => Ok ! thread_alerted Tracker_Error,
haltAll: () => Ok ! thread_alerted Tracker_Error,
getPanRange: () => [Real,Real],
getTiltRange: () => [Real,Real]
}

PTU_Report <: Tracker_Report3D

There are no buttons

The Directed Perception 3DOF Pan/Tilt unit.

B.2.6 RingMouse

RingMouse_Open(path: text): T ! Tracker_Error
RingMouse_GetStatus(RingMouse_Report): SensorStatus

207

RingMouse_GetButtons(RingMouse_Report, Buttons): Ok
WHERE

RingMouse <: Tracker

RingMouse_Report <: Tracker_Report3D

Buttons = Tracker_Buttons & { left: Bool, right: Bool}

SensorStatus = Text (one of "Sleep”, "Track")

The Kantek Spectrum RingMouse ultrasonic 3DOF position tracker.

B.2.7 Scanner

Scanner_Open(path: text): T ! Tracker_Error

Scanner_GetBarcode(Scanner_Report): Text
WHERE

Scanner <: Tracker

Scanner_Report <: Tracker_Report

There are no buttons

The PSC Inc. QuickScan barcode scanner.

B.2.8 Trimble

Trimble_Open(path: text, out: Wr|Ok): T ! thread_alerted Tracker_Error
Trimble_GetHealth(Trimble_Report): Health
Trimble_GetVelocity(Trimble_Report): Velocity
Trimble_GetVersion(Trimble_Report): Real
Trimble_GetSatellites(Trimble_Report): Satellites
Trimble_GetMessage(Trimble_Report): SystemMessage
Trimble_GetLLA(Trimble_Report): LLA

WHERE
Trimble <: Tracker;
Trimble_Report <: Tracker_Report3D;

Satellites = {number: Int, used: [Int,Int,Int,Int], ts: Real};
Velocity = {x y z: Real, xyzts: Real,
east north up: Real, enuts: Real};

SystemMessage = {severeFailureReport message: Text, ts: Real};
Health = {status: Text, statusCode: Int,

batteryBackup antennaStatus timeClockStatus

atoDConverterStatus almanacStatus: BOOLEAN, ts: Real};
LLA = {longitude latitude altitude relativeLong relativeLat: Real};

The Trimble GPS 3DOF position tracker.

208

B.29 IO

vlO_Open(path: text): T ! thread_alerted Tracker_Error
WHERE
vIO <: Tracker &
{ demandReporting: () => Ok ! thread_alerted Tracker_Error,
streamReporting: () => Ok ! thread_alerted Tracker_Error,
setAngleMode: (mode: Mode) => Ok ! thread_alerted Tracker_Error }
vlO_Report <: Tracker_Report3D

Mode = Text (one of "Tilt", "Yaw", "All")
There are no buttons

The Virtual 1/0 3DOF orientation tracker.

209

aepenDixc REPO Syntax

This Appendix contains a summary of Repo’s syntax. This is based on (and is very similar

to) the Oblig syntax summary in [Cardelli, 1995].

TOP-LEVEL PHRASES any term or definition ended by ";"
a;

DEFINITIONS (identifiers are denoted by "X", terms are denoted by "a")

let x1=al,...,xn=an definition of constant identifiers

let rec x1=al,...,xn=an definition of recursive procedures

var x1=al,...,.xn=an definition of updatable identifiers

var replicated x1=al,...,.xn=an definition of replicated updatable ids

var simple x1=al,...,xn=an definition of simple updatable ids
SEQUENCES (denoted by "s") each "ai" (a term or a definition) is

al;...;an executed; yields "an" (or "ok" if n=0)
TERMS (denoted by "a","b","c"; identifiers are denoted by "x","I";

modules are denoted by "m")
Xm_Xx identifiers
X:=a assignment

ok true false 'a' "abc" 3 1.5 constants

[al,...,an] arrays

replicated [al,...,an] replicated arrays

simple [al,...,an] simple arrays

a[bla[b]:=c array selection, array update

a[b for b'la[b for b'l:=c subarray selection, subarray update
option "I'=> s end term "s" tagged by "I"

proc(x1,...,xn) s end procedures

a(bl,...,bn) procedure invocation
m_x(al,...,an) invocation of "x" from module "m"
abc infix (right-ass.) version of "b(a,c)"
meth(x,x1,...,xn) s end method with self "x"
umeth(x,x1,...,xn) s end replicated object update method
{l1=>al,...,In=>an} object with fields named "I1"..."In"
{protected, serialized, ...} protected and serialized object

{simple, ...} simple object

{replicated, ...} replicated object

{l1=>alias 12 of a2 end,...} object with delegated fields

210

al al(@i,..., an) field selection / method invocation

a.l:=b field update / method override
clone(al,...,an) object cloning

replicated(a,umethlist) replicated clone of object "a"

replicated(a) replicated copy of array "a"

simple(a) simple clone/copy of object/array "a"
remote(a) remote clone/copy of object/array "a"
al.ll:=alias I2 of a2 end field delegation

delegate al to a2 end object delegation

unreachable al do a2 unreachable data value notification

objectpickler al reader a2 writer a3
pickle al using a2 for reading and
a3 for writing

addhelp m sort "s1" short "s2" full "s3"
setup help entry for m

d definition
if s1 then s2 conditional
elsif s3 then s4... else sn end ("elsif", "else" optional)
a andif ba orif b conditional conjunction/disjunction

case s of "I1"(x1,m1)=>s1,..., case over the tag "li" of an option
"In"(xn,m21)=>snbinding "xi" in "si" ("mi" optional)

else sO end ("else" optional)
of match subexpressions of "li"

loop s end loop
fori=ato b do s end iteration through successive integers
foreachiinadosend iteration through an array
foreachiin a map s end yielding an array of the results
exit exit the innermost loop, for, foreach
exception("exc") new exception value named "exc"
raise(a) raise an exception
try s except exception capture

al=>sl,...,an=>sn else sO end ("else" optional)
try sl finally s2 end finalization

condition() signal(a) broadcast(a)
creating and signaling a condition

watch s1 until s2 end waiting for a signal and a boolean
guard

fork(al,a2) join(a) forking and joining a thread

pause(a) pausing the current thread

mutex() creating a mutex

lock s1 do s2 end locking a mutex in a scope

wait(al,a2) waiting on a mutex for a condition

(s) block structure / precedence group

211

seenoixo Additional Enhancements to
Repo

In addition to the changes to the language syntax and semantic required by the addition of
replicated data, there are a number of other enhancements in Repo. These changes were
made to support exploratory programming of distributed interactive applications, usually

in response to a specific need or problem we encountered while developing our proto-

types.

D.1 Additional Syntax Changes

At the beginning of Section 4.4, we mentioned that there was one change we made to the
Repo syntax that is not compatible with Oblig. That change is the addition of regular
expression support to Obliggase statement, which is used in conjunction with Oblig’s
optionvalues. Options are created by associating an arbitrary value with a textual tag,

using the following statement:

option tag => value end

This statement returns an option value that can be used in a case statement, the

syntax of which is:

case o of

[1(X 1)=>s 1,...1 nXn)=>s elses yend

212

Given an optioro, if one of the labels; exactly matches’s tag, the correspond-
ing statemens; is executed. If the optional variable naryeis suppliedp’s value is

assigned to it in the context ®f. If no labels match, the else statement is executed.

However, the tags are not arbitrary text strings, but follow the same guidelines as
identifiers (i.e., variable names). We found that the options and case statement were not
very useful when defined this way. In particular, most of the time we found ourselves
wanting a case statement, we wanted to be able to select between arbitrary text strings, and

we wanted to be able to partially match these strings using regular expressions.

Therefore, we changed the syntax of these two statements to use text strings for the
tags and case labels, and added support for regular expressions to the case labels so that
the labels do not have to match the option tag exactly. The regular expressions follow the
Unix regexsyntax, including supporting substring matching using the “()" syntax. We
added a second optional variable naymehat, if present, will be the name of a variable to
contain an array describing the matched substrings in the text string (the full match fol-

lowed by the substring matches, listed as integer [start,end] pairs):

option “tag string” => value end
case o of
[1(X 1Y 1)=>S 1,00 | nX Y n=>s elses end

We make extensive use of the new case statement in our code, such as in the object

directories of Section 4.6.5 or the Sketch example of Section 6.2.

Another change we made to the Repo syntax was to adagniteachable state-
ment. This statement provides notification when a local reference to a client-server object
becomes invalid because the network address of the object can no longer be contacted,

either because the process has terminated, or there is a problem with the network. The

213

unreachable statement takes a procedure argument that will be executed when the sys-

tem determines that the object is unreachable.

unreachable object do notification-proc

Here is an example of this statement in use, taken from the enhanced version of the
replicated mutex example in Appendix E (the simple version of the distributed mutex is

presented in Section 4.6.4):

unreachable id do
proc (o,st)
try
s.dequeueld(localld, localld.txt);
except unheld => end,

end;

In this example, when the objedt becomes unreachable, the method

s.dequeueld is called. See the appendix for a more in depth discussion.

The other changes to Repo’s syntax are minor enhancements to the way modules
are defined, aimed at supporting the creation of more complex programs. This include the
ability to define on-line help files for Repo modules (the syntax can be seen in Figure 4-8)
and to hide information inside modules. Previously, only built-in modules could have on-
line help, and any values defined inside a module could be accessed from outside of it. We

will not detail those changes here.

D.2 Module Enhancements and Additions

During the development of Repo and Coterie, we created a wide range of new Repo mod-
ules, and enhanced a number of others. While we will not detail all of those changes here,

we will highlight some of them to give an idea of the kinds of enhancements we made to

214

* matchis the Repo null valuek
* matchisval

< valis a text string anthatchis a regular expression that matches it exaqt
(i.e.,val matches this regular expressit: & match & "$")

* matchis a regular expression that exactly matches the option key returnned
by reflect_getType(val) (i.e.,matchis val's type)

* matchis an option whose key is a regular expression that exactly matches
the option key returned bgflect_getType(val) , and the value of
the option is eitheok or also matchegal

» val andmatchare objects, and for each fieldroétch val has a correspong
ing field whose contents are matched by the contents of the fieldtol

« val andmatchare arrays of the same size, and each element of the arrgy
matches

y

Figure D-1: Pattern matching with the Repo reflection module. Pattern matching
allows a programmer to create a prototype vahatchand check if the Repo value
val matches itMatchwill match a Repo valueal if these condition are met.

the system, both large and small. See Appendix E for the details of all the built-in Repo

modules, including the new and modified ones.

As mentioned in Appendix D.1, one of the modules we createdefieet
module, supports a simple formreflection(see Appendix E.1.3). Reflection, as we
implement it, is the ability for a programming language to operate on its type system. We
implement this package primarily to allow programmers to check the types of parameter
values, to make debugging large programs easier. However, the module goes beyond type
checking. We can not only query values about their types (including generating option val-
ues with the tag strings describing the types), but operate extensively on objects. For
example, the module supports invoking object methods, querying objects about the exist-
ence of fields and methods, extracting the fields of an object, and creating objects from

those extracted fields.

One of the most useful functions in theflect module is thematch function,
which supports object-based pattern matching, modeled after a similar facility in the
Scheme Shell [Shivers, 1994]. The rules for constructing pattern matching values are
shown in Figure D-1. Notice that if the match value is an object or array, the match pro-

cess is performed recursively on the fields or elements of the match value. Therefore, arbi-

215

trarily complex structures can be matched, allowing fairly complex argument checking to
be performed in a single step. We make use of the match facility in the Shared Sketch
example in Section 6.2, to check that the objects imported from the network have all the
required fields for use as Sketch objects. By doing this check, we can be confident that our
code will not be broken either maliciously, or by bugs in other parts of the distributed sys-

tem.

One final interesting change we made to the Obliq libraries was to modify the way
filesystem and processor objects work. When a repo process starts, it has three variables

defined in its environment (in this case, Repo is running on a host rdwised):

let processor = <Processor at elvis>
let fileSys = <FileSystem at elvis>

let fileSysReader = <FileSystem at elvis>

Filesystem objects are used to access the filesystem, and processor objects are used
to create processgmocessor is the local processor variabfdeSys is the local
file system, andileSysReader is a read-only version of the local file system. Since
these handles are defined in the scope of the initial Repo thread, lexical scoping ensures
that these handles can only be accessed by source code interpreted (as opposed to exe-
cuted) by that thread. Therefore, these variables provide security to the local processor and
file system. In Oblig, these objects cannot be transmitted across the network (doing so
results in an exception). In Repo, we allow these variables to be transmitted over the net-
work, where they always refer back to the resources in their original process. For example,
we could have a group of processes transmit their processor variables to a single Repo pro-
cess, which could then start processes on any of the machines containing those Repo pro-

cesses.

D.3 Efficient Module Distribution

There is a subtle efficiency problem with the implementation of Obliq, related to the fact

that the language is interpreted, that was not noticeable until we added replicated data to

216

the language. The problem is that the data structures representing modules (the primary
code structuring mechanism in Oblig and Repo) can end up being transferred repeatedly
over the network, and instantiated many times in remote processes. We will describe the
problem, and the solution we adopted, because it illustrates the kind of subtle problem that
can arise when building distributed applications. It also illustrates the importance of hav-
ing a robust, general purpose infrastructure to free programmers from having to worry

about such details.

To understand the problem (which will be described fully below), first consider
what happens when an object is transferred between processes in Modula-3. To be suc-
cessfully transferred, the object’s type must exist in the remote process, which implies that
the modules related to that object (that define the type, the methods, and so on) have been
compiled into both programs. Therefore, when the object is transferred, a small identifier

representing its type can be sent along with the instance data of the object.

Now, consider what happens in Repo (or Obliq). First, Repo objects are not typed,
but are simply collections of fields, methods and aliases, so there is no simple way of iden-
tifying these objects between processes using a small identifier. Therefore, the entire
object definition, including the closures defining the methods, and any free variables refer-
enced from those methods, must be transmitted. This could represent a sizable amount of
data, and there is no simple way to avoid it. This is not a serious problem in and of itself,
as programmers will typically ensure that objects that are to be copied frequently do not
have huge data structures embedded in them. Furthermore, objects that are copied fre-
guently (such as events describing tracker or mouse motion) do not typically have huge

numbers of methods.

However, if any of these methods reference a Repo module, a problem arises.
Modules are the code structuring facility in Repo, and are used to group related procedures
and data together. Unlike the compiled code in a Modula-3 binary (in which we can
assume that similar programs are communicating), just because a set of modules has been
loaded into a Repo process, we cannot assume they have been loaded into any other Repo

process. Furthermore, even if modules with the same name, variables and procedures have

217

been loaded into two processes, there is no guarantee that they are actually the same

module.

If we create an object that refers to some module (perhaps because the object’s
methods call procedures or reference variables in the module), and we pass that object
between processes, we must ensure that the referenced module exists in the remote pro-
cess. Therefore, the data structures defining the modules must be transferred along with
the object. Furthermore, if the module refers to other modules, those must also be trans-
ferred at the same time. Since the internal module data structures are created with simple
Modula-3 objects (i.e., unsynchronized replicated data), each time a reference to a module

is sent to another process, the module definition is copied again.

This was not a serious problem in Oblig because copying happens infrequently.
However, in Repo, serious network utilization and memory usage problems can occur as a
result of these duplicate copies. Imagine that we are generating an unsynchronized repli-
cated object each time a tracker moves, and distributing these objects. If this object refer-
ences even a simple variable in some module, and that module happens to reference some
other module, and so on, the resulting message could be huge (and take a significant
amount of time to create and extract). Furthermore, the data structures representing these
modules would be created repeatedly in the destination processes, potentially resulting in

many copies of each module definition. This is clearly unacceptable.

There are a number of solutions to this problem. The most aggressive solution
would be to recognize when two modules with the exact same code were loaded into dif-
ferent processes, and not copy module definitions that are not needed. However, because
we operate in a heterogeneous environment, and modules can have virtually anything
defined within them, an automated approach to this seemed difficult, and we did not want
to resort to a manual approach (such as having programmers annotate the module source
files with version numbers) because the chance of programmers accidentally introducing
obscure bugs into their programs (by not changing the version numbers, for example)

seemed high.

218

Instead, we adopted a more conservative, and significantly easier to implement,
solution, ensuring that at most one copy of a particular module generated in a particular
Repo process exists in any other Repo process. While multiple copies of some module
could still exist in each process if the module was loaded into multiple processes and then
transferred around, at least we limit the number of copies to a well defined number. The
implementation assigns each module a unique network identifier (identifying both the
module and the process in which it was generated) and passes that identifier around the
network rather than the module definition. If a process receives an identifier for a module
it does not currently have a copy of, it acquires the module from the process that created it.
While distributing modules in this way is slightly less efficient when the module does not
yet exist in the destination process (requiring an extra round trip on the network compared
with sending the module data structures along with an object), it is significantly more effi-
cient when the module data structures already exist in the destination process (which is the

case we are worried about).

219

seenoxe REPO Modules

In Appendix D, we described a number of Repo modules that we created to enable build-
ing applications in our domain. In this appendix, we include the help files of all of the new
and modified Repo modules to serve as a reference to the kinds of features we added to the

system.

E.1 New Modules

E.1.1 debug

All(T) debug_assertFree (v: T)
Assert that this value is free.
debug_checkHeap()
Check the heap for all locations of any value that was
asserted free.
debug_collectNow()
A hint that this might be a good time to do a garbage collection
debug_reportReachable()
Generate a report to stderr of all reachable data
debug_disableCollector()
Prevent garbage collection
debug_enableCollector()
All garbage collection to resume
debug_dumpReplicaState()
Dump a report about the state of the replicated object runtime
debug_replicaDebuglLevel(level: Int): Ok
level>0 causes debugging info to go to stderr

The debug module exposes some of the Modula-3 debugging facilities in Repo. The last
two routines are used for debugging the Shared Object runtime, and the rest are debugging

routines implemented in the Modula-3 garbage collector.

220

E.1.2 dict

dict_invalidKey: Exception
dict_new (): Dict
Create a new dictionary that maps Texts to any Oblig value.
dict_get (t: Dict, key: Text): Val ! dict_invalidKey
Look up "key" in dictionary "t". If it exists, return the value
"Val" that it maps to. Otherwise, raise "dict_invalidKey".
dict_put (t: Dict, key: Text, val: Val): Bool
Set the value mapped from "key" in the dictionary "t" to "val". |If
"key" already mapped to something in "t", return "true", otherwise
return "false."
dict_delete (t: Dict, key: Text): Val ! dict_invalidKey
Delete the mapping for "key" from dictionary "t". If it exists,
return the value "Val" that it mapped to. Otherwise, raise
"dict_invalidKey".
dict_size (t: Dict): Int
Return the number of elements (mappings) in dictionary "t"
dict_iterate (t: Dict): Iterator
Return an Iterator, which is an object that can be used to iterate
over the key-value pairs in "t".
dict_iteratorNext (i: Iterator): [Text, Val] | Ok
If "i" is the result of the call "dict_iterate(t)", then the call
"dict_iteratorNext(i)" selects an entry from "t" that has not
already been returned by "i", and returns the pair ['k","v"
corresponding to its key and value. If no entries remain, the call
returns "Ok". It is a checked runtime error to call "iteratorNext"
after it has returned "Ok". The client must ensure that while an
iterator is in use, the parent dictionary is not modified.
dict_iteratorlnit (i: Iterator, t: Dict): Iterator
Reinitialize "i" to iterate over all the values of a dictionary "t".
Return "i"
WHERE
Dict is a dictionary
Iterator is a dictionary iterator

This module exposes a dictionary (implemented using a hash table) into Repo, which
maps text keys to any Repo value. We decided to implement this as a module, rather than

extending the language to support associative arrays.

E.1.3 reflect

reflect_error: Exception

AlI(T) reflect_isArray(v: T): Bool
is v an array?

AlI(T) reflect_isObject(v: T): Bool
is v an object?

AlI(T) reflect_isClosure(v: T): Bool
is v a closure?

AlI(T) reflect_isException(v: T): Bool

is v an exception?
AlI(T) reflect_isMethod(v: T): Bool
is v a method?
AlI(T) reflect_isUpdateMethod(v: T): Bool
is v an update method?
AlI(T) reflect_isOption(v: T): Bool
is v an option?
AlI(T) reflect_isBasic(v: T): Bool
is v a basic value? (ok, Bool, Char, Text, Int, Real)
AlI(T) reflect_isNative(v: T): Bool
is v a native value? (an opaque value)
AlI(T) reflect_isAlias(v: T): Bool
is v an alias?
AlI(T) reflect_isLocal(v: T): Bool
is the location of v local to this site?
AlI(T) reflect_isProtected(v: T): Bool
is v a protected object?
AlI(T) reflect_isSerialized(v: T): Bool
is v a serialized object?
AlI(T) reflect_isSimple(v: T): Bool
is v a simple object?
AlI(T) reflect_isReplicated(v: T): Bool
is v a replicated object?
AlI(T) reflect_isRemote(v: T): Bool
is v a remote object?
All(T<:option(tag,val)) reflect_getOptionTag(o: T): tag
return the tag of the option
All(T<:option(tag,val)) reflect_getOptionVal(o: T): val
return the value of the option
AlI(T) reflect_getType(v: T): option(type,ok)
return an option whose label describes the type of v, and whose
value is ok
AlI(T) reflect_getTypedVal(v: T): option(type,v)
return an option whose label describes the type of v, and whose
value is v
All(T<:{}) reflect_getFieldTypes(v: T): [[Text,option(type,ok)]]
return an array describing the fields of v. Each array element is a
2 element array containing the field label and an option describing
its type. The value of the option is always ok.
All(T<:{}) reflect_getObjectType(v: T): option(objectType,v)
return an option created by appending all the option tags of the
fields of v using the text template "label=>tag" for each field
Obtaining the type of a remote object does not require the field
values to be copied to the local machine.
All(T<:{}) reflect_getObjectinterface(v: T): option(objectType,v)
similar to getObjectType, but only methods of v are included.
All(T<:{}) reflect_objectWho(v: T): Text
return the text that is used to identify the object v when it is
printed
All(T<:{}) reflect_getField(v: T, label: Text) ! reflect_error
get the named field from the object.
All(T<:{}) AlI(S) reflect_getFields(v: T): [[Text,S]] ! reflect_error
return an array of pairs of field labels and their values.
All(T<:{}) reflect_select(v: T, label: Text): S ! reflect_error
the same as calling 'v.label'".
All(T<:{}) All(S,V) reflect_update(v: T, label: Text, nv:S):U !
reflect_error
the same as calling 'v.label := nv'.
All(T<:{}) All(S,V) reflect_invoke(v: T, label: Text,

221

222

args: [S]): U Ireflect_error
the same as calling 'v.label(args)’, where args is expanded to an
arg list
All(T<:{}) All(S) reflect_newObject(v: ObjectType,
protected serialized: Bool,
who: Text, fields: [[Text,val]]): S
create a new object.
All(T,U) reflect_match(match: T, val: S): bool Ireflect_error
Test to see if "val" matches "match", using the rules below.
WHERE
ObjectType = one of {"Remote","Replicated","Simple"}

A value "val" matches a "match" value if:

- "match is ok"

- "match is val"

- "val" is a text string and "match" is a regular expression that
matches all of it (ie. "val" matches "" & match & "$")

- "match"” is a regular expression that matches all of the option key
of "reflect_getType(val)"

- "match" is an option whose key is a regular expression matches all
of the option key of "reflect_getType(val)", and the value of the
option is either "ok" or also matches "val".

