
Exploratory Programming of
Distributed Augmented Environments

Blair MacIntyre

Submitted in partial fulfillment of the
requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

1999

© 1999

Blair MacIntyre

All Rights Reserved

the

ays,

a-

yping

e sys-

para-

envi-

ulti-

hared

-

pro-

are

rated

po is

ith an

rmly

D, a

ghtly

strib-

n data
Abstract

Exploratory Programming of Distributed Augmented Environments

Blair MacIntyre

Augmented realityis a form of virtual reality that uses see-through displays to enhance

world with computer-generated material. When combined with more traditional displ

a powerfulaugmented environmentemerges in which two and three dimensional inform

tion can be presented to a user simultaneously on a combination of displays. Protot

these environments is challenging both because they are highly distributed, interactiv

tems, and because of the exploratory nature of building systems for new interaction

digms.

We have developed a testbed for exploratory programming of distributed augmented

ronments, called Coterie. A single programming model is used for both single and m

process programs by building applications as groups of threads communicating via s

objects. The distributed programming model isdistributed object memory(DOM), an

object-based approach todistributed shared memory. Coterie’s DOM presents the pro

grammer with both client-server and replicated distributed objects.

Both interpreted (Repo) and compiled (Modula-3) languages present the application

grammer with similar DOM programming models. Modula-3’s replicated objects

implemented using Shared Objects, an object replication package that is tightly integ

with the Modula-3 object system and designed to be flexible and easy-to-use. Re

implemented using the Shared Object package, and presents the programmer w

interpreted language that supports both client-server and replicated objects unifo

across its entire type system. The final important component of Coterie is Repo-3

high-level, distributed graphics library, built using the Shared Objects package and ti

integrated with Repo. By making all graphical objects extensible and transparently di

utable, programmers can use Repo-3D scene graphs as the basis for their applicatio

ight-

devel-

l anat-

, a

r tele-

pts for
structures, allowing complex distributed graphical applications to be created in a stra

forward manner.

Numerous stand-alone and distributed augmented environment systems have been

oped using Coterie, and demonstrate its usefulness. These include an architectura

omy system for viewing the support structures inside the walls of a building

construction assistant for space frame buildings, a maintenance and repair task fo

phone crossboxes, an augmented reality tour guide, and a number of interface conce

the National Tele-Immersion Initiative.

. . 1

. . 3
. . . . 6
 . . 6
. . . 8
. . 9
 . 11
 . 11

 13

. . 13
 . 14
 . 15
 . 16
. . 17
. . . 19
 . . . 22
 . 22
. . 25
. . 26
 . 28
 . . 30
 . 30
 . . 31
 . . 32
. . 33

. . 38

 . . 39
 . . 42
. . . 47
 . 47
. 48
. 53
 . . 54
 . 55
Table of Contents

CHAPTER 1 Introduction .

1.1 Exploratory Programming of Distributed Augmented Environments
1.2 Research Contributions .

1.2.1 Shared Objects: A Distributed Shared Object Memory.
1.2.2 Repo: A Distributed Interpreted Language
1.2.3 Repo-3D: A Distributed 3D Graphics Library.
1.2.4 Coterie: Exploratory Programming of AE Systems.
1.2.5 Prototype Augmented Reality Applications

CHAPTER 2 An Overview of Coterie .

2.1 Previous Work: Augmented Reality .
2.1.1 KARMA. .
2.1.2 Windows on the World. .
2.1.3 Architectural Anatomy. .

2.2 Motivation .
2.3 Requirements for the Testbed .
2.4 Related Research Areas .

2.4.1 Virtual Environment Systems .
2.4.2 Distributed Groupware.

2.5 Implementation Overview .
2.5.1 Virtual Environments: Tracker Support .

2.6 Initial Prototypes .
2.6.1 Architectural Anatomy. .
2.6.2 Telephone Crossbox Maintenance .
2.6.3 Spaceframe Construction. .
2.6.4 Automated Tour Guide .

CHAPTER 3 Shared Objects.

3.1 Distributed Shared Memory. .
3.2 Related Work .
3.3 Shared Object Package Design .

3.3.1 Goal: Tight Integration. .
3.3.2 Model: Totally Ordered, Write-Update Objects
3.3.3 Event Driven Control Flow: Callback Objects

3.4 Implementation .
3.4.1 Object Definition and Runtime Code Generation
i

. 56
 . 61
. . . 63
. 65
 . . 66
. . 68
. 71
. . 72
 . . 73
 . . 73
. . 79
 . . 82

 . 84

 . . 86
. . 87
 . . 88
 . . 92
. . 92
. . 95
. . 97
. . 98
. . . 99
 . 99
 101
. 102
. 105
 108
 . 111
. 115

 118

 . 121
 123
 . 126
 . 126
 127
. 128
129
 131
131
3.4.1.1 Example Object Definition .
3.4.1.2 Callback Object Usage .
3.4.1.3 Passing State Between Processes
3.4.1.4 Additional Tracker Examples .

3.4.2 The Shared Object Runtime. .
3.4.2.1 Thread Management .
3.4.2.2 Exception and Return Value Handling

3.4.3 Restrictions .
3.5 Performance and Usability. .

3.5.1 Shared Object Performance .
3.5.2 Shared Object Usability .

3.6 Discussion .

CHAPTER 4 Repo. .

4.1 Related Work .
4.2 An Overview of Obliq and Repo .
4.3 Distributed Semantics .
4.4 Replication Syntax. .

4.4.1 Declarations .
4.4.2 Cloning Data .
4.4.3 User-defined Picklers .

4.5 The Replication Module .
4.6 Examples .

4.6.1 Simple Tracker Report Distribution. .
4.6.2 Asynchronous Change Notification .
4.6.3 Multi-person Spaceframe Construction .
4.6.4 Distributed Mutexes.
4.6.5 Hierarchical Object Directories .

4.7 Implementation .
4.8 Usability of Repo .

CHAPTER 5 Repo-3D .

5.1 Related Work .
5.2 Obliq-3D: An Overview. .
5.3 Design Of Repo-3D .

5.3.1 Conversion to Shared Objects .
5.3.1.1 Graphical Objects .
5.3.1.2 Properties .
5.3.1.3 Animation Handles .
5.3.1.4 Input Callbacks .
5.3.1.5 Change Notification .
ii

. 133
 135
. . 137
 138
 138
. 140
 141
 . 144
. . 153
 . 155

 158

 158
. . 162

 170

 . 174
 . 175
. 176
 178
 180
. 180
 181
 182
. 182

. . 184

. 190

 . 190
. 197
. 197
. 200
. 200
. 201

 202

 . 202
5.3.2 Local Variations .
5.3.3 Extensibility .

5.4 Examples .
5.4.1 A Tutorial Example .
5.4.2 Yet Another Tracker Example .
5.4.3 A Truncated Pyramid Object .
5.4.4 An Animation Examiner .

5.5 Implementation .
5.6 Performance .
5.7 Discussion .

CHAPTER 6 Coterie Examples. .

6.1 Of Vampire Mirrors and Privacy Lamps .
6.2 Shared Sketch.

CHAPTER 7 Conclusions and Future Work .

7.1 Future Work .
7.1.1 Shared Object Update Latency .
7.1.2 Network Awareness .
7.1.3 Additional Replication Semantics .
7.1.4 Multi-object Consistency .
7.1.5 More Flexible Consistency Guarantees .
7.1.6 Better Handling of Time .
7.1.7 Generalized Local Variations in Repo-3D
7.1.8 Application to Other Languages .

References .

APPENDIX A Example Generated Code .

A.1 TrackerPositionSO.m3. .
A.2 TrackerPositionCB.i3.
A.3 TrackerPositionCB.m3.
A.4 TrackerPositionProxy.i3.
A.5 TrackerPositionCBProxy.i3 .
A.6 TrackerPositionPickle.i3 .

APPENDIX B Tracker Modules .

B.1 The Basic Modules .
iii

. 202

. 202
. 203
. 203
. 204
. 204
. 204
. 205
. 205
. 206
. 206
. 206
 . 207
. 207
. 208

 209

 211

 . 211
 . 213
215

 219

 . 219
 . 219
. 220
 . 220
. 222
 . 223
. 223
. 224
. 229
 . 230
 . 231
 . 232
 . 232
 . 233
. 234
. 235
B.1.1 Kalman.
B.1.2 Tracker .
B.1.3 TrackerPosition .
B.1.4 TrackerPositionCB.
B.1.5 TrackerServer.

B.2 The Tracking Device Modules.
B.2.1 Dynasight .
B.2.2 FOB .
B.2.3 Logitech .
B.2.4 MSMouse.
B.2.5 PTU .
B.2.6 RingMouse.
B.2.7 Scanner. .
B.2.8 Trimble.
B.2.9 vIO .

APPENDIX C Repo Syntax. .

APPENDIX D Additional Enhancements to Repo .

D.1 Additional Syntax Changes .
D.2 Module Enhancements and Additions .
D.3 Efficient Module Distribution .

APPENDIX E Repo Modules .

E.1 New Modules .
E.1.1 debug .
E.1.2 dict .
E.1.3 reflect .
E.1.4 replica.

E.2 New Modules for Modula-3 Packages. .
E.2.1 dir .
E.2.2 http .
E.2.3 httpField .
E.2.4 httpStatus .
E.2.5 path. .
E.2.6 random .
E.2.7 regex. .
E.2.8 tcp. .
E.2.9 url .
E.2.10 word .
iv

. . 235
 . 235
. 236
. 236
 . 237
 . 238
 . 238
 . 239
 . 240
 . 241
 . 242
. 243
 . 243
. 243
. 244
. 245
 . 246
. 246
. 247
 . 247
 . 248
 . 249
. 249

251

 . 252

254

 257

 . 257
. 257
. 258
 260
. 260
 . 260
. 261
. 261
. 262
. 262
. 263
E.3 Changed Modules .
E.3.1 array .
E.3.2 fmt .
E.3.3 lex.
E.3.4 net. .
E.3.5 os .
E.3.6 process .
E.3.7 sys .
E.3.8 text .
E.3.9 thread .

E.4 Unchanged Modules .
E.4.1 bool .
E.4.2 char. .
E.4.3 color .
E.4.4 form .
E.4.5 int .
E.4.6 math .
E.4.7 online .
E.4.8 pickle .
E.4.9 rd .
E.4.10 real .
E.4.11 vbt .
E.4.12 wr .

APPENDIX F Another Replicated Mutex .

F.1 mutex.obl .

APPENDIX G Additional Enhancements To Repo-3D.

APPENDIX H Repo-3D Modules .

H.1 Graphics Objects .
H.1.1 GO .
H.1.2 GOCB .
H.1.3 AmbientLightGO .
H.1.4 BoxGO .
H.1.5 CameraGO .
H.1.6 ChoiceGroupGO .
H.1.7 ConeGO .
H.1.8 CylinderGO .
H.1.9 DiskGO .
H.1.10 GroupGO .
v

. 263

. 264
. 264
. 265
. 265
 . 266
 . 266
 266
. 267
 . 267
. 267
 . 268
. 269
 . 269
. 271
. 271
. 272
 272
. . 272
 . 272
. 273
. 273
. 274
. 274
. 275
. 276
. 276
. 277
. 278
 . 278
 . 279
 . 280
. 280
 . 281
. 282
 282
. 283
 . 284
. 285
 285
 285
 . 286
. 286
H.1.11 IndexedLineSetGO.
H.1.12 IndexedPolygonSetGO.
H.1.13 LightGO .
H.1.14 LineGO .
H.1.15 MarkerGO .
H.1.16 OrthoCameraGO .
H.1.17 PerspCameraGO .
H.1.18 PointLightGO. .
H.1.19 PolygonGO .
H.1.20 QuadMeshGO .
H.1.21 RootGO .
H.1.22 SphereGO. .
H.1.23 SpotLightGO .
H.1.24 SurfaceGO .
H.1.25 Text2DGO .
H.1.26 TextGO.
H.1.27 TorusGO.
H.1.28 VectorLightGO. .

H.2 Properties .
H.2.1 Prop .
H.2.2 PropCB.
H.2.3 BooleanProp.
H.2.4 ColorProp.
H.2.5 FontStyleProp .
H.2.6 IntProp .
H.2.7 LineTypeProp.
H.2.8 MarkerTypeProp .
H.2.9 Point2Prop .
H.2.10 PointProp .
H.2.11 RasterModeProp .
H.2.12 RealProp. .
H.2.13 ShadingProp. .
H.2.14 StringProp .
H.2.15 TexImageProp .
H.2.16 TexModelProp .
H.2.17 TextAlignProp .
H.2.18 TransformProp .
H.2.19 TransmissionPatternProp .

H.3 Animation Handles .
H.3.1 AnimHandle. .
H.3.2 AnimHandleCB .

H.4 Interaction Callbacks .
H.4.1 KeyCB .
vi

. 286

. 286
 . 287
. 287
. 287
. . 287
 . 288
. 288
. 288
. 288
 . 289
 289
 289
. 289
 . 290
. 290

91

. 292
H.4.2 MouseCB .
H.4.3 PositionCB .

H.5 Location Callbacks. .
H.5.1 ProjectionCB .
H.5.2 TransformCB .

H.6 Graphics Bases.
H.6.1 GraphicsBase .
H.6.2 Win_OpenGL_Base.
H.6.3 Win_RW_Base.
H.6.4 X_OpenGL_Base.

H.7 Miscellaneous .
H.7.1 Anim3D .
H.7.2 AnimHook .
H.7.3 ProxiedObj .
H.7.4 TessSphere .
H.7.5 TexImage .

APPENDIX I The Animation Time Module . 2

I.1 animtime.obl .
vii

. . 14
 . . 15
. . 17
. . . 18
 . . 29
. . 31
. . 32
. . 33
 . . 34
 . . 35
 . . 36
. . . 52
. . . . 53
. . . 54

2
4
 . . 66
. . . 69
. . 90
. . . 94
 . 100
. 102
 . 103
 . 104
 . 106
 . 107
. 109
. 112
 . 113
 . 114
 . 119
. . 124
 . . 125
32
. 136
List of Figures

Figure 2-1: The KARMA prototype .
Figure 2-2: The Windows on the World prototype .
Figure 2-3: The Architectural Anatomy prototype .
Figure 2-4: An example architecture diagram.
Figure 2-5: The generic Tracker Report Object hierarchy .
Figure 2-6: The new Architectural Anatomy prototype .
Figure 2-7: A prototype AR application for crossbox maintenance
Figure 2-8: A prototype AR application for space frame construction.
Figure 2-9: A prototype campus information system .
Figure 2-10: Additional images of the Touring machine .
Figure 2-11: Software design of the prototype campus information system.
Figure 3-1: Control and data flow for a Shared Object update
Figure 3-2: The relationship between clients, sequencers and object managers. .
Figure 3-3: Object hierarchy for a Shared Object .
Figure 3-4: The Modula-3 interface definition forTrackerPosition 57
Figure 3-5: The Modula-3 implementation forTrackerPosition 58
Figure 3-6: TheTrackerPositionCB.T Callback Object 6
Figure 3-7: The defaultTrackerPosition.T marshalling code 6
Figure 3-8: A low frequency tracker object. .
Figure 3-9: Data Flow in the Shared Object System.
Figure 4-1: The effect of different distribution semantics.
Figure 4-2: Declaring objects in Repo.
Figure 4-3: An example of synchronized replicated objects in Repo
Figure 4-4: An example of notifier callback objects in Repo
Figure 4-5: Extending the space frame prototype for remote consultation.
Figure 4-6: The replicated state for the distributed ARC prototype
Figure 4-7: A simple client-server mutex .
Figure 4-8: A simple replicated mutex .
Figure 4-9: A single Object Directory (OD) .
Figure 4-10: The internal definition of an Obliq array .
Figure 4-11: The internal definition of a Repo array. .
Figure 4-12: The internal definition of a Repo replicated object
Figure 5-1: Two meanings of distributed graphics .
Figure 5-2: The Repo-3D GO class hierarchy.
Figure 5-3: The relationship between properties, names, values, and behaviors . .
Figure 5-4: TheGOCB andPropCB modules. 1
Figure 5-5: Embedding DistAnim-3D objects in Repo.
viii

 . 139
141
143
145
. 148
49
149
50

152
. 159
 . 160
. 161
 . 166
. . 167
 . 168
 . 214
Figure 5-6: A simple Repo-3D example .
Figure 5-7: TheTruncPyr object .
Figure 5-8: The distributed CATHI animation viewer .
Figure 5-9: The internal structure of Anim-3D and DistAnim-3D
Figure 5-10: TheGO.T class.
Figure 5-11: Excerpts fromGOPrivate.i3 .. 1
Figure 5-12: BoxGO.T class definitions .
Figure 5-13: TheGroupGO.T class definition . 1
Figure 5-14: TheAnimHandle class .
Figure 6-1: The EMMIE system for collaborative augmented environments.
Figure 6-2: The routine to create a VUB item. .
Figure 6-3: The structure of a VUB item’s GO.
Figure 6-4: The definition of a Coterie Sketch object .
Figure 6-5: Distributed Sketch in use .
Figure 6-6: The structure of the Distributed Sketch prototype
Figure D-1: Pattern matching with the Repo reflection module
ix

x

List of Tables

Table 3-1: A comparison of distributed object-based programming systems. 43
Table 3-2: Local method call performance . 73
Table 3-3: Distributed method call performance. 74
Table 3-4: Orca Method call performance . 75
Table 4-1: Entities with state in Obliq. 92
Table 4-2: Declaring entities with state in Repo . 93
Table 6-1: Sketch Object Definitions . 163

is

,

as

e it

 the

n

i and

nd

sow

ing

m,

in

m. I

on

ed

ed in

erta-

ort

ost

d

-97-

tions

), the
Acknowledgments

While it will be impossible to thank all those who have contributed in some way to th

work, there are certain folks who must be acknowledged. First and foremost are the

members of the Computer Graphics and User Interfaces Lab at Columbia University

where this work was undertaken, especially my advisor Steven Feiner. Xinshi Sha w

instrumental in implementing many of the efficiency improvements to Anim3D to mak

usable for our applications. Numerous others at Columbia influenced this work over

years, especially Clifford Beshers, Reza Jalili, Sushil Dasilva, Tobias Höllerer, Steve

Dossick, Steven Abrams, Bruce Zenel, Andreas Butz and Simon Baker. Luca Cardell

Marc Najork of DEC SRC created Obliq and Obliq-3D, and provided ongoing help a

encouragement over the years that Repo and Repo-3D have been evolving. Bill Kal

and Farshad Nayari of Critical Mass provided help with all aspects of Modula-3, includ

creating an excellent implementation of the language.

When examining my underlying motivations for how I approached this proble

the influence of Peter Buhr can be found, to whom I am thankful for long ago instilling

me the value of a solid and beautiful foundation for any complex programming syste

am grateful to Henri Bal for creating Orca and publishing inspiring and lucid papers

both the language and Distributed Object Memory in general.

Finally, I would like to thank the many relatives and friends who have encourag

and supported me over the many years spent on this work. My family has never waver

their support, or in their conviction that I could and would one day complete this diss

tion. Many, many friends, including those mentioned above, have provided the supp

needed over the years, sharing more than just food, coffee, beer and scotch. The m

important of these is Beth Mynatt, whose love and encouragement kept me sane an

focused during the final months of writing.

This work was supported by ONR Contracts N00014-94-1-0564 and N00014

1-0838, the National Science Foundation under Grant CDA-92-23009 and ECD-88-

11111, the New York State Center for High Performance Computing and Communica

in Healthcare (supported by the New York State Science and Technology Foundation

Advanced Network & Services National Tele-Immersion Initiative, and gifts from

NYNEX Science & Technology, Intel, Critical Mass, Apple, Microsoft, and Mitsubishi

Electric Research Laboratory.
xi

y,

s

I also record those events which led, by insensible steps, to my after tale of miser

for when I would account to myself for the birth of that passion which afterwards

ruled my destiny I find it arise, like a mountain river, from ignoble and almost

forgotten sources; but, swelling as it proceeded, it became the torrent which, in it

course, has swept away all my hopes and joys.

— Mary Shelley, Frankenstein
xii

1

n-

om-

 as

ser,

-worn

s in a

apid

will

user,

c vir-

ons

ter-

d

tages

om-
CHAPTER 1 Introduction

Are you sitting comfortably? Then I’ll begin.

— Preamble to children’s story inListen With Mother,

BBC radio program from 1950.

In recent years, the popularity ofvirtual environments (VEs), also known by the popular

termvirtual reality (VR), has varied greatly. While VEs initially received significant atte

tion as an interface metaphor that would revolutionize the way people interact with c

puters, most attempts to explore this new paradigm have not lived up to initial

expectations. The focus of much of this attention has been on what we shall refer to

exclusive VEs, in which an entirely synthetic sensory experience is presented to the u

typically focusing on the visual and auditory senses through the use of opaque, head

displays and headphones. The intuitive appeal of VEs is obvious; by immersing user

rich 3D world, they should be able to interact with virtual information using the same

skills with which they interact with the real world every day. However, there are a few

obvious problems with the paradigm. The first is a technological one: even with the r

advance in technology, it does not seem likely that convincing, realistic environments

be created any time soon, either in terms of the quality of the illusion presented to the

or the quality of the interaction. The second is a social one: even if reasonably realisti

tual environments could be created, it is not clear that people will want their interacti

with the “virtual world” to cut them off from the richness of the real world and their in

actions with other people and physical artifacts, such as telephones, books, pens an

paper.

Fortunately, alternative approaches may provide many of the proposed advan

of VR while avoiding many of the problems. In particular,augmented reality (AR) tech-

niques aim to enhance, rather than replace, the user’s perception of the world with c

2

usive

e

t-

ly a

that

n-

nition,

such

iron-

 a

abili-

tion

ons

al

e

ys.

ter-

 for

 the

rfere

tion
puter-generated information. Our view, shared by many AR researchers, is that excl

VEs should (and probably will) only be used for those applications where the extrem

sense of presence obtained by being entirely immersed in an virtual environment ou

weighs the disadvantages of being cut off from the real world. We also believe that on

small subset of the applications that have been proposed for VEs fit in this category.

Furthermore, it is not clear that either pure AR or VR will completely replace existing

computer interfaces. Instead, it seems likely that hybrid user-interfaces will emerge

combine AR with other interaction paradigms. These interfaces would integrate mai

stream input and output devices (e.g, mice, tablets, speech generation, voice recog

and desktop, wall-mounted and handheld displays) with techniques and devices from

interaction paradigms as augmented reality, ubiquitous computing and intelligent env

ments. Such interfaces are calledaugmented environments (AEs).

The importance of AR techniques in these environments lie in theirpersonal

nature. Since AR displays tend to bepersonal displays(that are worn or carried by an indi-

vidual user and whose output is only perceived by that user), AR techniques provide

solid foundation for imbuing an augmented environment with ubiquitous display cap

ties that are tailored to the needs of individual users. By accurately sensing the loca

and orientation of the occupants of the environment, auditory and visual augmentati

can also be presentedin contexton a per user basis. When combined with more tradition

devices, a rich information space is created where combinations of public and privat

information can be presented to users simultaneously using a combination of displa

This augmenting and leveraging of the real world makes possible a wide variety of in

action techniques and ways of organizing information.

The presence of these personal AR displays makes AEs especially complex,

three reasons: the displays are availablecontinuously, the information environment

changesdynamically, and the information often needs to bespatially located. In the first

case, since the displays are designed to be perceivedat the same time that the user is

attending to naturally occurring phenomenon with the same senses used to perceive

AR display, the information being presented must be designed so that it does not inte

with their day-to-day activities. Second, even when the user is attending to the informa

3

ontin-

ove-

uire

must

dis-

ext,

ng a

tiga-

AEs

98].

3a,

ser

 diffi-

h

ens

rated

assort-

ny

ons,

essar-

re

ers,

the
presented on the see-through head-worn displays or headphones, the information c

ues to interact with the environment, in possibly complex ways. For example, small m

ments of the user’s head will change what they are looking at and may therefore req

information on the (personal or shared) displays to be changed. These interactions

then be taken into account when designing these dynamically changing information

plays. Finally, virtual information often needs to appear directly in some physical cont

either by overlaying visual elements at some specific location, or by spatially positioni

sound. To do this, highly accurate position and orientation sensing of the people and

objects that occupy the environments is needed.

1.1 Exploratory Programming of Distributed
Augmented Environments

The research reported in this dissertation was motivated by our interest in, and inves

tion of, the user-interaction issues that arise when building applications for multi-user

[MacIntyre and Feiner, 1994, MacIntyre and Feiner, 1996a, MacIntyre and Mynatt, 19

Based on our initial experience building single-user AR prototypes [Feiner et al., 199

Feiner et al., 1993b, Feiner et al., 1995], it was obvious early on that exploring multi-u

AEs would be unusually challenging. First, the physical environments are extremely

cult to work with. Multiple users, multiple displays of different kinds (from see-throug

head-worn to wall-mounted to hand-held), and a wide variety of input devices (from p

and mice to voice to three and six degree-of-freedom (DOF) sensors) must be integ

into a single cohesive system. Second, these devices and displays are attached to an

ment of computers, requiring that the simplest of applications be distributed over ma

machines. These difficulties are exacerbated by theexploratory nature of building proto-

types for a completely new interaction paradigm: neither the structure of the applicati

the kind of data being shared, nor the distribution characteristics of that data are nec

ily known ahead of time and will likely be modified continuously as the applications a

developed.

Finally, our research prototypes are usually developed by a group of research

not an individual programmer. Dourish points out that not only the mechanics, but also

4

igh

o

6].

d sys-

nvi-

s

h

 is

nvi-

ro-

 and

ble.

(in

ossi-

 the

ivat-

s, rang-

lex

oto-

cy of

ple-

are

r-
social activities, of prototyping and collaborative development require toolkits with a h

degree of flexibility, a finding that falls in line with our experiences. If the tools are to

rigid, the natural exploratory nature of collaborative prototyping suffers [Dourish, 199

This research meets these challenges by combining state-of-the-art distribute

tems, programming language and graphics techniques into a flexible programming e

ronment called Coterie. In contrast to much of the research in these areas, the issue

encountered when building Coterie are addressed in the context of our main researc

focus, the exploration of novel, highly interactive user-interfaces. As a result, Coterie

well suited to prototyping applications for multiple display, multi-modal augmented e

ronments, as well as a wide variety of other distributed interactive applications.

The goal of this research is to create an environment that allows distributed p

grams to be built as easily as non-distributed ones, even if that means the execution

network usage of those programs may be slightly less efficient than otherwise possi

The primary concern is to develop an exploratory programming environment in which

the words of Alan Kay) “simple things should be simple, complex things should be p

ble”. This focus on ease of use, at the possible expense of efficiency, is not typical in

design of distributed programming environments. However, in the context of our mot

ing research agenda, this focus is reasonable: the target audience is HCI researcher

ing from undergraduate students to graduate students, professors and professional

programmers, most of whom have little experience (or direct interest in) building comp

distributed applications. These researchers typically build throw-away application pr

types to demonstrate interaction concepts, and are not overly focused on the efficien

execution of these prototypes.

We satisfy these goals by focusing onsimplicityandflexibility. To ensure that

“simple things are simple”, Coterie’s distributed programming model is based on a

familiar and well understood non-distributed programming paradigm, that of multiple

threads of control communicating via shared objects. By providing an object-based im

mentation ofdistributed shared memory (DSM) [Li, 1986], often called adistributed

object memory(DOM) [Levelt et al., 1992], both stand-alone and distributed programs

built the same way, with local and distributed data being used transparently and inte

5

ough

opu-

capi-

ject

to

on

and

f

ed

t-

tively

e-

the

o-

in

 new

tly

gani-

 for

po-

d for

s,

ns,
changeably, and with threads on the same or different machines communicating thr

shared objects. Furthermore, these distribution facilities are tightly-integrated with a p

lar programming language, allowing existing software and programming skills to be

talized on. Our contribution to Coterie’s DOM programming model is the Shared Ob

object replication package, which was designed to be integrated with Modula-3 and

address the needs of highly interactive, distributed applications.

To further ensure that simple tasks are easy, Coterie includes the most comm

building blocks needed for the sorts of applications we envision, the most important

interesting being a novel distributed 3D graphics library called Repo-3D. Finally, all o

these facilities are made available in Repo, Coterie’s high-level, interpreted, distribut

language. Repo is the only interpreted language we know of that supports both clien

server and replicated data uniformly across its entire type system. Using Repo, rela

sophisticated applications can be built and tested with a minimum of effort. The impl

mentations of Repo and Repo-3D also serve to highlight the power and flexibility of

Shared Object package.

To ensure that “complex things are possible,” Coterie is a general purpose pr

gramming environment whose data distribution facilities were designed with flexibility

mind. This is a key to its eventual success; because Coterie is being used to explore

computing paradigms, it should contain as few distribution or interactionpoliciesas possi-

ble. Rather, the programmer is presented with languages and tools that are sufficien

powerful and flexible to experiment with whatever policies and approaches to data or

zation, control flow and user-interaction are appropriate. In effect, Coterie is a toolkit

building experimental AE systems, not an AE system itself.

This dissertation will discuss the design and implementation of the various com

nents of Coterie, and how they fit together to satisfy our goal of an easy-to-use testbe

building distributed AEs. Examples of its use, and justification for the various choice

will be provided by presenting simple examples, and discussing complete applicatio

built using the toolkit.

6

nvi-

ra-

h are:

ream

r with

ten-

tes

envi-

ment

itec-

tem.

ch is

ting

),

page-

pre-

ram-

data is
1.2 Research Contributions

The research described in this dissertation involves the creation of a programming e

ronment to support exploratory programming of distributed AEs, and in using this inf

structure to investigate some interesting problems. The contributions of this researc

1. Shared Objects, a novel, tightly integrated replicated object package for a mainst

programming language (Modula-3) that presents the programmer with a powerful

DOM programming model,

2. Repo, a distributed, interpreted language that presents a DOM to the programme

both client-server and replicated data sharing semantics,

3. Repo-3D, a high-level, structured graphics library with directly distributable and ex

sible graphical objects,

4. Coterie, a testbed for fast prototyping of distributed AE applications that incorpora

these components, and

5. A number of prototypes implemented in Coterie that explore different augmented

ronment application domains.

1.2.1 Shared Objects: A Distributed Shared Object Memory

The idea of distributed shared memory (DSM) was introduced by Li [Li, 1986, Li and

Hudak, 1989]. His approach, and that of a number of others since then, was to imple

shared memory at the operating system level, by leveraging the virtual memory arch

ture and integrating memory distribution with the paging system of the operating sys

Unfortunately, this approach suffers from a number of problems, not the least of whi

difficulty of implementation that arises because changes must be made at the opera

system level.

An alternative approach, often referred to as Distributed Object Memory (DOM

is a distributed shared-memory abstraction that avoids the problems caused by the

level granularity of DSM. In this approach, the illusion of one large shared memory is

sented at the programming language level, by encapsulating the shared data in prog

ming language objects and using the language constructs to ensure all access to that

7

level,

object

 fea-

ork.

ing

talk

a

ages

mote

uired

ver

-

ri-

od-

r it.

jects

c mar-

e of

ed

ro-

ts
through method calls on those objects. Access to objects is uniform: at the language

local and remote objects are accessed in the same way. Distribution semantics (if an

is replicated, when to migrate single-copy objects, etc.) may be hidden, or language

tures may be used to control them.

While there have been a number of DOM systems, none are suitable for our w

All of the systems that support replicated data are part of non-mainstream programm

languages (e.g., Argus [Liskov, 1988], Amber [Chase et al., 1989], Distributed Small

[Decouchant, 1986], Emerald [Jul et al., 1988], Munin [Bennett et al., 1989], and Orc

[Bal et al., 1992]). Those systems that are integrated with popular programming langu

only support client-server data, with a single copy of each object and proxy-based re

access from other processes (e.g., RPC [Birrell and Nelson, 1984], CORBA

[OMG, 1992], Network Objects [Birrell et al., 1993], Java RMI [Wollrath et al., 1996],

and ILU [Janssen et al., 1998]). Unfortunately, client-server data is not sufficient for

highly interactive applications. Replicated data is needed as well, since any data req

to respond to a user’s actions in real time must be local to the process handling that

response. Since this replicated data may or may not need to remain synchronized o

time, there are three basic data distribution semantics needed for our domain: client

server, unsynchronized replication, and synchronized replication.

Building a custom language, or working with an obscure one, is impractical, p

marily because of the lack of existing software. One of the main reasons we chose M

ula-3 [Harbison, 1992] for this work was the variety of software packages available fo

One particularly useful package provides an elegant solution for distributed shared ob

with client-server distribution semantics (Network Objects [Birrell et al., 1993]). This

package also ends up providing unsynchronized replicated objects though automati

shalling of arbitrary data structures: any non-Network Object parameter or return valu

a Network Object method call is automatically copied between processes. The Shar

Object package is a complementary package that satisfies the need for tightly synch

nized replicated data and is cleanly integrated with Modula-3 and the Network Objec

package.

8

plica-

 In

Bal

f object

y

icas of

s an

the

aphi-

ency

man-

ary

por-

ct on

am-

y

ported

-

uage

ugh-

pport

p-

les)
The Shared Object package design was inspired by the approach to object re

tion used by Bal and his colleagues [Bal and Tanenbaum, 1988, Levelt et al., 1992].

their formulation, implemented in the Orca programming language [Bal et al., 1992,

et al., 1998], objects are replicated across machines as needed and the semantics o

replication are enforced by the language. Replication consistency is accomplished b

write-update viatotally-ordered function shipping, where the runtime environment

ensures all methods that update an object are executed in the same order on all repl

the object. As it turns out, this approach is extremely well suited to implementation a

add-on to a strongly-typed programming language such as Modula-3. Furthermore,

performance characteristics of this approach are appropriate for highly interactive gr

cal systems, where the objects tend to have a high read/write ratio and need low lat

update distribution.

By encapsulating application state in the language objects and having the se

tics enforced transparently, both Network and Shared Objects satisfy one of our prim

goals by exhibiting a high degree of network data transparency. This is extremely im

tant for exploratory programming, as changes in the distribution patterns of data (for

example, when client-server data becomes replicated) will then have a minimal impa

the structure of the code. Because these objects are tightly integrated into the progr

ming language, objects with different distribution semantics can be mixed in arbitrar

ways with predictable, and sometime novel, results. These results have also been re

in [MacIntyre, 1995, MacIntyre and Feiner, 1996b].

1.2.2 Repo: A Distributed Interpreted Language

A common approach to rapid prototyping is to provide the programmer with an inter

preted language in which they can build their applications: Coterie’s interpreted lang

is called Repo. Since we want Coterie to support a common programming model thro

out its various components, both the interpreted and compiled languages should su

similar forms of object distribution.

Repo is based on a distributed language, called Obliq [Cardelli, 1995], that su

ports client-server distribution semantics of all data items (objects, arrays and variab

9

t all

s, via

 our

nd

seman-

ee

ed in

than

 a

tory

y the

se

he

ns.

the

ing

ohlf

rful

 are

tate of
via the Network Object package. Repo extends Obliq’s type system uniformly so tha

its data items can also be distributed using both unsynchronized replication semantic

normal programming language objects, and synchronized replication semantics, via

Shared Object package. Repo also includes a number of libraries that are needed to

support rapid prototyping in our domain, such as simple support for reflection, HTTP

clients and servers, regular expressions and so on.

Unlike the Modula-3 DOM, in which only the programming language objects (a

not other language data, such as arrays and sets) are distributable with all possible

tics, in Repo all data items (objects, arrays and variables) can take on any of the thr

possible distribution semantics. Since all of these data types can be mixed and match

arbitrary ways, a wider range of interesting data structures can be developed in Repo

is possible in Modula-3. Because it allows distributed applications to be developed in

few lines of interpreted code, Repo turns out to be an excellent language for explora

programming of distributed interactive applications. The implementation of replicated

objects in Repo also serves to highlight the power of the programming model used b

Shared Object package.

1.2.3 Repo-3D: A Distributed 3D Graphics Library

Distributed graphicsrefers both to the architecture of a single graphical application who

components are distributed over multiple machines, and to systems for distributing t

shared graphical state of multi-display/multi-person, distributed, interactive applicatio

Coterie is designed to support both of these architectures. The former is obviously

supported by the combination of Repo and any non-distributed 3D graphics library;

latter is provided by Repo-3D.

While many excellent, high-level programming libraries are available for build

stand-alone 3D applications (e.g., Inventor [Strauss and Carey, 1992], Performer [R

and Helman, 1994], and Java 3D [Sowizral et al., 1998]), there are no similarly powe

and general libraries for building distributed 3D graphics applications. Programmers

typically forced to use a general purpose mechanism, such as Repo, for distributing

application state, and then to manually synchronize that state at each site with the s

10

by

ensi-

ed to

 they

ts’ abil-

es

d for

the

e

 need

may

ne

 be

ced.

n

 of

n

a local graphics library. Keeping these “dual databases” synchronized is a complex,

tedious, and error-prone endeavor. Repo-3D was designed to address this problem

allowing programmers to encode application state in its directly distributable and ext

ble 3D graphical objects.

Repo-3D is an object-oriented, high-level graphics package, derived from

Obliq-3D [Najork and Brown, 1995]. Like Obliq-3D, Repo-3D’s graphics facilities are

similar to those of other modern high-level graphics libraries. However, the objects us

create Repo-3D’s graphical scenes are directly distributable and extensible because

are built using Shared Objects. Repo-3D also takes advantage of the Shared Objec

ity to allow programmers to locally modify the object’s replicated state. This address

two concerns particular to distributed applications, interactivity and the frequent nee

local variations to the global scene.

With most approaches to synchronized replicated data (including the Shared

Objects), updates to distributed state will be slower than updates to local state, and

amount of data that can be distributed is limited by network bandwidth. Therefore, if

interactive speed is not to be sacrificed, a programmer must be able to perform som

operations locally. Additionally, there are times when a shared graphical scene may

to be modified locally for reasons other than efficiency. For example, a programmer

want to highlight the object under one user’s mouse pointer without affecting the sce

graph viewed by other users. Repo-3D allows the properties of a graphical object to

modified locally, and parts of the scene graph to be locally added, removed, or repla

Repo-3D is the first implementation of a directly distributed and extensible 3D

graphics library. In addition to providing a solution to some significant issues, we

highlight a number of directions for future work both in distributed 3D graphics and i

object-based distributed shared memory systems. As with Repo, the implementation

Repo-3D highlights the power of the Shared Object package. Repo-3D has also bee

reported to the research community in [MacIntyre and Feiner, 1998].

11

d to

l

n-

d two-

s

ng

for

d in

bia's

ions

of our

,

iner

sting

where

type,
1.2.4 Coterie: Exploratory Programming of AE Systems

Coterie incorporates Repo and Repo-3D as its major building blocks, and is designe

support our experimentation with distributed AEs. Coterie provides a unique, genera

purpose environment for constructing experimental distributed virtual environment

systems and applications in a heterogeneous computing environment1.

In addition to Repo and Repo-3D, Coterie contains a set of building blocks

particular to AE applications. These include support for typically useful virtual enviro

ment components, such as two, three and six degree-of-freedom (DOF) trackers an

way differential constraints. More interestingly, Coterie includes a number of librarie

(some of which have been developed based on our group’s experiences implementi

prototype applications) that demonstrate how a general purpose DSM can be used

building distributed virtual environment applications. This work has also been reporte

[MacIntyre and Feiner, 1996b, MacIntyre, 1997].

1.2.5 Prototype Augmented Reality Applications

During the course of this research, the testbed has been used by members of Colum

Computer Graphics and User Interfaces Lab to build a number of prototype applicat

that demonstrate the utility of this work and point the way towards future research.

These prototypes include both new application areas and enhanced versions

group’s previous prototype systems, and cover a wide range of application domains

including:

• extending our previousarchitectural anatomy project, in which we allowed a user to

view the support structures (columns, beams, etc.) inside the walls of a building [Fe

et al., 1995], to include both construction of new structures and maintenance of exi

structures [Webster et al., 1996a, Webster et al., 1996b],

• a maintenance and repair task for telephone crossboxes. A telephone crossbox is

a telephone company wire bundle is patched through to subscribers. In this proto

1. Coterie currently runs on Solaris, IRIX, Windows NT, Windows 95 and Linux.

12

nnel

and

mpus,

r’s

to

m

es for
we allow notes to be spatially attached to groups of terminals, so that repair perso

can reserve terminals, denote bad or suspicious terminals, and so on [MacIntyre

Feiner, 1996b].

• an augmented reality tour guide, where an outdoor site (such as the Columbia ca

in our case) is augmented with interesting information displayed on either the use

HMD or handheld tablet display [Feiner et al., 1997],

• exploring interface concepts for the National Tele-Immersion Initiative, such as how

integrate other user interface tools (e.g. the integration of the Brown Sketch syste

[Zeleznik et al., 1991], demonstrated during the presentation of [MacIntyre and

Feiner, 1998]),

• exploring the management of information across multiple, heterogeneous display

devices. EMMIE has been developed to explore this issue, focussing on techniqu

dealing with privacy issues is multi-user environments [Butz et al., 1998].

13

up-

e will

sed

er of

trib-

ents,

ilt.

ell

 of

por-

-cou-

s of

ined

or-

3a,

e typ-

real-
CHAPTER 2 An Overview of Coterie

In this chapter, we will give a high level overview of Coterie, the testbed we built to s

port our AE research, and which encompasses the ideas presented in this thesis. W

begin by detailing the high-level requirements that were identified for the testbed, ba

on our previous experience, both building distributed AR systems and using a numb

VE systems. After presenting related work in distributed virtual environments and dis

uted groupware, we will discuss the design of Coterie in the context of our requirem

the related work and the practical implications of the environment in which it was bu

But first, a note about the name of the testbed. Acoterie is a group of people who

share a common interest. As will become apparent in this chapter, this concept fits w

with our view of the kinds of distributed applications we will build, as a set of threads

control that are designed to work together to achieve a common goal. This is fairly im

tant, as it prejudices our design decisions in favor of techniques that facilitate tightly

pled distributed processes, in contrast to the decisions we would have made if we

approached our applications differently. For example, if we built our systems as group

agents, our design would favor techniques appropriate for loosely-coupled, self-conta

threads. Coterie is also an acronym: the Columbia Object-oriented Testbed for Expl

atory Research in Interactive Environments.

2.1 Previous Work: Augmented Reality

Our previous research in AR focused on stand-alone applications [Feiner et al., 199

Feiner et al., 1993b, Feiner et al., 1995]. The three prototypes we will discuss here ar

ical of what we and others envision to be some important potential uses of augmented

ity. These prototypes are KARMA (maintenance and repair) [Feiner et al., 1993b],

Windows on the World (integrating two- and three-dimensional information) [Feiner

14

eal

sem-

ype

ainte-

rtual

 of

tes that

if the

s to

t be

ey

tion

ann

e
er

ys-
et al., 1993a] and Architectural Anatomy (examining hidden and alternate views of r

world objects) [Feiner et al., 1995]. Each prototype was a stand-alone application as

bled from an ad hoc combination of client-server software components.

2.1.1 KARMA

KARMA (Knowledge-based Augmented Reality Maintenance Assistant) was a protot

system that used a see-through head-mounted display to explain simple end-user m

nance for a laser printer. One of the key design goals of KARMA was to generate vi

information that complements the real world on which it is overlaid, taking advantage

what the user can already see. For example, one of the rules used by the system sta

if a goal is to show the user where an object is located, the system must determine

object is blocked by other objects. If it is blocked, it will be displayed so that it appear

be seen through the blocking objects; if it is already visible in the real world, it need no

drawn at all. In this prototype, we monitored the position and orientation of several k

components of the printer by attaching 3D trackers to them and feeding this informa

into a modified version of the IBIS rule-based illustration generation system [Seligm

(a) “Pull up the lever” (b) “Pull out the paper tray”

Figure 2-1: The KARMA prototype. Two images showing graphical instructions
designed by KARMA to augment the user’s view of the printer. In both images, th
system is conveying an action to be taken by the user, either lifting the printer lid lev
or removing the paper tray. In both cases, the system highlights the object of the
action and draws an animated arrow indicating the action to be taken. In (b), the s
tem also draws a ghosted representation of the desired final location of the tray.

15

t

e.

xt

ent

the

terac-

on-

 2D

e
n

e
e

e

and Feiner, 1991] to interactively design the graphics and simple textual callouts tha

make up the virtual world. Figure 2-1 shows some images created with our prototyp

2.1.2 Windows on the World

Windows on the World [Feiner et al., 1993a] was our first attempt at integrating 2D te

and graphics into a 3D virtual world. As with the KARMA system, the goal was to pres

virtual information that built on, and leveraged, the real world perceived by the user of

system. At the time, when people thought of using head-mounted displays and 3D in

tion devices to present virtual worlds, it was usually in terms of totally synthetic envir

ments populated solely by 3D objects. There are many situations, however, in which

(a) (b)

Figure 2-2: The Windows on the World prototype. The two views are shown
through the user’s head-worn display. The user is looking at another person in th
lab who is tracked via a magnetic tracker worn around their neck. In (a), the perso
is working on a laptop, and in (b) both the user and the person in the image have
moved to the left of the laptop. There are three windows visible in this scene: a not
attached to the person, a small “load average” attached to the upper corner of th
laptop display, and adisplay fixedcontrol panel window for the hypermedia system
(the window at the bottom). Notice that, as the person moves from working on th
laptop to sitting to the left of it, the control panel window does not move, but the
others do.

16

mpo-

the

index

ed

ting

 that

f win-

y,

s in

s to

rme-

ed to

 oth-

aid a

w of

orld

g the

t for

f the
text and graphics of the sort supported by current window systems can be useful co

nents of these environments, especially when this information is being merged with

real world. To explore this idea, we developed support for a full X11 window system

server within our augmented reality testbed. The user head orientation was used to

into a large X bitmap, which effectively placed the user inside a display space mapp

onto part of a surrounding virtual sphere. By also tracking the user’s body, and interpre

head motion relative to it, a portable, see-through information surround was created

enveloped the user as they moved about. In this system, we supported three kinds o

dows implemented on top of the X server: windows fixed to the head-mounted displa

windows fixed to the information surround, and windows fixed to locations and object

the 3D world. We also supported the ability to track arbitrary objects, allowing window

move with them. To demonstrate the utility of this model, we developed a small hype

dia system that allowed links to be made between windows and windows to be attach

objects, as shown in Figure 2-2.

2.1.3 Architectural Anatomy

The Architectural Anatomy prototype was a collaboration between our group and the

Building Technologies Group in Columbia’s Graduate School of Architecture. In this

project, we exposed a building’s “architectural anatomy,” allowing the user to see its

erwise hidden structural systems [Feiner et al., 1995].The prototype application overl

graphical representation of portions of a building’s structural systems over a user’s vie

the room in which they were standing, as shown in Figure 2-3. The overlaid virtual w

typically showed the outlines of the concrete joists, beams, and columns surroundin

room. In addition, because we built on the Windows on the World prototype’s suppor

combining 2D X11 windows and 3D graphics in augmented reality, the system also

allowed information about these support structures (such as the structural analysis o

column in Figure 2-3(b)) to be spatially positioned near the structure.

17

ngle-

ally

e

m-

ch

ro-

rate

er.

C and

 to

erv-

d to

d
l
l-
2.2 Motivation

Before starting work on this testbed, we had attempted to extend a number of our si

user, client-server prototypes (described in the previous section) in a variety of origin

unforeseen ways: Architectural Anatomy was built on top of some components of th

Windows on the World system, which was in turn built on top of some of KARMA’s co

ponents. Unfortunately, that approach was becoming increasingly infeasible with ea

modification. These prototypes were built using a then common style of distributed p

gramming, in which each logical component of the system is implemented as a sepa

process, and for any given application, the necessary components are linked togeth

Communication between the processes was done with a combination of custom RP

message passing (both to replicate data that was needed in multiple processes, and

ensure that the data was distributed quickly without the need for polling of the data s

ers). Figure 2-4. shows the architecture of one of our systems [Feiner et al., 1993b]1.