- "val" and "match" are objects, and for each field of "match",

"val" has a corresponding field whose contents are matched by the
contents of the field of "match”.

- "val" and "match" are arrays of the same size, and each element of
the array matches

Here are the possible types strings of the basic Repo types:

"Var", "Var'Replicated", "Var Simple", "Ok", "Bool", "Char", "Text",
"Int", "Real", "Option", "Alias", "Array ' Remote", "Array Replicated",
"Array Simple", "Closure™#", "Method # Update", "Method #",
"Object'Remote", "Object Replicated"”, "Object’Simple", "Engine",
"Exception”

Opaque data types introduced by libraries have a type string of either
"ValAnything" or a value provided by the library.

This module adds reflection to Repo, as discussed in Appendix D.

E.1.4 replica

replica_failure: Exception

replica_fatal: Exception

All(T<:[replica]{}, S:[simple]{}) replica_notify(o: T, n: S): callback
I replica_failure

All(T<:[replica]{}) replica_cancelNotifier(ch: callback)

replica_flushincomingUpdates(): Ok ! thread_alerted

replica_flushQueuedUpdates(): Ok ! thread_alerted

This module defines the replicated object exceptions, and provides the functions to create

and destroy Shared Object callbacks in Repo. The callback is a simple object with meth-

223

ods corresponding to the pre and post updates that the programmer wishes to be informed
of. The module also exposes the Shared Object runtime routines to flush the update queue,

as described in Section 3.4.2.1.

E.2 New Modules for Modula-3 Packages

The modules in this section are new to Repo, but simply expose existing Modula-3 pack-

ages that we needed access to in Repo.

E.2.1 dir

dir_failure: Exception

dir_getAbsolutePathname(fs: FileSystem, p: Text): Text ! dir_failure
Return an absolute pathname referring to the same file or
directory as "p". The new pathname will not involve any symbolic
links or relative arcs (that is, occurrences of "path_parent" or
"path_current".

dir_createDirectory(fs: FileSystem, p: Text): Ok ! dir_failure
Create a directory named by "p".

dir_deleteDirectory(fs: FileSystem, p: Text): Ok ! dir_failure
Delete the directory named by "p". "dir_failure" is raised if the
directory contains entries (other than perhaps "path_current”
and "path_parent").

dir_deleteFile(fs: FileSystem, p: Text): Ok ! dir_failure
Delete the file or device named by "p". "dir_failure" is raised if
"p" names a directory.
Note: Under Win32, "DeleteFile" raises "dir_failure" if "p" is open.
Under POSIX, an open file may be deleted; the file doesn't actually
disappear until every link (path) for it is deleted.

dir_rename(fs: FileSystem, p0 p1: Text): Ok ! dir_failure
Rename the file or directory named "p0" as "p1".
Some implementations automatically delete an existing file named
"pl", others raise "dir_failure". Some implementations disallow a
rename where "p0" and "pl" name different physical storage devices
(different root directories or file systems).

dir_iterate(fs: FileSystem, p: Text): Iterator ! dir_failure
Return an iterator for the entries of the directory named by "p".
An "lterator" supplies information about the entries in a
directory: names and, optionally, status. The iteration does not
include entries corresponding to "path_current" or "path_parent".

dir_iteratorNext(i: Iterator): [Text, Bool]
If more entries remain, returns ['n",True], with "n" set to the name
of the next one. It returns ['n",False], with "n" undefined, if no
more entries remain.

dir_iteratorNextWithStatus(i: Iterator): [Text, Bool, Status] !

dir_failure

If more entries remain, returns ["'n",True,Status], with "n" set to
the name of the next one and "Status" set to its status (see
dir_status). It returns ['n",False,ok], with "n" undefined, if no

224

more entries remain.

dir_iteratorClose(i: Iterator): Ok
The call "i.close()" releases the resources used by "i", after
which time it is a checked runtime error to use "i". Every
iterator should be closed.

dir_status(fs: FileSystem, p: Text): Status ! dir_failure
Return information about the file or directory named by "p".
The type field includes the values "Directory" for directories,
"RegularFile" for disk files,"Terminal" for terminals and "Pipe" for
pipes.

dir_setModificationTime(fs: FileSystem, p: Text, t: Real): Ok !

dir_failure
Change the maodification time of the file or directory named by "p"
to "t".
WHERE

Iterator is a directory iterator

FileSystem is a file system. The local file system is available
through the predefined lexically scoped identifier "fileSys".

Status = {type => Text, modificationTime => Real, size => Int};

This module exposes the Modula-3 directory manipulation routines into Repo. Paths are

specified in a OS independent fashion usingtita module (Section E.2.5).

E.2.2 http

http_error: Exception
http_notAuthorized: Exception
http_badQuery: Exception

http_logging(on: Bool): Ok
turn logging on and off
http_setDefaultViaFieldValue(v: Version, port: Int, alias: Text): Ok
generate and set the default viaFieldValue for the default style
This field MUST be set for proxies. If alias is not ", it is used
in place of the host name.
http_toText(h: Header, proxy: Bool): Text ! http_error
http_lookupField(h: Header, name value: TEXT): Field
http_addField(h: Header, field after: Field): Field
http_removeField(h: Header, field: Field): Bool
http_copyFields(from to: Header)
http_iterateFields(h: Header): Fieldlterator
http_iterateNextField(i: Fieldlterator): Field

http_newRequest(m: Method, url: URL, v: Version): Request
create a new request
http_parseRequest(rd: Rd): Request ! http_error
parse a request header from rd
http_writeRequest(r: Request, wr: Wr, proxyRequest: Bool) ! http_error
http_requestMethod(r: Request): Method
http_requestURL(r: Request): URL
http_requestVersion(r: Request): Version
http_requestPostData(r: Request): Text

225

http_version9: Version
http_version10: Version
http_versionl11: Version
http_currentVersion: Version
supported HTTP versions (0.9, 1.0, 1.1)

http_statusCode(status: HttpStatus): Int
http_statusReason(status: HttpStatus): Text

http_newReply(v: Version, code: Int, reason: Text): Reply
create a new reply
http_parseReply(rd: Rd): Reply ! http_error
parse a reply header from rd
http_writeReply(r: Reply, wr: Wr): Ok ! http_error
http_replyVersion(r: Reply): Version
http_replyCode(r: Reply): Int
http_replyReason(r: Reply): Text
http_writeSimpleReplyHeader(wr: Wr, code: Int, reason: Text): Ok !
http_error
http_writeRedirectReply(wr: Wr, url, htmIMsg: Text): Ok ! http_error

http_writeTime(wr: Wr, time: Real): Ok ! http_error
http_readTime(rd: Rd): Real ! http_error
http_setPrograminfo(prog: ProgramType, name: Text, auth: AuthType,
authRealm authAccount: Text): Ok
http_getPrograminfo(): {programType => ProgramType, name => Text,
authType => AuthType, authRealm => Text,
authAccount => Text}

http_newFormQuery(query: Text): FormQuery ! http_badQuery

http_newFormQueryFromRd(rd: Rd): FormQuery ! http_badQuery
parse a query from a text or rd

http_writeFormQuery(f: FormQuery, wr: Wr): Ok ! http_error

http_basicAuthField(account: Text, auth: AuthType): Field
create a Basic authorization field where account is "name:passwd"
http_authorizedRequest(r: Request, auth: AuthType,
account: Text): Bool ! http_error
check if request has a valid auth field for account
http_replyUnauthorized(wr: Wr, auth: AuthType, realm: Text,
defaultMsg: Bool): Ok ! http_error
write an "unauthorized" reply to wr for realm. If "defaultMsg",
write a simple message.
http_authorizationAccount(r: Request, auth: AuthType): Text !
http_error
return the authorization field
http_readBody(h: Header, rd: Rd, dest:(data:text)->Ok): Ok !
http_error
read the body from "rd" by calling "dest" as necessary
http_writeBody(h: Header, wr: Wr, src:(len:Int)->Text): Ok !
http_error
write the body to "wr" by calling "src" as necessary. the end of
the body is signified by "src" returning less than "len" characters

http_escapeURLEntry(entry: Text): Text
http_unescapeURLEntry(entry: Text): Text ! http_error
http_encodeTextForHTML (text: Text): Text
http_decodeTextForHTML(text: Text): Text ! http_error

226

http_getUserAgent(r: Request): [Text,Int]
return the agent name and version number

http_addProxy(rule: Text): Ok
add a rule to the proxy server list.
Rules are of the form "pattern <server>,[<server>]*"

http_anyPort: Int
http_anyService: Int
AlI(T) http_serve(port,service: Int, serverData: T): Ok ! http_error
enter wait loop for HTTP requests on "port". "serverData" is passed
to the "accept" and "request” methods of the RequestHandlers
http_serverPort(port,service: Int): Bool
return True if there has been a call on "serve" for "port"
http_client(r: Request, v: Version, rd: Rd, wr: Wr,
hander: (Reply,rd,wr)->0k, service): Ok ! http_error
Make a client request or proxy a client request. The request is
made directly if the destination server does not match against the
noProxy list. Program information (user-agent, or via) and host
header is added automatically to the request. The contents of "rd"
are sent with the request. After "request" is sent to the server,
the header of the reply is parsed and "handler" is called with "wr"
for its output.
All(S,T) http_registerRequestHandler(port: Int, pr: Priority,
accept: (Request,S)->[T,Bool],
request: (Request,S,T,Rd,Wr)->0k): Ok
Register a server request handler for a port. For an incoming
request, all handler "accept” procedures are called (in Priority
order) until one returns True. The corresponding "request”
procedure is then called. S is the "serverData" item passed to
http_serve. The "T" returned by "accept” is passed to "request".
The handler will only get called if "port" matches the server's port
or "port = AnyPort" or if "port" < 0 then "port" represents a
service type, and the request handler is invoked if "port" matches
the server's service type.
http_serverPushSupported(r: Request): Bool
http_serverPushFrame(wr: Wr, contentType, msg: Text): Ok ! http_error

http_rootForm: Form
Forms and Values provide an interface for applictions to be
controlled via an HTTP form interface. This returns the root
control form.

All(T) http_newForm(name: Text, accept: (Form,Request,Text)->[T,Bool],

respond: (Form,Request,FormQuery,Wr,T)->0Kk !
http_notAuthorized): Ok

A specialized request handler for forms.

http_formName(f: Form): Text

http_iterateValues(f: Form): Valuelterator

http_iterateNextValue(i: Valuelterator): Value
Iterate the values of a form.

http_registerForm(f: Form, name url: Text, addToRoot: Bool): Ok
Register the form so that the form's accept procedure is called to
see if the form handles the request. If "addToRoot" the form
is added to the root form.

http_formLookup(name: Text): Form
returns the form registered under "name", or ok if there is no form
registered under that name.

http_newStaticForm(name url title: Text, hasButton register: Bool):

StaticForm

227

A StaticForm is a form that has a fixed URL for its address and
fixed contents (made up of values).
http_staticFormUrl(f: StaticForm): Text
http_staticFormAddValue(f: StaticForm, v: Value): Value

http_newValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
getText: (self,Request)->Text ! http_notAuthorized,
setText: (self,Request, Text)->Ok ! http_notAuthorized,
setDefault: (self,Request)->0k ! http_notAuthorized,
writeFormltem: (self,Request,Wr)->Ok ! http_notAuthorized):
Value
a generic form value. getText and setText retrieve and set the text
representation of the value contents. setDefault restores the value
to its default state. writeFormltem writes the html form contents
to wr.
http_newContainerValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
getText: (self,Request)->Text ! http_notAuthorized,
setText: (self,Request, Text)->Ok ! http_notAuthorized,
setDefault: (self,Request)->0k ! http_notAuthorized,
writeFormltem: (self,Request,Wr)->Ok ! http_notAuthorized,
setValues: (self,Request,FormQuery)->Ok ! http_notAuthorized):
ContainerValue
a generic form container value. getText and setText retrieve and set
the text representation of the value contents. setDefault restores
the value to its default state. writeFormltem writes the html form
contents to wr. setValues sets the container values from an HTTP
form query.
http_valueld(v: Value): Text
http_valueLeader(v: Value): Text
http_valueLabel(v: Value): Text
http_valueTrailer(v: Value): Text
http_valueEditable(v: Value): Boolean
http_setValueld(v: Value, id: Text): Text
http_setValueLeader(v: Value, leader: Text): Text
http_setValueLabel(v: Value, label: Text): Text
http_setValueTrailer(v: Value, trailer: Text): Text
http_setValueEditable(v: Value, editable: Bool): Bool
retrieve and set value attributes. The set functions return
their arguments.
http_valueText(v: Value,r: Request): Text ! http_notAuthorized
http_setValueText(v: Value, r: Request,
txt: Text): Ok ! http_error http_notAuthorized
Most kinds of values get be set from a text representation of their
value, which is how the forms are set from an HTTP POST.
http_valueSetDefault(v: Value, r: Request): Ok! http_error
http_notAuthorized
reset the value to its default.
http_writeFormltem(v: Value, r: Request,
wr: Wr): Ok ! http_error http_notAuthorized
http_setContainerValues(v: ContainerValue, r: Request,
g: FormQuery): Ok ! http_error http_notAuthorized
Set the subvalues of a container value from an HTTP query

http_newBooleanValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Bool ! http_notAuthorized,
set: (self,Request,Bool)->0k ! http_notAuthorized): Value

228

http_newIntValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Int ! http_notAuthorized,
set: (self,Request,Int)->Ok ! http_notAuthorized): Value
http_newRealValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Real ! http_notAuthorized,
set: (self,Request,Real)->0k ! http_notAuthorized): Value
http_newlmageValue(id: Text, [leader label trailer]: [Text],
get: (self,Request)->URL ! http_notAuthorized,
set: (self,Request,URL)->0k ! http_notAuthorized): Value
an image
http_newUrlValue(id: Text, [leader label trailer]: [Text],
get: (self,Request)->Text ! http_notAuthorized,
set: (self,Request, Text)->Ok ! http_notAuthorized): Value
a link
http_newFormValue(id: Text, [leader label trailer]: [Text],
f: Form, name url: Text): Value
http_newMsgValue(leader trailer msg: Text): Value
a non-editable message
http_newChoiceValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
names: [Text],
get: (self,Request)->Int I http_notAuthorized,
set: (self,Request,Int)->Ok ! http_notAuthorized): Value
a list of alternatives
http_newTextValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
scrollable: Bool, width height: Int,
get: (self,Request)->Text ! http_notAuthorized,
set: (self,Request, Text)->Ok ! http_notAuthorized): Value
a text area. Itis may or may not be scrollable.
http_textValueDim(v: Value): [Bool,Int,Int] ! http_error
http_setTextValueDim(v: Value, scrollable: Bool,
width height: Int): Ok! http_error
change the properties of the text area
http_newTableValue(id: Text, caption: Text,
values:[[Value]]): ContainerValue
http_tableValue(request: Request,
v: Value): [[Value]] ! http_error http_notAuthorized
http_setTable(request: Request, v: Value,
values: [[Value]]): Ok ! http_error http_notAuthorized
a table is a specific container value that creates an HTML Table.
WHERE
Request <: Header
Reply <: Header
FormQuery <: Header
ContainerValue <: Value
Method = Text(one of "OPTIONS", "GET", "POST", "PUT",
"DELETE", "HEAD", "TRACE", "CONNECT")
ProgramType = Text (one of "Client", "Proxy", "Server", "Tunnel")
AuthType = Text (one of "None", "Proxy", "Server")
Priority = Text (one of "High", "Normal", "Low")
Field = [Text,FieldValue]
FieldValue = Text or ok
Iterator = Fieldlterator or Valuelterator
FieldOrValue = Field or Value

229

This module exposes the Modula-3 HTTP package into Repo. It supports the creation of
HTTP clients and servers, and includes support for authentication, getting and putting data
to/from the servers, proxying and forms. The forms facility includes support for both sim-
ple predefined forms, and more general forms creation. The HTTP package was originally
created as part of the Millicent project in electronic microcommerce at DEC SRC
[Manasse, 1995].

E.2.3 httpField

httpField_accept: Text
httpField_acceptCharset: Text
httpField_acceptEncoding: Text
httpField_acceptLanguage: Text
httpField_acceptRanges: Text
httpField_age: Text
httpField_allow: Text
httpField_authorization: Text
httpField_cacheControl: Text
httpField_connection: Text
httpField_contentBase: Text
httpField_contentEncoding: Text
httpField_contentLanguage: Text
httpField_contentLength: Text
httpField_contentLocation: Text
httpField_contentMD5: Text
httpField_contentRange: Text
httpField_contentType: Text
httpField_date: Text
httpField_eTag: Text
httpField_expires: Text
httpField_from: Text
httpField_host: Text
httpField_ifModifiedSince: Text
httpField_ifMatch: Text
httpField_ifNoneMatch: Text
httpField_ifRange: Text
httpField_ifUnmodifiedSince: Text
httpField_lastModified: Text
httpField_location: Text
httpField_maxForwards: Text
httpField_pragma: Text
httpField_proxyAuthenticate: Text
httpField_proxyAuthorization: Text
httpField_public: Text
httpField_range: Text
httpField_referer: Text
httpField_retryAfter: Text
httpField_server: Text
httpField_transferEncoding: Text
httpField_upgrade: Text

230

httpField_userAgent: Text

httpField_vary: Text

httpField_via: Text

httpField_warning: Text

httpField_WWWAuthenticate: Text
Return the text value of the field name. This interface is provided
to ensure only valid field names are used unless explicitely
intended.

The package is used by the HTTP package (Section E.2.2). It predefines all of the HTTP

protocol field names.

E.2.4 httpStatus

httpStatus_continue: HttpStatus
httpStatus_switchingProtocols: HttpStatus
httpStatus_ok: HttpStatus
httpStatus_created: HttpStatus
httpStatus_accepted: HttpStatus
httpStatus_nonAuthoritative_Information: HttpStatus
httpStatus_noContent: HttpStatus
httpStatus_resetContent; HttpStatus
httpStatus_partialContent: HttpStatus
httpStatus_multipleChoices: HttpStatus
httpStatus_movedPermanently: HttpStatus
httpStatus_movedTemporarily: HttpStatus
httpStatus_seeOther: HttpStatus
httpStatus_notModified: HttpStatus
httpStatus_useProxy: HttpStatus
httpStatus_badRequest: HttpStatus
httpStatus_unauthorized: HttpStatus
httpStatus_paymentRequired: HttpStatus
httpStatus_forbidden: HttpStatus
httpStatus_notFound: HttpStatus
httpStatus_methodNotAllowed: HttpStatus
httpStatus_notAcceptable: HttpStatus
httpStatus_proxyAuthenticationRequired: HttpStatus
httpStatus_requestTimeout: HttpStatus
httpStatus_conflict; HttpStatus
httpStatus_gone: HttpStatus
httpStatus_lengthRequired: HttpStatus
httpStatus_preconditionFailed: HttpStatus
httpStatus_requestEntityTooLarge: HttpStatus
httpStatus_requestURITooLarge: HttpStatus
httpStatus_unsupportedMediaType: HttpStatus
httpStatus_internalServerError: HttpStatus
httpStatus_notimplemented: HttpStatus
httpStatus_badGateway: HttpStatus
httpStatus_serviceUnavailable: HttpStatus
httpStatus_gatewayTimeout: HttpStatus
httpStatus_httpVersionNotSupported: HttpStatus
WHERE
HttpStatus is a predefined HTTP Status code. The corresponding code

231

and textual reason can be obtained from the http interface.

The package is used by the HTTP package (Section E.2.2). It predefines all of the HTTP

protocol status codes.

E.2.5 path

path_invalid: Exception
When a path with invalid syntax is passed to a procedure in
this interface not declared as raising the exception "invalid",
the result is undefined, but safe.
path_valid(fs: FileSystem, pn: Text): Bool
Return "True" iff "pn" conforms to the path syntax of this
operating system.
path_decompose(fs: FileSystem, pn: Text): [Text] ! path_invalid
Parse "pn", returning a sequence whose first element is a root
directory name (possibly ") and whose remaining elements
consist of zero or more arc names. Raise "path_invalid" if
"path_valid(pn)" is "False". "path_decompose" returns exactly the
sequence of arc names present in "pn"; it doesn't attempt to produce
a canonical form. Some operating systems allow zero-length arc
names.
path_compose(fs: FileSystem, arcs: [Text]): Text ! path_invalid
Combine the elements of "arcs" to form a path corresponding to the
syntax of this operating system. Raise "path_invalid" if "arcs" is
[], if "arcs[0]" is neither ™ nor a valid root directory name, or
if one of the elments of "arcs" is not a valid arc name.
path_absolute(fs: FileSystem, pn: Text): Bool
Return "True" iff "pn" is an absolute path. Equivalent to
"not(text_equal(path_decompose(pn)[0],"))", but faster.
path_prefix(fs: FileSystem, pn: Text): Text
Return a path equal to "pn" up to, but not including, the final
arc name. If "pn" consists only of a root directory name,
"path_prefix(pn)" returns "pn".
path_last(fs: FileSystem, pn: Text): Text
Return the final arc name in "pn". If "pn" consists only of a root
directory name, "path_last(pn)" returns the empty string.
path_base(fs: FileSystem, pn: Text): Text
Return a path equal to "pn" except with "path_last(pn)" replaced by
its base.
path_join(fs: FileSystem, pn base ext: Text): Text
Return a path formed by prepending "pn" to "base" (if "pn" is
not ") and appending "ext" to "base" (if "ext" is not ™).
More precisely, this is equivalent to the following, in which "a"
is an array of Text:
if text_equal(pn, ") then a :=];
else
if path_absolute(base) then "Cause checked runtime error” end;
a := path_decompose(pn);
end;
if text_length(ext) > 0 then base := base & "." & ext end;
let ba = path_decompose(base);
path_compose(a @ ba[l for (#(ba)-1)]);

232

The value returned by "path_join" will be a valid path only if the
"base" and "ext" conform to the syntax of the particular operating
system.
path_lastBase(fs: FileSystem, pn: Text): Text
Return the base of the final arc name of "pn". It is a checked
runtime error if "pn" is empty or consists only of a root directory
name.
path_lastExt(fs: FileSystem, pn:; Text): Text
Return the extension of the last arc name of "pn". It is a checked
runtime error if "pn" is empty or consists only of a root directory
name.
path_replaceExt(fs: FileSystem, pn ext: Text): Text
Return a path equal to "pn" except with the extension of the
final arc name replaced with "ext", which must not be "".
path_parent(fs: FileSystem): Text
A special arc name that, when encountered during a path lookup,
stands for the parent of the directory currently being examined.
path_current(fs: FileSystem): Text
A special arc name that, when encountered during a path lookup,
stands for the directory currently being examined.
path_searchSeparator(fs: FileSystem): Text
The search path separator charactor, used for appending multiple
paths together.
path_separator(fs: FileSystem): Text
The path separator charactor. Used to separate the arcs in a path.