Unfortunately, adding new processes to systems such as this often involved the nee

1. See the paper for a more complete description of each of the components.

(a) A mock-up of the AR
information display.

(b) An image taken through the see-
through head-worn display.

Figure 2-3: The Architectural Anatomy prototype. Two images showing a col-
umn in the corner of our lab. Image (a) is a mock-up done by a design student (E
Keller), showing a vision of what the system might display, while (b) is an actua
image created by the system, including a 2D window containing a structural ana
ysis of the column spatially attached to the column’s center.

18

ers

server

in

web

arrows

de

 that

tici-

ith

p at

e

e
ts a
).
 also
share previously unshared data, over time turning many of the clients into RPC serv

and/or message stream sources. This resulted in an unmanageable welter of client-

relationships, with each of a dozen or more processes needing to create and mainta

explicit connections to each other and to explicitly handle the inevitable crashes. This

of connections can be seen in Figure 2-4, where each rectangle is a process and the

show the information flow.

We spent a sufficiently large portion of our time reengineering client-server co

that it became clear that (at least our implementation of) the client-server model was

unsuitable, by itself, for exploratory programming of distributed virtual environment

research prototypes. The heart of the problem was a lack of support for data sharing

was both efficient and easy for programmers to use in the face of frequent and unan

pated changes. Other problems we identified included the overhead of prototyping w

compiled programming languages, the unsuitability of heavy-weight processes for

implementing fine-grained parallelism and a lack of high level tools for building new

applications. Our group was not alone in our frustration. For example, Pausch’s grou

the University of Virginia tackled the problem of rapid prototyping by creating the Alic

Figure 2-4: An example architecture diagram. The architecture of the Windows on th
World system [Feiner et al., 1993b]. Each of the small labeled rectangles represen
process in the system (the larger rectangles represent logical groups of processes
Most of these processes are RPC and message stream servers. Many of them are
RPC and message stream clients. The arrows show data flow.

DB

Link
Manager

Link
Manager
Control

Private Eye

Display
ServerX BitmapX Server

Setup Virtual X Display

World-fixed

Display-fixed
Window
Server

Head Tracker

Body Tracker

Window
Server

Link
Display

Object
Tracker
Servers

Server

Server

Hypermedia Application

Trackers

Tracker
Processes

19

ive

lan-

ools,

vel

n or

ify-

l-

with

ee-

rna-

proto-

uld

r

rice of

s that

o colli-

ases

emon-

stric-

r-

, could
system [Pausch et al., 1995]. Alice, which is aimed at non-distributed, totally immers

VEs on the Windows 95 platform, includes fine-grained parallelism and an interpreted

guage. Alice is designed for use by world developers, and provides very high-level t

whereas Coterie is aimed at system developers and provides more general, lower-le

tools. Therefore, while the Alice designers do not concern themselves with distributio

with support for complex, multi-user applications, they do go farther than us in simpl

ing the development of single-user virtual environments: for example, they have a po

ished graphical interface for building worlds, whereas Coterie contains only APIs.

2.3 Requirements for the Testbed

The requirements we set forth for the testbed reflect our group’s desire to experiment

distributed, multi-user AEs that combine a variety of paradigms, including opaque, s

through, desktop, and handheld displays. To effectively explore different design alte

tives for this new paradigm, it is essential that programmers are able to create robust

types quickly and easily. Therefore, the infrastructure to support this exploration sho

satisfy the following requirements.

Data replication. Many of the objects in a VE or AE system must be replicated, rathe

than merely shared, because the programs using the data cannot afford to pay the p

remote access. A good example is the description of a graphical scene. The program

update the displays must redraw their scenes as often as possible. Programs that d

sion detection or other time sensitive computations must likewise access their datab

on a continual basis and are often themselves distributed over multiple machines.

Uniform treatment of data. To build a distributed system, some data-sharing mecha-

nism, such as remote procedure or method calling, is needed. Our experience has d

strated that creating a distributed system that provides facilities for distributing only

“virtual environment data,” such as tracker readings or graphical objects, is far too re

tive. By treating some kinds of data differently than others, we occasionally found ou

selves in the situation where one piece of data we needed, such as a tracker record

20

uch as

e of

to

local

nable

ultiple

ces. To

rated

ro-

e sys-

ly one

es

.

rele-

utomat-

ms

pport

rpose

om-

],

ifica-
be easily distributed to a new component of the system, but another piece of data, s

the layout of a user’s information space, could not.

Furthermore, the data types seen by programmers should have a high degre

network transparency: the programmer should be aware that a data value is not local

their machine only when absolutely necessary, and should be able to use remote and

data objects interchangeably whenever possible. Furthermore, the system should e

programmers to share resources and data objects easily and efficiently and have m

threads of control in one or more processes concurrently access these shared resour

provide this level of transparency requires the data sharing system to be tightly integ

with the programming language.

Responsive asynchronous data propagation.Remote procedure or method calls are

unsatisfactory for propagating rapidly changing information because they are synch

nous, and are therefore too slow, even when used with a small number of clients. Th

tem should therefore provide a method of asynchronous data propagation, preferab

that would scale well as the number of distributed processes increased.

Asynchronous update notification.When many threads distributed over many process

share data, it is unacceptable for them to have to poll the data to check for changes

Instead, there must be some facility for interested threads to be notified of changes to

vant data items. For example, the thread that renders a graphical scene should be a

ically notified of changes to the data structure representing the scene.

Embedded interpreted language.As has been demonstrated by a number of VE syste

[Bricken and Coco, 1994, Pausch et al., 1995, Singh et al., 1995], if a system is to su

rapid prototyping, the programmer should be provided with an embedded general-pu

interpreted language in which entire applications can be developed, without writing c

piled code. While byte-compiled languages, such as Java [Arnold and Gosling, 1998

ameliorate some of the overhead of compilation, they do not support interactive mod

tion of running programs in the same was that interpreted languages do.

21

he

f the

data

n-

age

robust

ender-

well

sses

hing

g lan-

ork to

al

inte-

 used

he

more,

ork-

 distrib-

d net-

ur
Furthermore, since it will occasionally be necessary to rewrite some code in t

compiled language (often for efficiency), the interpreted and compiled components o

system should be tightly integrated, should have similar programming models, and all

structures should be equally accessible from both. Our preference is to have both la

guages be strongly typed, either statically or dynamically, so the programming langu

can be leveraged as much as possible to assist programmers in creating reliable and

programs.

Object-oriented and multithreaded environment.Conceptually, AE systems are com-

posed of many independent objects that perform tasks such as monitoring trackers, r

ing to displays, and controlling the entities that populate the environment. These map

to an object-oriented, multithreaded environment. However, using heavy-weight proce

for all threads of control is unacceptable because of communication and context switc

overhead. Creating processes that are inherently multithreaded without programmin

guage or operating system thread support is error prone and requires considerable w

ensure all conceptual threads are serviced fairly. Furthermore, adding new conceptu

threads in this fashion can be extremely difficult. Therefore, thread support should be

grated into the interpreted and compiled programming languages so threads may be

cleanly and uniformly across all operating systems and architectures.

High-level, platform-independent, extensible, 3D graphics package.It is essential that

the environment support a wide variety of hardware and operating systems without t

application programmer having to use a different graphics package on each. Further

we want to be able to cleanly integrate new kinds of graphical objects, such as the w

station windows of [Feiner et al., 1993a].

Other desirable distributed system characteristics.In [Coulouris et al., 1994], the

authors assert there are six key characteristics which determine the usefulness of a

uted system: resource sharing, scalability, openness, concurrency, fault tolerance an

work data transparency. As discussed above, network data transparency is one of o

primary requirements.

22

d to

, and be

iron-

ce is

reases,

 the

cover

ibuted

nts

they

d to

VE

lla

s

hich

eous

 com-

ler-
While the remaining features were deemed less important when trade-offs ha

be made, they are obviously still desirable. Most importantly, the system should be

designed to potentially scale well as more users, or processors per user, are added

open (if not to external programming languages, at least within the context of the env

ment) so that it can be extended in new and interesting directions. Basic fault toleran

an absolute requirement: as the number of machines and processes per machine inc

so does the likelihood that one of them will crash, especially during development. At

very least, the system should allow programmers to construct applications that can re

from a single failure in a reasonably straightforward manner.

2.4 Related Research Areas

In this section, we shall look at approaches that have been taken to supporting distr

applications in two areas that are close to our application domain: virtual environme

and groupware. Other areas of related work will be discussed in the chapters to which

are more directly relevant.

2.4.1 Virtual Environment Systems

A large number of VE toolkits have been created, of which only those that are intende

support distributed environments will be discussed: MR [Shaw and Green, 1993], DI

[Carlsson and Hagsand, 1993], VEOS [Bricken and Coco, 1994], SIMNET [Calvin

et al., 1993], NPSNet [Zyda et al., 1992], VERN [Blau et al., 1992], VR-DECK [Code

et al., 1993], WAVES [Kazman, 1993], RING [Funkhouser, 1995], BrickNet [Singh

et al., 1995], dVS [Grimsdale, 1991] and Spline [Waters et al., 1997].

MR implements a simple shared virtual memory model. Raw memory location

can be marked as shared and local changes explicitly flushed to the other copies, w

must then explicitly receive the changes. MR has no facilities for handling heterogen

architectures and provides a single, fully replicated VE, in which each process has a

plete copy of the same world. DIVE is built on top of the ISIS [Birman, 1993] fault-to

ant distributed system, and is similar to MR in supporting only fully replicated VEs.

VEOS is an extensible environment for prototyping distributed VE applications. MR,

23

n-

all

 a

IM-

g is

pro-

ndred

umber

rld to

l is

ge-

ations.

ed in

ses.

 the

s to a

nly

e

he enti-

n

ision

t of
VEOS, and DIVE all use point-to-point communication, with all processes directly co

nected to all others. This prevents these systems from scaling beyond a relatively sm

number of distributed processes.

SIMNET is perhaps the best known large-scale distributed VE system. It uses

well-defined communication protocol (DIS) that is also used by NPSNet and VERN. S

NET was designed to support a single, large-scale, shared, military VE. Broadcastin

used to send messages between nodes. While this cuts down on network traffic, all

cesses must handle all messages, preventing SIMNET from scaling beyond a few hu

users. NPSNet has recently been extended to accommodate a significantly larger n

of simultaneous users (thousands instead of hundreds) by spatially partitioning its wo

reduce message traffic [Macedonia et al., 1995]. Unfortunately, the SIMNET protoco

not general enough for our use, nor is a flexible SIMNET client program available.

VR-DECK allows multiple users to share a single simulation on a set of homo

neous workstations, but cannot be easily extended to support heterogeneous workst

Message traffic is reduced by sending events only to machines known to be interest

them, but all machines potentially talk to each other, reducing scalability.

WAVES uses message managers to mediate communication between proces

Each message manager controls a group of clients. All messages are distributed by

message managers to interested clients. WAVES supports the ability to filter message

given client, reducing the type and frequency of updates sent. However, it supports o

coarse parallelism, with each process performing one well-defined function. Its singl

shared world comprises a set of objects that encapsulate the behavior and state of t

ties in the world. Each object is owned and updated by only one client, but can move

freely between clients.

RING and BrickNet both use a communication mechanism similar to that of

WAVES, with centralized servers each controlling a set of clients, and communicatio

routed through the servers. All message traffic goes through the servers, with no prov

made for direct client-client propagation for time-critical data. RING is geared toward

realistic simulations and uses physical visibility to limit message traffic. Its VE is a se

24

ed by

imul-

h

Like

m-

 non-

to

pa-

eme

sed

not

kes a

.

tures

n of

NIX

gle

s only

1], a

t-

 dis-

the
shared entities, each with a geometric description and a behavior. Each entity is own

one client, and only that client may update it. RING can support a large number of s

taneous users. BrickNet is geared toward creating multi-user distributed VEs in whic

each client has its own world composed of a combination of local and shared objects.

WAVES, its objects have behaviors as well as state and can move between clients.

dVS is a commercial distributed VE system for single-user applications. Its co

ponents and message formats are fixed and not extensible, making it unsuitable for

exclusive VEs.

Spline is a system that adopted object sharing and data flow features similar

ours, and is aimed at efficient creation of immersive VEs. It achieves scalability by s

tially partitioning its distributed database to reduce message traffic, starting with a sch

similar to [Macedonia et al., 1995] and extending it by partitioning the object space ba

on this spatial partition. While Spline has powerful data replication facilities, they do

provide the level of network data transparency we desire, primarily because Spline ta

distributed database, rather that distributed language, approach to object distribution

None of these systems came sufficiently close to supporting enough of the fea

we needed to justify attempting to extend them to support the rest. With the exceptio

DIVE and Spline, none provide true preemptive threads, but use only heavyweight U

processes. With the exception of BrickNet and Spline, none support more than a sin

shared VE. In addition, these systems are geared toward VEs in which each user ha

a single (stereo) display, and interacts with an entirely virtual world composed of 3D

objects. In contrast, consider the hybrid window manager [Feiner and Shamash, 199

simple example of the kind of application we would like to support. It combines a fla

panel display with a see-through head-worn display to create a workspace with one

play’s image embedded in the other’s. This would be difficult to implement with any of

VE systems mentioned here.

25

lab

 to all

d, or

eople

se of

em.

 at

ere

 to

s

ethods

l

sis-

cast

ion of

the

be

 rep-

for exe-

as a

uld

tiple
2.4.2 Distributed Groupware

A number of groupware systems have been built using shared object techniques. Co

[Stefik et al., 1987] uses a fully replicated database in which changes are broadcast

sites without synchronization. Colab relies on social and application solutions to avoi

recover from, inconsistencies. For example, if inconsistencies arise when multiple p

are working on the same area of a document, they will quickly become obvious becau

the nature of these applications. The users can then decide how best to deal with th

GroupKit [Roseman and Greenberg, 1996] applications run the same program

all sites and communicate by usingmulticast remote procedure callsto execute procedures

at all sites. Data is shared via shared data directories calledenvironments. While support-

ing notification of the addition, deletion or modification of items in an environment, th

is no support for concurrency control. As with Colab, social solutions are relied upon

solve this problem.

Object World [Tou et al., 1994] implements shared objects in LISP, and define

shared operations by allowing programmers to define broadcast methods. These m

are executed at any site that has a copy ofanyof the object parameters, with all additiona

parameters automatically copied to that site. Object World does not provide any con

tency guarantees, but accomplishes consistency detection by requiring that all broad

methods operate on the same version of their object parameters at all sites. Correct

inconsistencies is performed at an application level, possibly with the assistance of

user.

DistView [Prakash and Shim, 1994] allows window and application objects to

replicated. When an object is replicated, it is wrapped in a proxy that implements the

lication semantics, such as sending method invocation messages to remote copies

cution. There is no distinction between read and write methods, and consistency is

guaranteed by requiring locks to be acquired for all object accesses. While DistView h

fairly intelligent scheme to minimize the cost of acquiring global locks, the system wo

not scale well and would not perform well in the face of continuous access from mul

sites.

26

its

ion of

ated

s as

nsis-

tiple

sers

E

nous

n we

eci-

pack-

artic-

g,

ties

ision

nt-

ually

ption

rch
d by
t.

laris,
The techniques for object sharing implemented in the newer groupware toolk

share some of our goals, particularly automatic replication of data to ease construct

distributed applications (e.g., Prospero [Dourish, 1996]). However, none have integr

the distribution of data into the object model of their respective programming language

tightly as we desire. Furthermore, many of them do not provide sufficiently strong co

tency guarantees. In groupware applications, inconsistencies tend to arise from mul

users attempting to perform conflicting actions: the results are usually obvious to the u

and can be corrected using social protocols. This is not an acceptable solution for V

applications. Finally, none of these object systems provide any support for asynchro

update notification, nor are they designed to support the kind of large scale distributio

have in mind.

2.5 Implementation Overview

Coterie was written in the Modula-3 programming language [Harbison, 1992]. The d

sion to use Modula-3 was based on the language itself and the availability of a set of

ages that provided a solid foundation on which to base our research.

Modula-3 is a descendent of Pascal that corrects many of its deficiencies. In p

ular, Modula-3 retains strong type safety, while adding facilities for exception handlin

concurrency, object-oriented programming, and automatic garbage collection2. One of its

most important features for our work is that it gives us uniform access to these facili

across all architectures. The availability of three packages strongly influenced our dec

to use Modula-3:

• Network Objects. The Network Object package [Birrell et al., 1993] supports a clie

server model of distributed data sharing through remote method calls that are virt

transparent to the programmer. These include distributed garbage collection, exce

2. The Modula-3 compiler was developed at DEC’s (now Compaq’s) Systems Resea
Center. We used a commercially supported version of the SRC compiler, develope
Critical Mass, Inc. and distributed as part of the Reactor programming environmen
The compiler, and thus our system, runs on all the operating systems we use: So
IRIX, Linux, Windows NT and Windows 95.

27

 of

 this

as this

ith

, it

pu-

multi-

ical

bliq-

use

truc-

-3

m-

cts

via

q-3D

-

some

ues

d

d

ough
propagation back to the calling site, and automatic marshalling and unmarshalling

method arguments and return values of virtually any data type. We also enhanced

package to provide automatic data conversion between heterogeneous machines,

facility (although advertised) did not exist. (Our enhanced package is distributed w

both the commercial and free versions of the Modula-3 compiler.)

• Obliq. Obliq [Cardelli, 1995] is a lexically-scoped untyped language for distributed

object-oriented computation that is tightly integrated with Modula-3. Like Modula-3

supports multiple threads of control within a single process. Obliq’s distributed com

tation mechanism is based on Network Objects, allowing transparent support for

ple processes on heterogeneous machines. Objects are local to a site, while

computation can roam over the network.

• Obliq-3D. Obliq-3D [Najork and Brown, 1995] is a high-level 3D animation system

that consists of two parts: a Modula-3 library that provides a basic set of 3D graph

objects and animation primitives, and those same primitives embedded in Obliq. O

3D programs can be written in Modula-3, Obliq, or any combination of the two beca

all data structures are simultaneously available from both languages. Obliq-3D’s s

ture and interface also make it relatively easy to extend.

Together, these packages provided a good starting point for our work. Modula

and Obliq gave us a compiled and interpreted language with closely matched progra

ming models supporting object-oriented, multi-threaded programming. Network Obje

(and therefore Obliq) also provided a clean basis for reliable distributed programming

a simple client-server DOM based on transparent remote method calls. Finally, Obli

gave us the high-level, platform independent 3D graphics library we required.

The development of Coterie took place on two fronts. Initially, a (primarily) sin

gle-process testbed was created that enabled our group to begin building prototypes,

examples of which will be discussed in Section 2.6. Simultaneously, the facilities for

building distributed applications were designed and implemented so that the techniq

and packages built using the initial version would extend naturally into the distribute

domain. This latter work is the topic of the bulk of this dissertation, and can be divide

into three major parts. First, the need for transparent data replication was satisfied thr

28

lso pro-

fies

g the

inter-

ary

g

ment

n of

ts

of

n-dis-

ters

e was

g

. The

hared

ple

x

ded

files

cker

ulate
the creation of a replicated object system, called the Shared Object package, that a

vides asynchronous update propagation and notification of changes to the replicated

objects. When combined with the Network Object package, the resulting DOM satis

the majority of our data sharing needs. The Shared Object package is the topic of

Chapter 3. The second component of this work, discussed in Chapter 4, involved usin

Shared Object package to extend Obliq to support replicated data, resulting in a new

preted language called Repo (for Replicated Obliq).

The final component of this research was to create a distributed graphics libr

called Repo-3D, a redesign of Obliq-3D that fits cleanly within the DOM programmin

model presented to the programmer in Modula-3 and Repo. Since both the develop

time and code structure of the prototypes being built are dominated by the manipulatio

the graphical scenes, Repo-3D simplifies development by making all graphics objec

directly distributable and extensible and adding facilities to support the peculiarities

building distributed graphical applications. Repo-3D is discussed in Chapter 5.

2.5.1 Virtual Environments: Tracker Support

One major component of Coterie that is needed to facilitate the creation of (even no

tributed) virtual environment applications, which we will draw on in subsequent chap

as a source of examples, is support for various tracking systems. The tracker packag

initially built in Modula-3 and exposed into Obliq, with the intent of eventually buildin

Repo wrappers around the tracker objects to support easy distribution of tracker data

distribution of tracker reports serves as the basis for a simple example of the use of S

Objects in Chapter 3. We return to this example in Chapter 4, both to show how sim

replicated objects are created in Repo, and as a vehicle for illustrating more comple

behaviors. Finally, in Chapter 5 we show how the location of a tracker can be embed

directly in a graphical scene and therefore distributed transparently. The Repo help

for all of the modules in the Tracker package are contained in Appendix B.

To support the goal of providing modular, reusable components, a generic tra

object and a hierarchy of tracker report objects were developed. The aim is to encaps

29

ther

 of

are

-
r-
rts
are
support for all our tracking systems into one common object hierarchy, as done by o

systems such as the UNC Tracker Library [Holloway, 1991]. The genericTracker.T

object, from which any object representing a tracking device inherits, supports a set

common methods:read() , reset() andclose() .

Theread() method of anyTracker.T object returns aTracker.Report

object, which is the root of a hierarchy of objects representing progressively more

specialized kinds of tracker reports. The currentTracker.Report hierarchy is shown

in Figure 2-5, along with a description of the tracking devices that return them. Clients

written to use the most general kind of report they can. The dynamic type system of

Modula-3, Obliq and Repo allows clients to be written that accept the generic

Tracker.Report and handle specific parts of the hierarchy differently. The most

common case is that a client accepts a reasonably specific object, such as the

Tracker.Report3D , and does something useful with it. For example, a client that

associates a three dimensional position with an objectObj would accept

Figure 2-5: The generic Tracker Report Object hierarchy. The basic trackerReport
object is returned by the genericTracker.T object and many clients. Those that spe
cifically need two or three dimensional reports would use the next level in the hiera
chy, and those that need to know details of the specific devices would use the repo
specific to the devices. More objects will be added to the hierarchy as more devices
supported.

Tracker.Report

Tracker.Report2D

Tracker.Report3D

MSMouse.Report

Dynasight.Report

Logitech.Report

vIO.Report

PTU.Report

RingMouse.Report

Trimble.Report

FOB.Report

Scanner.Report Barcode scanner

Microsoft mouse

Logitech ultrasonic 6DOF tracker

Virtual I/O 3DOF orientation tracker

RingMouse ultrasonic 3DOF position tracker

Trimble GPS 3DOF position tracker

Ascension Flock of Birds 6DOF tracker

Origin Instruments optical radar

Directed Perception 3DOF Pan/Tilt unit

Tracker DescriptionTracker Report Object Type

30

rt 3D

eing

will

l

pace

ct,

lop-

rie.

trib-

 be

c-

nt

ler,

e sim-

rd-

 3D

ctural

ol-

ar”,
Tracker.Report3D objects and position the objectObj in the virtual world relative to

the position of the 3D tracker. Such a client would be able to use all devices that repo

positions.

2.6 Initial Prototypes

As mentioned in Section 2.5, our group continued its AR research while Coterie was b

developed, building a number of (mostly) non-distributed new prototype systems. We

close this chapter by discussing four of them: a reimplementation of the Architectura

Anatomy system, a maintenance application for telephone company crossboxes, a s

frame construction assistant for the Augmented Reality for Construction (ARC) proje

and the Touring Machine, a mobile tour guide.

These systems demonstrate the utility of the initial version of Coterie for deve

ing simple AE prototypes. The first three prototypes were each implemented in a few

hundred lines of code, illustrating the ease with which ideas can be explored in Cote

The last prototyping is the most complex prototype we implemented with the non-dis

uted version of Coterie, and illustrates how the system supports complex systems to

built as well.

2.6.1 Architectural Anatomy

The first non-trivial program built with Coterie was a reimplementation of the Archite

tural Anatomy system, discussed in Section 2.1. This version of the system is differe

from the previous version (Figure 2-3) in two ways: the implementation is much simp

and the graphical representation of the architectural structures is more complex. Th

plicity of the implementation is due to the power of both the infrastructure and the ha

ware the system runs on, allowing the entire prototype to be implemented in a few

hundred lines of code and run on a single machine. Since Coterie supports full color

graphics, we provide more graphical cues to help the user spatially locate the archite

structures behind the walls of the room, as shown in Figure 2-6. The images of the c

umns show a representation of the column as well as the reinforcement bars, or “reb

31

eiling

alls,

user.

my

for-

 this

e of

.

 AR

 as

t”

e sys-

e that

ce.
inside the column. The transparent box representing the column extends from the c

to the floor, helping the user place the column visually behind the room walls. The w

floor and ceiling of the room are also shown transparently, to further help orient the

2.6.2 Telephone Crossbox Maintenance

The one feature that was missing in our reimplementation of the Architectural Anato

system was the integration of 2D windows, that allowed us to include external 2D in

mation such as the structural analysis of the column shown in Figure 2-3. We added

facility into Coterie when we began to explore how AR could be used for maintenanc

telephone company crossboxes, in cooperation with Nynex Science and Technology

Drawing on discussions with Nynex workers, we found that one useful application of

is to allow 2D information to be attached to groups of terminals inside the crossbox,

shown in Figure 2-7. The notes could be used by the workers to make virtual “post-i

notes, or by the system to communicate information to the workers. For example, th

tem could ensure that all terminals are periodically tested by attaching notes to thos

have not been tested recently, prompting the workers to test them at their convenien

Figure 2-6: The new Architectural Anatomy prototype. This image shows two
columns in a corner of our lab.

32

em

orker

ted

oto-

o

d

2.6.3 Spaceframe Construction

As part of the Augmented Reality for Construction (ARC) project, we built an AR syst

to assist with the construction of space frame buildings. Our system prompted the w

by displaying the next part to be installed in the correct location on the partially comple

space frame, as shown in Figure 2-8. Like the Architectural Anatomy system, this pr

(a) The bottom of a phone company “crossbox” that connects customer phone
lines to company wiring. The terminals in half of the box are connected to phone
company wires, and those in the other half are connected to subscriber lines. N

wires are connected in this picture.

(b) The top of the crossbox with a
graphical overlay designed to be pre-
sented to the field service person on

the head-worn display.

(c) The view when the user looks down
and to the left from (b).

Figure 2-7: A prototype AR application for crossbox maintenance. The overlay
highlights major blocks of the crossbox and a number of user-defined groups of
connection posts. It also contains 2D information windows connected to the post
groups by stretchable leader lines that allow selected windows to be pulled into an
out of view.

33

e ini-

 in

vi-

y and

in
ws
type ran on a single computer and took a few hundred lines of code to implement. Th

tial version of this prototype was built by an undergraduate student with no prior

experience using Coterie, over the course of a few months.

2.6.4 Automated Tour Guide

The Touring Machine prototype [Feiner et al., 1997] was designed to assist the user

exploring various kinds of information as they move freely about a relatively large en

ronment (in this case, the Columbia University campus). By displaying information in

context using a combination of displays (in this case, a see-through head-worn displa

(a) A worker using the ARC system to
construct a space frame.

(b) What the worker sees through their
head-worn display.

(c) The real world (d) The virtual world

Figure 2-8: A prototype AR application for space frame construction. This sys-
tem was built with the non-distributed version of Coterie, and is designed to lead a
worker through a construction sequence to ensure the correct pieces are installed
the correct locations in the proper sequence. (a) shows the system in use. (b) sho
what a worker would see when using the system. The elements of the real and
virtual world that are combined to form the image in (b) are shown (c) and (d),
respectively.

34

ect

ter-

rward

sition

stics

res,

9(b).

 is

sition

hown

as a
a hand-held tablet computer, as shown in Figure 2-9(a)) and allowing the user to sel

from a small set of currently relevant information cued to their current location and in

ests, the system allows the user to explore a complex space in a relatively straightfo

manner. The system was designed to operate in an environment of low precision po

tracking (provided by differential GPS) and take advantage of the different characteri

of the two display devices. For example, we label buildings, not specific building featu

overcoming registration problems that would otherwise occur, as shown in Figure 2-

Furthermore, when a menu item is selected, the detailed information about that item

presented on the (easier to read) handheld. To inform the user when this display tran

is occurring, the selected menu item label is animated to fly toward the handheld, as s

(b) Labels increase in brightness as
they near the center of the display.

(a) The user wears a backpack and
headworn display, and holds a
handheld display and its stylus.

(c) The Philosophy Building with the
“Departments” menu item highlighted.

Figure 2-9: A prototype campus information system. The physical prototype is
shown in (a), while (b) and (c) show images of campus buildings with overlaid
names, shot through the see-through headworn display. The handheld display h
trackpad on the back that can be used to select from the context-sensitive menu
presented at the top of the head-worn display.

35

own

e
e
),

 in
gen-
 web
in Figure 2-10(a) and (b). The handheld displays information via a web browser, as sh

in Figure 2-10(c) and (d).

(a) After the “Departments” menu item
in Figure 2-9(c) is selected, the

department list for the Philosophy
Building is added to the world,

arrayed about the building.

(b) The image in (a) also shows the
beginning of the label animation

sequence, a fraction of a second after
selection. Here is the animation,

approximately half a second later.

(c) Selecting the “Departments” menu
item causes an automatically-generated
URL to be sent to the web browser on
the handheld computer, containing the

department list for the building.

(d) Actual home page for the English
and Comparative Literature depart-

ment, as selected from either the gener-
ated browser page or the department

list on the handheld web browser.

Figure 2-10:Additional images of the Touring machine. (a) through (c) illustrate th
results of selecting the “Departments” item from the context-sensitive menu for th
Philosophy building: the department list is added to the world near the building in (a
an animated label flies off the bottom of the display, starting in (a) and continuing
(b), and the list of departments is presented on the handheld in an automatically
erated web page. If the user selects one of the departments, they are taken to its
page in (d).

36

s

o

ly

re.

aph-

n
he
te
This prototype is the first distributed application built with Coterie. Since it wa

built prior to Repo, it does not take advantage of any data replication. It comprises tw

applications, one running on each of the two machines, implemented in approximate

3600 lines of commented Obliq code. Figure 2-11 shows the overall software structu

Thetour application running on the backpack PC is responsible for generating the gr

Figure 2-11:Software design of the prototype campus information system. There
are two instances of Coterie, one running on each of the two machines (labelled
“Tour Application” and “HTTP server”). The URL pusher and Web browser are
external programs. The two web servers in the HTTP server application are
embedded within an Obliq program that is tightly integrated with the tour applicatio
via client-server object sharing. The campus information server is responsible for t
dynamic generation of HTML pages, and the caching proxy server exists to mitiga
the slowness of the radio network link.

Tour application
GPS

Trackpad
Orientation

Backpack

Handheld

Tour data

Cached

Proxy
server

Local
URLs

External
URLs

URL Other COTERIE
object communications

URL
pusher

HTTP server

URL

external URLs

WWW

tracker

Stylus

Uncached
external
URLs

HTTP

requests

Campus
information
server

Web browser

PC

requests

Display

Headworn
display

PC

37

ld PC

sing

n

r and

URL

d that

works

RLs

, etc.

een

appli-

in

pro-

he

tion,
ics and presenting it on the headworn display. The application running on the handhe

is a customHTTP server in charge of generating web pages on the fly and also acces

and caching external web pages by means of a proxy component. By running our ow

HTTP server on the handheld display, we can react to user input from the web browse

head-worn display simultaneously in a straightforward manner. For example, when a

is selected on the handheld display, the HTTP server can call a network object metho

selects corresponding graphical items on the headworn display. Thus data selection

in both directions: from the backpack PC to the handheld PC (by launching relevant U

from the headworn display’s menus) and vice versa (selecting buildings, departments

on the headworn display from a link on the handheld’s browser).

Even though there is a relatively small amount of data sharing going on betw

these two programs, we did run into the need to replicate data between the two: both

cations needed a copy of the Tour Data database (shown near the Tour application

Figure 2-11). Fortunately, in this simple prototype, the data does not change while the

gram is running, so we arranged to copy the database from the Tour application to t

HTTP server application when the system is started. While this is a far from ideal solu

it serves to illustrate the need for flexible and general-purpose data replication.

38

ning

 distrib-

ming

o

the

),

pro-

 the

 a

iques

is-

ack-

y

ers

irrell

of

ast

. It is

n 3.2.

ith a
CHAPTER 3 Shared Objects

As was discussed in the previous chapters, one of the primary motivations for desig

Coterie was to create an environment that presents an easy to understand model of

uted data sharing to the programmer, cleanly integrated into a mainstream program

language. An obvious way to make distributed programming easy to understand is t

present a model of data sharing that is familiar to the audience and compatible with

style of programing in which they typically engage. Distributed Shared Memory (DSM

and Distributed Object Memory (DOM) in particular, satisfy these criteria. However,

viding the programmer with a conceptually easy-to-understand model is only part of

solution; we must also present it to them in a way they can use, by integrating it with

familiar programming language. In our case, the language is Modula-3, but the techn

discussed here are equally applicable to other languages, such as Java [Arnold and

Gosling, 1998] or C++ [Ellis and Stroustrup, 1992].

The utility of presenting a DOM programming model via a tightly integrated d

tributed programming package has proved to be very useful, and is not new: many p

ages exist that present the programmer with client-server data distribution in this wa

(e.g., Network Objects [Birrell et al., 1993] and Java RMI [Wollrath et al., 1996]). Oth

exist that present a less integrated model with the same basic purpose (e.g, RPC [B

and Nelson, 1984], CORBA [OMG, 1992], ILU [Janssen et al., 1998]). However, none

these packages provide facilities for object replication, especially replication that is f

and geared toward the needs of highly interactive, graphical applications such as ours

this problem that the Shared Object package addresses.

We will begin this chapter by presenting the concepts of DSM and DOM in

Section 3.1, and discuss other systems that have been built using this model in Sectio

In Section 3.3 we will discuss the design of the Shared Object package, beginning w

39

with

ails of

pro-

ject.

trol

ge.

xample

 3.6

xperi-

ince

ry.

t some

m

 the

ss

was to

mory

ely,

f

ch

ve

aring
summary of the benefits provided by tightly integrating an object replication package

a strongly typed language such as Modula-3. In this section we also present the det

the totally-ordered, write-update replication model we use, and discuss the facilities

vided to allow programmers to be notified of changes to a local replica of a Shared Ob

This latter facility is important for our applications, as it enables an event-driven con

flow that obviates the need to poll objects, looking for changes.

In Section 3.4 we will discuss the implementation of the Shared Object packa

In this section, we present a detailed example of the package in use, and use this e

to discuss the various implementation choices we made. Finally, in Sections 3.5 and

we discuss the performance and usability of the system, and our observations and e

ences using Shared Objects to implement interactive application prototypes.

3.1 Distributed Shared Memory

DSM allows a network of computers to be programmed much like a multiprocessor, s

the programmer is presented with the familiar paradigm of a common shared memo

DSM mechanisms use message-passing protocols between machines to implemen

model of shared memory access that is used by the programmer.

The idea of DSM was introduced by Li in his doctoral work [Li, 1986], in a syste

called Ivy [Li and Hudak, 1989]. DSM presents the programmer with the illusion that

memory of all machines in the distributed system belongs to one large shared addre

space. The approach used in Ivy, and that of a number of other subsequent systems,

implement shared memory at the operating system level, by leveraging the virtual me

architecture and integrating memory distribution with the paging system. Unfortunat

this approach suffers from a number of performance problems, as well as difficulty o

implementation. The two fundamental problems with page-based DSM are:

• Memory coherence, and therefore distribution, is at the granularity of a page, whi

may not match the granularity of application data. It falls to the applications to sol

the problems of granularity and placement of shared data in order to avoid false sh

of data and the associated unnecessary network messages this implies.

40

repli-

em-

shar-

),

l, by

uage

. The

h an

pro-

y on a

e with

ess to

essed

igrate

rol

ems

l over

Levelt

are

 pro-

ld

her

ave all

nd all

hat sin-

6],
• Application access patterns do not guide the DSM coherence mechanism that is

cating and invalidating pages, so optimizations such as prefetching and relaxed m

ory consistency are less effective.

The lack of a programming model that allows application semantics to influence data

ing is the Achilles Heel of page-based DSM.

An alternative approach, often referred to as Distributed Object Memory (DOM

presents the illusion of one large shared memory at the programming language leve

encapsulating the shared data in programming language objects and using the lang

constructs to ensure all access to that data is through method calls on those objects

distributed address space is partitioned implicitly by the application programmer, wit

object being the smallest unit of sharing. Typically, references to objects exist only in

cesses that are interested in the object. Unlike page-based DSM, semantics may var

per object basis: some objects may be replicated, while others could exist at one sit

proxies at other sites that access the single copy via remote method invocation. Acc

objects is uniform: at the language level, local, remote and replicated objects are acc

in the same way. Distribution semantics (whether an object is replicated, when to m

single-copy objects, etc.) may be hidden, or language features may be used to cont

them. By implementing the distribution mechanisms at the application level, the probl

caused by page-level granularity in DSM are avoided. The advantages of this mode

techniques that expose the shared memory at a lower layer are discussed further in [

et al., 1992].

While there have been a number of DOM systems built over the years, none

suitable for our work. On one hand, most of the systems are part of non-mainstream

gramming languages (e.g., Argus [Liskov, 1988], Amber [Chase et al., 1989], Emera

[Jul et al., 1988], Munin [Bennett et al., 1989], and Orca [Bal et al., 1992]). On the ot

hand, those systems that have been designed to work with mainstream languages h

supported client-server data, where a single copy of each object exists at some site a

other sites have a proxy that performs (more or less) transparent remote access to t

gle copy (e.g., RPC [Birrell and Nelson, 1984], Distributed Smalltalk [Decouchant, 198

Network Objects [Birrell et al., 1993], Java RMI [Wollrath et al., 1996], CORBA

41

fi-

ed as

o the

n syn-

to-

man-

zed

pri-

ain

soft-

ides

auto-

sses,

al

entary

y inte-

ds of

rated

a-3

t repli-

 Bal

on,

ated

the lan-
[OMG, 1992], ILU [Janssen et al., 1998]). Unfortunately, client-server data is not suf

cient for highly interactive application domains such as ours. Replicated data is need

well, since any data required to respond to users actions in real time must be local t

site processing that response. However, since not all replicated data needs to remai

chronized over time (for example, it may be immutable), and the synchronization pro

cols add overhead to data access, we need to support both synchronized and

unsynchronized replicated data. Therefore, there are three basic data distribution se

tics needed for our domain: client-server, unsynchronized replication, and synchroni

replication.

Building a custom language, or working with an obscure one, is not feasible,

marily because of the lack of existing software that would be available: one of the m

reasons we chose Modula-3 [Harbison, 1992] for this work was the variety of useful

ware packages readily available for it. In particular, the Network Objects package prov

an elegant solution for distributed objects with client-server semantics [Birrell

et al., 1993]. This package also provides unsynchronized replicated objects though

matic marshalling of arbitrary data structures: any non-Network Object parameter or

return value of a Network Object method call is automatically copied between proce

creating a new copy (replica) of the data that has no further relationship to the origin

copy. The goal of our work on the Shared Object package was to create a complem

package that satisfies the need for tightly synchronized replicated data, that is cleanl

grated with Modula-3 and the Network Objects package, and is designed with the nee

our application domain in mind.

The Shared Object package described here meets this goal. It is tightly integ

with the language, using a compile-time code generator that takes annotated Modul

source code as input and generates the necessary code to provide strictly consisten

cated objects. The design was inspired by an approach to object replication used by

and his colleagues [Bal and Tanenbaum, 1988, Levelt et al., 1992]. In their formulati

implemented in the Orca programming language [Bal et al., 1992], objects are replic

across machines as needed and the semantics of object replication are enforced by

guage. Replication consistency is accomplished by write-update viatotally-ordered func-

42

d in

ely

3.3).

ghly

, need

man-

ary

por-

ve a

 the

arbi-

bject

 the

orn

ence

nd 5.

].

d on

t

ges are

o

otely.

ing

g data

-offs,
tion shipping, where the runtime ensures all methods that update objects are execute

the same order on all replicas of the objects. As it turns out, this approach is extrem

well suited to implementation as an add-on to a programming language (see Section

Furthermore, the performance characteristics of this approach are appropriate for hi

interactive graphical systems, where the objects tend to have a high read/write ratio

local reads to be fast, and demand low latency update distribution.

By encapsulating application state in the language objects and having the se

tics enforced transparently, both Network and Shared Objects satisfy one of our prim

goals by exhibiting a high degree of network data transparency. This is extremely im

tant for exploratory programming, as changes in the distribution patterns of data (for

example, when client-server data needs to becomes replicated data) should then ha

minimal impact on the structure of the code. Because they are tightly integrated into

programming language, objects with different distribution semantics can be mixed in

trary ways with predictable, and sometime novel, results. Furthermore, the Shared O

package was designed with an eye towards accommodating additional semantics in

future, as they are identified. This is extremely important, as initial experience has b

out our suspicion that additional semantics would be needed after we gained experi

using the system. Examples of additional semantics will be discussed in Chapters 4 a

These results have been reported in [MacIntyre, 1995, MacIntyre and Feiner, 1996b

3.2 Related Work

The majority of work on distributed, object-based programming systems has focuse

client-server semantics [Decouchant, 1986, Jul et al., 1988, Bal et al., 1992, Bennet

et al., 1989, Birrell and Nelson, 1984, Birrell et al., 1993, Wollrath et al., 1996,

OMG, 1992, Janssen et al., 1998]. One of the reasons that client-server data packa

common is that the distribution semantics are straightforward and relatively simple t

implement; each object exists at one site, and all other copies access that object rem

While the model can be complicated by support for additional features, such as cach

and object migration, the fundamental concept remains simple. Packages supportin

replication, on the other hand, have a variety of possible semantics and design trade

43

n a

uted

e

us

es,

mote

ing

an-

etwork

e

h a

nd
sen
-
net-
d
.

user-
and even the simplest useful designs are significantly more difficult to implement tha

client-server package. Table 3-1 shows a comparison of some representative distrib

programming environments.

Emerald [Jul et al., 1988] is a typical example of a language designed from th

start with distribution in mind. Like most of the early distributed languages (e.g., Arg

[Liskov, 1988]), it supports client server distribution of objects. Unlike earlier languag

it presents the programmer with a uniform programming model for both local and re

object manipulation. It also supports object migration.

RPC [Birrell and Nelson, 1984], CORBA [OMG, 1992], ILU [Janssen

et al., 1998], Distributed Smalltalk [Decouchant, 1986], Network Objects [Birrell

et al., 1993] and RMI [Wollrath et al., 1996] are all client-server distributed programm

toolkits that are either designed to work with, or are enhanced versions of, existing l

guages. RPC, Corba and ILU are designed to be language independent, whereas N

Objects, Distributed Smalltalk and RMI are designed to work with a specific languag

(Modula-3, Smalltalk and Java, respectively). Because they are tightly integrated wit

Coterie
Shared
Objects

Network
Objects Penumbra Orca

Dist.
Smalltalk Emerald

client-server ✔ ✔ ✔ ✔ ✔
caching proxies n/a ✔

synchronized replication ✔ ✔
unsynchronized replication ✔ ✔ ✔
user-defined consistency ✔ n/a n/a

object migration n/a ✔ ✔ ✔ ✔
update ✔ n/a ✔ ✔ n/a n/a

invalidation n/a ✔ n/a n/a
mainstream language ✔ ✔ ✔ ✔

Table 3-1:A comparison of distributed object-based programming systems. Coterie
includes both Shared and Network Objects, allowing it to support both replicated a
client-server data sharing. Caching proxies, such as offered by Penumbra [Kristen
and Low, 1995], can be thought of as a kind of replication, but do not support auto
matic data propagation, and the first read of an object (after any change) requires
work access. As can be seen, only Orca and Coterie support both client-server an
replicated data, but Coterie is integrated into a mainstream programming language
The table also shows that the areas of improvement for Coterie are in the area of
defined consistency and object migration.

44

-

gation

 data

ed

 and

s C++

r

odel

l and

ess to

rated

ogic

ng the

 the

le to

s.

sion)

kit for

ted

ted

t to

s not

er

re pro-

lly to

rom
single programming language, these toolkits typically provide the features of that lan

guage on a distributed scale, such as distributed garbage collection, exception propa

between sites, support for marshalling of complex arguments, and so on. Distributed

Smalltalk also provides facilities for object migration.

While there have been a number of languages created that support replicated

(e.g., Orca [Bal et al., 1992], Distributed Oz [Haridi et al., 1997], Mentat

[Grimshaw, 1993]), most DSM systems are implemented as libraries that can be link

with programs written in an existing sequential language. A large number of parallel

distributed languages exist that extend sequential object-oriented languages such a

(many are discussed in [Wilson and Lu, 1996]). Mentat is a good example. Unlike ou

approach, and that of Orca, Mentat does not aim at tight integration with the object m

of the C++. Instead, it lets programmers express what should be executed in paralle

uses a macro data-flow model to allow methods to execute in parallel and block acc

variables that have not yet had values assigned to them. Like Mentat, Distributed Oz

(which extends the Oz language) uses a programming model that is not tightly integ

into the object model of the language [Haridi et al., 1997]. It uses single-assignment l

variables and abstractions such as ports and cells to express distribution. In designi

distributed extensions to Oz, Haridi et al. were explicit in their choice not to integrate

distributed semantics transparently into Oz because they do not feel that it is possib

provide tight integration and efficient, fault-tolerant, scalable distribution mechanism

The most similar attempt to ours at creating a language preprocessor (or exten

to tightly integrate replicated data into a mainstream language is the Penumbra tool

C++ [Kristensen and Low, 1995]. Penumbra is based on the notion of Problem-orien

Object Memory (POOM), an object-oriented extension to the notion of problem-orien

shared memory [Cheriton, 1986], where application semantics are taken into accoun

relax consistency and improve distribution efficiency. Unlike Coterie, Penumbra doe

provide symmetric replicated objects, but instead retains the notion of a single mast

object and supports caching the object data in the distributed proxies. Techniques a

vided to manipulate those caches, to create methods that operate on the cache loca

minimize network message traffic, and for the master object to retrieve information f

45

stency.

r-

arily

ach

igh.

lized

ild dis-

 lan-

r, it is

ack-

t state

jects

uch

oup

e

them.

ore

re

a struc-

d a

logical

were

com-

nt,
the caches when needed. Their approach has the drawback that significant work is

required by the programmer to implement subtypes of their base classDistributable ,

and a greater burden is placed on the shoulders of the programmers to ensure consi

Furthermore, the objects are not truly distributed, and maintaining strictly consistent

caches is less efficient than in Coterie. While their system is more flexible, the perfo

mance gains are aimed at objects whose read/write ratio is extremely low (i.e., prim

write operations) and is most dramatic on those objects. As they point out, the appro

taken by languages such as Orca is well suited to objects whose read/write ratio is h

Penumbra is also not particularly well integrated into C++: only subtypes ofDistrib-

utable can be distributed as parameters or return values to method calls, and specia

object-factories and process representations must be used by the programmer to bu

tributed programs.