This module exposes the Modula-3 path manipulation routines into Repo. The path mod-

ule is used to manipulate pathnames in an operating system independent way.

E.2.6 random

random_int(min, max: Int): Int
random_real(min, max: Real): Real
return a random number in the range [min, max]

The module exposes the Modula-3 random number generator into Repo.

E.2.7 regex

regex_error: Exception
regex_compile(pat: Text): Pattern ! regex_error

compile a regular expression string into an regular expression

Pattern
regex_decompile(pat: Pattern): Text

decompile an executable Pattern into the original regular expression
regex_dump(pat: Pattern): Text

dump an executable Pattern into a readable text string for debugging
regex_execute(pat: Pattern, text: Text): Int

233

compare the regular expression 'pat' against the text data returning

the starting position in 'data’ if there was a match, -1 otherwise.
regex_executeRes(pat: Pattern, text: Text): [[Int,Int]] or ok

if there is a match, return indices for the (..) sequences.

Otherwise, return ok.
regex_executeSub(pat: Pattern, text: Text, start len: Int): Int
regex_executeSubRes(pat:Pattern, text:Text,

start len:Int): [[Int,Int]] or ok
consider only text_sub(text,start,len) portion of 'text'

This module exposes the regular expression package into Repo. This is the regex package
that is also used to implement the regular expression matching in thed&sepstate-

ment, and in theeflect module.

E.28 tcp

tcp_error: Exception
tcp_getHostByName(name: Text): Ok or Address ! tcp_error
look up the IP address of a host. Return Ok if the host cannot be
found
tcp_getCanonicalByName(name: Text): Text ! tcp_error
tcp_getCanonicalByAddr(addr: Address): Text ! tcp_error
return the canonical host name
tcp_getHostAddr(): Address
return one of this hosts address
tcp_newConnector(ep: Endpoint): Connector ! tcp_error
the address portion should be zeros or a valid IP address of this
host. if the port is zero, a free one will be chosen. Use
getEndpoint to find out which one
tcp_getEndPoint(conn: Connector): Endpoint
get the endpoint of the Connector
tcp_closeConnector(conn: Connector)
close the Connector
tcp_connect(ep: Endpoint): T ! tcp_error thread_alerted
connect to some TCP address
tcp_accept(conn: Connector): T ! tcp_error thread_alerted
accept an incoming connection on a Connector
tcp_close(tcp: T)
close a TCP connection
tcp_eof(tcp: T)
returns "True" if and only if there are no more bytes to be read
from this connection, and the connection indicates end-of-file (e.g.
the other side closed it.
tcp_startConnect(ep: Endpoint): T ! tcp_error
initiate a request to connect to the destination specified by "ep".
tcp_finishConnect(tcp: T, waitFor: Real): Bool ! tcp_error
thread_alerted
returns a "Bool" to indicate if a connection request initiated via
"startConnect" has successfully completed. A result of "True"
indicates that it has. "False" means that the connection request is
still outstanding. If "waitFor" is negative, then "finishConnect"
waits indefinitely until the operation completes, otherwise it waits

234

for a maximum of "waitFor" seconds. The caller should continue to
call this procedure until it either returns "True" or raises an
error.
tcp_getPeer(tcp: T): Endpoint ! tcp_error
return the peer endpoint for TCP connection.
tcp_getPeerName(tcp: T): Text ! tcp_error
return the peer name for TCP connection.
tcp_matchPeer(tcp: T, addr: Address, maskBits: MaskBits): Bool !
tcp_error
returns "True" if the first maskBits bits of peer's endpoint address
match the given address.
tcp_localEndpoint(tcp: T): Endpoint ! tcp_error
return the local Endpoint of a TCP connection.
tcp_getRd(tcp: T): Rd
get a reader on the TCP connection
tcp_getWr(tcp: T): Wr
get a writer on the TCP connection
WHERE
MastBits = [0 .. 32]
Address = [Int,Int,Int,Int]
A valid IP address
Endpoint = [Int,Int,Int,Int,Int]
A valid IP address and port number
Connector = an opaque TCP connector

In this module, we expose the Modula-3 TCP and IP modules. This allows simple TCP-
based communication to be implemented at the Repo level, which is needed to communi-
cate with other, non-Modula-3 programs. We used this module in the Shared Sketch exam-

ple, in Section 6.2, to communicate with the Brown Sketch system.

E.29 url

url_new(textRep: Text): URL
url_newFromRd(rd: Rd): URL
url_toText(url: URL, f: Format): Text
url_equivalent(urll,url2: URL): Bool
url_local(url: URL, service: Int): Bool
url_derelativize(self, root: URL): URL
url_absPath(url: URL): Bool
url_scheme(url: URL): Text
url_host(url: URL): Text
url_port(url: URL): Int
url_path(url: URL): Text
url_params(url: URL): Text
url_query(url: URL): Text
url_fragment(url: URL): Text
WHERE
Format = Text(one of "Default", "Canonical", "BodyOnly")

235

This module is used with the HTTP module (Section E.2.2) to provide a high-level way of
manipulating URLSs.

E.2.10 word

word_bitnot(w: Int): Int

the bitwise not of w.
word_bitand(wl w2: Int): Int

the bitwise and of wl and w2.
word_bitor(wl w2: Int): Int

the bitwise or of w1l and w2.
word_bitxor(wl w2: Int): Int

the bitwise xor of wl and w2.
word_bitshift(w n: Int): Int

the bitwise shift of w by n bits.
word_bitrotate(w n: Int): Int

the bitwise rotate of w by n bits.

The word module exposes the Modula-3 bitwise word manipulation operators.

E.3 Changed Modules

The modules in this section existed in Oblig, but were enhanced in (sometimes significant)

ways in Repo.

E.3.1 array

[ed, ..., en]: [T]
(for el...en: T). Creates a remote array.

All(T) array_new(size: Int, init: T): [T]

AlI(T) array_newRemote(size: Int, init: T): [T]

All(T) array_newReplicated(size: Int, init; T): [T]

All(T) array_newSimple(size: Int, init: T): [T]
A remote, replicated or simple array of size 'size’, all filled
with 'init". 'new' is a shorthand for 'newRemote'.

AlI(T) array_gen(size: Int, proc: (Int)->T): [T]

AlI(T) array_genRemote(size: Int, proc: (Int)->T): [T]

All(T) array_genReplicated(size: Int, proc: (Int)->T): [T]

All(T) array_genSimple(size: Int, proc: (Int)->T): [T]
A remote, replicated or simple array of size 'size’, filled with
‘proc(i)’ for 'i' between '0' and 'size-1'. 'new' is a shorthand
for '‘genRemote’

AlI(T) array_#(a: [T]): Int ! net_failure
(also '#(a)") Size of an array.

All(T) array_get(a: [T], i: Int): T ! net_failure

236

(also "a[i]') The i-th element (if it exists), zero-based.
All(T) array_set(a: [T], i: Int, b: T): Ok ! net_failure
(also 'a[i]:=b") Update the i-th element (if it exists).
AlI(T) array_sub(a: [T], i: Int, n: Int): [T] ! net_failure
(also 'ali for n]") A new array, of the same kind as 'a’, filled
with the elements of 'a’ beginning at 'i', and of size 'n’ (if it

exists).
All(T) array_upd(a: [T], i: Int, n: Int, b: [T]): Ok ! net_failure
(also 'a[i for n]:=b") Same as 'a[n+i]:=b[n]; ... ; a[i]:=b[0]'".

l.e. 'a[i for n]' gets 'b[0 for n]'.

All(T) array_@(al: [T], a2: [T]): [T] ! net_failure
(also infix '@") A new array, of the same kind as ‘'al’, filled with
the concatenation of the elements of 'al' and 'a2'.

A set of new constructor functions was added to this module to create arrays with different

distribution semantics.

E.3.2 fmt

fmt_padLft(t: Text, length: Int): Text
If t is shorted then length, pad t with blanks on the left so that
it has the given length.
fmt_padRht(t: Text, length: Int): Text
If t is shorted then length, pad t with blanks on the right so that
it has the given length.
fmt_bool(b: Bool): Text
Convert a boolean to its printable form.
fmt_int(n: Int): Text
Convert an integer to its printable form.
fmt_real(r: Real): Text
Convert a real to its printable form.
fmt_realPrec(r: Real, prec: Int): Text
Convert a real to its printable form. Use a maximum precision of
"prec"

ThereadPrec routine was added to allow real numbers to be formatted with a fixed pre-

cision.

E.3.3 lex

lex_failure: Exception

lex_scan(r: Rd, t: Text): Text ! rd_failure thread_alerted
Read from r the longest prefix formed of characters listed in t, and
return it.

lex_scanNonBlanks(r: Rd): Text ! rd_failure thread_alerted
Read from r the longest prefix formed of characters nonblank
characters, which means any in the range {'!I' .. '~"), and return

237

it.
lex_skip(r: Rd, t: Text): Ok ! rd_failure thread_alerted
Read from r the longest prefix formed of characters listed in t, and
discard it.
lex_skipBlanks(r: Rd): Ok ! rd_failure thread_alerted
Read from r the longest prefix formed of blanks, which means any of

lex_match(r: Rd, t: Text): Ok ! lex_failure rd_failure thread_alerted
Read from r the string t and discard it; raise failure if not found.
lex_bool(r: Rd): Bool ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read a boolean fromr.
lex_int(r: Rd): Int ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read an integer from r.
lex_real(r: Rd): Real ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read a real fromr.

Thescan , scanNonBlanks , skip , andskipBlanks routines were added to make

this module more useful.

E.3.4 net

net_failure: Exception
AlI(T) net_who(o: T): Text ! net_failure thread_alerted
Return a text indicating where a network object or engine is
registered, or the empty text if the argument is an object that has
not been registered with a name server.
All(T<:{}) net_export(name: Text, server: Text, 0: T): T
I net_failure thread_alerted
Export an object under name 'name’, to the name server at IP address
'server'. The empty text denotes the local IP address.
Some(T<:{}) net_import(name: Text, server: Text): T
I net_failure thread_alerted
Import the object of name 'name’, from the name server at IP address
'server'. The empty text denotes the local IP address.
AlI(T) net_exportEngine(name: Text, server: Text, arg: T): Ok
I net_failure thread_alerted
Export an engine under name ‘name’, to the name server at IP address
'server'. The empty text denotes the local IP address. The 'arg' is
given as an argument to all procedures received by the engine to
execute.
Some(T)AlI(U) net_importEngine(name: Text, server: Text): ((T)->U)->U
I net_failure thread_alerted
Import the object of name 'name’, from the name server at IP
address 'server'. The empty text denotes the local IP address.
net_setSiteName(name: Text): Text ! net_failure thread_alerted
net_setDefaultSequencer(host name: Text): Ok ! net_failure
thread_alerted

We added two routines to thet module to support the Shared Object runtime. The rou-

tine setSiteName is used to assign a symbolic name to the current process. The routine

238

setDefaultSequencer defines the sequencer for this process by specifying its sym-

bolic name and the host on which it resides.

E.3.5 o0s

os_error: Exception
A generic operating system exception, raise by various libraries.
0s_type: Text
A string describing the general type of this OS. Currently, one of
"POSIX" or "WIN32".
os_target: Text
The Modula-3 build target for this process. Examples include
"HPPA", "NT386", "SOLgnu", "SOLsun", "IRIX5, and "LINUXELF".
os_newPipe(): [Wr,Rd] ! os_error
Create a new channel allowing bytes written to the "Wr" to be read
from "Rd".

We added two constants to the moduletype andtarget . These are Modula-3 con-
stants that identify the operating system as Unix (“POSIX”) or Windows (“WIN32"), and
identify the specific variation of the operating system (for example, “HPPA” is HP-UX on
the HPPA processor, and “LINUXELF” is Linux with ELF object files.) These variations
are guidelines, as (for example) “NT386” is the only version of the Windows compiler for
the x86 architecture, but it runs on both NT and Windows95.

We also added a function to create a local pipe.

E.3.6 process

process_new(pr: Processor, nameAndArgs: [Text], mergeOut: Bool,
wd: Text): Process ! os_error

Create a process from a processor and the given process name and
arguments. The local processor is available as the lexically scoped
identifier "processor". If mergeOut is true, use a single pipe for
stdout and stderr. If "wd" is not ", it specifies the working
directory for the process.

process_id(p: Process): Int
Get the process id of the process 'p'

process_myld: Int
The process id of this process

process_in(p: Process): Wr
The stdin pipe of a process.

process_out(p: Process): Rd
The stdout pipe of a process.

process_err(p: Process): Rd

239

The stderr pipe of a process.
process_complete(p: Process): Int
Wait for the process to exit, close all its pipes, and return the
exit code
process_filter(pr: Processor, nameAndArgs: [Text], wd: Text,
input:Text):Text ! net_failure os_error
Create a process from a processor and the given process name and
arguments. The local processor is available as the lexically scoped
identifier "processor". The stderr output is merged to stdout.
If "wd" is not ", it specifies the working directory for the
process.
Usage: feed the input to its stdin pipe and close it; read all the
output from its stdout pipe and close it; return the output.
process_getWorkingDirectory(pr: Processor): Text ! os_error
The current working directory of this process.
process_setWorkingDirectory(pr: Processor, dir: Text) ! os_error
Change then current working directory of this process.

We added the facilities to get the ID of a process created with this interface, or of the Repo
process specified by tipeocessor argument. We also added the ability to get and set
the current working directory of the Repo process specified hQyrtleessor argu-

ment.

E.3.7 sys

AlI(T) sys_copy(x: T): T ! net_failure
(also 'copy(x)') Make a local copy of a value, including most
distributed values.
sys_address: Text
Return network the address of this process.
sys_getEnvVar(t: Text): Text
Return the value of the env variable whose name is t, or ™ if there
is no such variable.
sys_paramCount: Int
The number of program parameters.
sys_getParam(n: Int): Text
Return the n-th program parameter (indexed from 0).
sys_callFailure: Exception
Can be raised by Modula-3 code during a sys_call.
Some(T)Some(U) sys_call(name: Text, args: [T]): U ! sys_callFailure
Call a pre-registered Modula-3 procedure.
sys_timeNow: Real
The current time
sys_timeGrain: Real
The time clock granularity
sys_timeShort(t: Real): Text
A short formated representation of time "t"
sys_timeLong(t: Real): Text
A long formated representation of time "t"
sys_registerExitor (proc: ()->0k): ok
Provide a proc to be called when the process exits. The proc takes

240

no arguments and the return value is ignored.

We added the ability to retrieve environment variables and the system time (in both
numeric and text formats), including an indication of the granularity of the time clock. We
also added the ability to register Repo functions that should be executed when the process

terminates.

E.3.8 text

t: Text
A string in double quotes.

text_new(size: Int, init: Char): Text
A text of size 'size’, all filled with ‘init'.

text_empty(t: Text): Bool
Test for empty text.

text_length(t: Text): Int
Length of a text.

text_equal(tl: Text, t2: Text): Bool
Text equality (case sensitive).

text_char(t: Text, i: Int): Char
The i-th character of a text (if it exists); zero-indexed.

text_sub(t: Text, start; Int, size: Int): Text
The subtext beginning at 'start’, and of size 'size' (if it exists).

text &(tl: Text, t2: Text): Text
(also infix '&") The concatenation of two texts.

text_precedes(tl: Text, t2: Text): Bool
Whether 't1' precedes 't2' in lexicographic (ascii) order.

text_decode(t: Text): Text
Every occurrence of an escape sequence is replaced by the
corresponding non-printing formatting character: W =\; \'=";
"="\n=LF;\r=CR; \t=HT; \f = FF; \t = HT;
\xxx = xxx (octals 000..177); \c = ¢ (otherwise).

text_encode(t: Text): Text
Every occurrence of a non-printing formatting character is replaced
by an escape sequence.

text_explode(seps: Text, t: Text): [Text]
Splits an input text into a similarly ordered array of texts, each a
maximal subsequence of the input text not containing sep chars. The
empty text is exploded as a singleton array of the empty text. Each
sep char in the input produces a break, so the size of the result is
1 + the number of sep chars in the text.
implode(explode("c",text),'c") is the identity.

text_implode(sep: Char, a: [Text]): Text ! net_failure
Concatenate an array of texts into a single text, separating the
pieces by a single sep char. A zero-length array is imploded as the
empty text. explode("c",implode('c',text)) is the identity
provided that the array has positive size and sep does not occur in
the array elements.

text_hash(t: Text): Int
A hash function.

text_tolnt(t: Text): Int

241

Convert a text to an integer (see also fmt).
text_fromint(n: Int): Text
Convert an integer to a text (see also lex).
text_findFirstChar(c: Char, t: Text, n: Int): Int
The index of the first occurrence of 'c' in 't', past 'n'. -1 if not
found.
text_findLastChar(c: Char, t: Text, n: Int): Int
The index of the last occurrence of 'c' in 't', before 'n'. -1 if
not found.
text_findFirst(p: Text, t: Text, n: Int): Int
The index of the first char of the first occurrence of 'p'in 't',
past 'n". -1 if not found.
text_findLast(p: Text, t: Text, n: Int): Int
The index of the first char of the last occurrence of 'p'in 't',
before 'n'. -1 if not found.
text_replaceAll(old: Text, new: Text, t: Text): Text
Replace all occurrences of 'old' by 'new' in 't', as found by
iterating ‘findFirst'.
text_toUpper(t: Text): Int
Return a text with all the lower case letters converted to upper
case ones.
text_toLower(t: Text): Int
Return a text with all the upper case letters converted to lower
case ones.

We added the conversions to upper or lower case.

E.3.9 thread

thread_mutex(): Mutex
(also 'mutex()") A new mutex.
thread_condition(): Condition
(also 'condition()’) A new condition.
Some(T) thread_self(): Thread(T)
The current thread.
thread_id(th: Thread(T)): Int
The id of the thread.
thread_yield(): Ok
If there are other threads ready to run, transfer control to one
of them; otherwise continue with the current thread.
Implementation note: the exact semantics of "yield" varies widely
from system to system. You shouldn't use it without consulting the
detailed documentation for your implementation.
AlI(T) thread_fork(f: ()->T, stackSize: Int): Thread(T)
(also "fork(f,n)") Fork a new thread executing f. If stackSize is
zero, a small default size is used.
All(T) thread_join(th: Thread(T)): T
(also 'join(th)") Wait for a thread to complete, and return the
result of its procedure.
thread_wait(mx: Mutex, cd: Condition): Ok
(also 'wait(mx,cd)’) Wait on a mutex and a condition.
thread_acquire(mx: Mutex): Ok
Acquire a mutex (use lock ... end instead).
thread_release(mx: Mutex): Ok

242

Release a mutex (use lock ... end instead)
thread_broadcast(cd: Condition): Ok
(also 'broadcast(cd)) Wake-up to all threads waiting on a
condition.
thread_signal(cd: Condition): Ok
(also 'signal(cd)’) Wake-up at least one thread waiting on a
condition.
thread_pause(r: Real): Ok
(also 'pause(r)") Pause the current thread for r seconds.
AlI(T) thread_lock(m: Mutex, body: ()->T): T
Execute under a locked mutex (use lock ... end instead).
thread_alerted: Exception
(See the threads spec.)
All(T) thread_alert(t: Thread(T)): Ok
(See the threads spec.)
thread_testAlert(): Bool
(See the threads spec.)
thread_alertWait(mx: Mutex, cd: Condition): Ok ! thread_alerted
(See the threads spec.)
All(T) thread_alertJoin(th: Thread(T)): Ok ! thread_alerted
(See the threads spec.)
thread_alertPause(r: Real): Ok ! thread_alerted
(See the threads spec.)
thread_pool(maxThreads maxldleThreads stackSize: int): WorkerPool
create a new thread worker pool, with at most maxThreads active
threads, maxldleThreads idle threads. If stackSize is zero, a
small default size is used.
thread_addWork(pool: WorkerPool, work: ()->0k): Ok
add a piece of work to the work queue for the thread pool. work
is represented by a procedure that performs the work
thread_stealWorker(pool: WorkerPool): Bool
steal a worker thread from a worker pool. Removes the current
thread from the list of threads performing work for the pool

(allowing another to be created). If a piece of work will require
a thread to be idle for a long period of time, this function can be
called.

thread_finish(pool: WorkerPool): Ok
wait for all the work in the thread pool work queue to be finished.

We added support to thhread module for thread pools, as described in Section 3.4.2.1.
A thread pool is created withread_pool , and work objects are added to the pool’s
work queue witlthread_addWork . Work is represented as a function closure with no

arguments whose return value is ignored.

E.4 Unchanged Modules

The modules in this section were present in Obliq and have not been changed in Repo.

They are included here for reference.

243

E.4.1 bool

true: Bool
The constant true.
false: Bool
The constant false.
AlI(T)AII(U) bool_is(x: T, y: U): Bool
(also infix 'is") Identity predicate: value equality for
Ok, Bool, Int, Real, Char, Text, Exception; pointer equality
otherwise.
AlI(T)AII(U) bool_isnot(x: T, y: U): Bool
(also infix 'isnot’) Negation of 'is'.
bool_not(b: Bool): Bool
(also 'not(b)")
bool_and(bl1: Bool, b2: Bool): Bool
(also infix ‘and")
bool_or(b1: Bool, b2: Bool): Bool
(also infix 'or")

E.4.2 char

c: Char

A character in single quotes.
ascii_char(n: Int): Char

The ascii character of integer code 'n'.
ascii_val(c: Char): Int

The integer code of the ascii character 'c'.

E.4.3 color

color_named(name: Text): Color
Get a color from its name (see the ColorName M3 interface).
color_rgb(r: Real, g: Real, b: Real): Color
Get a color from rgb (each 0.0 .. 1.0).
color_hsv(hr: Real, sr: Real, v: Real): Color
Get a color from hsv (each 0.0 .. 1.0).
color_r(c: Color): Real
The red color component.
color_g(c: Color): Real
The green color component.
color_b(c: Color): Real
The blue color component.
color_h(c: Color): Real
The hue color component.
color_s(c: Color): Real
The saturation color component.
color_v(c: Color): Real

244

The value color component.
color_brightness(c: Color): Real
The total brightness (0.0 .. 1.0).