The approach to replication most closely related to ours is Orca, a distributed

guage developed by Bal and others [Bal and Tanenbaum, 1988]. As discussed earlie

their approach to object replication that we used as a model for the Shared Object p

age. In Orca, like other DOM systems, shared state is encapsulated in objects and tha

can only be accessed through object methods. An important characteristic of Orca ob

is that all method accesses are atomic, creating a distributed programming model m

like monitors in local shared memory. Unlike most DSM and DOM implementations,

Orca uses a write-update protocol based on function shipping and totally ordered gr

communication: methods that update an object are applied to all replicas in the sam

order. Methods that do not change an object are applied only at the site that executed

An update protocol was chosen for implementing write operations over the m

common invalidation protocol for a number of reasons. First, invalidation protocols a

commonly used in page-based DSM schemes because each logical update to a dat

ture usually modifies multiple memory locations, and each modification is considere

separate update. Thus, using an update scheme would be wasteful, because a single

update would result in significant unneeded network traffic as intermediate updates

distributed. Updates in Orca, however, are method calls and are therefore much more

plex. Broadcasting these updates makes sense, and turns out to be relatively efficie

46

 to a

ipping

ring

ted in,

ted

nica-

ts.

ave a

 this

 eval-

en

tion

ethod

t the

o differ

 has

distrib-

stem

f dis-

2).

 of

age is

ign,

 pro-

d

s are
especially if network broadcasting is used. Function shipping (where the arguments

method are distributed and the method executed at all sites) was chosen over data sh

(where the method is applied once and the object state distributed) to avoid transfer

the entire object state after each update, because, for the applications Bal is interes

objects are often much larger than the arguments to the methods. To update replica

objects in a coherent way, each operation is sent using totally ordered group commu

tion, so all updates are executed in the same order at all machines.

The Orca system supports both replicated and single-copy client-server objec

An interesting feature of Orca is that it replicates only objects that are expected to h

high read/write ratio, thus reducing the overhead of updates. The runtime can make

determination based on programmer specification, static compiler analysis, dynamic

uation of the runtime behavior of the program, or a combination of the latter two. Wh

the read/write ratio of the object is low, replication is inefficient, so the object in ques

is stored on a single machine, with other machines accessing the object via remote m

calls. We will discuss the Orca system further throughout this chapter.

While the main difference between Orca and the Shared Object package is tha

Shared Object package is designed as an extension to an existing language, they als

in a number of other ways. For example, in both systems, total ordering is enforced

through the use of sequencers (see Section 3.3.2), but in Orca a running application

one sequencer, while the Shared Object package allows any number to be used and

utes data hierarchically through them. This is the only general-purpose replication sy

of this kind that we know of that supports multiple sequencers, although a number o

tributed virtual environment systems have architectures of this sort (see Section 3.3.

Another important difference is that the Shared Object package supports notification

changes to replicated objects, which Orca does not. Finally, the Shared Object pack

much more flexible in practice than a language such as Orca. This is partially by des

and partially an outgrowth of its implementation as a language add-on, which allows

grammers, when necessary, to circumvent the restriction that data must be accesse

through methods. This latter feature ends up being quite important when large system

47

the

also

s to

tem

he

d calls.

licated

r does

ther,

ation

.

pdates

, it is
being built, as will be seen in the discussion of the implementation of Repo-3D in

Section 5.5.

3.3 Shared Object Package Design

The primary goal of the design of Shared Object package is to provide a structured,

strongly-typed method to replicate state that is tightly integrated with Modula-3 and

Network Object package. In this section we will discuss our reasons for choosing a

distribution mechanism that is tightly integrated with our programming language and

describe the model of totally ordered, write-update objects in greater detail. We will

describe the Callback Objects that provide us with support for notification of change

Shared Objects and discuss the communication architecture of the system.

3.3.1 Goal: Tight Integration

The decision to tie distribution to programming language objects was driven by the

benefits this approach provides the programmer, none of which are specific to VE

programming:

• Debugging distributed applications is non-trivial. Taking advantage of the type sys

of a strongly typed language helps ensure that distributed data is used correctly.

• Tight integration raises the level of network transparency and simplifies learning t

system because there is only one programming model to master.

• Data is passed between processes as arguments to, or return values from, metho

Therefore, the programmer has direct control over what data is distributed where.

• Arbitrary data structures can be passed between processes, and synchronized rep

objects can be embedded within other data structures. Therefore, the programme

not have to be directly aware of all replicated objects for them to be distributed. Ra

logical data structures are distributed as a unit, and changes to the internal organiz

of those data structures does not necessarily require changing how they are used

• Only objects that are referenced in a process have their state replicated in (and u

sent to) that process. When all references to an object are dropped at a given site

48

 no

e

lution

t that

s real-

res,

lean

ssible.

 pro-

he

and

 are

ocol

sis-

ct is

ica-

ject

ith

n of

 sys-

s inte-
garbage collected and the replica removed. The runtime notices and updates are

longer delivered to that process.

In addition to these anticipated benefits, the design was also influenced by th

Modula-3 environment for which it was being developed. In particular, the Network

Objects client-server data-sharing package already existed and provided a clean so

to client-server data distribution. Since we wanted to use this package, it is importan

the Shared Object package provide a similar experience to the programmer. This wa

ized by following the design of the Network Object package in three ways:

• Shared Objects are tightly integrated with the full range of Modula-3 language featu

including supporting distributed garbage collection and handling exceptions in a c

and obvious way.

• Shared Objects behave as much like normal programming language objects as po

• Shared Objects are defined by inheriting from a certain, distinguished object type

vided by the package and following a few programming conventions. To enforce t

distribution semantics, a compile-time code generator checks these conventions

creates related objects.

3.3.2 Model: Totally Ordered, Write-Update Objects

Recall that the important attributes of the Shared Object approach to data replication

the use of an object as the most basic unit of distribution, and of a write-update prot

based on function shipping and totally ordered group communication to enforce con

tency.

By designating an object as the smallest granularity of distribution, each obje

either fully replicated at a site or not; there is no support for the notion of partial repl

tion of an object. Adopting this restriction greatly simplifies the implementation of ob

replication, while not sacrificing much power in practice. When used in conjunction w

the Network Object package, partial replication can be mimicked using a combinatio

the two types of objects. Indeed, since most of the application development with our

tem is done in Repo (see Chapter 4), where all objects (aside from basic types such a

49

bine

ter 2:

ted

ires a

stem,

lica

ut

antic

ient

t

ked

ns

ds),

d the

ntees

ns dis-

 and

r, and

ample,
gers or booleans) can be Network or Shared Objects, creating hybrid objects that com

both is straightforward.

A write-update consistency protocol satisfies the requirements set out in Chap

• A write-invalidation protocol violates the requirement of fast read access to replica

data because the first read that takes place after the local replica is invalidated requ

network access to fetch the updated object.

• This extra network access slows down the propagation of updates through the sy

which violates the need for low latency data propagation.

• While an invalidation protocol allows the programmer to be notified that a local rep

has changed, it is not possible to provide any additional semantic information abo

what has changed, as this information is contained in the update. Without this sem

information, the programmer would have to examine the object, requiring it to be

fetched from the network immediately, degrading the system to an extremely ineffic

simulation of a write-update protocol.

The semantics of this model are embodied in the following two principles, tha

also describe the Orca system:

1. All operations on an instance of an object areatomicandserializable. All operations

are performed in the same order on all copies of the object. If two methods are invo

simultaneously, the order of invocation is non-deterministic.

2. Property 1 applies to operations on single objects. Making sequences of operatio

atomic is up to the programmer.

The property of serializability allows an important simplification to be made to

Property 1. By distinguishing between methods that update an object (update metho

and those that do not (read methods), the read methods can be executed locally an

object replicas remain valid. Since reads are always executed locally, the model guara

fast read-access to shared data. Furthermore, this model fits the design consideratio

cussed in Section 3.3.1 quite well, and is quite easy for programmers to understand

use: all methods are executed locally in the order they are called by the programme

all methods that update an object are executed everywhere in the same order. For ex

50

ution

es.

and

nce

, the

s is

ecu-

s

possi-

e is

es not

or in

date,

truc-

ve to

he

g an

s to

with-

s in

o-3D

ed

ip-

where
if two update methods are invoked simultaneously at different sites, the order of exec

of the two updates is non-deterministic, but is guaranteed to be the same at both sit

The implicit atomicity of method calls further enhances the understandability

predictability of program behavior because no explicit locks are required. The importa

of this observation should not be underestimated: without atomic method invocation

likelihood of programmers implementing unreliable objects with hidden race condition

quite high.

It should also be noted that while the model says much about the order of ex

tion of methods, it says relatively little about the actions performed by those method

(except to distinguish between methods that update the object state or not). This is

ble because of the use of function shipping, as opposed to data shipping. This choic

important both for the reasons given in Section 3.2, and for the following reasons:

• Since the state of an object is not shipped around after each update, the state do

need to be examined after the updates, which would be a tricky and difficult endeav

a language postprocessor. The alternative, examining the data itself after each up

can be extremely time consuming, especially if an object contains complex data s

tures. Without analyzing the side- effects of the methods, the entire state would ha

be shipped each time, which would be inefficient.

• Data shipping implies that the only important side effect of method application is t

changes to the internal state of an object. However, when a programmer is watchin

object for changes, knowing what methods are executed, and what the argument

those methods where, often provides sufficient information to react to that update

out analyzing the contents of the object.

• Data shipping implies that all object state is global. As will be seen in the example

Sections 4.6.4 and 4.6.5, and in the implementation of Repo (Section 4.7) and Rep

(Section 5.5), there is often a need for non-replicated, “local” state to be maintain

within the objects.

• Data shipping implies there is internal state that can be shipped. With function sh

ping, stateless replicated objects can be used to mimic structured message ports,

51

ing is a

 it is

el, is

 be

E

ation

e to

me

er and

tion.

is

 total

event

 for-

ject.

ay

cts

e set of

 this

te to

s

 each
calling update methods corresponds to message distribution. Since message pass

commonly used approach in distributed virtual environments, being able to mimic

important, since flexibility, not dogmatic adherence to any one programming mod

our goal. Examples of using a replicated object as a structured message port can

found in Sections 4.6.1 and 4.6.3.

Given these factors, it is no surprise that we know of no existing distributed V

systems that uses an invalidation-based replication scheme. A hybrid update/invalid

scheme would give some additional benefit, such as allowing programmers to choos

trade off update latency for reduced network utilization, but would have significantly

increased the implementation complexity of the system.

To ensure all update methods are applied to all replicas of an object in the sa

order, the messages containing the data for each update method (the method identifi

the arguments) are delivered to each replica using totally-ordered group communica

While there are many approaches to group communications [Birman, 1993, Coulour

et al., 1994], the Shared Object package adopts the same approach used in Orca. A

order on updates to an object is enforced by having all updates to that object send an

to a distinguished process called thesequencer. The sequencer for an object assigns a

sequence number to each update event it receives in the order it receives them, and

wards the update messages to all processes containing a replica of that Shared Ob

Updates are applied only after they are received from the sequencer. Any process m

serve as a sequencer for one or more objects, in addition to its other tasks.

Currently, each process is associated with a particular sequencer and all obje

created in that process have their updates sequenced by that sequencer. We call th

processes associated with the same sequencer acluster. The sequencer sends direct

updates only to processes in its cluster. If a process in another cluster has a copy of

Shared Object, the update is sent to its sequencer, which will then forward the upda

the processes in its cluster that have a copy of the object. Thus, all update message

between clusters are sent through the sequencers, which communicate directly with

other.

52

te

ncer,

ntrol

by

one

ion-

and

se pro-

-

ncers

level

ile

se two
Consider what happens when a thread initiates an update by calling an upda

method. The thread is blocked until the update event is received back from the seque

at which time it applies the update to the object and returns. Figure 3-1 shows the co

and data flow of a typical update method call. A similar connection topology is used

many VR systems (e.g., WAVES, BrickNet, and Ring) to reduce network traffic, but n

have isolated it in this fashion. For example, in BrickNet and Ring, the low-level funct

ality of the sequencer is combined with other high-level functions such object lookup

management. In WAVES, these functions are assigned to separate processes, but the

cesses exist in a one-to-one relationship with each other.

Overlapping high- and low-level functionality like this is undesirable. For exam

ple, all these systems have a one-to-one relationship between the number of seque

and application level object management servers. In contrast, in Coterie application

object management can be partitioned based on conceptual process groupings, wh

sequencer duties can be partitioned based on physical network characteristics. The

partitions are not always identical, as illustrated in Figure 3-2.

Figure 3-1: Control and data flow for a Shared Object update. Processp1 calls an
update method at timet1. It blocks after a message is sent to the sequencers. The
message arrives at timet2 and is sent to all interested clients (p1, p2 andp3). p1
receives the message back at timet3, is unblocked, executes the original method
call and continues.

p1

s

p2

p3

t1 t2 t3

53

jects,

ects

uc-

ssoci-

of the

ge are

ew

ack

y
)

e

3.3.3 Event Driven Control Flow: Callback Objects

In order to satisfy the need for asynchronous notification of changes to replicated ob

we introduce the notion of Callback Objects into the replication model. Callback Obj

allow the programmer to receive notification of changes to a Shared Object in an str

tured fashion. For any Shared Object, the compile-time code generator creates an a

ated Callback Object that has a set of methods corresponding to the update methods

Shared Object.

Callback Objects are used as follows. An instanceCOof a Callback Object is asso-

ciated with an instanceSOof a Shared Object by passingSO to the constructor ofCO.

When an update method ofSO is invoked, the corresponding method ofCO is called.

Since the internal representation of a Shared Object is hidden, the details of the chan

indicated toCO by passing the arguments of the original method call onSO to the corre-

sponding method ofCO. To receive notification of an update, a programmer creates a n

object and overrides the methods ofCO, corresponding to the changes toSO for which

notification is desired, with methods that react appropriately to those changes. Callb

Figure 3-2: The relationship between clients, sequencers and object managers.
The partitioning of clients (C) between sequencers (S) can be based on efficienc
considerations, whereas the partitioning of clients between object managers (OM
can be based on the semantic grouping of processes, which are generally not th
same.

S

C CC C C

OM

S

54

l. A

to in a

ful-

rre-

efore

di-

,

on

 com-

e will
Objects remove the need for object polling and enable a “data-driven” flow of contro

concrete example, showing how tracker date can be distributed and changes reacted

timely fashion, will be given in Section 3.4.1. Manny of the other examples of the use

ness of Callback Objects will be given in later chapters.

The Callback Objects contain two methods for each update method in the co

sponding Shared Object. These methods can be overridden to receive notification b

(“pre_ ” methods) or after (“post_ ” methods) an update to the Shared Object. An ad

tional pair of “catch-all” notification methods can be overridden to receive notification

before or after an update, of any changes not handled by the more specific notificati

methods.

3.4 Implementation

There are two components to the implementation of the Shared Object package: the

pile-time code generator, and the Shared Object Runtime. Before describing these, w

give an overview of the package from the programmer’s viewpoint.

From the view of a Modula-3 programmer, a Shared Object typeOBJis created, as

shown in Figure 3-3. The programmer definesOBJ as a subtype of some other Modula-3

object (Public OBJ) with no publicly accessible data fields.Public OBJ inherits (possibly

Figure 3-3: Object hierarchy for a Shared Object. The programmer implements
the objectsPublic OBJand all the supertypes up toSharedObj.T . The Shared
Object code generator generates the Modula-3 code to implementOBJ, which
overrides all the methods ofPublic OBJto implement the Shared Object semantics.

OBJ

Public OBJ

. . .

SharedObj.T

The programmer declares an undefined
objectOBJ.The code generator defines it.

Public OBJ, and the types between it} andSharedObj.T , define the object.

55

tics is

e

 meth-

ecute

while

t read-

mmer

:

the

-

tor.

ject.

t take

ce

 with-
aque
f S.”
AL
via other objects) from a distinguished object,SharedObj.T .1 The programmer anno-

tates the source code to tell the system which of the methods ofOBJshould be treated as

update methods. The Modula-3 source code implementing the Shared Object seman

automatically generated and consists of the definition ofOBJ that overrides the methods

of Public OBJ to implement the shared object semantics, and a Callback Object forOBJ

(see Section 3.3.3). The generated code also contains a set of proxy objects for typOBJ

to facilitate embedding the objects in an interpreted language such as Repo.

Access to an object is controlled by a single writer, multiple reader paradigm.

Update methods are executed on an object within an exclusive lock and non-update

ods are executed inside a shared lock. This allows multiple non-update methods to ex

in parallel, while ensuring that update methods have exclusive access to the object

they are updating its internal state. The locking scheme we implemented ensures tha

ers cannot hold off writers indefinitely.

3.4.1 Object Definition and Runtime Code Generation

When defining a Modula-3 Shared Object, there are some restrictions that the progra

must obey, which are quite similar to those imposed by the Network Object package

• The programmer must leave a “hole” at the end of the object hierarchy, by declaring

last object to be a subtype2 of some other object, and not defining this final type any

where in the code. It is this type that is defined by the Shared Object code genera

• The remaining objects in the hierarchy must not have any visible data elements

declared in this interface, which is assumed to be the primary interface for the ob

This is enforced because, according to the model, all access to the data fields mus

place through the object methods.

1. In Modula-3, when a type in an interface is used, it must be qualified by the interfa
name. Thus, theT type in Figure 3-4 is used elsewhere asTrackerPosition.T .

2. Modula-3 supports the notion of defining an object as a subtype of another object
out providing the details of this new subtype. Such subtypes are referred to as op
subtypes and written using the notation “T<:S”, which is read as “T is a subtype o
These partial declarations can be revealed elsewhere in the code using the REVE
statement.

56

that

mmer

 new

sed in

e

e

s that

e

er

ibute

report,

e

oses
• The object hierarchy must be rooted at theSharedObj.T type.

• All methods must be defined as raising theSharedObj.Error exception. If there is

a problem with object communication, or if the replica has been rendered invalid,

exception will be raised.

• Subtypes of a Shared Object are not considered valid Shared Objects. If a progra

wishes to create a Shared Object that is a subtype of another Shared Object, the

object should inherit from the non-Shared Object (Public Obj above, andTracker-

Position.S in the example below) and have the code generator generate a new

Shared Object for this type.

3.4.1.1 Example Object Definition

To make these restrictions clearer, let us return to Coterie’s Tracker package, discus

Section 2.5.1. The package defines two kinds of objects, subtypes ofTracker.T and

Tracker.Report . The former are interfaces to the various tracking devices, and th

latter are the reports periodically generated by these device interfaces. None of thes

objects, however, are Shared Objects. The device interfaces only exist in the proces

communicates with the actual hardware device, and the reports are considered to b

immutable data elements, similar to integers, characters or text strings.

To support distribution of the tracker reports throughout the system, the track

package contains a simple Shared Object that implements a replicated container for

tracker reports. The definition of the object, called aTrackerPosition for historical

reasons, is shown in Figure 3-4.

The state of the object being defined contains a single tracker report. To distr

tracker reports, an instance of theTrackerPosition.T object is passed to all inter-

ested processes. When the thread that reads the tracker device obtains a new tracker

it calls theset() method of this instance to update the replicated object state with th

new report value. The implementation of this object, and a private interface that exp

the internal details of the implementation3, is shown in Figure 3-5.

57

at

ired
t it

e a
In this example, as with all our code, we will follow the Modula-3 convention th

the main type in an interface (the one a programmer would use) is namedT (thus requiring

it be referred to asTrackerPosition.T , in this case). Before looking at the definition

of theTrackerPosition object, consider a typical Modula-3 package containing a

typeT that the designer wishes to have both public and private parts. To partition the

object, the designer declares thatT is a subtype of a second type,Public , via the decla-

ration:

3. Having the details of the implementation exposed in an interface is currently requ
because the code generator needs this information and it is not possible to extrac
from a Modula-3 implementation (.m3) file. This is not a serious problem, because
Modula-3 supports the notion of private interfaces that cannot be accessed outsid
package.

Figure 3-4: The Modula-3 interface definition forTrackerPosition . The public
portion of the tracker object is defined to have three methods (init , set andget), of
which one (set) is an update method on the object (init is also technically an update
method, but it is generally only called during object creation). The fileTrackerPo-
sition.i3 would contain this definition.

INTERFACE TrackerPosition;
IMPORT Tracker, SharedObj, Thread;

CONST Brand = “TrackerPosition”;

TYPE
Data = Tracker.Report;

T <: S;
S <: Public;
Public = SharedObj.T OBJECT

METHODS
init (): T RAISES {SharedObj.Error};
set (READONLY val: Data) RAISES {SharedObj.Error};
get (): Data RAISES {SharedObj.Error};
<* SHARED UPDATE METHODS T.set, T.init *>

END;

END TrackerPosition.

58
(a) A private interface,TrackerPositionF.i3 , containing
the internal definition of theTrackerPosition object.

(b) The implementation of theTrackerPosition module,
TrackerPosition.m3 , containing the definition of the object methods.

Figure 3-5: The Modula-3 implementation forTrackerPosition . These two files
implement the private parts of theTrackerPosition Shared Object; (a) a private
interface and (b) the implementation.

INTERFACE TrackerPositionF;

FROM TrackerPosition IMPORT T, S, Public, Brand, Data;

REVEAL
 S = Public BRANDED Brand OBJECT
 data: Data := NIL;
 OVERRIDES
 init := Init;
 set := Set;
 get := Get;
 END;

PROCEDURE Init (self: S): T;
PROCEDURE Set (self: S; READONLY val: Data);
PROCEDURE Get (self: S): Data;

END TrackerPositionF.

MODULE TrackerPosition EXPORTS TrackerPosition, TrackerPositionF,
 TrackerPositionProxy;

PROCEDURE Init (self: S) : T =
 BEGIN
 IF self.data = NIL THEN
 self.data := NEW(Data);
 END;

 RETURN self;
 END Init;

PROCEDURE Set (self: S; READONLY val: Data) =
 BEGIN
 self.data := val;
 END Set;

PROCEDURE Get (self: S): Data =
 BEGIN
 RETURN self.data;
 END Get;

BEGIN
END TrackerPosition.

59

the

k-

the

ust

sed to

 the

e,

ven
 Pas-
e and
e
ype,
ique
TYPE

T <: Public;

Public = OBJECT ... END;

Public is fully defined in the interface and would contain the public parts of

object. The private parts ofT would be defined in the private implementation of the pac

age, by revealing the relationship betweenT andPublic as follows4:

REVEAL

T = Public BRANDED “Some brand” OBJECT ... END;

Now, let us look at how this prototypical object declaration is changed to define

TrackerPosition Shared Object. Recall that the Shared Object code generator m

override all of the methods of an object in the generated code: these overrides are u

enforce the Shared Object semantics. Therefore, the code generator must defineT, the top-

level object used by the programmer, which prevents the programmer from using the

“T <: Public ” relationship to define the private parts of the object. Consequently,

programmer must create an additional opaque subtype for that purpose. Furthermor

since the base type of the object must be the shared object typeSharedObj.T , the above

prototypical declarations become:

4. TheBRANDED keyword tells the Modula-3 type system that this is a unique type, e
if there is another type in the program with the same structure (unlike its ancestor
cal, Modula-3 uses structural type equivalence). The type system requires that on
only one revelation of an opaque type be branded. The BRANDED keyword can b
optionally followed by a string (“Some brand” in this case) that names the branded t
otherwise a unique string will be supplied by the compiler. Brand names must be un
across the entire program.

60

inter-

to see,

-

e

efine

in
TYPE

T <: S;

S <: Public;

Public = SharedObj.T OBJECT ... END;

The proper use of the package also requires that the types used in the main

face do not reveal the internal data fields of the object. As above,Public would contain

those parts of the object that the package designer wished the user of their package

and the internal details ofT would be defined in the private implementation of the pack

age, by revealing the relationship betweenS andPublic , as follows:

REVEAL

S = Public OBJECT ... END;

Finally, when an object is defined, the interface must be annotated with the

<*SHARED UPDATE METHODS*>pragma to inform the code generator which of th

object methods are update methods. For theTrackerPosition object, the pragma is:

<*SHARED UPDATE METHODS T.set, T.init *>

Given these declarations, collected in Figure 3-4, the code generator would d

the objectT in the generated code using the following revelation:

REVEAL

TrackerPosition.T = TrackerPosition.S BRANDED

TrackerPosition.Brand OBJECT ... END;

Six files are created by the code generator, the code for which can be found

Appendix A.TrackerPositionCB.i3 andTrackerPositionCB.m3 (Sections

61

nce

-

ual

and

rgu-

neous

-

f the

pro-

cess.

nd

lds,

Repo.

ver-

ed to
A.2 and A.3) implement the callback object used for notification of changes to an insta

of the Shared Object.TrackerPositionSO.m3 (Section A.1) contains the implemen

tation of theTrackerPosition.T object, including the dispatch function

(ApplyUpdate_T) that processes incoming updates by relaying them to the individ

dispatch stubs (Stub_*). The file also contains the method wrappers (Shared_*) that

enforce the Shared Object semantics. Automatically generated code in these stubs

wrappers takes care of marshalling and unmarshalling arbitrarily complex method a

ments and return values (such as large recursive data structures) between heteroge

machines across the network.