E.4.4 form

form_failure: Exception
form_new(t: Text): Form ! form_failure
Read a form description from a text.
form_fromFile(file: Text): Form ! form_failure thread_alerted
Read a form description from a file.
form_attach(fv: Form, name: Text, f: (Form)->0Kk): Ok ! form_failure
Attach a procedure to an event, under a form. The procedure is
passed back the form when the event happens.
form_getBool(fv: Form, name: Text, property: Text): Bool !
form_failure
Get the boolean value of the property of the named interactor.
(Do not confuse with form_getBoolean.)
form_putBool(fv: Form, name: Text, property: Text, b: Bool): Ok
I form_failure
Set the boolean value of the named property of the named interactor.
(Do not confuse with form_putBoolean.)
form_getint(fv: Form, name: Text, property: Text): Int ! form_failure
Get the integer value of the named property of the named interactor.
If property is the empty text, get the OvalueO property.
form_putint(fv: Form, name: Text, property: Text, n: Int): Ok
I form_failure
Set the integer value of the named property of the named interactor.
If property is the empty text, set the OvalueO property.
form_getText(fv: Form, name: Text, property: Text): Text !
form_failure
Get the text value of the named property of the named interactor. If
property is the empty text, get the OvalueO property.
form_putText(fv: Form, name: Text, property: Text, t: Text,
append: Bool): Ok ! form_failure
Set the text value of the named property of the named interactor. If
property is the empty text, set the OvalueO property.
form_getBoolean(fv: Form, name: Text): Bool ! form_failure
Get the boolean value of the named boolean-choice interactor.
form_putBoolean(fv: Form, name: Text, b: Bool): Ok ! form_failure
Set the boolean value of the named boolean-choice interactor.
form_getChoice(fv: Form, radioName: Text): Text ! form_failure
Get the choice value of the named radio interactor.
form_putChoice(fv: Form, radioName: Text, choiceName: Text): Ok
I form_failure
Set the choice value of the named radio interactor.
form_getReactivity(fv: Form, name: Text): Text ! form_failure
Get the reactivity of the named interactor. It can be "active",
"passive", "dormant”, or "vanished".
form_putReactivity(fv: Form, name: Text, r: Text): Ok ! form_failure
Set the reactivity of the named interactor. It can be "active”,
"passive”, "dormant”, or "vanished".
form_popUp(fv: Form, name: Text): Ok ! form_failure
Pop up the named interactor.

245

form_popDown(fv: Form, name: Text): Ok ! form_failure
Pop down the named interactor.
form_numOfChildren(fv: Form, parent: Text): Int ! form_failure
Return the number of children of parent.
form_child(fv: Form, parent: Text, n: Int): Text ! form_failure
Return the n-th child of parent.
form_childindex(fv: Form, parent: Text, child: Text): Int !
form_failure
Return the index of the given child of parent.
form_insert(fv: Form, parent: Text, t: Text, n: Int): Ok !
form_failure
Insert the form described by t as child n of parent.
form_move(fv: Form, parent: Text, child: Text, toChild: Text,
before: Bool): Ok ! form_failure
Move child before or after toChild of parent; after " means first,
before " means last.
form_delete(fv: Form, parent: Text, child: Text): Ok ! form_failure
Delete the named child of parent.
form_deleteRange(fv: Form, parent: Text, n: Int, count: Int): Ok
I form_failure
Delete count children of parent, from child n.
form_takeFocus(fv: Form, name: Text, select: Bool): Ok ! form_failure
Make the named interactor acquire the keyboard focus, and optionally
select its entire text contents.
form_show(fv: Form): Ok ! form_failure
Show a window containing the form on the default display.
form_showAt(fv: Form, at: Text, title: Text): Ok ! form_failure
Show a window containing the form on a display. For an X display,
at=<machine name>(":"|":")<num>("|''<num>); at="" is the default
display. The title is shown in the window header.
form_hide(fv: Form): Ok ! form_failure
Hide the window containing the form.

This module is used to manipulate the Modula-3 Trestle windowing system
[Manasse, 1993].

E.45 int
n: Int
Positive integer constants.
~n: Int

Negative integer constants.
int_minus(n: Int): Int
Integer negation.
int_+(nl: Int, n2: Int): Int
Integer addition.
int_-(n1: Int, n2: Int): Int
Integer difference.
int_*(nl: Int, n2: Int): Int
Integer multiplication.
int_/(n1: Int, n2: Int): Int
Integer division.
int_%(n1: Int, n2: Int): Int

246

(also infix '%") Integer modulo.
int_<(nl: Int, n2: Int): Bool

Integer less-than predicate.
int_>(nl: Int, n2: Int): Bool

Integer greater-than predicate.
int_<=(nl: Int, n2: Int): Bool

Integer no-greater-than predicate.
int_>=(nl: Int, n2: Int): Bool

Integer no-less-than predicate.

E.4.6 math

math_pi: Real
3.1415926535897932384626433833.
math_e: Real
2.7182818284590452353602874714.
math_degree: Real
0.017453292519943295769236907684; 1 degree in radiants.
math_exp(n: Real): Real
e to the n-th power.
math_log(n: Real): Real
log base e.
math_sqrt(n: Real): Real
Square root.
math_hypot(n: Real, m: Real): Real
sqrt((n*n)+(m*m)).
math_pow(n: Real, m: Real): Real
n to the m-th power.
math_cos(n: Real): Real
Cosine in radians.
math_sin(n: Real): Real
Sine in radians.
math_tan(n: Real): Real
Tangent in radians.
math_acos(n: Real): Real
Arc cosine in radians.
math_asin(n: Real): Real
Arc sine in radians.
math_atan(n: Real): Real
Arc tangent in radians.
math_atan2(n: Real, m: Real): Real
Arc tangent of n/m in radians.

E.4.7 online

All(T) sys_print(x: T, depth: Int): Ok
Print an arbitrary value to stdout, up to some print depth. (Only
available on-line.)

sys_printText(t: Text): Ok

247

Print a text to stdout. (Only available on-line.)

sys_printFlush(): Ok
Flush stdout. (Only available on-line.)

sys_pushSilence(): Ok
Push the silence stack; when non-empty nothing is printed. (Only
available on-line.)

sys_popSilence(): Ok
Pop the silence stack (no-op on empty stack). (Only available
on-line.)

sys_setPrompt(first: Text, next: Text): Ok
Set the interactive prompts (defaults: first="- ", next=" "). (Only
available on-line.)

sys_getSearchPath(): Text
Get the current search path for ‘load' and such. (Only available
on-line.)

sys_setSearchPath(t: Text): Ok
Set the current search path for 'load' and such. (Only available
on-line.)

E.4.8 pickle

pickle_failure: Exception
AlI(T) pickle_write(w: Wr, v: T): Ok
I pickle_failure wr_failure thread_alerted
Copy a value to a writer, similarly to sys_copy.
Some(T) pickle_read(r: Rd): T
I pickle_failure rd_failure rd_eofFailure thread_alerted
Copy a value from a reader, similarly to sys_copy.

E49 rd

rd_failure: Exception

rd_eofFailure: Exception

rd_new(t: Text): Rd
A reader on a text (a Modula-3 TextRd).

rd_stdin: Rd
The standard input (the Modula-3 Stdio.Stdin).

rd_open(fs: FileSystem, t: Text): Rd ! rd_failure
Given a file system and a file name, returns a reader on a file
(a Modula-3 FileRd, open for read). The local file system is
available through the predefined lexically scoped identifier
"fileSys". Moreover, "fileSysReader" is a read-only local file
system.

rd_getChar(r: Rd): Char ! rd_failure rd_eofFailure thread_alerted
Get the next character from a reader.

rd_eof(r: Rd): Bool ! rd_failure thread_alerted
Test for the end-of-stream on a reader.

rd_unGetChar(r: Rd): Ok
Put the last character obtained by getChar back into the reader

248

(unfortunately, it may crash if misused!).
rd_charsReady(r: Rd): Int ! rd_failure
The number of characters that can be read without blocking.
rd_getText(r: Rd, n: Int): Text ! rd_failure thread_alerted
Read the next n characters, or at most n on end-of-file.
rd_getLine(r: Rd): Text ! rd_failure rd_eofFailure thread_alerted
Read the next line and return it without including the end-of-line
character.
rd_index(r: Rd): Int
The current reader position.
rd_length(r: Rd): Int ! rd_failure thread_alerted
Length of a reader (including read part).
rd_seek(r: Rd, n: Int): Ok ! rd_failure thread_alerted
Reposition a reader.
rd_close(r: Rd): Ok ! rd_failure thread_alerted
Close a reader.
rd_intermittent(r: Rd): Bool
Whether the reader is stream-like (not file-like).
rd_seekable(r: Rd): Bool
Whether the reader can be repositioned.
rd_closed(r: Rd): Bool
Whether the reader is closed.

E.4.10 real

n.m: Int

Positive real constants; m is optional.
~n.m: Int

Negative real constants; m is optional.
real_minus(n: Real): Real

(also '-n") Real negation.
real_minus(n: Int): Int

(also '-n") Overloaded integer negation.
real_+(nl: Real, n2: Real): Real

(also infix '+') Real addition.
real_+(nl: Int, n2; Int): Int

(also infix '+") Overloaded integer addition.
real_-(nl: Real, n2: Real): Real

(also infix '-") Real difference.
real_-(nl: Int, n2: Int): Int

(also infix '-') Overloaded integer difference.
real_*(nl: Real, n2: Real): Real

(also infix *") Real multiplication.
real_*(n1: Int, n2: Int): Int

(also infix *') Overloaded integer multiplication.
real_/(nl: Real, n2: Real): Real

(also infix '/") Real division.
real_/(nl: Int, n2: Int): Int

(also infix 'I') Overloaded integer division.
real_<(nl: Real, n2: Real): Bool

(also infix '<") Real less-than predicate
real_<(nl: Int, n2: Int): Bool

(also infix '<') Overloaded integer less-than predicate
real_>(nl: Real, n2: Real): Bool

249

(also infix ">") Real greater-than predicate
real_>(nl: Int, n2; Int): Bool

(also infix '>") Overloaded integer greater-than predicate
real_<=(nl: Real, n2: Real): Bool

(also infix '<=") Real no-greater-than predicate
real_<=(n1: Int, n2: Int): Bool

(also infix '<=") Overloaded integer no-greater-than pred.
real >=(nl: Real, n2: Real): Bool

(also infix '>=") Real no-less-than predicate.
real_>=(n1: Int, n2: Int): Bool

(also infix '>=") Overloaded integer no-less-than pred.
real_float(n: Int): Real

(also 'float(n)’) Integer-to-real conversion.
real_float(n: Real): Real

(also 'float(n)") Overloaded; identity on reals.
real_round(n: Real): Int

(also 'round(n)") Real-to-integer rounding.
real_round(n: Int): Int

(also 'round(n)’) Overloaded; identity on integers.
real_floor(n: Real): Int

Greatest integers no greater than n.
real_floor(n: Int): Int

Overloaded; identity on integers.
real_ceiling(n: Real): Int

Least integers no less than n.
real_ceiling(n: Int): Int

Overloaded; identity on integers.
real_isNaN(n: Real): Bool

Overloaded; false on integers.

E.4.11 vbt

vbt_failure: Exception
vbt_mu: Mutex
vbt_show(vbt: VBT): Ok

This module is also part of the Trestle Window System interface, as described in
Section E.4.4.

E.4.12 wr

wr_failure: Exception
wr_new(): Wr
A writer to a text (a Modula-3 TextWr).
wr_toText(w: Wr): Text
Emptying a writer to a text..
wr_stdout: Wr
The standard output (the Modula-3 Stdio.Stdout).

250

wr_stderr: Wr
The standard error (the Modula-3 Stdio.Stderr).
wr_open(fs: FileSystem, t: Text): Wr ! wr_failure
Given a file system and a file name, returns a writer to the
beginning of a file (a Modula-3 FileWr, open for write). The local
file system is available through the predefined lexically scoped
identifier "fileSys".
wr_openAppend(fs: FileSystem, t: Text): Wr ! wr_failure
Given a file system and a file name, returns a writer to the end of
file (a Modula-3 Filewr, open for append). The local file system is
available through the predefined lexically scoped identifier
"fileSys".
wr_putChar(w: Wr, c: Char): Ok ! wr_failure thread_alerted
Put a character to a writer .
wr_putText(w: Wr, t: Text): Ok ! wr_failure thread_alerted
Put a text to a writer .
wr_flush(w: Wr): Ok ! wr_failure thread_alerted
Flush a writer: all buffered writes to their final destination.
wr_index(w: Wr): Int
The current writer position
wr_length(w: Wr): Int ! wr_failure thread_alerted
Length of a writer.
wr_seek(w: Wr, n: Int): Ok ! wr_failure thread_alerted
Reposition a writer.
wr_close(w: Wr): Ok ! wr_failure thread_alerted
Close a writer.
wr_buffered(w: Wr): Bool
Whether the writer is buffered.
wr_seekable(w: Wr): Bool
Whether the writer can be repositioned.
wr_closed(w: Wr): Bool
Whether the writer is closed.

251

~eenox e ANOther Replicated Mutex

In Section 4.6.4 we discussed the design of a distributed mutex, and presented a simple
implementation in Figure 4-8. That version suffered from the problem that the mutex
would not be released if the process containing the holder ended without unlocking the

mutex.

In this appendix, we present a slightly more complex version, to show one way this
problem can be overcome. In this version,ithemethod now returns a client-server
object with a field containing the textual id of the client. When the lock is acquired, all cli-
ents request notification if the id object becomes unreachable, usimgré&aehable
statement (in thenqueueld method). Objects typically become unreachable when the

process that contains them terminates.

Theunreachable statement takes a procedure argument that will be executed
when the system determines that the object is unreachable. This procedure is executed in
all copies of the mutex, and releases the lock held by the now unreachable client. It is safe
to execute this in all copies because the first release of the mutex will succeed, and subse-
guent releases will quietly fail. Since all clients are watching for disconnection, the likeli-

hood of one of them noticing in a timely manner increases.

Since the runtime only checks sites for disconnection when a method call is made
to that site, or every few minutes if no calls are made, we added a facility to speed up the
process. If a site executes tsartWatcher method, a thread will be forked that polls
the current mutex holder every second. Therefore, if that process dies, the thread will be

guaranteed to notice is less than a second, and release the lock.

252

F.1 mutex.obl

module mutex;

(* exceptions raised when release and acquire are used incorrectly *)
let unheld = exception("unheld mutex");
let held = exception("held mutex");

let new = proc ()
let ret = {replicated,
(* create a return a client-server object that represents this
process *)

id => meth (s)

{txt => sys_address & "." & fmt_int(process_myld) & "."&
fmt_int(thread_id(thread_self()))

2

end,

(* variables used to control the mutex. A condition variable,
and the current holder object and their text id *)

cv => thread_condition(),

holder => ok,

holderld => ok,

(* a utility routine to start a watcher thread that polls the
current holder, to see if they are still alive *)
startWatcher => meth (s)
thread_fork (proc ()
try
loop
thread_alertPause(1.0);
if s.holder isnot ok then
try
s.holder.txt;
except net_failure =>
s.dequeueld(s.holderld);
end;
end;
end;
except thread_alerted => end;
ok;
end, 50000);
end,

(* internal update methods, that enqueues/dequeues the current id
in the mutex. The names are a holdover from an earlier
implementation. enqueueld succeeds if the mutex is free,
fails otherwise. dequeueld succeeds if the current thread
holds the mutex, fails otherwise. *)

enqueueld => umeth (s,id,txt)

if s.holder isnot ok then raise (held) end;
s.holder :=id;
s.holderld := txt;
unreachable id do
proc (o,st)
try
s.dequeueld(txt);
except unheld => end;

253

end;
end,
dequeueld => umeth (s,txt)
if s.holderld isnot txt then raise(unheld) end;
s.holder := ok;

s.holderld := ok;
thread_signal(s.cv);
end

(* acquire the mutex, block until successful *)
acquire => meth (s)
let id = s.id;
if s.holder isnot ok then
if s.holderld is id.txt then raise(held) end;
end;
watch s.cv until
try
s.enqueueld(id, id.txt);
except held => end;
s.holderld is id.txt;
end;
end,
(* try to acquire the mutex, return if successful, raise an
exception if not successful (already locked) *)
tryAcquire => meth (s)
let id = s.id;
s.enqueueld(id, id.txt);
end,
(* release the mutex, return is successful, raise an exception
if not held by this thread *)
release => meth (s)
s.dequeueld(s.holderld);
end,

3

(* define the pickler for the mutex object. Send holder and holderld
across the network, but recreate a new condition variable at the
new site. *)

objectpickler ret

reader {simple,
cv => meth (s,c) thread_condition() end,
holder => meth (s,q) q end,
holderld => meth (s,q) q end}
writer {simple,
cv => meth (s,c) ok end,
holder => meth (s,q) q end,
holderld => meth (s,q) g end};

ret;
end;

end module;

254

weenoixe Additional Enhancements To
Repo-3D

Aside from being distributed, Repo-3D improves upon Oblig-3D in a number of ways.

One important enhancement is in the area of performance; DistAnim-3D is significantly
faster than Anim-3D, for two reasons. First, DistAnim-3D caches the internal representa-
tion of scene subgraphs (i.e., using OpenGL display lists or Renderware Clumps), includ-
ing keeping multiple caches when a subgraph is attached to one or more scenes in multiple
locations. These caches are only rebuilt as necessary. Anim-3D, on the other hand, does no
caching, rerendering the scene in immediate mode every frame. Second, DistAnim-3D
keeps track of when and where scene damage occurs (or may occur, in the case of syn-
chronous and asynchronous properties) and only examines those parts of the graph to see
if the caches need to be rebuilt. Anim-3D, on the other hand, examines the entire graph,

and all properties, before each frame.

In addition to improving the performance, Repo-3D also increases the functional-
ity of Oblig-3D by the addition of new GOs and properties. The new GOs address specific

needs of our domain:

« Choice groups are group nodes that display only one of their children, rather than all of
them. They are needed to allow efficient alternate representations of a subgraph, since it
Is possible to implement them so that changing the choice of which subgraph to use is
significantly more efficient than replacing the subtree of a normal group node, prima-

rily because the internal caches for all the subnodes can be prebuilt.

« Text objects allow text to be rendered more efficiently than if it was built using other
Repo-3D facilities, and allow the use of properties to specify the details of the text
objects. 2D text objects render text as flat bitmaps in the plane of the screen, allowing

us to present readable text labels to the user.

255

 Indexed line and polygon sets allow complex models to be used. Creating complex
scenes one polygon or line at a time (using Oblig-3D’s polygon and line objects) results
in extremely inefficient scenes (both in terms of time and space), and is also limiting, as

multiple adjoining polygon objects are not smoothly shaded across their boundaries.

When designing these additional GOs, we attempted to maintain the high level of
flexibility that made Oblig-3D unique. For example, indexed line and polygon sets can use
dynamic point properties for all of their 3D points, making it easy to create polygonal

objects that deform over time, or in reaction to their environment.

In addition to these new GOs, we added a number of properties to the system, most
notably support for texture maps on all GOs that inherit fronStiiéaceGO object.
Repo-3D also introduces a new class of callback objects that may be attached to nodes by
a programmer, to monitor the location of the origin of the node’s coordinate systers;
form callbacks are used to monitor the transformed 3D position of the node pvajde-
tion callbacks are used to monitor the 2D projection of that node on the root window. For
the details of the Repo-3D location callback modules, see Appendix H.5. Each time the
scene is refreshed, the object’s callback method is invoked with the current 3D or 2D

information.

These callbacks were created because we often found ourselves needing these two
pieces of information in the programs we were building, but the declarative nature of the
graphics library made this information hard to obtain in a straightforward manner. For
example, to integrate 2D windows into the 3D worlds presented by Coterie, as seen in the
Nynex crossbox maintenance prototype of Section 2.6 (shown in Figure 2-8), an empty
group node is placed at the 3D position of the 2D window, and a projection callback is
attached to that group. Each time the projected position changes, the 2D window is moved
to the new position. The projection callbacks are also used in the Touring Machine proto-
type, both to determine the color of the labels and to construct the arrow at the bottom of

the screen that points at the currently selected building.

One final change between Oblig-3D and Repo-3D concerns synchronous proper-

ties. In Oblig-3D, when an animation handle is signaled and completes the animations for

256

all attached synchronous properties, it flushes the requests from the synchronous behav-
iors of those properties. Therefore, to repeat an animation, a programmer must then reini-
tialize those behaviors with the same set of requests. Furthermore, it was impossible to
flush requests from a synchronous behavior without signalling the animation and waiting
for it to complete. Our programmers found both of these design choices to be a nuisance,
so we added a command to each of the synchronous properties to flush their current
requests, and modified the animation handle so it did not flush requests from the synchro-

nous behaviors.

257

seenoxn REPO-3D Modules

In Chapter 5, we described different components of Repo-3D, and included excerpts from
the help files of a few of the Repo-3D modules. In this appendix, we include the help files
for all the Repo-3D modules, and provide occasional clarification when the purpose of a
module is not clear from the name, both as a reference and to give the curious reader an

idea of the scope of the library.

H.1 Graphics Objects

The graphical objects in Repo-3D all inherit from the abstract GO object, and use the

GOCB object for change notification.

H.11 GO

GO_PropUndefined: Exception

GO_StackError: Exception

GO_ListError: Exception

GO_PropError: Exception

GO_Transform: TransformPropName

GO_SetTransform(go: GO, xf: TransformVal): Ok ! replica_failure
PropError

GO_GetTransform(go: GO): TransformPropVal ! GO_PropUndefined
replica_failure

GO_Pickable: TransformPropName

GO_SetPickable(go: GO, xf: BooleanPropVal): Ok ! replica_failure
PropError

GO_GetPickable(go: GO): BooleanPropVal ! GO_PropUndefined
replica_failure

WHERE

GO <: ProxiedObj &

{ setProp: (PropName,PropVal) => Ok ! GO_PropError replica_failure,
unsetProp: (PropName) => Ok ! GO_PropUndefined replica_failure,
getProp: (PropName) => PropVal ! GO_PropUndefined

replica_failure,
setName: (Text) => Ok ! replica_failure,
getName: () => Text ! replica_failure,

258

findName: (Text) => GO ! replica_failure,
setLocalProp: (PropName,PropVal) => Ok ! GO_PropError
replica_failure,
unsetLocalProp: (PropName) => Ok ! GO_PropUndefined GO_PropError
replica_failure,
getLocalProp: (PropName) => PropVal ! GO_PropUndefined
replica_failure,
hideGlobalProp: (PropName) => Ok ! GO_PropError replica_failure,
revealGlobalProp: (PropName) => Ok ! GO_PropUndefined
GO_PropError, replica_failure,
isPropHidden: (PropName) => Bool ! replica_failure,
setLocalPropsGlobally: () => Ok ! GO_PropError replica_failure,
pushMouseCB: (cb: MouseCB) => Ok ! replica_failure,
popMouseCB: () => Ok ! GO_StackError ! replica_failure,
removeMouseCB: (cb: MouseCB) => Ok ! GO_StackError
replica_failure,
invokeMouseCB: (mr: MouseRec) => Ok ! replica_failure,
pushPositionCB: (cb: PositionCB) => Ok ! replica_failure,
popPositionCB: () => Ok ! GO_StackError replica_failure,
removePositionCB: (cb: PositionCB) => Ok | GO_StackError
replica_failure,
invokePositionCB: (mr: PositionRec) => Ok ! replica_failure,
pushKeyCB: (ch: KeyCB) => Ok ! replica_failure,
popKeyCB: () => Ok | GO_StackError replica_failure,
removeKeyCB: (cb: KeyCB) => Ok | GO_StackError replica_failure,
invokeKeyCB: (mr: KeyRec) => Ok ! replica_failure,
addProjectionCB: (cb: ProjectionCB) => Ok ! replica_failure,
removeProjectionCB: (cb: ProjectionCB) => Ok ! GO_ListError
replica_failure
invokeProjectionCB: (mr: ProjectionRec) => Ok ! replica_failure,
addTransformCB: (cb: TransformCB) => Ok ! replica_failure,
removeTransformCB: (cb: TransformCB) => Ok ! GO_ListError
replica_failure,
invokeTransformCB: (mr: TransformRec) => Ok ! replica_failure,
getBoundingVolumeCenter: () => Point3 ! replica_failure,
getBoundingVolumeRadius: () => Real ! replica_failure }
TransformVal = TransformPropVal + Matrix4
BooleanVal = BooleanPropVal + Bool

H.1.2 GOCB

GOCB_New(obj: GO, overrides: Obj): T;
GOCB_Cancel(cbobj: T): T;
WHERE

T <: {simple} & overrides;

overrides contains one or more of these callback methods:
pre propagateLocalProps(obj: GO, add remove: [Prop_T]): Bool
post propagateLocalProps(obj: GO, add remove: [Prop_T]): Bool
pre setProp(obj: GO, prop: Prop_T): Bool
post setProp(obj: GO, prop: Prop_T): Bool
pre unsetProp(obj: GO, name: Prop_Name): Bool
post'unsetProp(obj: GO, name: Prop_Name): Bool
pre setName(obj: GO, name: Text): Bool
post'setName(obj: GO, name: Text): Bool

259

pre anyChange(obj: GO);
post anyChange(obj: GO);

If T is one of BoxGO, ConeGO, CylinderGO, DiskGO, SphereGO, TorusGO,
OrthoCameraGO, PerspCameraGO, AmbientLightGO, SpotLightGO,
PointLightGO, VectorLightGO, LineGO, Text2DGO, MarkerGO overrides
may also contain:

pre’init(obj: GO): Bool

post’init(obj: GO): Bool

If T is PolygonGO overrides may also contain:
pre’init(obj: GO, pts: PointArray, s: GO_Shape): Bool
postiinit(obj: GO, pts: PointArray, s: GO_Shape): Bool

If T is QuadMeshGO overrides may also contain:
pre’init(obj: GO, pts: [Point3], s: GO_Shape): Bool
post’init(obj: GO, pts: [Point3], s: GO_Shape): Bool
pre addFacetColors(obj: GO, cols: [[Color]]): Bool
post addFacetColors(obj: GO, cols: [[Color]]): Bool
pre’setColorOfFacet(obj: GO, i j: Int, col: Color): Bool
post'setColorOfFacet(obj: GO, i j: Int, col: Color): Bool

If T is IndexedLineSetGO overrides may also contain:
pre’init(obj: GO, pts: PointArray, index: [[Int]]): Bool
postiinit(obj: GO, pts: PointArray, index: [[Int]]): Bool
pre setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
post setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
pre’setVertices (obj: GO, pts: [Point3]): Bool
post'setVertices (obj: GO, pts: [Point3]): Bool

If T is IndexedPolygonSetGO overrides may also contain:

pre’init(obj: GO, pts: PointArray, index: [[Int]],

creaseAngle: Real, s: GO_Shape): Bool
post’init(obj: GO, pts: PointArray, index: [[Int]],

creaseAngle: Real, s: GO_Shape): Bool
pre setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
post setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
pre’setVertices (obj: GO, pts: [Point3]): Bool
post setVertices (obj: GO, pts: [Point3]): Bool
pre setTexCoords(obj: GO, pts: Point2Array, idx: [[Int]]): Bool
post setTexCoords(obj: GO, pts: Point2Array, idx: [[Int]]): Bool

If T was created with provided normals, it may contain
pre’initWithNormals(obj: GO, pts: [Point3], index: [[Int]],
normalPerVertex : Bool, normals : [Point3],
creaseAngle: Real, s: GO_Shape): Bool
post initWithNormals(obj: GO, pts: [Point3], index: [[Int]],
normalPerVertex : Bool, normals : [Point3],
creaseAngle: Real, s: GO_Shape): Bool

If T is GroupGO or ChoiceGroupGO overrides may also contain:
pre add(obj new: GO): Bool
post'add(obj new: GO): Bool
pre remove(obj old: GO): Bool
post' remove(obj old: GO): Bool
pre‘replace(obj old new: GO): Bool
post replace(obj old new: GO): Bool
pre-flush(obj: GO): Bool
post flush(obj: GO): Bool

260

pre propagateLocalChildren(obj: GO, add remove: [GO]): Bool
post propagateLocalChildren(obj: GO, add remove: [GO]): Bool

PointArray = [Point3] + [PointProp]
Point2Array = [Point2] + [Point2Prop]
ColorArray = [Color] + [ColorProp]

H.1.3 AmbientLightGO

AmbientLightGO_New(c: ColorVal; int: RealVal): AmbientLightGO !
GO_PropError
WHERE
AmbientLightGO <: LightGO
ColorVal = ColorPropVal + Color + Text
RealVal = RealPropVal + Real + Int

For adding background ambient light to a scene.

H.1.4 BoxGO

BoxGO_New(pl p2: PointVal): BoxGO ! GO_PropError

BoxGO_Cornerl: PointPropName

BoxGO_Corner2: PointPropName

BoxGO_SetCornerl(o: GO, p: PointVal): Ok ! replica_failure
GO_PropError

BoxGO_SetCorner2(o: GO, p: PointVal): Ok ! replica_failure
GO_PropError

WHERE
BoxGO <: SurfaceGO
PointVal = PointPropVal + Point3

H.1.5 CameraGO

CameraGO_From: PointPropName

CameraGO_To: PointPropName

CameraGO_Up: PointPropName

CameraGO_Aspect: PointPropName

CameraGO_SetFrom(go: GO, PointVal): Ok ! replica_failure GO_PropError

CameraGO_SetTo(go: GO, PointVval): Ok ! replica_failure GO_PropError

CameraGO_SetUp(go: GO, PointVal): Ok ! replica_failure GO_PropError

CameraGO_SetAspect(go: GO, RealVal): Ok ! replica_failure
GO_PropError

CameraGO_Near: RealPropName;

CameraGO_SetNear(go: GO, RealVal): Ok ! replica_failure GO_PropError

261

CameraGO_Far: RealPropName;

CameraGO_SetFar(go: GO, RealVal): Ok ! replica_failure GO_PropError

CameraGO_FixedNear: BooleanPropName;

CameraGO_SetFixedNear(go: GO, BoolVal): Ok ! replica_failure
GO_PropError

CameraGO_FixedFar: BooleanPropName;

CameraGO_SetFixedFar(go: GO, BoolVal): Ok ! replica_failure
GO_PropError

CameraGO_Stereo: BooleanPropName;

CameraGO_SetStereo(go: GO, BoolVal): Ok ! replica_failure
GO_PropError

CameraGO_EyeSeparation: RealPropName,;

CameraGO_SetEyeSeparation(go: GO, RealVal): Ok ! replica_failure
GO_PropError

CameraGO_FocalDistance: RealPropName;

CameraGO_SetFocalDistance(go: GO, RealVal): Ok ! replica_failure
GO_PropError

TYPE

CameraGO <: GO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

BoolVal = BooleanPropVal + Bool

The abstract base class for the various kinds of cameras. A camera is used to map a 3D

world to a 2D window (represented by a RootGO).

H.1.6 ChoiceGroupGO

ChoiceGroupGO_New(display: IntVal): ChoiceGroupGO

ChoiceGroupGO_NewWithSizeHint(display: IntVal, size: Int):
ChoiceGroupGO

ChoiceGroupGO_Display: IntPropName

ChoiceGroupGO_SetDisplay(go: GO, child: Intval): Ok

WHERE
ChoiceGroupGO <: GroupGO
IntVal = IntPropVal + Int

H.1.7 ConeGO

ConeGO_New(base tip: PointVal, rad: RealVal): ConeGO
ConeGO_NewWithPrec(base tip: PointVal, rad: RealVal, prec: Int):
ConeGO

ConeGO_NewWithDoublePrec(base tip: PointVal, rad: RealVal,
precl prec2: Int): ConeGO

ConeGO_RotationPrecision: IntPropName

ConeGO_LengthPrecision: IntPropName

ConeGO_Base: PointPropName

ConeGO_Tip: PointPropName

262

ConeGO_Radius: RealPropName

ConeGO_SetRotationPrecision(o: GO, p: IntVal): Ok

ConeGO_SetLengthPrecision(o: GO, p: IntVal): Ok

ConeGO_SetBase(o: GO, p: PointVal): Ok

ConeGO_SetTip(o: GO, p: PointVal): Ok

ConeGO_SetRadius(o: GO, r: RealVal): Ok
WHERE

ConeGO <: SurfaceGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

IntVal = IntPropVal + Int

H.1.8 CylinderGO

CylinderGO_New(p1 p2: PointVal, rad: RealVal): CylinderGO

CylinderGO_NewWithPrec(pl p2: PointVal, rad: RealVal, prec: Int):
CylinderGO

CylinderGO_NewWithDoublePrec(p1 p2: PointVal, rad: RealVal,
precl prec2: Int): CylinderGO

CylinderGO_RotationPrecision: IntPropName

CylinderGO_LengthPrecision: IntPropName

CylinderGO_Point1: PointPropName

CylinderGO_Point2: PointPropName

CylinderGO_Radius: RealPropName

CylinderGO_SetRotationPrecision(o: GO, p: IntVal): Ok

CylinderGO_SetLengthPrecision(o: GO, p: IntVal): Ok

CylinderGO_SetPoint1(o: GO, p: PointVal): Ok

CylinderGO_SetPoint2(o: GO, p: PointVal): Ok

CylinderGO_SetRadius(o: GO, r: RealVal): Ok

WHERE

CylinderGO <: SurfaceGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

IntVal = IntPropVal + Int

H.1.9 DiskGO

DiskGO_New(center normal: PointVal, rad: RealVal): DiskGO
DiskGO_NewWithPrec(center normal: PointVal, rad: RealVal, prec: Int):
DiskGO

DiskGO_Precision: IntPropName
DiskGO_Center: PointPropName
DiskGO_Normal: PointPropName
DiskGO_Radius: RealPropName
DiskGO_SetPrecision(go: GO, prec: IntVal): Ok
DiskGO_SetCenter(o: GO, p: PointVal): Ok
DiskGO_SetNormal(o: GO, p: PointVal3): Ok
DiskGO_SetRadius(o: GO, r: RealVval): Ok

WHERE

263

DiskGO <: SurfaceGO

PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

H.1.10 GroupGO

GroupGO_BadElement: Exception
GroupGO_New(): GroupGO
GroupGO_NewWithSizeHint(size: Int): GroupGO
WHERE
GroupGO <: GO &
{add: (GO) => Ok ! GroupGO_BadElement replica_failure,
remove: (GO) => Ok ! GroupGO_BadElement replica_failure,
replace: (GO,GO) => Ok ! GroupGO_BadElement replica_failure,
flush: () => Ok ! replica_failure,
content: () => [GO] ! replica_failure,
addLocal: (GO) => Ok ! GroupGO_BadElement replica_failure,
removelLocal: (GO) => Ok ! GroupGO_BadElement replica_failure,
replaceLocal: (GO,GO) => Ok ! GroupGO_BadElement replica_failure,
removelLocalAddition: (GO) => Ok ! GroupGO_BadElement
replica_failure,
removelLocalRemoval: (GO) => Ok ! GroupGO_BadElement
replica_failure,
removelLocalReplacement: (GO) => Ok ! GroupGO_BadElement
replica_failure,
flushLocal: () => Ok ! replica_failure,
mergelLocalToGlobal: () => Ok ! replica_failure,
localContent: () => [GO] ! replica_failure }

H.1.11 IndexedLineSetGO

IndexedLineSetGO_BadVertexindex : Exception;

IndexedLineSetGO_BadSize : Exception;
IndexedLineSetGO_NotAllowed : Exception;
IndexedLineSetGO_New(pts : [PointVal],
index : [[Int]]): IndexedLineSetGO
WHERE

PointVal = PointPropVal + Point3

IndexedLineSetGO <: GO & {
setStaticColor ([Color], Bool) => Ok ! IndexedLineSetGO_BadSize
replica_failure,
setDynamicColor ([ColorProp], Bool) => Ok !
IndexedLineSetGO_BadSize replica_failure,
setVertices ([Point3]) => Ok ! IndexedLineSetGO_BadSize
IndexedLineSetGO_NotAllowed replica_failure

264

H.1.12 IndexedPolygonSetGO

IndexedPolygonSetGO_BadVertexindex : Exception;
IndexedPolygonSetGO_BadSize : Exception;
IndexedPolygonSetGO_NormalNotAllowed : Exception;
IndexedPolygonSetGO_NotAllowed : Exception;
IndexedPolygonSetGO_New(pts : [PointVal],

index : [[Int]],

creaseAngle: Real): IndexedPolygonSetGO
IndexedPolygonSetGO_NewWithNormal(

pts : [Point3],
index : [[Int]],
normalPerVertex : Bool,
normals : [Point3],

creaseAngle : Real): IndexedPolygonSetGO
IndexedPolygonSetGO_NewWithShapeHint(

pts : [PointVal],

index : [[Int]],

creaseAngle: Real,

shp : Shape): IndexedPolygonSetGO
IndexedPolygonSetGO_NewWithNormalAndShapeHint(

pts : [Point3],

index : [[Int]],

normalPerVertex : Bool,

normals : [Point3],

creaseAngle : Real,

shp : Shape): IndexedPolygonSetGO

WHERE

PointVal = PointPropVal + Point3

IndexedPolygonSetGO <: SurfaceGO & {

setStaticColor ([Color], Bool) => Ok !
IndexedPolygonSetGO_BadSize replica_failure,

setDynamicColor ([ColorProp], Bool) => Ok !
IndexedPolygonSetGO_BadSize replica_failure,

setStaticTexCoords ([Point2], [[Int]]) => Ok !
IndexedPolygonSetGO_BadSize replica_failure,

setDynamicTexCoords ([Point2Prop], [[Int]]) => Ok !
IndexedPolygonSetGO_BadSize replica_failure,

setVertices ([Point3]) => Ok ! IndexedPolygonSetGO_BadSize,
IndexedPolygonSetGO_NotAllowed replica_failure

Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")

H.1.13 LightGO

LightGO_Color: ColorPropName

265

LightGO_Switch: BooleanPropName

LightGO_Intensity: RealPropName

LightGO_SetColor(go: GO, c: ColorVal): Ok ! replica_failure
GO_PropError

LightGO_SetSwitch(go: GO, b: BooleanVal): Ok ! replica_failure
GO_PropError

LightGO_Setintensity(go: GO, i: RealVal): Ok ! replica_failure
GO_PropError

WHERE

LightGO <: GO

ColorVal = ColorPropVal + Color + Text

BooleanVal = BooleanPropVal + Bool

RealVal = RealPropVal + Real

H.1.14 LineGO

LineGO_New(pl p2: PointVal): LineGO ! GO_PropError
LineGO_Color: ColorPropName
LineGO_Width: RealPropName
LineGO_Type: LineTypePropName
LineGO_Pointl: PointPropName
LineGO_Point2: PointPropName
LineGO_SetColor(o: GO, c: ColorVal): Ok ! replica_failure
GO_PropError
LineGO_SetWidth(o: GO, r: Realval): Ok ! replica_failure GO_PropError
LineGO_SetType(o: GO, t: LineType): Ok ! replica_failure GO_PropError
LineGO_SetPointl(o: GO, p: PointVal): Ok ! replica_failure
GO_PropError
LineGO_SetPoint2(o: GO, p: PointVval): Ok ! replica_failure
GO_PropError
WHERE
LineGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
LineTypeVal = LineTypePropVal + LineType

H.1.15 MarkerGO

MarkerGO_New(point: PointVal): MarkerGO ! GO_PropError

MarkerGO_Center: PointPropName

MarkerGO_Color: ColorPropName

MarkerGO_Scale: RealPropName

MarkerGO_Type: MarkerTypePropName

MarkerGO_SetCenter(o: GO, p: PointVal): Ok ! replica_failure
GO_PropError

MarkerGO_SetColor(o: GO, c: ColorVal): Ok ! replica_failure
GO_PropError

MarkerGO_SetScale(o: GO, r: RealVal): Ok ! replica_failure

266

GO_PropError

MarkerGO_SetType(o: GO, t: MarkerTypeVal): Ok ! replica_failure
GO_PropError

WHERE

MarkerGO <: GO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

ColorVal = ColorPropVal + Color + Text

MarkerTypeVal = MarkerTypePropVal + MarkerType

H.1.16 OrthoCameraGO

OrthoCameraGO_New(from to up: PointVal, height: RealVal):
OrthoCameraGO ! GO_PropError

OrthoCameraGO_Height: RealPropName

OrthoCameraGO_SetHeight(go: GO, height: RealVal): Ok !
replica_failure GO_PropError

WHERE

OrthoCameraGO <: CameraGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

A camera that provides an orthographic projection of the world onto a RootGO.

H.1.17 PerspCameraGO

PerspCameraGO_New(from to up: PointVal, fovy: RealVal): PerspCameraGO
I GO_PropError

PerspCameraGO_Fovy: RealPropName

PerspCameraGO_SetFovy(go: GO, fovy: RealVal): Ok ! replica_failure
GO_PropError

WHERE

PerspCameraGO <: CameraGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

A camera that provides a perspective projection of the world onto a RootGO.

H.1.18 PointLightGO

PointLightGO_New(c: ColorVal, orig: PointVal,
attO attl intensity: RealVal): PointLightGO ! GO_PropError
PointLightGO_Origin: PointPropName
PointLightGO_SetOrigin(go: GO, orig: PointVal): Ok ! replica_failure
GO_PropError

PointLightGO_AttenuationO: RealPropName

PointLightGO_SetAttenuation0(go: GO, att: RealVal): Ok !
replica_failure GO_PropError

PointLightGO_Attenuationl: RealPropName

PointLightGO_SetAttenuationl(go: GO, att: RealVal): Ok !
replica_failure GO_PropError

WHERE

PointLightGO <: LightGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

ColorVal = ColorPropVal + Color + Text

267

H.1.19 PolygonGO

PolygonGO_New(pts: [PointVal]): PolygonGO

PolygonGO_NewWithShapeHint(pts: [PointVal], s: Shape): PolygonGO
WHERE

PolygonGO <: SurfaceGO

PointVal = PointPropVal + Point3

Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")

H.1.20 QuadMeshGO

QuadMeshGO_BadSize: Exception
QuadMeshGO_ColorsUndefined: Exception
QuadMeshGO_New(pts: [[Point3]]): QuadMeshGO

QuadMeshGO_NewWithShapeHint(pts: [[Point3]], s: Shape): QuadMeshGO

WHERE
QuadMeshGO <: SurfaceGO &
{ addFacetColors: ([[Col]]) => Ok ! QuadMeshGO_BadSize,
setColorOfFacet: (i j: Int, c: Col) => Ok !
QuadMeshGO_ColorsUndefined }
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")
Col = Color + Text

H.1.21 RootGO

RootGO_New(cam: CameraGO, base: GraphicsBase): RootGO
RootGO_NewsStd(): RootGO | GraphicsBase_Failure
RootGO_NewStdWithBase(base: GraphicsBase): RootGO
RootGO_Background: ColorPropName
RootGO_DepthcueSwitch: BooleanPropName
RootGO_DepthcueColor: ColorPropName
RootGO_DepthcueFrontPlane: RealPropName

268

RootGO_DepthcueBackPlane: RealPropName
RootGO_DepthcueFrontScale: RealPropName
RootGO_DepthcueBackScale: RealPropName
RootGO_SetBackground(go: GO, c: ColorVal): Ok ! GO_PropError
RootGO_SetDepthcueSwitch(go: GO, b: BooleanVal): Ok ! GO_PropError
RootGO_SetDepthcueColor(go: GO, c: ColorVal): Ok ! GO_PropError
RootGO_SetDepthcueFrontPlane(go: GO, r: RealVval): Ok ! GO_PropError
RootGO_SetDepthcueBackPlane(go: GO, r: RealVal): Ok ! GO_PropError
RootGO_SetDepthcueFrontScale(go: GO, r: RealVal): Ok ! GO_PropError
RootGO_SetDepthcueBackScale(go: GO, r: RealVal): Ok ! GO_PropError
WHERE
RootGO <: GroupGO &
{ changeCamera: (CameraGO) => Ok,
getCamera: () => CameraGO,
picking (x, y: Int) => [PickingInfo],
addCameraTransformCB: (cb: TransformCB) => Ok,
removeCameraTransformCB: (cb: TransformCB) => Ok !
GO_ListError,
windowPosSize: () => PosSizeRec,
changeTitle: (Text) => Ok,
awaitDelete: () => Ok,
destroy: () => Ok }
Point2 = [2*Int]
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
Pickinglnfo = { gos: [ObGO.T],
minz, maxz: Int]}

A RootGO is a descendent of GroupGO, and serves as the root of a Repo-3D scene graph,
manifesting itself as a 2D window. A camera maps the scene graph rooted at this object to

the 2D image in the window.

H.1.22 SphereGO

SphereGO_New(p: PointVal, rad: RealVal): SphereGO

SphereGO_NewWithPrec(p: PointVal, rad: RealVal, prec: Int): SphereGO

SphereGO_Precision: IntPropName

SphereGO_Center: PointPropName

SphereGO_Radius: RealPropName

SphereGO_SetPrecision(go: GO, prec: IntVal): Ok

SphereGO_SetCenter(go: GO, center: PointVal): Ok

SphereGO_SetRadius(go: GO, radius: RealVal): Ok
WHERE

SphereGO <: SurfaceGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

IntVal = IntPropVal + Int

269

H.1.23 SpotLightGO

SpotLightGO_New(c: ColorVal, orig dir: PointVal,
conc spread attO attl int; RealVal):

SpotLightGO ! GO_PropError

SpotLightGO_Origin: PointPropName

SpotlLightGO_SetOrigin(go: GO, orig: PointVal): Ok ! replica_failure
GO_PropError

SpotLightGO_Direction: PointPropName

SpotLightGO_SetDirection(go: GO, dir: PointVal): Ok ! replica_failure
GO_PropError

SpotLightGO_Concentration: RealPropName

SpotLightGO_SetConcentration(go: GO, conc: RealVal): Ok !
replica_failure GO_PropError

SpotLightGO_SpreadAngle: RealPropName

SpotLightGO_SetSpreadAngle(go: GO, spread: RealVal): Ok !
replica_failure GO_PropError

SpotLightGO_Attenuation0: RealPropName

SpotLightGO_SetAttenuation0O(go: GO, att: RealVal): Ok !
replica_failure GO_PropError

SpotLightGO_Attenuation1: RealPropName

SpotLightGO_SetAttenuation1(go: GO, att: RealVval): Ok !
replica_failure GO_PropError

WHERE

SpotLightGO <: LightGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

ColorVal = ColorPropVal + Color + Text

H.1.24 SurfaceGO

SurfaceGO_Color; ColorPropName
SurfaceGO_SetColor(o: GO, color: ColorVal): Ok ! replica_failure
GO_PropError
SurfaceGO_BackColor: ColorPropName
SurfaceGO_SetBackColor(o: GO, color: ColorVal): Ok ! replica_failure
GO_PropError
SurfaceGO_RasterMode: RasterModePropName
SurfaceGO_SetRasterMode(o: GO, t: RasterModeVal): Ok !
replica_failure GO_PropError
SurfaceGO_AmbientReflectionCoeff: RealPropName
SurfaceGO_SetAmbientReflectionCoeff(o: GO, r: RealVal): Ok !
replica_failure GO_PropError
SurfaceGO_DiffuseReflectionCoeff: RealPropName
SurfaceGO_SetDiffuseReflectionCoeff(o: GO, r: RealVal): Ok !
replica_failure GO_PropError
SurfaceGO_SpecularReflectionCoeff: RealPropName
SurfaceGO_SetSpecularReflectionCoeff(o: GO, r: RealVal): Ok !
replica_failure GO_PropError
SurfaceGO_SpecularReflectionConc: RealPropName
SurfaceGO_SetSpecularReflectionConc(o: GO, r: RealVval): Ok !