In Modula-3, the process of marshalling data is known aspicklingand is provided

by the Pickle module. TheTrackerPositionSO.m3 file contains the necessary pick

ling routines used to copy the object state between sites. These routines do much o

work required to set up the synchronization protocol when new objects are copied to a

cess, and take care of ensuring that only one copy of an object exists in any given pro

They also support the ability for a programmer to define their own routines to read a

write the object data: the default set of routines simply pickles all the internal data fie

as discussed in Section 3.4.1.3. TheTrackerPositionPickle.i3 (Section A.6)

interface is used to define these custom pickling routines. Finally,TrackerPosition-

Proxy.i3 andTrackerPositionCBProxy.i3 (Sections A.4 and A.5) contain the

proxy objects used to embed the Shared Object in an interpreted language such as

3.4.1.2 Callback Object Usage

The declaration of the Callback ObjectTrackerPositionCB.T is shown in Figure 3-

6(a). To use the Callback Object, the programmer must declare a subtype of it that o

rides the appropriate methods with procedures that perform whatever action is desir

handle notification of that update. A simplified version of such an object is shown in

Figure 3-6(b). This subtype would be used as follows:

62

ro-

y

(a) The generated interface,TrackerPositionCB.i3 , containing
the definition of the TrackerPosition Callback Object.

(b) An example Callback Object.

Figure 3-6: TheTrackerPositionCB.T Callback Object. (a) contains the auto-
matically generated interface to the Callback Object forTrackerPosition.T , and
(b) shows a simplified example of the Callback Object in use. In this example, the p
grammer would insert the code to be executed just before theset() method is called
in the body of thePre_set() procedure. Similarly, the code to be executed after an
update method would be inserted in the body of thePost_anyChange() procedure.

INTERFACE TrackerPositionCB;

IMPORT Tracker, SharedObj, TrackerPosition;

TYPE
 T <: PublicT;
 PublicT = SharedObj.Callback OBJECT
 METHODS
 init (obj: TrackerPosition.T): T;
 cancel ();
 pre_anyChange (READONLY obj: TrackerPosition.T);
 post_anyChange (READONLY obj: TrackerPosition.T);
 pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 pre_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 post_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 END;

END TrackerPositionCB.

TYPE
Callback = TrackerPositionCB.T BRANDED "My Callback" OBJECT
OVERRIDES

pre_set := Pre_set;
post_anyChange := Post_anyChange;

END;

PROCEDURE Pre_set (self: Callback;
READONLY obj: TrackerPosition.T;
READONLY val: Tracker.Report): BOOLEAN =

BEGIN
(* do something right before “set()” is called *)

END Pre_set;

PROCEDURE Post_anyChange (self: Callback;
READONLY obj: TrackerPosition.T) =

BEGIN
(* do something right after “set()” or “init()” are called *)

END Post_anyChange;

63

ject

 in

do this,

rite

efine

 the

ng the

 pro-

s usu-

 While
VAR cbObj: Callback;

trackerPos: TrackerPosition.T;

...

cbObj := NEW(Callback).init(trackerPos);

...

In this simple example, aftercbObj is initialized, all updates totrackerPos

will result in the appropriate methods ofcbObj being called. Notification stops when the

object is garbage collected, or when notification is explicitly cancelled:

cbObj.cancel();

3.4.1.3 Passing State Between Processes

When a reference to a Shared Object is passed between processes, the Shared Ob

Runtime must copy the current state of the object to this new process. As discussed

Section 3.4.1.1, the Shared Object code generator defines the necessary routines to

and also provides a facility for programmers to define their own routines to read and w

the internal state. The generated code for this example is shown in Figure 3-7. To red

what is done to copy an object between sites, the programmer creates a subtype of

appropriateSpecial variable (defined in the generatedTrackerPositionPick-

ler.i3 , shown in Figure 3-7(a)), overriding theread andwrite routines with the

actions they desire. The routines are registered with the Shared Object Runtime usi

RegisterSpecial routine (defined in the same interface). The default definition,

extracted from theTrackerPositionSO.m3 file, is shown in Figure 3-7(b).

The ability to define exactly what code is executed to copy the state between

cesses is important for both efficiency and usability reasons. The efficiency concern

ally focus on saving network bandwidth. For example, with some objects it might be

possible to copy a small portion of the state and recreate the rest at the remote site.

64

are

een

s.
 the
the system would function without this facility if efficiency was the only concern, there

times when the ability to define exactly what happens when objects are passed betw

processes is necessary.

(a) The generated interface,TrackerPositionPicler.i3 , containing
the definition of the TrackerPosition Pickle ObjectTSpecial .

(b) The default Pickle Object forTrackerPosition.T , taken
from theTrackerPositionSO.m3 file.

Figure 3-7: The defaultTrackerPosition.T marshalling code. The Shared
Object system must know what to copy when objects are passed between machine
The code generator provides a default set of reading and writing routines that copy
state of an object. In this case, the internaldata field is copied.

INTERFACE TrackerPositionPickle;
IMPORT SharedObj;

TYPE
TSpecial <: SharedObj.Special;

PROCEDURE RegisterSpecial_T(sp: TSpecial);
END TrackerPositionPickle.

REVEAL
TSpecial = SharedObj.Special BRANDED

“TrackerPosition.TSpecial”
OBJECT OVERRIDES

write := DefaultSpWrite_T;
read := DefaultSpRead_T;

END;

PROCEDURE DefaultSpWrite_T (<*UNUSED*>self: TSpecial;
shobj: SharedObj.T;
out: Pickle.Writer)

RAISES {Pickle.Error, Wr.Failure, Thread.Alerted} =
VAR

obj := NARROW(shobj, S);
BEGIN

PickleStubs.OutRef(out, obj.data);
END DefaultSpWrite_T;

PROCEDURE DefaultSpRead_T (<*UNUSED*>self: TSpecial;
shobj: SharedObj.T;
in: Pickle.Reader)

RAISES {Pickle.Error, Rd.EndOfFile, Rd.Failure,
Thread.Alerted} =

VAR
obj := NARROW(shobj, S);

BEGIN
obj.data := PickleStubs.InRef(in, TYPECODE(Tracker.Report));

END DefaultSpRead_T;

65

ould

tained

h as

e

ation

operat-

exam-

ally)

efault

n of

d

ple,

a

 often

).

low

ss fre-

ing
Typically, this happens when the object contains data fields that can not, or sh

not, be copied between processes (see Section 3.4.3); for example, if an object con

pointers to data structures created by the operating system or external libraries (suc

OpenGL display lists, or Windows NT/X11 window handles). These objects cannot b

copied because they are meaningless in the destination process. Instead, the inform

needed to recreate them would be passed to the new process, where the appropriate

ing system or external library routines could be called to recreate the data. Another

ple of the need for custom picklers is when an object contains state that is (conceptu

local to each process. This state should not be copied, but rather initialized to some d

values in the destination process. An example of this will be seen in the implementatio

Repo-3D in Section 5.5.

3.4.1.4 Additional Tracker Examples

In the previous sections, we presented a detailed example of the creation of a Share

Object, taken from Coterie’s Tracker package. While this object itself is extremely sim

more advanced tracker objects can be implemented using it. For example, assume

tracker is being handled by some process, and its reports are distributed via aTracker-

Position object, which we will calltobj . Now, suppose a client wants to receive at

most one tracker report per second. A secondTrackerPosition.T , calledslowobj

could be created in the process reading the tracker device. It would be updated less

by associating a simple callback object withtobj , whosepost_set method is overrid-

den to updateslowobj at most once per second (recall that thepost_set method is

called just after the associated object’ssetmethod is called, as discussed in Section 3.3.3

The Modula-3 code implementing the callback object, calledLowFreqTracker , is

shown in Figure 3-8(a), and code showing how a programmer would use it to create a

frequencyTrackerPosition.T object is shown in Figure 3-8(b). Local copies of

slowobj can now be obtained by clients who want to have updates sent to them le

quently. Notice that this approach allows great flexibility. For example, the process in

whichslowobj is created determines where the filtering is done; in this case it is be

66

s or

ecially

tance

ining
done in the local processes, but it could just as easily be done in the remote proces

some other process in between.

3.4.2 The Shared Object Runtime

There are a number of aspects of the Shared Object runtime that are interesting, esp

with respect to the lessons learned during its development. Among other things, the

Shared Object runtime is responsible for ensuring that there is one and only one ins

of any Shared Object in a process, performing distributed garbage collection, mainta

(a) A TrackerPositionCB used to create a
slowly changingTrackerPosition.T

(b) The new callback,LowFreqTracker ,
is used to create the newTrackerPosition.T

Figure 3-8: A low frequency tracker object. (a) A simple use of theTrackerPo-
sitionCB.T callback object from Figure 3-6(a), used to create a variation of a
tracker that is updated at most once a second. Each time thepost_set method is
called, it checks to see if the time interval has passed. If it has, it updates theslow
object and increments thenext field to wait for the next interval to expire. (b)
These two lines of code allocate a newTrackerPosition.T object and the
LowFreqTracker callback object that updates it based ontobj , the full fre-
quencyTrackerPosition.T object.

TYPE LowFreqTracker = TrackerPositionCB.T OBJECT
slow: TrackerPosition.T;
interval, next: REAL := 0.0;

OVERRIDES
post_set := LFSet;

END;

PROCEDURE LFSet(READONLY obj: TrackerPosition.T;
READONLY val: Data): BOOLEAN =

BEGIN
IF self.next < Time.Now() THEN

self.slow.set(val);
INC(self.next, interval);

END;
END LFSet;

(* assume tobj is the normal tracker object *)
slowobj := NEW(TrackerPosition.T).init();

slowcb := NEW(LowFreqTracker,
slow := slowobj,
interval := 1.0).init(tobj);

67

he

cer (if

ss pri-

that

f the

ing

only

exed

c-

ever

ne is

 used

bject

ect

rather

cess,

ss the

e

its cli-

ken to

ect

.

Mod-

in a

there

tines
a set of threads to process incoming events, sequencing updates (if the process is t

sequencer for the object in question), and forwarding update requests to the sequen

the process is not that object’s sequencer).

We ensure there is one and only one instance of a Shared Object in any proce

marily for efficiency reasons: multiple copies would waste memory, as well as require

all update methods would have to be executed multiple times (once for each copy o

object). Furthermore, allowing multiple copies would complicate the runtime by requir

it to keep track of multiple copies of an object in each process. To ensure that there is

one copy, the runtime maintains a table of all the replicated objects in a process, ind

by the unique global object identifiers. By using the pickling facilities discussed in Se

tions 3.4.1.1 and 3.4.1.3, the runtime checks for the prior existence of an object when

it is passed to a process: if the object already exists in the destination, the current o

used, otherwise a new object is created and entered into this table. This table is also

to dispatch incoming updates to the local objects.

We take further advantage of this check for the prior existence of a Shared O

in a process to improve network bandwidth utilization by only sending the global obj

identifier when a Shared Object is embedded in an argument to an update method,

than pickling the entire object state. Therefore, if the object already exists in that pro

the existing copy can be used without having needlessly copied the object state acro

network. If the object does not exist at the destination site, the Shared Object runtim

makes a remote method call to its sequencer to obtain the object, which may in turn

require the sequencer to make remote method calls to other sequencers, or to one of

ents to obtain the object. These additional network accesses may increase the time ta

pass objects between processes, but can result in a significant savings when an obj

already exists in the destination processes, especially when the object state is large

Distributed garbage collection takes advantage of theweak reference facility pro-

vided by the Modula-3 runtime. A weak reference is a reference to an object that the

ula-3 garbage collector does not consider when determining if an object is referenced

process. When a weak reference is created, a cleanup routine can be provided; when

are no longer any non-weak references to an object, all weak reference cleanup rou

68

 only

revi-

ocess,

ct,

rout-

an-

s in

ch

e dia-

lients

ica-

ts read

ads,

in a

 from

ness

ment

en:

t.

ct.
are called just prior to the object being garbage collected. The Shared Object system

maintains weak references to the local objects in its object table (mentioned in the p

ous paragraph). When all real references to a Shared Object are removed from a pr

the runtime notifies the sequencer that this process no longer has a copy of the obje

allowing the sequencer to keep track of where real copies of an object are and to stop

ing updates to those processes that no longer have copies of an object.

In the next two subsections, we will discuss two issues in greater depth: the m

agement of threads by the runtime, and the handling of exceptions and return value

update methods.

3.4.2.1 Thread Management

Figure 3-3 shows a simplified representation of the data flow through the system. Ea

process maintains a connection to its sequencer, represented as an Event Port in th

gram. If a process is a sequencer, it would also maintain a connection to each of the c

in its cluster. All Shared Object communication is performed through these commun

tion channels. As shown in the diagram, each port uses two threads to process even

from, and written to, the Event Port. While this may seem like an excessive use of thre

especially for a sequencer that may be talking to a large number of peers, it results

cleaner, more robust, and more efficient implementation. One of the lessons learned

this implementation is that a judicious use of multi-threading increases the responsive

and robustness of the system. Since these lessons were learned during the develop

process, no quantitative results are available to illustrate them.

This lesson is especially true when deciding how to handle incoming update

events. To apply a sequenced update to an object, the following actions must be tak

1. An exclusive write lock is acquired for the object.

2. All “ pre_ ” methods are called for each Callback Object associated with the objec

3. The update method is executed.

4. All “ post_ ” methods are called for each Callback Object associated with the obje

5. The write lock is released.

69

mely

hile

nt of

llback

s not

ro-

esir-

ween

ead

is
is-

ort
e
-
e
ay
d

Unfortunately, of these steps, only the last one is guaranteed to happen in a ti

manner. If there are readers accessing the object, step 1 will block until they exit. W

this will usually result in at most a short delay, steps 2–4 could take a significant amou

time. Even though programmers are encouraged not to write update methods or Ca

methods that do substantial amounts of work, there is no way to ensure that this doe

happen. Therefore, multiple threads must be used to ensure incoming updates are p

cessed in a timely manner.

However, too many threads results in too much parallelism, which is also und

able, as the process will then spend substantial amounts of time context switching bet

these threads. To provide some control over this parallelism, we implemented a Thr

Figure 3-9: Data Flow in the Shared Object System. The Shared Object package
built on top of an Event package that presents both unicast and multicast event d
tribution abstractions. (Currently, the event layer is implemented with TCP sock-
ets.) Each Event Port in a process uses two threads, one to read events from the p
and add them to an event queue, the other to read events from a queue and writ
them to the network. The Shared Object package maintains a Thread Pool to pro
cess incoming events. Each Shared Object maintains a queue of out-of-sequenc
events that have arrived, but cannot yet be processed. An update method call m
require a message to be sent to the network, and wait for a reply to unblock it an
allow it to continue.

...

...

Shared Object
Runtime

...

...

...

...

T

T

T
Thread PoolEvent

Port

Method
Call

Event Multicast Abstraction

Method
Dispatch

Work Queue

Broadcast
Queue

T Thread
...

QueueShared Object

70

mber

ract

vents

s, and

y. Ide-

uld

ess-

ool.

llow-

 able

 be

added

ad that

he

as

date in

so if

han-

into
Pool abstraction for use in processing incoming events5. When a Thread Pool is created,

the programmer specifies the maximum number of running threads, the maximum nu

of idle threads and a queue to obtain “work” from. In this case, the work queue is the

incoming event queue, as shown in Figure 3-9. The application programmer can inte

with this Thread Pool in two ways, to tune the performance of the system:

• The programmer can cause a thread to block until all the queued Shared Object e

are processed. This allows more processor time to be devoted to incoming update

is needed primarily because Modula-3 threads are all executed at the same priorit

ally, higher priority threads would handle incoming updates so that the system wo

guarantee all replicated objects get updated in a timely manner

• If a method is known to take a significant amount of time (i.e. blocking on I/O, acc

ing a network service, etc.), the current thread can be removed from the Thread P

The current thread will no longer be included in the Thread Pool’s thread count, a

ing an additional thread to be created if necessary.

This latter facility is needed because we want Callback Object methods to be

to call update methods of other Shared Objects. Since we want Callback methods to

executed synchronously with the corresponding update methods, rather than being

to a queue for later processing, the Callback Objects are executed by the same thre

executes the update method. When the update is being executed by a thread from t

Thread Pool, this threadmust be released from the pool, or the system may deadlock,

follows:

• An update method is called and a message is sent to the sequencer to put that up

sequence.

• The thread invoking the method blocks until the sequencer returns the sequenced

update to the process.

• The number of threads in the Thread Pool handling incoming messages is limited,

all of those threads block by calling update methods, the system will not be able to

5. The Thread Pool abstraction turned out to be so useful, we eventually exposed it
Repo, as will be seen in the examples in Chapter 4.

71

ead-

l

llow

bad

rger

ing

t

hods.

as

alues

es to

er is

 the

e that

ate

he

sses

excep-

n all

et of

mory,

, but
dle replies from the sequencer to unblock those threads, and the system will be d

locked.

Therefore, the runtime automatically removes any thread from the thread poo

before it blocks waiting for an update to be sequenced. The alternative would be to a

an unlimited number of threads to handle incoming Shared Object events, but this is a

idea: if the system could not handle events as fast as they arrived, a progressively la

number of threads would be created. This would slow the system down further, caus

more threads to be created, and so on until resources were exhausted.

3.4.2.2 Exception and Return Value Handling

Since update methods are executed on every replica of an object, the Shared Objec

runtime must deal with the values returned from, and exceptions raised by, those met

No special handling is required for non-update methods: when a non-update method

returns a value or raises an exception, it is simply passed on to the calling method,

would be expected. Similarly, in the process that initiates an update method, return v

and exceptions are also passed back to the calling method; since the runtime arrang

have the thread that initiated the call execute the method when the sequence numb

returned from the sequencer, the exceptions will propagate through the call stack in

normal manner.

When a value is returned by an update method in a process aside from the on

initiated the update, it is simply ignored. Similarly, for the vast majority of object upd

methods, if an exception is raised in the initiating process, it will be raised when the

method is executed in all replicas. In this case, since the exception is passed on to t

caller in the process that initiated the update, it can be safely ignored in all other proce

because the initiating process can take whatever action is necessary to deal with the

tional condition; therefore, the runtime catches these exceptions and ignores them i

processes aside from the initiating process.

There are cases, however, when an exception will only be raised in some subs

the replicas. For example, if a method needs to acquire local resources (such as me

or space in a local file system), the request for that resource may fail in some replicas

72

 has

ceive

 the

ther

xcep-

ate)

with

pecial

a that

more

 to

solu-

new

s not

ource

pro-

 use

ed to

plicas.

s (e.g.,

ly with

date

objects
not in others. If the update succeeds in the process that initiated it, the calling thread

no way of knowing that the update failed in one of the replicas because it does not re

an exception; update distribution is asynchronous, and no information is returned to

process that invokes an update method regarding the invocation of that method in o

processes. The Shared Object system requires that the programmer decide which e

tions will be raised in all replicas (i.e., those that depend only on the global object st

and which might be raised in a subset of the replicas. To help the programmer deal

these latter situations, the Shared Object package provides the programmer with a s

exception calledSharedObj.Fatal . If a programmer raises this exception in a

method, the Shared Object runtime assumes that something has failed in this replic

may not have failed in all others, and marks this replica as invalid.

While the process that issued the update has no way of knowing that one or

of the other replicas may now be invalid, any attempt to access an invalid replica, or

pass it to another process, will fail with aSharedObj.Error exception. How to pro-

ceed is then up to the process containing the invalid replica. While this is not an ideal

tion, it is sufficient for our needs. For example, the process could attempt to acquire a

copy of the object, or follow any other reasonable course of action. The runtime doe

attempt to acquire a new copy of the object for the programmer because whatever res

was unavailable when the update method failed will probably still be unavailable, and

grammer intervention will be required to properly handle this situation.

3.4.3 Restrictions

As with Network Objects, there are restrictions on what Modula-3 types are valid for

as arguments to method calls. For Shared Objects, the restrictions arise from the ne

package arguments to update methods into the update messages distributed to all re

Therefore, no data value can be used that is specifically associated with one proces

a thread or a condition variable) or that has state that cannot be accessed repeated

consistent results (e.g., a file reader or writer).

While Network and Shared Objects are allowed to be used as arguments to up

methods (so that data structures such as distributed lists can be constructed), these

73

cient

twork

ult in

esses,

 the

ared

as a

tion

bility

 of

s for

stem

Orca

ly to

ion

e

ra2

m-
should never be accessed from within update methods, as the results are both ineffi

and unpredictable. Accessing Network Objects from an update method is inefficient

because each of the replicas will need to perform the same remote access to the Ne

Object. Accessing both Shared and Network Objects from an update method can res

unpredictable behavior, as the object being accessed may change between the acc

and therefore return different information to some of the replicas, potentially causing

replicas to become inconsistent.

3.5 Performance and Usability

While performance was not the primary concern when designing and building the Sh

Object package, it was definitely a factor in our design. Usability, on the other hand, w

significant concern, and was the primary motivation for tightly integrating data replica

with a programming language. While we have not done extensive performance or usa

analysis, we would like to show two things in this section. First, that the performance

the system falls within our expectations, and is acceptable for the kinds of application

which we designed Coterie. Second, based on the similarities between our object sy

and that of Orca, we will argue that the recent usability and performance analyses of

[Wilson and Bal, 1996, Bal et al., 1998] justify the approach taken for Coterie, name

implement replicated data using objects based on a write-update protocol with funct

shipping and totally ordered group communication.

3.5.1 Shared Object Performance

We measured the performance of the Shared Object system, the results of which ar

shown in Tables 3-2 and 3-3. The tests were performed between a group of Sun Ult

Benchmark Time (milliseconds)

Simple Access (read or write) 0.03
Replicated Read 0.05

Table 3-2:Local method call performance. A comparison of performance for repli-
cated object read methods for synchronized (Replicated) and unsynchronized (Si
ple) objects. Times are an average of 10 successive calls of the given type.

74

 the

st per-

over-

that

 pro-

ble 3-

Sim-

imum

server

 for a

ase of

ubse-

orre-

ented

 local

f non-

r

ork

p-
e.
machines, connected via a 10baseT ethernet hub, and were implemented in Repo

(Chapter 4). For each of the six tests, 10 calls of the given type were performed and

average time for a single call obtained as an average over total time. This is the wor

formance situation a Coterie programmer would typically encounter: Repo has more

head per call than Modula-3, and a 10Mb/sec hub is the slowest network configuration

would be used for the system. We use this configuration, however, because Coterie

grammers typically build replicated objects in Repo, not in Modula-3. Therefore, the

slower, hubbed network limits the scalability (as seen in the last measurement in Ta

3) rather than the speed of individual calls.

Each call sets a data field in the corresponding object to an integer value. The

ple measurement is a call to a local, unsynchronized object, and represents the min

time needed to make a Repo method call. The Remote measurement is for a client-

access to a second process, and represents the best time we could hope to achieve

round trip message, since the Network object package has been optimized for the c

repeated method calls between processes (TCP connections are cached, so each s

quent call typically reuses an existing connection). The Replicated measurements c

spond to read and write access to synchronized, replicated objects, which are implem

by the Shared Object package.

As can be seen, the Shared Object package achieves its primary goal of fast

read access to the replicated data, as the reads are only slightly slower than reads o

synchronized objects. The price to be paid for these fast reads is significantly slowe

writes: the Shared Object package is currently over four times slower than the Netw

Benchmark Time (milliseconds)

Remote Access (read or write) 1.04
Replicated Write (2 clients) 4.57
Replicated Write (4 clients) 4.75
Replicated Write (8 clients) 8.2

Table 3-3:Distributed method call performance. A comparison of performance for
network access methods for each of client-server (Remote) and synchronized (Re
licated) object calls. Times are an average of 10 successive calls of the given typ
For the Replicated Writes, the time taken is shown for 2, 4 and 8 clients of a single
sequencer.

75

e

nce,

am-

s a

t.

imple-

thread

ppli-

rks

of cli-

n by

on-

he per-

d by

s

h of

uses

st.

for-

rfor-

work

ltiple

n

Object package when updating a Shared Object, for 2 or 4 replicas. The performanc

drops off substantially after that. There are a variety of reasons for this poor performa

all of which have to do with the simplistic nature of the current implementation. For ex

ple, with a large number of clients, our use of TCP (instead of multicast UDP) cause

significant increase in network activity, and therefore collisions, on a shared etherne

Even on a switched network, the sequencer must send the update to each client in

sequence, which causes significant performance degradation. Other aspects of the

mentation hurt the performance and could also be improved, such as the user-level

performance of Modula-3. However, since the system performs well enough for our a

cations, this was deemed a low priority. An optimized implementation, on fast netwo

and computers, should be able to achieve update performance (for a small number

ents) similar to the Remote Access numbers.

This is exactly the kind of performance obtained by the Orca system, as show

the performance analysis recently done by its designer [Bal et al., 1998]. Table 3-4 c

tains their measurements, taken from Table II in the paper. The authors measured t

formance of their system on a network of 200Mhz Pentium Pro machines, connecte

either Fast Ethernet or Myrinet (a 1.28Gb/sec network with extremely low latency). A

can be seen, their performance numbers for Remote Access are approximately 1/5t

ours, and their Replicated Write times are in line with the Remote Access ones. Orca

three different protocols for distributing updates, all of which rely on efficient multica

The protocol used for a given update is chosen dynamically to optimize network per

mance, based on the size of the update message and other factors. The Myrinet pe

mance is further optimized by having the sequencers implemented in the Myrinet net

switches. Furthermore, Orca is a compiled language and optimizes its runtime at mu

Benchmark (milliseconds) Fast Ethernet Myrinet

Remote Access (read or write) 0.242 0.0406
Replicated Write (8 clients) 0.244 0.0647
Replicated Write (32 clients) 0.385 0.0847

Table 3-4:Orca Method call performance. A comparison of latencies introduced
in object access for remote and replicated objects. The measurements are take
from Table II in [Bal et al., 1998].

76

ur

s of

plica-

ead-

sed

e lat-

M is

dom

com-

rst

of

d/

cess

we also

the

are

a high

 is

e, if

econd,

tocol

ach

-

ated

 nec-
levels, from the operating system up to the application. This contrasts sharply with o

simple, TCP-based implementation of the Shared Object runtime system.6

However, the performance measurements for individual calls are not the focu

[Bal et al., 1998]. Instead, they focus on a quantitative performance analysis of 10 ap

tions implemented in Orca, and a comparison of Orca to two other DSM systems: Tr

Marks, an optimized page-based DSM [Keleher et al., 1994], and CRL, an object-ba

DSM that uses a directory-based write-invalidation scheme [Johnson et al., 1995]. Th

ter analysis demonstrates that for a wide range of applications, Orca’s approach to DS

superior to either of the other two. This is an important finding, because common wis

typically holds that write-update protocols are inefficient.The reason Orca defies this

mon wisdom, and also why it performs well for the ten applications analyzed in the fi

part of the paper, turns out to be its intelligent approach to object placement.

Like Coterie, and unlike most DSM or DOM systems, Orca uses a combination

replication and single-site client-server objects. In Orca, objects that have a high rea

write ratio are replicated, and those with a low read/write ratio are migrated to the pro

that is updating them and accessed remotely by other processes. Bal observed, as

did, that it is these latter objects, with a low read/write ratio, that are responsible for

typical poor performance of write-update protocols. However, when replicated objects

read a least once in each process between writes (which is what Bal considers to be

read/write ratio), a write-update protocol performs quite well, for two reasons: first, it

more efficient to send an update to a process, instead of just an invalidation messag

that process is going to request the updated object before it is changed again, and s

if many processes are going to request a copy of the updated object, an update pro

will allow the update to be broadcast to all processes at once, instead of unicast to e

host as they request it.

Interestingly, the authors also found that for their applications, the best perfor

mance was achieved when programmers manually chose which objects were replic

6. The runtime is designed to support a more efficient implementation, if it becomes
essary, without necessitating any visible changes at the programming layer.

77

should

he

es

 typi-

such

milar-

t, if

anual

ared

 the

ical

a of

e

ause

hared

: sup-

e

which

m is

s, as

ed, a

ribed

 any-

o dis-
and which were to be accessed via client-server semantics (and where those objects

be located), rather than having the system make those choices dynamically. While t

Orca runtime system will make decisions similar to those made by the programmers

regarding object placement and replication, it invariably makes incorrect initial choic

that must subsequently be corrected. They point out that since these corrections are

cally made relatively quickly, the difference is typically insignificant for a long running

program, and they prefer to have Orca make the choices to free programmers from

decisions.

The results presented in this paper are relevant to our work because of the si

ity between Coterie’s combination of Shared (replicated) and Network (client-server)

Objects and Orca’s object system. The point that manual placement is more efficien

slightly less convenient, is encouraging because a programmer must make these m

decisions in Modula-3 when they define an object: an object is either a Network or Sh

Object based on the class it inherits from, and there is no facility to convert between

two (either manually or automatically). Bal and his colleagues point out that in the typ

case, it is desirable to have the system make the placement decisions, since the ide

DSM is to hide the details of distribution from the programmer, and the optimal choic

may be machine-dependent. We agree with them, but do not provide this facility bec

of the implementation overhead. We also decided early on to keep the Network and S

Object packages separate since the Network Object package is already widely used

porting conversion between the two would be difficult without integrating them.

It might seem that a write-update protocol based on total global ordering of

updates via a centralized sequencer would be inefficient because all updates must b

broadcast to all replicas, and that they must pass through a centralized sequencer (

would be a potential bottleneck). However, the analysis by Bal shows that this criticis

simply unfounded when replicated objects are used in concert with client-server one

we have done in Coterie. First, when objects with a high read/write ratio are replicat

write-update protocol turns out to be more efficient than any other protocol, as desc

above (primarily because the objects would end up being refreshed after each write

way, but the systems would not be able to take advantage of network broadcasting t

78

rite

use

level

 object,

e a

ent

server

n

ty

at we

solu-

,

em

-on

udents

rca

se in

ce the

are

trict

when

the

 In

bject’s
tribute those updates). By using client-server semantics for objects with a low read/w

ratio, we avoid sending around frequent updates that will not be read. Second, beca

update operations are done at a high level (the level of the method call, instead of the

of memory access), a single update method can encapsulate a set of updates to the

reducing the number of updates to be distributed in practice. Finally, there will only b

possibility of contention at the centralized sequencer when objects have many, frequ

updates applied to them. In this case, however, the objects can be changed to client-

objects because their read/write ratio will probably be low.

Other performance issues with Orca have been discussed in the context of a

analysis Wilson did of its usability [Wilson and Bal, 1996] (we will return to the usabili

issues raised by this paper in the next section). Chief among the issues, and one th

have also experienced, is the slowdown incurred by always blocking the issuer of an

update message for the duration of the round trip to the sequencer. Their proposed

tions focus on figuring out how to pipeline multiple update calls at the compiler level

without violating the serializability of the model. It is not clear how to solve this probl

without doing code analysis, which is prohibitive to do at the level of a language add

such as the Shared Object package.

Wilson also identified a number of performance problems with Orca that have

been addressed to a certain extent by our design. One performance problem their st

complained about was the inefficiency of unsynchronized replicated objects. While O

supports defining objects as unsynchronized (they call themnon-shared), these objects go

through the same protocols as synchronized ones, making them too inefficient for u

simple sequential programs. Coterie does not suffer from this problem because, sin

Shared Object package is a tightly integrated extension of Modula-3, programmers

free to use normal Modula-3 data objects.

Another performance problem encountered while using Orca arises from its s

enforcement of the dictum that internal data can only be accessed via methods. Even

performance becomes a problem and a programmer is sure they can safely access

internal data fields without violating the model, there is no facility for them to do this.

the Shared Object system, on the other hand, the internal interface that exposes an o

79

s if

 this

ject

ase-of-

dot-

terie

ead

been

Repo-

hich

ystem

 did

that

ject

sed

called

he

the

west,
Prob-
ce
internal structure (e.g., Figure 3-5(a)) can be made public and used by programmer

they need to. It is up to the programmer to ensure they know what they are doing, so

facility is not to be used lightly. We make use of this ability in the implementation of

Repo-3D (see Section 5.5).

3.5.2 Shared Object Usability

While we have provided well-reasoned justifications for the design of the Shared Ob

package, we have not done any formal experimentation to measure the package’s e

use as a distributed programming system for exploratory programming, except anec

ally. More importantly, most of the researchers who have built applications using Co

have never ventured into Modula-3 or used the Shared Object package directly, inst

confining themselves entirely to Repo. The two major programming tasks that have

undertaken using the Shared Object package are the implementations of Repo and

3D, and both of these were done by the author. While we can attest to the ease with w

these packages were created using the Shared Object system, the experiences of s

designers using their own system should be taken with a grain of salt.

More convincing support for the hypothesis that this is a useful programming

model can be found by again turning to Orca, this time looking at an analysis Wilson

of its usability [Wilson and Bal, 1996]. As with the performance analysis in [Bal

et al., 1998], this usability analysis was published after our work was completed, so

we could not take advantage of their experiences when we designed the Shared Ob

package. However, the similarity of our experiences is compelling.

Wilson proposed a suite of medium-sized, realistic applications that can be u

together to evaluate the usability of parallel and distributed languages and systems,

the Cowichan7 problems [Wilson, 1994]. These problems are intended to determine t

usability of programming systems for writing efficient parallel programs. In contrast,

7. The problem set is named after a place and tribal name from the Canadian North
and was chosen by Wilson to acknowledge the debt his work owed to the Salishan
lems of Feo [Feo, 1992], which is also a tribal name and the name of the conferen
center in Oregon where the Salishan Problems were formulated.

80

nd to

bility.

l pro-

ple-

 C to

rca.

te sim-

 there

or

in

ilson

m,

 com-

 a

 a

 pass-

rent

“get

ility

b-

es to

nt or
benchmarks typically done by system developers, and supported by other suites, te

assess only the performance of programming systems (or hardware), and not the usa

The suite was selected to cover a wide spectrum of application domains and paralle

gramming idioms.

To assess the usability of Orca, the authors had six different students each im

ment one of the Cowichan problems. They first implemented a sequential version in

familiarize themselves with the problem, and then implemented a parallel version in O

What is interesting is that the lessons and experiences related by the authors are qui

ilar to the experiences related to us by those who have been using Coterie, although

are some we had not discovered because of the nature of our application domain. F

example, while we had discovered that the atomicity of objects is a problem in certa

cases, we had not encountered problems based on the inability to partition objects. W

found that this was a problem for some of the numerical problems in the suite, which

would benefit from partitioning matrices over multiple sites. To overcome this proble

programmers had to partition the objects themselves and use the shared objects for

municating changes: in this case, the programming model effectively drops down to

form of message passing.

While Coterie shares this problem with Orca, the fact that the model supports

fall-through to a style of programming that is best described as “structured message

ing” supports our claims about its flexibility. While this approach may not be transpa

to the programmer, implementing a kind of message passing by communicating via

Shared Objects takes only a few lines of code (in Repo) and allows the programmer to

the job done,” which is exactly what is needed for exploratory programming.

The other major problem that Wilson, and others, found with Orca is the inab

to apply an operation to multiple objects atomically. In contrast to the partitioning pro

lem, this is something we have noticed with Coterie. There are a number of approach

dealing with this issue that we have considered, but none is particularly clean, efficie

easy to implement. We will return to this issue in Chapter 7 when we discuss future

research directions.

81

e

thods

 a

re

por-

ds are

ed to

cked

itrary

hro-

port

nd

rs do

 and

is cor-

sign,

evel-

o

ared

 draw

rs do

but

ctured

that

yn-

ther

site is
One final usability problem we have encountered with Coterie is caused by th

synchronous nature of the Callback Objects. While synchronous execution of the me

of the Callback Objects is often necessary to guarantee that the Shared Object is in

known state, or (in the case of thepre_ methods) to be able to access the state just befo

the update is applied, asynchronous notification of updates is often sufficient. More im

tantly, it is often necessary: since the Callback Object methods and the update metho

currently executed synchronously by the same thread, programmers are not suppos

do any significant work in the Callback Object methods as access to the object is blo

while the methods are being executed. Since programmers often wish to execute arb

actions from the Callback Object methods, they often end up building their own async

nous event notification queues in Repo. It would be useful if the system were to sup

asynchronous notification directly.

Despite the problems raised, Wilson and Bal conclude that Orca is a useful a

easy to learn parallel programming environment. They found that, while programme

have to concern themselves with communication and synchronization, the language

model encourage them to think about these issues in a highly structured manner. Th

responds to our anecdotal findings: by putting distribution concerns into the object de

programmers deal with it once in a structured way, and then spend the rest of their d

opment time dealing with application development without concerning themselves to

much with distribution.

Therefore, based on both the similarities in the programming model of the Sh

Objects and Orca, and our experiences and lessons learned, it seems reasonable to

similar conclusions about the Shared Object package. In both systems, programme

occasionally have to concern themselves with communication and synchronization,

the language and model encourage them to think about these issues in a highly stru

manner. This was one of our original motivations: prior to this work, we had observed

much of our programming time was being spent implementing communication and s

chronization protocols, with a surprisingly small amount of time and code devoted to o

aspects of the programs we were building. With the Shared Object package, the oppo

82

plic-

 that

 of

to use.

uild-

d, they

l with

stribu-

y:

object.

licit

mple-

rk

st

bject

t the

ation

typi-

e as

ack-

execu-

ost
now true. While the distribution issues can not (and should not) be ignored, they now

occupy a relatively small amount of time and code.

3.6 Discussion

There are four factors behind the design of the Shared Object package: efficiency, sim

ity, transparency, and flexibility. From the previous discussion, it should be apparent

the package satisfies our efficiency concerns, both in terms of the timely distribution

updates and fast local read access. We have also found that the package is simple

First, by following a few simple guidelines, listed at the beginning of Section 3.4.1, b

ing replicated objects is a straightforward task. Second, once the objects are create

can be used just like any other Modula-3 object. This allows the programmer to dea

the issues of data replication in one place (when the object is defined) and ignore di

tion elsewhere, instead concentrating on other application details.

The Shared Object package also offers almost complete network transparenc

once an object is defined, it can then be used the same way as any other Modula-3

The objects differ from normal Modula-3 objects in a few subtle ways: there is an imp

lock around all method access (which programmers only need to be aware of when i

menting the object methods), and the methods may all raise theSharedObj.Error

exception without the programmer raising it in any of the method bodies. This netwo

transparency is especially important when the distribution semantics of an object mu

change, so a programmer needs to change the definition of an object from a Shared O

to a Network Object or to some other kind of object: aside from changing the type tha

object in question inherits from, and perhaps making other changes to the implement

that are required based on its new usage, the effects of the change will be minimal (

cally, the programmer will have to catch and handle the newSharedObj.Error excep-

tion).

The final factor in the design is our desire to create a system that is as flexibl

possible, motivated by our focus on exploratory programming. The Shared Object p

age turns out to be very flexible because we define consistency in terms of method

tion (both the order of execution and whether they modify the global state), but say alm

83

of an

ling

ds are

e par-

pdate

icted

e-

te of

ssoci-

ring

a struc-

read

etails
nothing about the contents of the objects data fields. For example, the programmer

object has great flexibility in partitioning the work into parts executed once (at the cal

site) and parts executed at all sites, by taking advantage of the fact that update metho

broadcast and executed at all sites, while read methods are not. Work can therefore b

titioned by having a read method call an update method after performing some work

locally. This same technique can be used to lessen the impact of the restrictions on u

method argument types, for example, by having a read method manipulate the restr

argument locally and use the results as arguments to an update method call.

We make use of the ability to perform arbitrary actions in methods in the impl

mentation of both Repo and Repo-3D, but especially in Repo-3D. Since part of the sta

each graphical object is global, and part is local to each machine (both the part that a

ates the conceptual graphical object state with the concrete state used by the rende

subsystem, and the local variations to the graphical state), we can manage these dat

tures in a straightforward and efficient manner by manipulating local data within the

methods and global data within the update methods. See Chapters 4 and 5 for more d

on how we took advantage of the model in the implementation of those packages.

84

er

 lan-

mer

nd

ance

require

efit,

ge.

n-

imple

with

),

werful

ech-

dvan-

e

one

ions,

pli-

ribu-

the
CHAPTER 4 Repo

“The life of a repo man is always intense”– Miller, from Repo Man

A commonly used approach to exploratory programming is to provide the programm

with an interpreted language with which they can build their applications. Interpreted

guages offer two benefits for exploratory programming. First, they allow the program

to avoid the compile-link cycle. Second, they allow programmers to incrementally (a

interactively) develop and test applications. The former benefit is declining in import

as computers become faster and byte-compiled languages such as Java (that do not

applications to be linked into a single program) become more popular. The latter ben

however, is significant, and is our primary motivation for using an interpreted langua

Unfortunately, when Coterie was being designed, there were no interpreted la

guages that satisfied our needs. While a number of interpreted languages provide s

client-server access to distributed data (e.g., Python [van Rossum, 1995] combined

ILU [Janssen et al., 1998], TCL-DP [Perham et al., 1997], and Obliq [Cardelli, 1995]

none support replicated data. Of these languages, Obliq has the most elegant and po

model for distributed programming, relying on distributed lexical scoping as its key m

anism for managing distributed computation. For our purposes, Obliq also has the a

tage of being implemented in Modula-3, and having its data distribution based on th

Network Object package; as was pointed out in Chapter 2, the existence of Obliq was

of the factors that influenced our decision to use Modula-3 in the first place.

From the perspective of researchers developing interactive graphical applicat

the major shortcoming with Obliq, as with Modula-3, is the lack of support for data re

cation: in Obliq, all data items (objects, arrays, and variables) have client-server dist

tion semantics. In Modula-3, we solved the problem by creating the Shared Object

replicated data distribution package (the topic of Chapter 3) that, when combined with

85

l sup-

to

ded

zed

o (

nd

(i.e.,

ion,

posed

th the

e the

ting

rsions

ur

lar

lines

ram-

eci-

nd will

mples

n-

an be

pter.

e

Sec-
Network Object package, presents the programmer with a DOM programming mode

porting both client-server and replicated data distribution semantics. Since we want

support one common programming model throughout the system, we uniformly exten

the type system of Obliq so that all its data items can be distributed using synchroni

and unsynchronized replicated distribution semantics, in addition to the client-server

semantics already supported by the language. The resulting language is called RepRep-

licatedObliq).

Unlike the Modula-3 DOM, in which only the programming language objects (a

not other data items) are distributable with all three semantics, in Repo all data items

objects, arrays and variables) can take on any of the distribution semantics. In addit

Repo’s objects are more general than Modula-3’s since the object data fields are ex

and updates to them are distributed without the need to define update methods. As wi

Modula-3 DOM, the objects can be mixed and matched in arbitrary ways, but becaus

distribution semantics extend across the entire type system, a wider range of interes

data structures can be developed. Repo also includes new libraries, and enhanced ve

of a number of Obliq ones, that are needed to support exploratory programming in o

domain. These include simple support for reflection, HTTP clients and servers, regu

expressions and so on. By allowing distributed applications to be developed in a few

of interpreted code, Repo turns out to be an excellent language for exploratory prog

ming of distributed interactive applications.

In the rest of this chapter, we will describe Repo, often by contrasting it with

Obliq. While we will provide enough information about Obliq that the reader can appr

ate Repo’s design, there are many aspects to Obliq that are not changed in Repo, a

therefore not be discussed in depth. For a more in depth discussion of Obliq, and exa

of it in use, see [Cardelli, 1995]. The importance of Repo is both as an interpreted la

guage supporting replicated data, and as an example of how a complex application c

built with the Shared Object package. We will discuss both of these topics in this cha

First, in Section 4.1, we will discuss other distributed interpreted languages. W

will then turn our attention to the design of Repo, focusing on how it cleanly extends

Obliq to support replicated data. An overview of Obliq and Repo will be presented in

86

o

bliq

n

e.

ding

cated

ity,

d a

tribu-

990]

an-

that

7]).

pro-

xi-

n

proce-

lica-

fer

ort

lex
tion 4.2, followed in Section 4.3 by a discussion of how support for replication in Rep

changes the distributed semantics of Obliq. In Section 4.4, the syntax changes to O

object declarations to add support for replication will be discussed, and a new built-i

module for controlling object replicas is described briefly in Section 4.5.

In Section 4.6, we will present a number of illustrative examples of Repo in us

Some interesting aspects of the implementation will be discussed in Section 4.7, inclu

an overview of how the Shared Object package was used to implement Repo’s repli

objects. Finally, Section 4.8 will close the chapter with a discussion of Repo’s usabil

based on discussions with the programmers in our lab who have been using it.

4.1 Related Work

There have been many interpreted procedural languages created over the years, an

number of them have supported, or been extended to support, client-server data dis

tion. For example, two of the most popular interpreted languages, Tcl [Ousterhout, 1

and Python [van Rossum, 1995], include support for distribution via client-server sem

tics. Python supports CORBA compatible client-server distribution via ILU [Janssen

et al., 1998], whereas a number of different extensions to Tcl have been implemented

support RPC-style distribution (e.g., [Nog et al., 1996] and Tcl-DP [Perham et al., 199

Unlike these language extensions, Obliq was designed from the start for distributed

gramming [Cardelli, 1995]. Obliq’s model of computation is built around the use of le

cal scoping and higher-order functions in a distributed context, as will be explained i

Section 4.2. Unfortunately, Obliq supports only client-server data sharing.

We are interested in interpreted languages that present an object-oriented or

dural programming model, similar to that of Modula-3, including support for data rep

tion. To our knowledge, no other such languages exist. There have been distributed

interpreted languages that present the programmer with programing models that dif

from the usual procedural style, especially in the Agents community (e.g., Telescript

[White, 1994], and Agent Tcl [Gray, 1996]). However, these languages provide supp

for distributing computation through code mobility, and do not support building comp

distributed applications needing efficient replicated data.

87

ted

 and

uted-

mpu-

tiple

ultiple

n-

rinci-

ts a

tech-

n of

g the

y are

ior of

s

ding

cop-

nc-

s are

o the

ays

 to
4.2 An Overview of Obliq and Repo

Obliq is a lexically-scoped, untyped, interpreted language for distributed object-orien

computation. It is implemented in, and tightly integrated with, Modula-3. Obliq uses,

supports, the Modula-3 thread, exception, and garbage-collection facilities. Its distrib

computation mechanism is implemented using Modula-3 Network Objects, allowing

transparent support for multiple processes on heterogeneous machines. An Obliq co

tation may involve multiple threads of control within an address space (process), mul

address spaces on a machine, heterogeneous machines over a local network, and m

networks over the Internet.

The guiding principle that separates Obliq from other distributed procedural la

guages is its adherence to lexical scoping in a distributed higher-order context. This p

ple is conceptually simple and has a number of interesting consequences: it suppor

natural and consistent semantics of distributed computation, and it enables elegant

niques for distributed programming. Lexical scoping ensures that the binding locatio

every identifier can be determined by simple analysis of the program text surroundin

identifier. Therefore, the meaning of program identifiers can be determined when the

introduced, not when they are used, allowing programmers to reason about the behav

their programs, even when they are widely distributed and involve many simultaneou

threads of control.