270

replica_failure GO_PropError

SurfaceGO_TransmissionCoeff: RealPropName

SurfaceGO_SetTransmissionCoeff(o: GO, r: RealVal): Ok !
replica_failure GO_PropError

SurfaceGO_SpecularReflectionColor: ColorPropName

SurfaceGO_SetSpecularReflectionColor(o: GO, color: ColorVal): Ok !
replica_failure GO_PropError

SurfaceGO_Lighting: BooleanPropName

SurfaceGO_SetLighting(o: GO, t: BooleanVal): Ok ! replica_failure
GO_PropError

SurfaceGO_BackfaceCulling: BooleanPropName

SurfaceGO_SetBackfaceCulling(o: GO, t: BooleanVal): Ok !
replica_failure GO_PropError

SurfaceGO_Shading: ShadingPropName

SurfaceGO_SetShading(o: GO, sh: ShadingVal): Ok ! replica_failure
GO_PropError

SurfaceGO_EdgeVisibility: BooleanPropName

SurfaceGO_SetEdgeVisibility(o: GO, b: BoolVal): Ok ! replica_failure
GO_PropError

SurfaceGO_EdgeColor: ColorPropName

SurfaceGO_SetEdgeColor(o: GO, color: ColorVal): Ok ! replica_failure
GO_PropError

SurfaceGO_EdgeType: LineTypePropName

SurfaceGO_SetEdgeType(o: GO, It: LineTypeVal): Ok ! replica_failure
GO_PropError

SurfaceGO_EdgeWidth: RealPropName

SurfaceGO_SetEdgeWidth(o: GO, r: RealVal): Ok ! replica_failure
GO_PropError

SurfaceGO_Texlmg: TexImagePropName

SurfaceGO_SetTexlmg(o: GO, r: Teximage): Ok ! replica_failure
GO_PropError

SurfaceGO_TexRepeatS: BooleanPropName

SurfaceGO_SetTexRepeatS(o: GO, r: Bool): Ok ! replica_failure
GO_PropError

SurfaceGO_TexRepeatT: BooleanPropName

SurfaceGO_SetTexRepeatT(o: GO, r: Bool): Ok ! replica_failure
GO_PropError

SurfaceGO_TexOn: BooleanPropName

SurfaceGO_SetTexOn(o: GO, r: Bool): Ok ! replica_failure GO_PropError

SurfaceGO_TexModel: TexModelPropName

SurfaceGO_SetTexModel(o: GO, r: TexModel): Ok ! replica_failure
GO_PropError

SurfaceGO_TexBlendColor: ColorPropName

SurfaceGO_SetTexBlendColor(o: GO, r: Color): Ok ! replica_failure
GO_PropError

TYPE

SurfaceGO <: GO

ColorVal = ColorPropVal + Color + Text

BooleanVal = BooleanPropVal + Bool

RealVal = RealPropVal + Real + Int

LineTypeVal = LineTypePropVal + LineType

RasterModeVal = RasterModePropVal + RasterMode

ShadingVal = ShadingPropVal + Shading

271

H.1.25 Text2DGO

Text2DGO_New(p: PointVal, t: StringVal, a: AlignmentVval): Text2DGO
Text2DGO_NewWithSpacing(p: Pointval, t: StringVal, a: AlignmentVval,
s: Realval): Text2DGO

Text2DGO_GetScreenPosition(t: Text2DGO): [Int,Int]
Text2DGO_GetScreenExtent(t: Text2DGO): [Int,Int]
Text2DGO_IsVisible(t: Text2DGO): Bool

WHERE
Text2DGO <: TextGO

H.1.26 TextGO

TextGO_Position: PositionPropName

TextGO_String: StringPropName

TextGO_Alignment: TextAlignPropName

TextGO_Spacing: RealPropName

TextGO_SetPosition(go: GO, pos: PointVal): OK

TextGO_SetString(go: GO, string: StringVal): Ok

TextGO_SetAlignment(go: GO, align: AlignmentVal): Ok

TextGO_SetSpacing(go: GO, radius: RealVal): Ok

TextGO_FontFamily: FontFamilyPropName

TextGO_SetFontFamily(go: GO, xf: FontFamilyVal): Ok

TextGO_GetFontFamily(go: GO): FontFamilyVal ! GO_PropUndefined

TextGO_FontStyle: FontStylePropName

TextGO_SetFontStyle(go: GO, xf: FontStyleVal): Ok

TextGO_GetFontStyle(go: GO): FontStyleVal ! GO_PropUndefined

TextGO_FontSize: RealPropName

TextGO_SetFontSize(go: GO, xf: RealVal): Ok

TextGO_GetFontSize(go: GO): RealVal ! GO_PropUndefined

TextGO_FontColor: ColorPropName

TextGO_SetFontColor(go: GO, c: ColorVal): Ok

TextGO_GetFontColor(go: GO): ColorVal ! GO_PropUndefined
WHERE

TextGO <: GO

PointVal = PointPropVal + Point3

StringVal = StringPropVal + TEXT

AlignmentVal = TEXT (One of "Left", "Right", "Center")

RealVal = RealPropVal + Real + Int

FontFamilyVal = StringPropVal + Text

FontStyleVal = FontStylePropVal +

Text (one of "None", "Bold", "Italic")
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

272

H.1.27 TorusGO

TorusGO_New(center normal: PointVal, radl rad2: RealVal): TorusGO

TorusGO_NewWithPrec(c n: PointVal, rl1 r2: RealVal, prec: Int):
TorusGO

TorusGO_Precision: IntPropName

TorusGO_Center: PointPropName

TorusGO_Normal: PointPropName

TorusGO_Radiusl: RealPropName

TorusGO_Radius2: RealPropName

TorusGO_SetCenter(go: GO, center: PointVal): Ok

TorusGO_SetNormal(go: GO, normal: PointVal): Ok

TorusGO_SetRadius1(go: GO, radius: RealVal): Ok

TorusGO_SetRadius2(go: GO, radius: RealVal): Ok

TorusGO_SetPrecision(go: GO, prec: IntVal): Ok

WHERE

TorusGO <: SurfaceGO

PointVal = PointPropVal + Point3

RealVal = RealPropVal + Real + Int

IntvVal = IntPropVal + Int

H.1.28 VectorLightGO

VectorLightGO_New(c: ColorVal, dir: PointVal, int: RealVal):
VectorLightGO ! GO_PropError

VectorLightGO_Direction: PointPropName

VectorLightGO_SetDirection(l: VectorLightGO, dir: PointVal): Ok !
replica_failure GO_PropError

WHERE

VectorLightGO <: LightGO

PointVal = PointPropVal + Point3

ColorVal = ColorPropVal + Color + Text

RealVal = RealPropVal + Real + Int

H.2 Properties

Properties are used to define the attributes of GOs. All properties inherit from the base

Prop object, and use PropCB to be notified of changes.

H.2.1 Prop

Prop_BadMethod: Exception
Prop_Badinterval: Exception

273

TYPES
Prop <: ProxiedObj
PropName <: ProxiedObj
PropVal <: ProxiedObj
PropBeh <: ProxiedObj
PropRequest <: ProxiedObj & { start: () => Real, dur: () => Real }

H.2.2 PropCB

PropCB_New(obj: Prop, overrides: Obj): T;
PropCB_Cancel(cbobj: T): T;
WHERE

T <: {simple} & overrides;

overrides contains one or more of these callback methods:
pre’init(obj: Prop, beh: PropBeh): bool;
post'init(obj: Prop, beh: PropBeh): bool;
pre setBeh(obj: Prop, beh: PropBeh): bool;
post'setBeh(obj: Prop, beh: PropBeh): bool;
pre anyChange(obj: Prop);
post anyChange(obj: Prop);

Where Prop is a Property and PropBeh is a Property Behavior of the
appropriate types

H.2.3 BooleanProp

BooleanProp_NewConst(b: Bool): BooleanPropVal
BooleanProp_NewSync(ah: AnimHandle, b: Bool): BooleanPropVal
BooleanProp_NewAsync(beh: BooleanPropAsyncBeh): BooleanPropVal
BooleanProp_NewDep(beh: BooleanPropDepBeh): BooleanPropVal
BooleanProp_NewConstBeh(b: Bool): BooleanPropConstBeh
BooleanProp_NewSyncBeh(ah: AnimHandle, b: Bool): BooleanPropSyncBeh
BooleanProp_NewAsyncBeh(compute: M1):BooleanPropAsyncBeh
BooleanProp_NewDepBeh(compute: M2):BooleanPropDepBeh
BooleanProp_NewRequest(start dur: Num, value: M3): BooleanPropRequest
WHERE
BooleanPropName <: PropName & { bind: (v: BooleanPropVal) => Prop }
BooleanPropVal <: PropVal &
{ getBeh: () => BooleanPropBeh ! replica_failure,

setBeh: (BooleanPropBeh) => Ok ! replica_failure,

get: () => Bool ! replica_failure,

value: (Num) => Bool ! replica_failure }
BooleanPropBeh <: PropBeh
BooleanPropConstBeh <: BooleanPropBeh & { set: (Bool) => Ok }
BooleanPropSyncBeh <: BooleanPropBeh &

{ addRequest: (BooleanPropRequest) => Ok ! Prop_Badinterval,

change: (Bool,Num) => Ok ! Prop_BadInterval }
BooleanPropAsyncBeh <: BooleanPropBeh & { compute: M1}
BooleanPropDepBeh <: BooleanPropBeh & { compute: M2 }

274

BooleanPropRequest <: PropRequest & { value: M3}

M1 = Self (X <: BooleanPropAsyncBeh) (Real) => Bool
M2 = Self (X <: BooleanPropDepBeh) (Real) => Bool

M3 = Self (X <: BooleanPropRequest) (Bool,Real) => Bool
Num = Real + Int

H.2.4 ColorProp

ColorProp_NewConst(r: Col): ColorPropVal
ColorProp_NewSync(ah: AnimHandle, r: Col): ColorPropVal
ColorProp_NewAsync(beh: ColorPropAsyncBeh): ColorPropVal
ColorProp_NewDep(beh: ColorPropDepBeh): ColorPropVal
ColorProp_NewConstBeh(r: Col): ColorPropConstBeh
ColorProp_NewSyncBeh(ah: AnimHandle, r: Col): ColorPropSyncBeh
ColorProp_NewAsyncBeh(compute: M1):ColorPropAsyncBeh
ColorProp_NewDepBeh(compute: M2):ColorPropDepBeh
ColorProp_NewRequest(start dur: Num, value: M3): ColorPropRequest
WHERE
ColorPropName <: PropNam e & { bind: (v: ColorPropVval) => Prop }
ColorPropVal <: PropVal &
{ getBeh: () => ColorPropBeh ! replica_failure,

setBeh: (ColorPropBeh) => Ok ! replica_failure,

get: () => Color ! replica_failure,

value: (Num) => Color ! replica_failure }
ColorPropBeh <: PropBeh
ColorPropConstBeh <: ColorPropBeh & { set: (Col) => Ok }
ColorPropSyncBeh <: ColorPropBeh &

{ addRequest: (ColorPropRequest) => Ok ! Prop_BadInterval,

rgbLinChangeTo: (Col,Num,Num) => Ok ! Prop_BadInterval }
ColorPropAsyncBeh <: ColorPropBeh & { compute: M1 }
ColorPropDepBeh <: ColorPropBe h & { compute: M2 }
ColorPropRequest <: PropReques t & { value: M3 }

M1 = Self (X <: ColorPropAsyncBeh) (Real) => Color
M2 = Self (X <: ColorPropDepBeh) (Real) => Color
M3 = Self (X <: ColorPropRequest) (Color,Real) => Color

Col = Color + Text
Num = Real + Int

H.2.5 FontStyleProp

FontStyleProp_NewConst(It: FontStyle): FontStylePropVal
FontStyleProp_NewSync(ah: AnimHandle, It: FontStyle):
FontStylePropVal
FontStyleProp_NewAsync(beh: FontStylePropAsyncBeh): FontStylePropVal
FontStyleProp_NewDep(beh: FontStylePropDepBeh): FontStylePropVal
FontStyleProp_NewConstBeh(It: FontStyle): FontStylePropConstBeh
FontStyleProp_NewSyncBeh(ah: AnimHandle, It: FontStyle):
FontStylePropSyncBeh
FontStyleProp_NewAsyncBeh(compute: M1):FontStylePropAsyncBeh

275

FontStyleProp_NewDepBeh(compute: M2):FontStylePropDepBeh
FontStyleProp_NewRequest(start dur; Num, value: M3):
FontStylePropRequest
WHERE
FontStylePropName <: PropNam e & { bind: (v: FontStylePropVal) => Prop
FontStylePropVal <: PropVal & { getBeh: () => FontStylePropBeh,
setBeh: (FontStylePropBeh) => Ok,
get: () => FontStyle,
value: (Num) => FontStyle }
FontStylePropBeh <: PropBeh
FontStylePropConstBeh <: FontStylePropBeh & {set: (FontStyle) => Ok }
FontStylePropSyncBeh <: FontStylePropBeh &
{ addRequest: (FontStylePropRequest) => Ok ! Prop_Badinterval,
change: (FontStyle,Num) => Ok ! Prop_BadiInterval }
FontStylePropAsyncBeh <: FontStylePropBeh & { compute: M1 }
FontStylePropDepBeh <: FontStylePropBeh & { compute: M2 }
FontStylePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: FontStylePropAsyncBeh) (Real) => FontStyle
M2 = Self (X <: FontStylePropDepBeh) (Real) => FontStyle
M3 = Self (X <: FontStylePropRequest) (FontStyle,Real) => FontStyle
FontStyle = Text (one of "None","Bold","Italic", "BoldItalic")
Num = Real + Int

H.2.6 IntProp

IntProp_NewConst(r: Int): IntPropVal
IntProp_NewSync(ah: AnimHandle, r: Int): IntPropVal
IntProp_NewAsync(beh: IntPropAsyncBeh): IntPropVal
IntProp_NewDep(beh: IntPropDepBeh): IntPropVal
IntProp_NewConstBeh(r: Int): IntPropConstBeh
IntProp_NewSyncBeh(ah: AnimHandle, r: Int): IntPropSyncBeh
IntProp_NewAsyncBeh(compute: M1):IntPropAsyncBeh
IntProp_NewDepBeh(compute: M2):IntPropDepBeh
IntProp_NewRequest(start dur: Num, value: M3): IntPropRequest
WHERE
IntPropName <: PropName & { bind: (v: IntPropVal) => Prop }
IntPropVal <: PropVal & { getBeh: () => IntPropBeh ! replica_failure,
setBeh: (IntPropBeh) => Ok ! replica_failure,
get: () => Int ! replica_failure,
value: (Num) => Int ! replica_failure }
IntPropBeh <: PropBeh
IntPropConstBeh <: IntPropBeh & { set: (Int) => Ok }
IntPropSyncBeh <: IntPropBeh &

{ addRequest: (IntPropRequest) => Ok ! Prop_BadInterval,
linChangeTo: (Int,Num,Num) => Ok ! Prop_BadInterval,
linChangeBy: (Int,Num,Num) => Ok ! Prop_BadInterval }

IntPropAsyncBeh <: IntPropBeh & { compute: M1 }
IntPropDepBeh <: IntPropBeh & { compute: M2 }
IntPropRequest <: PropRequest & { value: M3}

M1 = Self (X <: IntPropAsyncBeh) (Real) => Int

M2 = Self (X <: RealPropDepBeh) (Real) => Int

M3 = Self (X <: RealPropRequest) (Real,Real) => Int

276

Num = Real + Int

H.2.7 LineTypeProp

LineTypeProp_NewConst(lt: LineType): LineTypePropVal
LineTypeProp_NewSync(ah: AnimHandle, It: LineType): LineTypePropVal
LineTypeProp_NewAsync(beh: LineTypePropAsyncBeh): LineTypePropVal
LineTypeProp_NewDep(beh: LineTypePropDepBeh): LineTypePropVal
LineTypeProp_NewConstBeh(lt: LineType): LineTypePropConstBeh
LineTypeProp_NewSyncBeh(ah: AnimHandle, It: LineType):

LineTypePropSyncBeh
LineTypeProp_NewAsyncBeh(compute: M1):LineTypePropAsyncBeh
LineTypeProp_NewDepBeh(compute: M2):LineTypePropDepBeh
LineTypeProp_NewRequest(start dur: Num, value: M3):

LineTypePropRequest

WHERE
LineTypePropName <: PropNam e & { bind: (v: LineTypePropVal) => Prop }
LineTypePropVal <: PropVal &
{ getBeh: () => LineTypePropBeh ! replica_failure,

setBeh: (LineTypePropBeh) => Ok ! replica_failure,

get: () => LineType ! replica_failure,

value: (Num) => LineType ! replica_failure }
LineTypePropBeh <: PropBeh
LineTypePropConstBeh <: LineTypePropBeh & { set: (LineType) => Ok }
LineTypePropSyncBeh <: LineTypePropBeh &

{ addRequest: (LineTypePropRequest) => Ok ! Prop_BadInterval,

change: (LineType,Num) => Ok ! Prop_BadInterval }
LineTypePropAsyncBeh <: LineTypePropBeh & { compute: M1 }
LineTypePropDepBeh <: LineTypePropBeh & { compute: M2 }
LineTypePropRequest <: PropReques t & { value: M3 }

M1 = Self (X <: LineTypePropAsyncBeh) (Real) => LineType
M2 = Self (X <: LineTypePropDepBeh) (Real) => LineType
M3 = Self (X <: LineTypePropRequest) (LineType,Real) => LineType

LineType = Text (one of "Solid", "Dashed", "Dotted", "DashDot")
Num = Real + Int

H.2.8 MarkerTypeProp

MarkerTypeProp_NewConst(lt: MarkerType): MarkerTypePropVal
MarkerTypeProp_NewSync(ah: AnimHandle, It: MarkerType):
MarkerTypePropVal
MarkerTypeProp_NewAsync(beh: MarkerTypePropAsyncBeh):
MarkerTypePropVal
MarkerTypeProp_NewDep(beh: MarkerTypePropDepBeh): MarkerTypePropVal
MarkerTypeProp_NewConstBeh(lt: MarkerType): MarkerTypePropConstBeh
MarkerTypeProp_NewSyncBeh(ah: AnimHandle,
t: MarkerType): MarkerTypePropSyncBeh
MarkerTypeProp_NewAsyncBeh(compute: M1):MarkerTypePropAsyncBeh
MarkerTypeProp_NewDepBeh(compute: M2):MarkerTypePropDepBeh

277

MarkerTypeProp_NewRequest(start dur: Num, value: M3):
MarkerTypePropRequest
WHERE
MarkerTypePropName <: PropName &
{ bind: (v: MarkerTypePropVal) => Prop }
MarkerTypePropVal <: PropVal &

{ getBeh: () => MarkerTypePropBeh ! replica_failure,
setBeh: (MarkerTypePropBeh) => Ok ! replica_failure,
get: () => MarkerType ! replica_failure,
value: (Num) => MarkerType ! replica_failure }

MarkerTypePropBeh <: PropBeh
MarkerTypePropConstBeh <: MarkerTypePropBeh &
{ set: (MarkerType) => Ok }
MarkerTypePropSyncBeh <: MarkerTypePropBeh &
{ addRequest: (MarkerTypePropRequest) => Ok ! Prop_BadInterval,
change: (MarkerType,Num) => Ok ! Prop_BadInterval }
MarkerTypePropAsyncBeh <: MarkerTypePropBeh & { compute: M1 }
MarkerTypePropDepBeh <: MarkerTypePropBe h & { compute: M2 }
MarkerTypePropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: MarkerTypePropAsyncBeh) (Real) => MarkerType
M2 = Self (X <: MarkerTypePropDepBeh) (Real) => MarkerType
M3 = Self (X <: MarkerTypePropRequest) (MarkerType,Real) =>
MarkerType
MarkerType = Text (one of "Dot", "Circle", "Cross", "Asterisk”, "X")
Num = Real + Int

H.2.9 Point2Prop

Point2Prop_NewConst(r: Point2): Point2PropVal
Point2Prop_NewSync(ah: AnimHandle, r: Point2): Point2PropVal
Point2Prop_NewAsync(beh: Point2PropAsyncBeh): Point2PropVal
Point2Prop_NewDep(beh: Point2PropDepBeh): Point2PropVal
Point2Prop_NewConstBeh(r: Point2): Point2PropConstBeh
Point2Prop_NewSyncBeh(ah: AnimHandle, r: Point2): Point2PropSyncBeh
Point2Prop_NewAsyncBeh(compute: M1):Point2PropAsyncBeh
Point2Prop_NewDepBeh(compute: M2):Point2PropDepBeh
Point2Prop_NewRequest(start dur: Num, value: M3): Point2PropRequest
WHERE
Point2PropName <: PropName & { bind: (v: Point2PropVal) => Prop }
Point2PropVal <: PropVal &

{ getBeh: () => Point2PropBeh ! replica_failure,
setBeh: (Point2PropBeh) => Ok ! replica_failure,
get: () => Point2 ! replica_failure,
value: (Num) => Point2 ! replica_failure }

Point2PropBeh <: PropBeh
Point2PropConstBeh <: Point2PropBeh & { set: (Point2) => Ok }
Point2PropSyncBeh <: Point2PropBeh &

{ addRequest: (Point2PropRequest) => Ok ! Prop_BadInterval,
linMoveTo: (Point2,Num,Num) => Ok ! Prop_BadInterval,
linMoveBy: (Point2,Num,Num) => Ok ! Prop_BadInterval }

Point2PropAsyncBeh <: Point2PropBeh & { compute: M1 }
Point2PropDepBeh <: Point2PropBeh & { compute: M2 }

Point2PropRequest <: PropReques t & { value: M3 }

M1 = Self (X <: Point2PropAsyncBeh) (Real) => Point2

278

M2 = Self (X <: Point2PropDepBeh) (Real) => Point2
M3 = Self (X <: Point2PropRequest) (Point2,Real) => Point2
Num = Real + Int

H.2.10 PointProp

PointProp_NewConst(r: Point3): PointPropVal
PointProp_NewSync(ah: AnimHandle, r: Point3): PointPropVal
PointProp_NewAsync(beh: PointPropAsyncBeh): PointPropVal
PointProp_NewDep(beh: PointPropDepBeh): PointPropVal
PointProp_NewConstBeh(r: Point3): PointPropConstBeh
PointProp_NewSyncBeh(ah: AnimHandle, r: Point3): PointPropSyncBeh
PointProp_NewAsyncBeh(compute: M1):PointPropAsyncBeh
PointProp_NewDepBeh(compute: M2):PointPropDepBeh
PointProp_NewRequest(start dur: Num, value: M3): PointPropRequest
WHERE
PointPropName <: PropName & { bind: (v: PointPropVval) => Prop }
PointPropVal <: PropVal &

{ getBeh: () => PointPropBeh ! replica_failure,
setBeh: (PointPropBeh) => Ok ! replica_failure,
get: () => Point3 ! replica_failure,
value: (Num) => Point3 ! replica_failure }

PointPropBeh <: PropBeh
PointPropConstBeh <: PointPropBeh & { set: (Point3) => Ok }
PointPropSyncBeh <: PointPropBeh &

{ addRequest: (PointPropRequest) => Ok ! Prop_BadInterval,
linMoveTo: (Point3,Num,Num) => Ok ! Prop_BadInterval,
linMoveBy: (Point3,Num,Num) => Ok ! Prop_BadInterval }

PointPropAsyncBeh <: PointPropBeh & { compute: M1 }
PointPropDepBeh <: PointPropBeh & { compute: M2 }
PointPropRequest <: PropRequest & { value: M3 }

M1 = Self (X <: PointPropAsyncBeh) (Real) => Point3

M2 = Self (X <: PointPropDepBeh) (Real) => Point3

M3 = Self (X <: PointPropRequest) (Point3,Real) => Point3
Num = Real + Int

H.2.11 RasterModeProp

RasterModeProp_NewConst(It: RasterMode): RasterModePropVal
RasterModeProp_NewSync(ah: AnimHandle, It: RasterMode):
RasterModePropVal
RasterModeProp_NewAsync(beh: RasterModePropAsyncBeh):
RasterModePropVal
RasterModeProp_NewDep(beh: RasterModePropDepBeh): RasterModePropVal
RasterModeProp_NewConstBeh(It: RasterMode): RasterModePropConstBeh
RasterModeProp_NewSyncBeh(ah: AnimHandle,
It: RasterMode): RasterModePropSyncBeh
RasterModeProp_NewAsyncBeh(compute: M1):RasterModePropAsyncBeh
RasterModeProp_NewDepBeh(compute: M2):RasterModePropDepBeh

279

RasterModeProp_NewRequest(start dur: Num, value: M3):
RasterModePropRequest
WHERE
RasterModePropName <: PropName &
{ bind: (v: RasterModePropVal) => Prop }
RasterModePropVal <: PropVal &

{ getBeh: () => RasterModePropBeh ! replica_failure,
setBeh: (RasterModePropBeh) => Ok ! replica_failure,
get: () => RasterMode ! replica_failure,
value: (Num) => RasterMode ! replica_failure }

RasterModePropBeh <: PropBeh
RasterModePropConstBeh <: RasterModePropBeh &
{ set: (RasterMode) => Ok }
RasterModePropSyncBeh <: RasterModePropBeh &
{ addRequest: (RasterModePropRequest) => Ok ! Prop_BadInterval,

change: (RasterMode,Num) => Ok ! Prop_BadiInterval }
RasterModePropAsyncBeh <: RasterModePropBeh & { compute: M1 }
RasterModePropDepBeh <: RasterModePropBeh & { compute: M2 }
RasterModePropRequest <: PropRequest & { value: M3}
M1 = Self (X <: RasterModePropAsyncBeh) (Real) => RasterMode
M2 = Self (X <: RasterModePropDepBeh) (Real) => RasterMode
M3 = Self (X <: RasterModePropRequest) (RasterMode,Real) =>

RasterMode

RasterMode = Text (one of "Vector" "Hollow", "Solid", "Empty")
Num = Real + Int

H.2.12 RealProp

RealProp_NewConst(r: Num): RealPropVal
RealProp_NewSync(ah: AnimHandle, r; Num): RealPropVal
RealProp_NewAsync(beh: RealPropAsyncBeh): RealPropVal
RealProp_NewDep(beh: RealPropDepBeh): RealPropVal
RealProp_NewConstBeh(r: Num): RealPropConstBeh
RealProp_NewSyncBeh(ah: AnimHandle, r: Num): RealPropSyncBeh
RealProp_NewAsyncBeh(compute: M1):RealPropAsyncBeh
RealProp_NewDepBeh(compute: M2):RealPropDepBeh
RealProp_NewRequest(start dur: Num, value: M3): RealPropRequest
WHERE

RealPropName <: PropName & { bind: (v: RealPropVal) => Prop }
RealPropVal <: PropVal &

{ getBeh: () => RealPropBeh ! replica_failure,

setBeh: (RealPropBeh) => Ok ! replica_failure,

get: () => Real ! replica_failure,

value: (Num) => Real ! replica_failure }

RealPropBeh <: PropBeh
RealPropConstBeh <: RealPropBeh & { set: (Num) => Ok }
RealPropSyncBeh <: RealPropBeh &

{ addRequest: (RealPropRequest) => Ok ! Prop_BadInterval,
linChangeTo: (Num,Num,Num) => Ok ! Prop_BadInterval,
linChangeBy: (Num,Num,Num) => Ok ! Prop_BadInterval }

RealPropAsyncBeh <: RealPropBeh & { compute: M1 }
RealPropDepBeh <: RealPropBeh & { compute: M2 }
RealPropRequest <: PropRequest & { value: M3}

M1 = Self (X <: RealPropAsyncBeh) (Real) => Real

280

M2 = Self (X <: RealPropDepBeh) (Real) => Real
M3 = Self (X <: RealPropRequest) (Real,Real) => Real
Num = Real + Int

H.2.13 ShadingProp

ShadingProp_NewConst(lt: Shading): ShadingPropVal
ShadingProp_NewSync(ah: AnimHandle, It: Shading): ShadingPropVal
ShadingProp_NewAsync(beh: ShadingPropAsyncBeh): ShadingPropVal
ShadingProp_NewDep(beh: ShadingPropDepBeh): ShadingPropVal
ShadingProp_NewConstBeh(lt: Shading): ShadingPropConstBeh
ShadingProp_NewSyncBeh(ah: AnimHandle, It: Shading):
ShadingPropSyncBeh
ShadingProp_NewAsyncBeh(compute: M1):ShadingPropAsyncBeh
ShadingProp_NewDepBeh(compute: M2):ShadingPropDepBeh
ShadingProp_NewRequest(start dur: Num, value: M3): ShadingPropRequest
WHERE
ShadingPropName <: PropName & { bind: (v: ShadingPropVal) => Prop }
ShadingPropVal <: PropVal &
{ getBeh: () => ShadingPropBeh ! replica_failure,
setBeh: (ShadingPropBeh) => Ok ! replica_failure,
get: () => Shading ! replica_failure,
value: (Num) => Shading ! replica_failure }
ShadingPropBeh <: PropBeh
ShadingPropConstBeh <: ShadingPropBeh & { set: (Shading) => Ok }
ShadingPropSyncBeh <: ShadingPropBeh &
{ addRequest: (ShadingPropRequest) => Ok ! Prop_BadInterval,
change: (Shading,Num) => Ok ! Prop_BadInterval }
ShadingPropAsyncBeh <: ShadingPropBeh & { compute : M1 }
ShadingPropDepBeh <: ShadingPropBeh & { compute: M2 }
ShadingPropRequest <: PropReques t & { value: M3 }

M1 = Self (X <: ShadingPropAsyncBeh) (Real) => Shading
M2 = Self (X <: ShadingPropDepBeh) (Real) => Shading
M3 = Self (X <: ShadingPropRequest) (Shading,Real) => Shading

Shading = Text ("Flat" or "Gouraud")
Num = Real + Int

H.2.14 StringProp

StringProp_NewConst(t: TEXT): StringPropVal
StringProp_NewSync(ah: AnimHandle, t: TEXT): StringPropVal
StringProp_NewAsync(beh: StringPropAsyncBeh): StringPropVal
StringProp_NewDep(beh: StringPropDepBeh): StringPropVal
StringProp_NewConstBeh(t: TEXT): StringPropConstBeh
StringProp_NewSyncBeh(ah: AnimHandle, t: TEXT): StringPropSyncBeh
StringProp_NewAsyncBeh(compute: M1):StringPropAsyncBeh
StringProp_NewDepBeh(compute: M2):StringPropDepBeh
StringProp_NewRequest(start dur: Num, value: M3): StringPropRequest
WHERE

281

StringPropName <: PropName & { bind: (v: StringPropVal) => Prop }
StringPropVal <: PropVal & { getBeh: () => StringPropBeh,
setBeh: (StringPropBeh) => Ok,
get: () => TEXT,
value: (Num) => TEXT }
StringPropBeh <: PropBeh
StringPropConstBeh <: StringPropBeh & { set: (TEXT) => Ok }
StringPropSyncBeh <: StringPropBeh &
{ addRequest: (StringPropRequest) => Ok ! Prop_BadInterval,
change: (TEXT,Num) => Ok ! Prop_BadInterval }
StringPropAsyncBeh <: StringPropBeh & { compute: M1 }
StringPropDepBeh <: StringPropBeh & { compute: M2 }
StringPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: StringPropAsyncBeh) (Real) => TEXT
M2 = Self (X <: StringPropDepBeh) (Real) => TEXT
M3 = Self (X <: StringPropRequest) (TEXT,Real) => TEXT
Num = Real + Int

H.2.15 TexlmageProp

TexlmageProp_NewConst(m: Texlmage): TexlmagePropVal
TexlmageProp_NewSync(ah: AnimHandle, m: TexImage): TexImagePropVal
TexlmageProp_NewAsync(beh: TexImagePropAsyncBeh): TeximagePropVal
TexlmageProp_NewDep(beh: TeximagePropDepBeh): TeximagePropVal
TexlmageProp_NewConstBeh(m: Texlmage): TexlmagePropConstBeh
TeximageProp_NewSyncBeh(ah: AnimHandle, m: Teximage):
TexlmagePropSyncBeh
TexlmageProp_NewAsyncBeh(compute: M1):TexImagePropAsyncBeh
TexlmageProp_NewDepBeh(compute: M2):TexlmagePropDepBeh
TexlmageProp_NewRequest(start dur: Num, value: M3):
TexlmagePropRequest
WHERE

TeximagePropName <: PropNam e & { bind: (v: TexlmagePropVal) => Prop }
TeximagePropVal <: PropVal & { getBeh: () => TexImagePropBeh,

setBeh: (TeximagePropBeh) => Ok,

get: () => Texlmage,

value: (Num) => Texlmage }
TeximagePropBeh <: PropBeh
TeximagePropConstBeh <: TexImagePropBeh &

{ set: (TexImage) => Ok}
TexlmagePropSyncBeh <: TexImagePropBeh &

{ addRequest: (TexImagePropRequest) => Ok ! Prop_BadInterval}
TexlmagePropAsyncBeh <: TeximagePropBeh & { compute: M1}
TeximagePropDepBeh <: TexImagePropBeh & { compute: M2 }
TexlmagePropRequest <: PropRequest & { value: M3 }

M1 = Self (X <: TexImagePropAsyncBeh) (Real) => Texlmage

M2 = Self (X <: TexlmagePropDepBeh) (Real) => Texlmage

M3 = Self (X <: TexImagePropRequest) (Texlmage,Real) => TexImage
Num = Real = Int

282

H.2.16 TexModelProp

TexModelProp_NewConst(lt: TexModel): TexModelPropVal
TexModelProp_NewSync(ah: AnimHandle, It: TexModel): TexModelPropVal
TexModelProp_NewAsync(beh: TexModelPropAsyncBeh): TexModelPropVal
TexModelProp_NewDep(beh: TexModelPropDepBeh): TexModelPropVal
TexModelProp_NewConstBeh(lt: TexModel): TexModelPropConstBeh
TexModelProp_NewSyncBeh(ah: AnimHandle, It: TexModel):
TexModelPropSyncBeh
TexModelProp_NewAsyncBeh(compute: M1):TexModelPropAsyncBeh
TexModelProp_NewDepBeh(compute: M2):TexModelPropDepBeh
TexModelProp_NewRequest(start dur: Num, value: M3):
TexModelPropRequest
WHERE
TexModelPropName <: PropNam e & { bind: (v: TexModelPropVal) => Prop }
TexModelPropVal <: PropVal & { getBeh: () => TexModelPropBeh,
setBeh: (TexModelPropBeh) => Ok,
get: () => TexModel,
value: (Num) => TexModel }
TexModelPropBeh <: PropBeh
TexModelPropConstBeh <: TexModelPropBeh & { set: (TexModel) => Ok }
TexModelPropSyncBeh <: TexModelPropBeh &
{ addRequest: (TexModelPropRequest) => Ok ! Prop_BadInterval,
change: (TexModel,Num) => Ok ! Prop_BadInterval }
TexModelPropAsyncBeh <: TexModelPropBeh & { compute: M1 }
TexModelPropDepBeh <: TexModelPropBeh & { compute: M2 }
TexModelPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: TexModelPropAsyncBeh) (Real) => TexModel
M2 = Self (X <: TexModelPropDepBeh) (Real) => TexModel
M3 = Self (X <: TexModelPropRequest) (TexModel,Real) => TexModel
TexModel = Text (one of "Modulate", "Decl", "Blend")
Num = Real + Int

H.2.17 TextAlignProp

TextAlignProp_NewConst(It: TextAlign): TextAlignPropVal
TextAlignProp_NewSync(ah: AnimHandle, It: TextAlign):
TextAlignPropVal
TextAlignProp_NewAsync(beh: TextAlignPropAsyncBeh): TextAlignPropVal
TextAlignProp_NewDep(beh: TextAlignPropDepBeh): TextAlignPropVal
TextAlignProp_NewConstBeh(lt: TextAlign): TextAlignPropConstBeh
TextAlignProp_NewSyncBeh(ah: AnimHandle, It: TextAlign):
TextAlignPropSyncBeh
TextAlignProp_NewAsyncBeh(compute: M1):TextAlignPropAsyncBeh
TextAlignProp_NewDepBeh(compute: M2):TextAlignPropDepBeh
TextAlignProp_NewRequest(start dur: Num, value: M3):
TextAlignPropRequest
WHERE
TextAlignPropName <: PropName &
{ bind: (v: TextAlignPropVal) => Prop }
TextAlignPropVal <: PropVal & { getBeh: () => TextAlignPropBeh,

283

setBeh: (TextAlignPropBeh) => Ok,
get: () => TextAlign,
value: (Num) => TextAlign }
TextAlignPropBeh <: PropBeh
TextAlignPropConstBeh <: TextAlignPropBeh & { set: (TextAlign) => Ok}
TextAlignPropSyncBeh <: TextAlignPropBeh &
{ addRequest: (TextAlignPropRequest) => Ok ! Prop_BadInterval,
change: (TextAlign,Num) => Ok ! Prop_BadInterval }
TextAlignPropAsyncBeh <: TextAlignPropBeh & { compute: M1 }
TextAlignPropDepBeh <: TextAlignPropBeh & { compute: M2 }
TextAlignPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TextAlignPropAsyncBeh) (Real) => TextAlign
M2 = Self (X <: TextAlignPropDepBeh) (Real) => TextAlign
M3 = Self (X <: TextAlignPropRequest) (TextAlign,Real) => TextAlign
TextAlign = Text (one of "Left", "Right", "Center")
Num = Real + Int

H.2.18 TransformProp

TransformProp_NewConst(m: Matrix4): TransformPropVal
TransformProp_NewSync(ah: AnimHandle, m: Matrix4): TransformPropVal
TransformProp_NewAsync(beh: TransformPropAsyncBeh): TransformPropVal
TransformProp_NewDep(beh: TransformPropDepBeh): TransformPropVal
TransformProp_NewConstBeh(m: Matrix4): TransformPropConstBeh
TransformProp_NewSyncBeh(ah: AnimHandle, m: Matrix4):
TransformPropSyncBeh
TransformProp_NewAsyncBeh(compute: M1):TransformPropAsyncBeh
TransformProp_NewDepBeh(compute: M2):TransformPropDepBeh
TransformProp_NewRequest(start dur: Num, value: M3):
TransformPropRequest
WHERE
TransformPropName <: PropName &
{ bind: (v: TransformPropVal) => Prop }
TransformPropVal <: PropVal &
{ getBeh: () => TransformPropBeh ! replica_failure,
setBeh: (TransformPropBeh) => Ok ! replica_failure,
get: () => Matrix4 ! replica_failure,
value: (Num) => Matrix4 ! replica_failure }
TransformPropBeh <: PropBeh
TransformPropConstBeh <: TransformPropBeh &
{ set: (Matrix4) => Ok,
compose: (Matrix4) => OK,
reset: () => Ok,
translate: (Num,Num,Num) => Ok,
scale: (Num,Num,Num) => Ok,
rotateX: (Num) => Ok,
rotateY: (Num) => Ok,
rotateZ: (Num) => Ok }
TransformPropSyncBeh <: TransformPropBeh &
{ addRequest: (TransformPropRequest) => Ok ! Prop_BadInterval,
reset: (Num) => Ok ! Prop_BadInterval,
changeTo: (Matrix4,Num,Num) => Ok ! Prop_BadInterval,
translate: (Num,Num,Num,Num,Num) => Ok ! Prop_BadiInterval,
scale: (Num,Num,Num,Num,Num) => Ok ! Prop_BadInterval,

284

rotateX: (Num,Num,Num) => Ok ! Prop_Badinterval,

rotateY: (Num,Num,Num) => Ok ! Prop_BadInterval,

rotateZ: (Num,Num,Num) => Ok ! Prop_BadInterval }
TransformPropAsyncBeh <: TransformPropBe h & { compute: M1 }
TransformPropDepBeh <: TransformPropBeh & { compute: M2 }
TransformPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TransformPropAsyncBeh) (Real) => Matrix4
M2 = Self (X <: TransformPropDepBeh) (Real) => Matrix4
M3 = Self (X <: TransformPropRequest) (Matrix4,Real) => Matrix4
Num = Real = Int

H.2.19 TransmissionPatternProp

TransmissionPatternProp_NewConst(lt: TransmissionPattern):
TransmissionPatternPropVal
TransmissionPatternProp_NewSync(ah: AnimHandle,
It: TransmissionPattern): TransmissionPatternPropVal
TransmissionPatternProp_NewAsync(
beh: TransmissionPatternPropAsyncBeh): TransmissionPatternPropVal
TransmissionPatternProp_NewDep(beh: TransmissionPatternPropDepBeh):
TransmissionPatternPropVal
TransmissionPatternProp_NewConstBeh(It: TransmissionPattern):
TransmissionPatternPropConstBeh
TransmissionPatternProp_NewSyncBeh(ah: AnimHandle,
It: TransmissionPattern): TransmissionPatternPropSyncBeh
TransmissionPatternProp_NewAsyncBeh(compute: M1):
TransmissionPatternPropAsyncBeh
TransmissionPatternProp_NewDepBeh(compute: M2):
TransmissionPatternPropDepBeh
TransmissionPatternProp_NewRequest(start dur;: Num, value: M3):
TransmissionPatternPropRequest
WHERE
TransmissionPatternPropName <: PropName &
{ bind: (v: TransmissionPatternPropVal) => Prop }
TransmissionPatternPropVal <: PropVal &
{ getBeh: () => TransmissionPatternPropBeh ! replica_failure,
setBeh: (TransmissionPatternPropBeh) => Ok ! replica_failure,
get: () => TransmissionPattern ! replica_failure,
value: (Num) => TransmissionPattern ! replica_failure }
TransmissionPatternPropBeh <: PropBeh
TransmissionPatternPropConstBeh <: TransmissionPatternPropBeh &

{ set: (TransmissionPattern) => Ok }
TransmissionPatternPropSyncBeh <: TransmissionPatternPropBeh &

{ addRequest: (TransmissionPatternPropRequest) => Ok !

Prop_Badinterval,
change: (TransmissionPattern,Num) => Ok ! Prop_BadIinterval }

TransmissionPatternPropAsyncBeh <: TransmissionPatternPropBeh &

{ compute: M1}
TransmissionPatternPropDepBeh <: TransmissionPatternPropBeh &

{ compute: M2 }
TransmissionPatternPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: TransmissionPatternPropAsyncBeh) (Real) =>

TransmissionPattern

M2 = Self (X <: TransmissionPatternPropDepBeh) (Real) =>

285

TransmissionPattern
M3 = Self (X <: TransmissionPatternPropRequest)
(TransmissionPattern,Real) => TransmissionPattern

TransmissionPattern = Text (one of "Blending", "Stipple")
Num = Real + Int

H.3 Animation Handles

H.3.1 AnimHandle

AnimHandle_New(): AnimHandle
WHERE

AnimHandle <: ProxiedObj & { animate: () => Ok ! replica_failure,
startAnimation: () => Ok ! replica_failure,
finishAnimation: () => Ok ! replica_failure,
stopAnimation: () => Ok ! replica_failure,
pauseAnimation: () => Ok ! replica_failure,
continueAnimation: () => Ok ! replica_failure,
getAnimationTime:() => Real ! replica_failure,
getAnimationLength:() => Real ! replica_failure,
goToAnimationTime:(Real) => Ok! replica_failure}

H.3.2 AnimHandleCB

AnimHandleCB_New(obj: AnimHandle_T, overrides: Obj): T;
AnimHandleCB_Cancel(cbobj: T): T;
WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:
pre anyChange(obj: AnimHandle_T);
post anyChange(obj: AnimHandle_T);
pre’init(obj: AnimHandle_T): bool;
post’init(obj: AnimHandle_T): bool;
pre startAnimation(obj: AnimHandle_T): bool;
post startAnimation(obj: AnimHandle_T): bool;
pre’stopAnimation(obj: AnimHandle_T): bool;
post stopAnimation(obj: AnimHandle_T): bool;
pre pauseAnimation(obj: AnimHandle_T): bool;
post pauseAnimation(obj: AnimHandle_T): bool;
pre continueAnimation(obj: AnimHandle_T): bool;
post continueAnimation(obj: AnimHandle_T): bool;
pre’goToAnimationTime(obj: AnimHandle_T, time: Real): bool;
post'goToAnimationTime(obj: AnimHandle_T, time: Real): bool;

286

H.4 Interaction Callbacks

Interaction callbacks are used to obtain input from the user via a RootGO.

H.4.1 KeyCB

KeyCB_New(invoke: M): KeyCB
WHERE
KeyCB <: ProxiedObj & { invoke: M }
M = Self (X <: KeyCB) (KeyRec) => Ok
KeyRec = { change: Text, wentDown: Bool, modifiers: [Modifier] }
Modifier = Text (one of "Left", "Middle", "Right",
"Shift", "Lock", "Control", "Option")

A KeyCB is used to obtain keystroke input.

H.4.2 MouseCB

MouseCB_New(invoke: M): MouseCB
WHERE

MouseCB <: ProxiedObj & { invoke: M }

M = Self (X <: MouseCB) (MouseRec) => Ok

MouseRec = { pos: Point2, change: Button,

modifiers: [Modifier], clickType: ClickType }

Point2 = [2*Int]

Button = Text (one of "Left", "Middle", "Right")

Modifier = Text (a Button or one of "Shift", "Lock", "Control",
"Option")

ClickType = Text (one of "FirstDown", "OtherDown", "OtherUp",
"LastUp")

A MouseCB is used to obtain mouse button presses and releases.

H.4.3 PositionCB

PositionCB_New(invoke: M): PositionCB
WHERE
PositionCB <: ProxiedObj & { invoke: M }
M = Self (X <: PositionCB) (PositionRec) => Ok
PositionRec = { pos: Point2, modifiers: [Modifier] }
Point2 = [2*Int]
Modifier = Text (one of "Left", "Middle", "Right",
"Shift", "Lock", "Control", "Option")

287

A PositionCB is used to obtain mouse motion input.

H.5 Location Callbacks

H.5.1 ProjectionCB

ProjectionCB_New(invoke: M): ProjectionCB
WHERE
ProjectionCB <: ProxiedObj & { invoke: M }
M = Self (X <: ProjectionCB) (ProjectionRec) => Ok
ProjectionRec = { base => GraphicsBase,
point => [Point3,Point3,Point3],
relPos => [RelPosition,RelPosition,RelPosition]}
where the 3 elements in point and relPos correspond to the
Left, Right and Monocular viewpoint
RelPosition = {"Front", "On", "Behind"}

A ProjectionCB is used to obtain the 2D projection of a 3D point in the scene.

H.5.2 TransformCB

TransformCB_New(invoke: M): TransformCB
WHERE

TransformCB <: ProxiedObj & { invoke: M }

M = Self (X <: TransformCB) (TransformRec) => Ok

TransformRec = { toWorld => Matrix4,
localOriginToWorld => Point3,
fromWorld => Matrix4,
worldOriginToLocal => Point3 }

A TransformCB is used to obtain the 3D transformations to and from the world coordinate

system of a 3D point in the scene.

H.6 Graphics Bases

Graphics Bases specify which rendering subsystem is to be used to render a 3D scene into

a RootGO. Not all Graphics Bases are available on all machines.

288

H.6.1 GraphicsBase

GraphicsBase_Failure: Exception
WHERE
GraphicsBase <: ProxiedObj &
{ windowPosSize: () => PosSizeRec,

changeTitle: (Text) => Ok,
awaitDelete: () => Ok,
destroy: () => Ok }

PosSizeRec = {origin, viewPortOrigin, viewPortDimen: Point}

GraphicsBase is the abstract base that all others inherit from.

H.6.2 Win_OpenGL_Base

Win OpenGL'Base_New(title: Text, x y w h: Int): Win"OpenGL Base !
GraphicsBase_Failure
Win"OpenGL'Base_NewlInWindow(title: Text, x y w h: Int,
win class: Text):
Win OpenGL 'Base ! GraphicsBase_Failure
Win"OpenGL 'Base_NewStd(): Win'OpenGL Base ! GraphicsBase_Failure
WHERE
Win"OpenGL'Base <: GraphicsBase & {toggleFullScreen: () => Ok}

Render using OpenGL on the Windows platform.

H.6.3 Win_RW _Base

Win'RW'Base_New(title: Text, x y w h: Int): Win"RW Base !
GraphicsBase_Failure
Win’RW Base_NewlInWindow(title: Text, x y w h: Int, name class: Text):
Win"RW'Base ! GraphicsBase_Failure
Win"RW'Base_NewsStd(): Win"RWBase ! GraphicsBase_Failure
WHERE
Win'RW’Base <: GraphicsBase & { toggleFullScreen: () => Ok}

Render using Renderware on the Windows platform.

H.6.4 X OpenGL_Base

X OpenGL'Base_Newf(title: Text, x y w h: Int): X’OpenGL 'Base !
GraphicsBase_Failure

289

X OpenGL'Base_NewWithDisplay(title: Text, x y w h: Int,
dpyName: Text): X’ OpenGL Base ! GraphicsBase_ Failure

X OpenGL'Base_NewOnRoot(title: Text, x y w h: Int): X’OpenGL Base !
GraphicsBase_Failure

X' OpenGL'Base_NewOnRootWithDisplay(title: Text, x y w h: Int,
dpyName: Text): X'OpenGL Base ! GraphicsBase_Failure

X OpenGL'Base_NewlInWindow(title: Text, x y w h winID: Int):
X OpenGL’'Base ! GraphicsBase_Failure

X OpenGL'Base_NewlnWindowWithDisplay(title: Text , Xy w h winID: Int,
dpyName: Text): X' OpenGL 'Base ! GraphicsBase_Failure

X OpenGL'Base_NewStd(): X'OpenGL'Base ! GraphicsBase_Failure

WHERE
X OpenGL’'Base <: GraphicsBase

Render using OpenGL on the Unix/X11 platform.

H.7 Miscellaneous

H.7.1 Anim3D

Anim3D_lock: Mutex
Anim3D_now: Real
The current value of the animation clock.
Anim3D_ChangeClock(proc: ()->Real): Ok
Change the animation clock. The procedure "proc" is the new time
function that returns the "current time".
Anim3D_DefaultClock(): Ok
Revert to the default, real-time animation clock.
Anim3D_SetErrorWr(wr: Wr): Ok
Set the writer to which animation server error messages will be
written to be "wr". By default, error messages are written to
"wr_stderr".

H.7.2 AnimHook

AnimHook_AddBeforeHook(f: (Real)->Ok): Ok
AnimHook_RemoveBeforeHook(f: (Real)->Ok): ((Real)->Ok | Ok)
AnimHook_AddAfterHook(f: (Real)->Ok): Ok
AnimHook_RemoveAfterHook(f: (Real)->Ok): ((Real)->Ok | Ok)

H.7.3 ProxiedObj

TYPE ProxiedObj <: { extend: Self(X) All(Y<:{simple}) (Y) => X &Y }

290

Objects of this type also contain a field "raw",
which is for internal use only. All objects must
be simple.

H.7.4 TessSphere

TessSphere_ NewOmniGO(prec: int): GO;

H.7.5 Texlmage

Teximage_Error: Exception

Teximage_New(fileName: Text): TexImage ! Thread.Alerted, Error
WHERE

Texlmage is opaque

201

seenoixt 1 e Animation Time Module

In Section 5.7, we discuss our solution to clock synchronization across multiple machines.
Since we cannot assume that all machines have their time clocks synchronized, we wrote a
simple module to keep the clocks of our distributed processes synchronized. This appen-

dix contains the code for that module.

To use the module, one process is chosen as a server and runs
animtime_serve(hostname) , wherehostname is the host to which the server
network object should be exported to; the server object is the one line object embedded in
thenet_export statement, that containgat() method to return the time on the
server process. Any process can elect to be a client process. The client forks a thread, and
uses a simple protocol to determine the time difference between the two processes. First,
the client calls the serverget() method ten times, with a small pause between each
invocation. By assuming that the round trip time for the call is symmetric (i.e., the delay is
equal for sending the method to the remote host, and returning the time value), half the
delay is subtracted from the server time, giving an approximation of the server’s time
when the method was invoked. The difference between the server’s time and the local
time, averaged over the ten invocations, is used to adjust the local time to correspond

roughly to the server time.

This protocol is not extremely robust, as variations in network delay (both within a
single call, and across multiple calls) exist and add noise to the system. However, we have

found that it works reasonably well in practice, especially on local area networks.

292

.1 animtime.obl

module animtime;

let serve = proc (host)
net_export(“timeserver", host,
{get => meth(s) Anim3D_now end});
ok;
end;

let client = proc (host)
var timeserver = ok;

var offset = 0.0;

var th = ok;

var a = array_new(10, ok);
var b = array_new(10, ok);
var scan = true;

var stop = true;

let start = proc () thread_fork (proc ()
loop
try
if scan then
if timeserver is ok then
timeserver := net_import("timeserver",host);

end;
scan := false;
fori=0to9do

lock Anim3D_lock do
let t1 = sys_timeNow,
t2 = timeserver.get(),
t3 = sys_timeNow;
afi] := (t2 - t1) - ((t3-t1)/2.0);
end;
thread_pause(0.1);
end;

offset := a[0];
fori=1to9do
b[i] := ((a[i] - a[0])/10.0);
offset := offset + b[i];
end;
end;
except net_failure =>
sys_printText("Timeserver.get() failed. " &
"Will try later.\n");
sys_printFlush();
timeserver := ok,
thread_alerted =>
sys_printText("Timeserver.get() interrupted. " &
"Will try later.\n");
sys_printFlush();
end;
(* pause for an hour *)
try
thread_alertPause (3600.0);

293

except thread_alerted => end;
if stop then exit end;
end;
timeserver := ok;
end, 20000) end;
let ret = { stop => meth (s)
if th isnot ok then
stop = true;
thread_alert(th);
thread_join(th);
th := ok;
Anim3D_DefaultClock();
end;
ok;
end,
set => meth (s)
if th isnot ok then

scan ;= true;
thread_alert(th);
end;

end,
offset => meth(s) offset end,
start => meth (s)
if th is ok then
th := start();
thread_pause(1.0);
Anim3D_ChangeClock(proc ()
sys_timeNow + offset;

end);
end;
ok;
end};
ret.start();
ret;

end;

end module;

addhelp animtime short "The animation time synchronization package" full
animtime_serve(host: Text): Ok ! net_failure thread_alerted

Export an animation time server to \"host\". Other processes can
import this to synchronize their animation clocks to us.

animtime_client(host: Text): TimeClient ! net_failure thread_alerted

Import an animation time server client.

TimeClient <: {start: () => Ok ! net_failure,

stop: () => Ok ! net_failure};

	Exploratory Programming of Distributed Augmented Environments
	Abstract
	Table of Contents
	CHAPTER 1 Introduction 1
	CHAPTER 2 An Overview of Coterie 13
	CHAPTER 3 Shared Objects 38
	CHAPTER 4 Repo 84
	CHAPTER 5 Repo-3D 118
	CHAPTER 6 Coterie Examples 158
	CHAPTER 7 Conclusions and Future Work 170
	References 184
	APPENDIX A Example Generated Code 190
	APPENDIX B Tracker Modules 202
	APPENDIX C Repo Syntax 209
	APPENDIX D Additional Enhancements to Repo 211
	APPENDIX E Repo Modules 219
	APPENDIX F Another Replicated Mutex 251
	APPENDIX G Additional Enhancements To Repo-3D 254
	APPENDIX H Repo-3D Modules 257
	APPENDIX I The Animation Time Module 291

	List of Figures
	List of Tables
	Acknowledgments
	CHAPTER 1 Introduction
	1.1 Exploratory Programming of Distributed Augmented Environments
	1.2 Research Contributions
	1. Shared Objects, a novel, tightly integrated replicated object package for a mainstream program...
	2. Repo, a distributed, interpreted language that presents a DOM to the programmer with both clie...
	3. Repo-3D, a high-level, structured graphics library with directly distributable and extensible ...
	4. Coterie, a testbed for fast prototyping of distributed AE applications that incorporates these...
	5. A number of prototypes implemented in Coterie that explore different augmented environment app...
	1.2.1 Shared Objects: A Distributed Shared Object Memory
	1.2.2 Repo: A Distributed Interpreted Language
	1.2.3 Repo-3D: A Distributed 3D Graphics Library
	1.2.4 Coterie: Exploratory Programming of AE Systems
	1.2.5 Prototype Augmented Reality Applications

	CHAPTER 2 An Overview of Coterie
	2.1 Previous Work: Augmented Reality
	2.1.1 KARMA
	Figure 2-1: The KARMA prototype

	2.1.2 Windows on the World
	Figure 2-2: The Windows on the World prototype

	2.1.3 Architectural Anatomy
	Figure 2-3: The Architectural Anatomy prototype

	2.2 Motivation
	Figure 2-4: An example architecture diagram

	2.3 Requirements for the Testbed
	Data replication
	Uniform treatment of data
	Responsive asynchronous data propagation
	Asynchronous update notification
	Embedded interpreted language
	Object-oriented and multithreaded environment
	High-level, platform-independent, extensible, 3D graphics package
	Other desirable distributed system characteristics

	2.4 Related Research Areas
	2.4.1 Virtual Environment Systems
	2.4.2 Distributed Groupware

	2.5 Implementation Overview
	2.5.1 Virtual Environments: Tracker Support
	Figure 2-5: The generic Tracker Report Object hierarchy

	2.6 Initial Prototypes
	2.6.1 Architectural Anatomy
	Figure 2-6: The new Architectural Anatomy prototype

	2.6.2 Telephone Crossbox Maintenance
	Figure 2-7: A prototype AR application for crossbox maintenance

	2.6.3 Spaceframe Construction
	Figure 2-8: A prototype AR application for space frame construction

	2.6.4 Automated Tour Guide
	Figure 2-9: A prototype campus information system
	Figure 2-10: Additional images of the Touring machine
	Figure 2-11: Software design of the prototype campus information system

	CHAPTER 3 Shared Objects
	3.1 Distributed Shared Memory
	3.2 Related Work
	Table 3-1: A comparison of distributed object-based programming systems

	3.3 Shared Object Package Design
	3.3.1 Goal: Tight Integration
	3.3.2 Model: Totally Ordered, Write-Update Objects
	1. All operations on an instance of an object are atomic and serializable. All operations are per...
	2. Property 1 applies to operations on single objects. Making sequences of operations atomic is u...
	Figure 3-1: Control and data flow for a Shared Object update
	Figure 3-2: The relationship between clients, sequencers and object managers

	3.3.3 Event Driven Control Flow: Callback Objects

	3.4 Implementation
	Figure 3-3: Object hierarchy for a Shared Object
	3.4.1 Object Definition and Runtime Code Generation
	3.4.1.1 Example Object Definition
	Figure 3-4: The Modula-3 interface definition for TrackerPosition.
	Figure 3-5: The Modula-3 implementation for TrackerPosition.
	TYPE
	REVEAL
	TYPE
	REVEAL
	REVEAL

	3.4.1.2 Callback Object Usage
	Figure 3-6: The TrackerPositionCB.T Callback Object
	VAR cbObj: Callback;

	3.4.1.3 Passing State Between Processes
	Figure 3-7: The default TrackerPosition.T marshalling code

	3.4.1.4 Additional Tracker Examples
	Figure 3-8: A low frequency tracker object

	3.4.2 The Shared Object Runtime
	3.4.2.1 Thread Management
	Figure 3-9: Data Flow in the Shared Object System
	1. An exclusive write lock is acquired for the object.
	2. All “pre_” methods are called for each Callback Object associated with the object.
	3. The update method is executed.
	4. All “post_” methods are called for each Callback Object associated with the object.
	5. The write lock is released.

	3.4.2.2 Exception and Return Value Handling

	3.4.3 Restrictions

	3.5 Performance and Usability
	3.5.1 Shared Object Performance
	Table 3-2: Local method call performance
	Table 3-3: Distributed method call performance
	Table 3-4: Orca Method call performance

	3.5.2 Shared Object Usability

	3.6 Discussion

	CHAPTER 4 Repo
	4.1 Related Work
	4.2 An Overview of Obliq and Repo
	4.3 Distributed Semantics
	Figure 4-1: The effect of different distribution semantics

	4.4 Replication Syntax
	4.4.1 Declarations
	Table 4-1: Entities with state in Obliq
	Table 4-2: Declaring entities with state in Repo
	Figure 4-2: Declaring objects in Repo

	4.4.2 Cloning Data
	let o1 = {simple,
	let o2 =

	4.4.3 User-defined Picklers
	objectpickler object reader read-actions-object
	objectpickler ret

	4.5 The Replication Module
	4.6 Examples
	4.6.1 Simple Tracker Report Distribution
	Figure 4-3: An example of synchronized replicated objects in Repo

	4.6.2 Asynchronous Change Notification
	Figure 4-4: An example of notifier callback objects in Repo

	4.6.3 Multi-person Spaceframe Construction
	Figure 4-5: Extending the space frame prototype for remote consultation
	Figure 4-6: The replicated state for the distributed ARC prototype

	4.6.4 Distributed Mutexes
	Figure 4-7: A simple client-server mutex
	Figure 4-8: A simple replicated mutex

	4.6.5 Hierarchical Object Directories
	Figure 4-9: A single Object Directory (OD)

	4.7 Implementation
	Figure 4-10: The internal definition of an Obliq array
	Figure 4-11: The internal definition of a Repo array
	Figure 4-12: The internal definition of a Repo replicated object

	4.8 Usability of Repo

	CHAPTER 5 Repo-3D
	Figure 5-1: Two meanings of distributed graphics
	5.1 Related Work
	5.2 Obliq-3D: An Overview
	Figure 5-2: The Repo-3D GO class hierarchy

	Whil
	Figure 5-3: The relationship between properties, names, values, and behaviors
	5.3 Design Of Repo-3D
	5.3.1 Conversion to Shared Objects
	5.3.1.1 Graphical Objects
	5.3.1.2 Properties
	5.3.1.3 Animation Handles
	5.3.1.4 Input Callbacks
	5.3.1.5 Change Notification
	Figure 5-4: The GOCB and PropCB modules

	5.3.2 Local Variations
	5.3.3 Extensibility
	Figure 5-5: Embedding DistAnim-3D objects in Repo

	5.4 Examples
	5.4.1 A Tutorial Example
	Figure 5-6: A simple Repo-3D example

	5.4.2 Yet Another Tracker Example
	5.4.3 A Truncated Pyramid Object
	Figure 5-7: The TruncPyr object

	5.4.4 An Animation Examiner
	Figure 5-8: The distributed CATHI animation viewer

	5.5 Implementation
	Figure 5-9: The internal structure of Anim-3D and DistAnim-3D
	Figure 5-10: The GO.T class
	Figure 5-11: Excerpts from GOPrivate.i3.
	Figure 5-12: BoxGO.T class definitions
	Figure 5-13: The GroupGO.T class definition
	Figure 5-14: The AnimHandle class

	5.6 Performance
	5.7 Discussion

	CHAPTER 6 Coterie Examples
	6.1 Of Vampire Mirrors and Privacy Lamps
	Figure 6-1: The EMMIE system for collaborative augmented environments
	Figure 6-2: The routine to create a VUB item
	Figure 6-3: The structure of a VUB item’s GO

	6.2 Shared Sketch
	Table 6-1: Sketch Object Definitions
	Figure 6-4: The definition of a Coterie Sketch object
	Figure 6-5: Distributed Sketch in use
	Figure 6-6: The structure of the Distributed Sketch prototype

	CHAPTER 7 Conclusions and Future Work
	7.1 Future Work
	7.1.1 Shared Object Update Latency
	7.1.2 Network Awareness
	7.1.3 Additional Replication Semantics
	7.1.4 Multi-object Consistency
	7.1.5 More Flexible Consistency Guarantees
	7.1.6 Better Handling of Time
	7.1.7 Generalized Local Variations in Repo-3D
	7.1.8 Application to Other Languages

	References
	APPENDIX A Example Generated Code
	A.1 TrackerPositionSO.m3
	A.2 TrackerPositionCB.i3
	A.3 TrackerPositionCB.m3
	A.4 TrackerPositionProxy.i3
	A.5 TrackerPositionCBProxy.i3
	A.6 TrackerPositionPickle.i3
	I.1 animtime.obl

	APPENDIX B Tracker Modules
	B.1 The Basic Modules
	B.1.1 Kalman
	B.1.2 Tracker
	B.1.3 TrackerPosition
	B.1.4 TrackerPositionCB
	B.1.5 TrackerServer

	B.2 The Tracking Device Modules
	B.2.1 Dynasight
	B.2.2 FOB
	B.2.3 Logitech
	B.2.4 MSMouse
	B.2.5 PTU
	B.2.6 RingMouse
	B.2.7 Scanner
	B.2.8 Trimble
	B.2.9 vIO

	APPENDIX C Repo Syntax
	APPENDIX D Additional Enhancements to Repo
	D.1 Additional Syntax Changes
	case o of
	option “tag string” => value end
	unreachable id do

	D.2 Module Enhancements and Additions
	Figure D-1: Pattern matching with the Repo reflection module
	let processor = <Processor at elvis>

	D.3 Efficient Module Distribution

	APPENDIX E Repo Modules
	E.1 New Modules
	E.1.1 debug
	E.1.2 dict
	E.1.3 reflect
	E.1.4 replica

	E.2 New Modules for Modula-3 Packages
	E.2.1 dir
	E.2.2 http
	E.2.3 httpField
	E.2.4 httpStatus
	E.2.5 path
	E.2.6 random
	E.2.7 regex
	E.2.8 tcp
	E.2.9 url
	E.2.10 word

	E.3 Changed Modules
	E.3.1 array
	E.3.2 fmt
	E.3.3 lex
	E.3.4 net
	E.3.5 os
	E.3.6 process
	E.3.7 sys
	E.3.8 text
	E.3.9 thread

	E.4 Unchanged Modules
	E.4.1 bool
	E.4.2 char
	E.4.3 color
	E.4.4 form
	E.4.5 int
	E.4.6 math
	E.4.7 online
	E.4.8 pickle
	E.4.9 rd
	E.4.10 real
	E.4.11 vbt
	E.4.12 wr

	APPENDIX F Another Replicated Mutex
	F.1 mutex.obl

	APPENDIX G Additional Enhancements To Repo-3D
	APPENDIX H Repo-3D Modules
	H.1 Graphics Objects
	H.1.1 GO
	H.1.2 GOCB
	H.1.3 AmbientLightGO
	H.1.4 BoxGO
	H.1.5 CameraGO
	H.1.6 ChoiceGroupGO
	H.1.7 ConeGO
	H.1.8 CylinderGO
	H.1.9 DiskGO
	H.1.10 GroupGO
	H.1.11 IndexedLineSetGO
	H.1.12 IndexedPolygonSetGO
	H.1.13 LightGO
	H.1.14 LineGO
	H.1.15 MarkerGO
	H.1.16 OrthoCameraGO
	H.1.17 PerspCameraGO
	H.1.18 PointLightGO
	H.1.19 PolygonGO
	H.1.20 QuadMeshGO
	H.1.21 RootGO
	H.1.22 SphereGO
	H.1.23 SpotLightGO
	H.1.24 SurfaceGO
	H.1.25 Text2DGO
	H.1.26 TextGO
	H.1.27 TorusGO
	H.1.28 VectorLightGO

	H.2 Properties
	H.2.1 Prop
	H.2.2 PropCB
	H.2.3 BooleanProp
	H.2.4 ColorProp
	H.2.5 FontStyleProp
	H.2.6 IntProp
	H.2.7 LineTypeProp
	H.2.8 MarkerTypeProp
	H.2.9 Point2Prop
	H.2.10 PointProp
	H.2.11 RasterModeProp
	H.2.12 RealProp
	H.2.13 ShadingProp
	H.2.14 StringProp
	H.2.15 TexImageProp
	H.2.16 TexModelProp
	H.2.17 TextAlignProp
	H.2.18 TransformProp
	H.2.19 TransmissionPatternProp

	H.3 Animation Handles
	H.3.1 AnimHandle
	H.3.2 AnimHandleCB

	H.4 Interaction Callbacks
	H.4.1 KeyCB
	H.4.2 MouseCB
	H.4.3 PositionCB

	H.5 Location Callbacks
	H.5.1 ProjectionCB
	H.5.2 TransformCB

	H.6 Graphics Bases
	H.6.1 GraphicsBase
	H.6.2 Win_OpenGL_Base
	H.6.3 Win_RW_Base
	H.6.4 X_OpenGL_Base

	H.7 Miscellaneous
	H.7.1 Anim3D
	H.7.2 AnimHook
	H.7.3 ProxiedObj
	H.7.4 TessSphere
	H.7.5 TexImage

	APPENDIX I The Animation Time Module