It does not matter where an identifier is used, since it always refers to the bin

locationand network site at which it was created. This is especially important when

higher-order functions with free identifiers are transmitted over the network. Lexical s

ing implies that these free identifiers are bound to variables when the higher-order fu

tion is analyzed, not when the function is executed. Therefore, higher-order function

always self-contained as they move around the network, carrying along references t

variables referenced by their free identifiers.

Obliq supports uniform semantics across all data types, including objects, arr

and variables. As we noted during the discussion of the Shared Objects package in

Section 3.5.2, and as Wilson and Bal point out in their evaluation of Orca, this ability

88

ing

pport

se

oth

 state

and

pli-

o the

 num-

to the

del to

e will

 a

r con-

all

t of net-

ses

tures

r exam-

twork

d

share not only objects, but arrays and variables, simplifies many standard programm

tasks. Unfortunately, unlike the Shared Objects package and Orca, Obliq does not su

replicated data; all Obliq data values have client-server distribution semantics becau

they are built on top of the Network Objects package.

Repo is a descendant of Obliq that extends the Obliq data model to include b

synchronized and unsynchronized replicated objects. Therefore, Repo objects have

that may be local to a site (as in Obliq) or replicated across multiple sites. The syntax

semantics of Repo differs as little as possible from Obliq, although the addition of re

cated data does involve some conceptual differences. We will discuss the changes t

semantics of Obliq in Section 4.3, and to the syntax in Section 4.4. There are also a

ber of differences between Repo and Obliq that are unrelated to these enhancements

type system, which will be discussed in Appendix D.

4.3 Distributed Semantics

As discussed above, Repo is a descendant of Obliq that extends the Obliq object mo

include replicated objects, both synchronized and unsynchronized. In this section w

discuss the distributed semantics of Repo, focusing on how they differ from Obliq as

result of the addition of replicated data. In this discussion, a network address is a pai

sisting of asite address (the process running on some machine) and amemory address at

that site. The semantics of Obliq data can be described consistently by considering

addresses to be unique network addresses. Obliq data structures are assembled ou

work addresses, just like ordinary data structures are assembled out of local addres

(more precisely, the implementation is designed to create this illusion). As data struc

are passed around the network, the embedded network addresses do not change. Fo

ple, if an object is passed to another site, the value received at the remote site is a ne

address referring to the object at the original site. Data items can be explicitly copied

between sites (creating new objects at new network addresses), but are never copie

implicitly.

89

duc-

n

ote

m,

he

licitly

t do

, these

d

s

r-

 net-

l data

ces to

mitted

is cre-

syn-

rence

, multi-

s the

tion
The semantics of Repo data are slightly more complicated because of the intro

tion of replicated data. Repo supports the following three distribution semantics whe

objects are transmitted from one site to another:

• remote objects, whose state exists at one site and are accessed remotely via rem

method calls. In Obliq, all objects are remote.

• replicated objects, whose state is replicated at all sites that have references to the

with consistency enforced across all sites by ensuring all updates are applied in t

same order to all replicas. When transmitted between sites, these objects are imp

copied and new network addresses are created.

• simpleobjects, whose state is replicated at all sites to which they are transmitted, bu

not have consistency enforced across these sites. When transmitted between sites

objects are implicitly copied and new network addresses are created.

In Repo, we use the termreplicatedto refer to synchronized replicated objects, an

the termsimple to refer to unsynchronized replicated objects. We selected these term

because Obliq already used the termsynchronized to refer to objects with an implicit

mutex around all method calls. The termsimplearises from the fact that these objects co

respond to the simplest of all possible distribution semantics, in which data is copied

between sites with no further action required.

As mentioned above, when Obliq data is transmitted around the network, the

work addresses embedded in the data do not change, always referring to the origina

item at the original site. Repo objects, however, can have embedded network referen

replicated data. When a reference to an unsynchronized replicated data item is trans

across the network, a new copy of the data referred to, with a new network address,

ated at the destination site. Therefore, any embedded network references to this un

chronized replicated data will be changed to refer to the new local address. If a refe

to the same unsynchronized replicated data item is sent to a process multiple times

ple new, independent replicas will be created.

When a reference to a synchronized replicated data item is transmitted acros

network, the system first checks to see if a replica of this object exists in the destina

90

es to

ss, is

 of a

differ-

s,

mber

sed

ginal

, it is

which

nd
site. If a replica exists, its network address is substituted for any embedded referenc

this data object. If a replica does not exists, a new replica, with a new network addre

created and substituted for any embedded references to this data object. All replicas

synchronized object maintain an association with each other, even though they have

ent network addresses.

Consider the following example, to help clarify the differences in the semantic

illustrated in Figure 4-1. Assume we have an array that we wish to distribute to a nu

of processes. If the array has client-server semantics, when references to it are pas

around the network, only its network address is distributed, and all access is to the ori

array. If the array is replicated, when references to it are passed around the network

replicated. The process of replication causes its elements to be sent to the new site,

(a) ObjectA has
client-server semantics

(b) ObjectA has
replicated semantics

Figure 4-1: The effect of different distribution semantics. When an objectA
is copied fromProcess 1 to Process 2, the result depends on the distribution
semantics. For simplicity, assume all of the embedded references in objectA
are to client-server objects. In (a),A is a client-server object, so the network
address is copied toProcess 2, and all access to objectA refers back to the
original object. In (b),A is a replicated object, so a new replica is created and
the embedded references inA are copied recursively. In this case, since the
references are to client-server objects, their network addresses are copied a
all access refers back to the original objects.

...

Process 1

Process 2

A

A

...

Process 1

Process 2

A

...

A’

91

alue,

nt or

ecur-

bi-

er

uta-

the net-

oce-

e data

luated

ces

ted.

execu-

If a

 are

e and

 does

ction

since

ted

tee is

ro-

no
le, if
sites.
causes the process to be repeated recursively: if an element is a client-server data v

only its network reference is sent to the new site, but if the element is a simple consta

a replicated data value, it is copied to the new site, with its elements in turn copied r

sively, and so on. Since arrays and objects with different semantics can be mixed ar

trarily, interesting and powerful data structures can be built in a few lines of code.

The different distribution semantics also manifest themselves to the programm

by weakening the guarantee of correct execution that Obliq provides: in Obliq, comp

tions are guaranteed to give the same result no matter where they are executed on

work1. Obliq can provide this guarantee because of the use of client-server data and

lexical scoping: when program code is evaluated (either within object methods or pr

dures), its free variables are bound to data items and the network addresses of thos

items are embedded in the function closure (the data structure representing the eva

code). As the closure is passed around the network, it carries these network referen

with it, and they refer to the same data objects no matter where the closure is execu

Therefore, evaluating this closure always gives the same results, independent of the

tion site.

The introduction of unsynchronized replicated data weakens this guarantee.

function closure is sent to a remote site for execution, and some of its free variables

bound to unsynchronized data, those data values will be replicated at the remote sit

the new network addresses substituted for the old ones in the closure. If the function

not modify the data object, the correct execution guarantee holds. However, if the fun

modifies one of these data items, the replicas at the original site will not reflect these

changes, resulting in program execution that differs depending on the execution site (

data at different network addresses is being modified).

While programmers need to be careful when they use unsynchronized replica

data, the loss of this correctness guarantee is largely a pedagogical one; this guaran

primarily a useful way of explaining and understanding how lexical scoping affects p

1. While this guarantee is useful, it is a simplistic one, since it necessarily assumes
built-in libraries are accessed that give different results at different sites. For examp
a computation accesses the file system, it may not find the same files at different

92

hro-

hich

d

syn-

With

en

tion

lities

n

d are

ed
gram behavior. We will return to this point in Section 4.8. The primary reason unsync

nized replicated data is provided is for efficient access to immutable data objects, w

(by definition) will not be modified. We have also found other uses for unsynchronize

data, some of which will be shown in Section 4.6.

4.4 Replication Syntax

When Repo was original designed, we made a decision to retain as much of the Obliq

tax as possible, with the goal of having all Obliq programs be valid Repo programs.

one small exception (that is unrelated to data replication, and will be discussed in

Appendix D.1), we succeeded. In this section we will describe the differences betwe

Obliq and Repo syntax introduced to support replicated data, including new declara

syntax, support for changing distribution semantics while cloning data, and new faci

for user-defined object picklers (analogous to those discussed in Section 3.4.1.3).

4.4.1 Declarations

Repo syntax differs from Obliq syntax primarily in the way data items are declared. I

Obliq, there are three kinds of data items that can have state (shown in Table 4-1), an

Table 4-1:Entities with state in Obliq. There are three kinds of entities that have
state in Obliq: objects, arrays and variables. These entities are declared, access
and updated as shown. Thedelegate update syntax redirects the fields ofa to
access the fields of objectb (in this case), and is used to support a simple form of
object migration.

objects: {x 1 => a 1, ... ,x n => a n}
every field of an object has state

access: a.x, a.x(a 1, ... ,a n)
update: a.x := b, delegate a to b end

arrays: [a 1, ... , a n]
every element of an array has state

access: a[n]
update: a[n] := b

variables: var x = a
variables have state (identifiers declared by “let ” do not)

access: x
update: x := b

93

alid

o need

e deci-

 4-1

s, the

ined

f

nti-

n.

t
lly
ro-
thus affected by the addition of support for replication. These declarations are also v

Repo declarations, and create client-server entities.

To allow programmers to select different distribution semantics, we added the

simple andreplicated modifiers to these declarations, as shown in Table 4-2.2

Since replicated objects are implemented using the Shared Objects package, we als

to decide which actions update these entities. In the case of arrays and variables, th

sion is straightforward and intuitively obvious: the access operations shown in Table

read from the entities, and the update operations update them. In the case of object

decision is slightly more complex.

2. The exact positioning of the keywords in the declarations of Figure 4-2 was determ
by the implementation of the Obliq interpreter.

Table 4-2:Declaring entities with state in Repo. Repo has the same three kinds o
entities with state as Obliq: objects, arrays and variables. These entities are
accessed and updated in the same was as they are in Obliq. By default, these e
ties have Obliq’s client-server distribution semantics. Additional keywords are
used to declare synchronized and unsynchronized replication semantics, as show
If an object is declared to beprotected, its data fields can only be changed inter-
nally by its own methods and it cannot be cloned. If an object is declaredserial-
ized, there is an implicit lock around its methods that limits access to one thread a
a time. Replicated objects can also be declared as protected and are automatica
serialized (using the Shared Object mutex). Simple objects can be declared as p
tected and/or serialized.

Objects
client-server: {x 1 => a 1, ... ,x n => a n}
protected: {protected, x 1 => a 1, ... ,x n => a n}
serialized: {serialized, x 1 => a 1, ... ,x n => a n}
synchronized: {replicated, x 1 => a 1, ... ,x n => a n}
unsynchronized:{simple, x 1 => a 1, ... ,x n => a n}

Arrays
client-server: [a 1, ... , a n]
synchronized: replicated [a 1, ... , a n]
unsynchronized:simple [a 1, ... , a n]

Variables
client-server: var x = a
synchronized: var replicated x = a
unsynchronized:var simple x = a

94

fields

e of a

ds as

jects

pera-

s to

 able

 data

, they

d

ed

d

ssing

ot, we

,

The access operations for objects shown in Table 4-1 correspond to reading

and invoking methods, while the update operation corresponds to changing the valu

field. Like arrays and variables, we define the operations of reading and updating fiel

read and update actions, respectively. Notice that this differs from the way Shared Ob

are defined in Modula-3; since we define the action of updating a field as an update o

tion, if the object is synchronized, this update will be distributed to all replicas. Update

the fields of Shared Objects are not normally distributed in this way. However, being

to create simple replicated objects without the need to define methods to update the

fields is convenient, and if the programmer wishes to restrict access to the data fields

can declare the object asprotected , which prevents the data fields from being modifie

from outside the object methods. Alternatively, lexical scoping can be used to define

object data that is not contained in the object fields, and can therefore not be access

from outside of the object.

The other access operation on an object is method invocation. As with Share

Objects at the Modula-3 level, methods are the primary means of updating and acce

objects. To differentiate between methods that update an object, and those that do n

added an update method declaration, denoted with theumeth keyword. Methods created

Figure 4-2: Declaring objects in Repo. Repo objects have four kinds of fields:
methods (declared with themeth keyword), update methods (declared with the
umeth keyword), aliases (that redirect the access to a field of a different object)
and data values (all other fields). Data value fields can contain constants, arrays
objects or closures (higher-order functions declared with theproc keyword).

object declaration:
{x 1 => a 1, ... ,x n => a n}

where
xi is a field name
ai is one of

method: meth(pn 1, ... , pn n) ... end
update method: umeth(pn 1, ... , pn n) ... end
aliases: alias x of a end
data: proc(pn 1, ... , pn n) ... end

[ae i , ... , ae n]
{ }
constants: 1 (numeric), “strings”,

true, false (boolean)

95

oved

re ini-

 Multi-

at all

 have

ate-

ite as

able

table.

If the

sed,

when

ntics.

opt

 of

ject

to the
t we
with the original Obliq method syntax, denoted with themeth keyword, are treated as

read methods, and those defined using the newumeth keyword are update methods, and

are therefore applied to all replicas of the object.

4.4.2 Cloning Data

In Obliq, once an object is declared it cannot have fields added to it, nor can it be m

from the site at which it was created. However, Obliq supports objectcloning. When an

object is cloned, a new object is created with the same field names, and the fields a

tialized to refer to the same values (methods, data or aliases) as the original object.

ple objects can be cloned together to form a single new object, with the restrictions th

of the field names must be unique across the set of objects. Similarly, arrays cannot

their size changed. To change the size of an array, it must have a second array conc

nated to it to create a new array containing the elements of both3. The new object or array

is created at the site where the operation is executed, which need not be the same s

that of the objects or arrays being copied.

The decisions to have objects and arrays be immobile and structurally immut

were made to simplify the implementation and to keep the language clean and predic

Cloning objects and concatenating arrays result in the creation of new data elements.

old elements are in use, they will continue to exist unchanged; if they are not longer u

they will eventually be garbage collected.

In Repo, we must define what happens when multiple objects are cloned, or

multiple arrays are concatenated, and they do not all have the same distribution sema

For example, what happens when we concatenate a remote array (a1) to a replicated array

(a2) (i.e.a3 := a2 @ a1)? When concatenating arrays, we have the new array ad

the semantics of the array to which it is concatenated: in this example, the result (a3) is a

replicated array. The decision is not so simple with objects, because we need a way

specifying update methods for replicated objects: for example, if we clone a simple ob

3. A copy of an array that is the same size can be created by concatenating the array
empty array. New arrays are also created by extracting a subarray of an array, bu
will only refer to concatenation for simplicity.

96

f the

be

antic

take

u-

 is

r the
to a replicated object to create a replicated object, we may want some of the fields o

simple object to be considered update methods in the resulting replicated object.

Therefore, we require that all objects have the same semantics if they are to

cloned together, and provide operators to convert an object from one distribution sem

to another. These new operations (remote(a1) , replicated(a1, umeth-list) , and

simple(a1)) do not modify the semantics of an existing objects; rather, they each

their object argument (a1) and return a clone of that object with the appropriate distrib

tion semantics (client-server, synchronized replicated or unsynchronized replicated,

respectively). In addition, thereplicated operator takes a second parameter, which

a list of the field names of methods to be converted from methods (created with themeth

keyword) to update methods (that would have been specified with theumeth keyword

had this object been originally created as a replicated object). For example, conside

following object:

let o1 = {simple,

data => 1,

get => meth (s) s.data end,

set => meth (s, val) s.data := val end};

We could create a replicated version of this object as follows:

let o2 = replicated (o1, [“set”]);

This would give us the same object as this definition:

97

e con-

d as

onal

fore,

hey

a is

ers to

e dis-

ather

ich

jects

he
let o2 =

{replicated,

 data => 1,

 get => meth (s) s.data end,

 set => umeth (s, val) s.data := val end};

For convenience, we also allow arrays to be used as arguments to these thre

version operators, in which case all three of the operators take the array to be clone

their single parameter.

4.4.3 User-defined Picklers

In Obliq, copying an object from one site to another is always the result of an intenti

action by the programmer (either cloning an object or concatenating an array). There

it is left to the programmer to control what data is copied between processes when t

create new objects or arrays in different processes.

In Repo, on the other hand, replicated data can be copied implicitly when dat

passed between machines. Therefore, we need to provide some way for programm

control what is copied, analogous to the Modula-3 custom pickling routines that wer

cussed in Section 3.4.1.3. To support pickling of replicated objects, we define the

objectpickler command. In Modula-3, pickling is done by two routines, one that

writes the object to a byte stream, and one that reads the object from a byte stream. R

than write two routines for reading and writing objects from and to byte streams, wh

would be cumbersome and inefficient in Repo, the programmer creates two simple ob

for reading and writing the object, with a field in these objects for each data field in t

object being pickled. The syntax is as follows:

objectpickler object reader read-actions-object

writer write-actions-object ;

98

 is

g

 being

f the

the

value

ject

s an

4-8:

w

ndi-

ion of

f the
Read-actions andwrite-actions are the simple objects that define how an object

to be pickled. For each data field inobject, these two objects must have a correspondin

method that takes a single parameter and returns a Repo value. When the object is

pickled out to the network, the writer object methods are passed the current value o

corresponding field in the object, and the return value is written to the network. When

object is being pickled in from the network, the reader object methods are passed the

that was read in from the network (the value returned by the corresponding writer ob

method), and the return value is assigned to the corresponding field in the object. A

example, consider the custom pickler that is used by the replicated mutex in Figure

objectpickler ret

reader {simple,

cv => meth (s,c) thread_condition() end,

q => meth (s,q) q end}

writer {simple,

cv => meth (s,c) ok end,

q => meth (s,q) q end};

This pickler is needed because the condition variable in thecv field cannot be

passed across the network. Therefore, thecv method in the writer ignores itsc parameter

(the condition variable) and returnsok (which is the Repo null value). Thecv method in

the reader ignores itsc parameter (theok value read from the network) and creates a ne

condition variable and returns it. Thus, each replica of the object has its own local co

tion variable. Theq field is to be passed across the network without being modified.

4.5 The Replication Module

In addition to the changes to the language syntax and semantics required by the addit

replicated data, we added a built-inreplica module to Repo to give the programmer

additional control over replicated objects. This module defines the Repo equivalents o

two Shared Object exceptionsSharedObj.Error andSharedObj.Fatal , which

99

o use

ates

this

 to

of

ple

r-

lines

ction

how

to be

ing

pli-

ject

 a dis-

bu-

rful

n in
arereplica_failure andreplica_fatal , respectively. It also provides functions

to create and destroy the Repo equivalents of the Shared Object callbacks,

replica_notify andreplica_cancelNotifier . Thereplica_notify

function takes the replicated object and a simple (unsynchronized replicated) object t

as its notifier. The methods of the notifier object correspond to the pre and post upd

that the programmer wishes to be informed of. See Section 4.6.2 for an example of

module in use. Finally, the module also exposes the Shared Object runtime routines

flush the update queue, as described in Section 3.4.2.1.

4.6 Examples

In this section we will give a number of examples to show the simplicity and flexibility

Repo’s object distribution semantics. First, in Section 4.6.1 we will show how the sim

tracker report distribution object from Section 3.4.1 can be reimplemented straightfo

wardly in Repo, and extended in a number of interesting ways in a small number of

of code. Will we then use these simple objects to illustrate how a programmer would

request notification of changes to the replicated objects in Section 4.6.2. Next, in Se

4.6.3 we take an example from one of our augmented reality prototypes that shows

flexible and general purpose data distribution allows simple distributed applications

built with a minimum of fuss.

In Section 4.6.4 we will address the issue of distributed synchronization, show

how a simple distributed mutual exclusion lock (mutex) can be implemented using re

cated objects. Finally, in Section 4.6.5 we will discuss the design of a hierarchical ob

directory that we have used as a central data structuring mechanism in some of our

tributed virtual environment prototypes.These examples illustrate how all three distri

tion semantics are important and can be linked together in straightforward and powe

ways.

4.6.1 Simple Tracker Report Distribution

In Section 3.4.1, we showed how to implement a simple replicatedTrackerPosition

object using the Shared Object package. The public interface for this object is show

100

this

ith

obvi-

e

-
t

s

Figure 3-4 and the private interface and implementation are shown in Figure 3-5. In

section, we will show how this object, and a few variations of it, can be implemented w

Repo. The version of theTrackerPosition object, calledtrackerDist , that corre-

sponds most closely to the object in Chapter 3, is shown in Figure 4-3(a). The most

ous difference between thetrackerDist andTrackerPosition is the amount of

code required:TrackerPosition , the Modula-3 version, used almost 48 lines of cod

spread over three files, whiletrackerDist , the Repo version, required just 9. This

(a) Repo objects mimickingTrackerPosition.i3.

(b) An alternate implementation, without methods.

(c) A stateless implementation.

Figure 4-3: An example of synchronized replicated objects in Repo. This simple
example is based on the tracker distribution object in Figure 3-4. An object analo
gous to the one implemented in Modula-3 is shown in (a), with a prototype repor
objectrep . Of course, any valid Repo object could be used here, but this object is
shown for clarity. Notice thatrep is asimple (unsynchronized replicated) object.
Since data fields of Repo’s synchronized replicated can be manipulated directly,
the object could also be defined with no methods, as in (b). Finally, in (c) a stateles
version of the object is shown, in which the data is distributed via theset method
but is not stored in the object.

let rep = {simple,
x => 0.0, y => 0.0, ,z => 0.0};

let trackerDist = {replicated,
data => rep,
set => umeth (self, val)

self.data := val;
end,

get => meth (self)
self.val;

end
};

let rep = {simple,
x => 0.0, y => 0.0, ,z => 0.0};

let trackerDist = {replicated,
data => rep

};

let rep = {simple,
x => 0.0, y => 0.0, ,z => 0.0};

let trackerDist = {replicated,
set => umeth (self, val) end

};

101

s are

e to

n of

-

po

as to

 to

o-

ctly. In

t.

o-

, caus-

ed in

 the

 data

repli-

tifica-

e

nge
translates into an immediate times savings during implementation. While both object

easy to understand, the clarity of the Repo implementation is significantly greater du

the terseness of the code. Of course, in Repo we lose the data hiding and separatio

interface from implementation that exists in Modula-3, but for prototyping and explor

atory programming, this is not a significant issue.

In Figure 4-3(b), we see an even simpler version oftrackerDist that takes

advantage of the fact that updates to the data fields of a synchronized replicated Re

object are distributed. In this case, since the only purpose of the two object methods w

read and write thedata field, we can remove the methods and allow the programmer

simply access the field directly.

The final variation of thetrackerDist object highlights an interesting feature

of the replication model. Occasionally, when an object such as this is created, the pr

grammer only cares about changes to the data field, but never accesses the data dire

this case, we can create an object with aset method that does nothing with its argumen

When this method is invoked, the arguments are marshalled and distributed to all pr

cesses containing replicas of the object, where the method is invoked on the replicas

ing any callback objects to have their appropriate methods invoked as well, as discuss

Section 4.6.2. In effect, one can view such objects as simple message ports: calling

set method sends a message to all replicas informing them of the new value of the

item, with the callback objects being used to receive these messages.

4.6.2 Asynchronous Change Notification

One of the features of the Shared Object package, and thus of Repo’s synchronize

cated objects, is that they support asynchronous change notification. The change no

tion is analogous to that provided in Modula-3, and described in Section 3.3.3. An

example of change notification is shown in Figure 4-4. Notice that the structure of th

notifier objects is not substantially different than that of Modula-3 notifier objects. Cha

notification is supported by functions in thereplica module, discussed in Section 4.5.

102

aring

nvi-

e and

R

d the

lly

itial
4.6.3 Multi-person Spaceframe Construction

In this section we present a simple example of how Repo’s general purpose data sh

satisfies our goal of supporting exploratory programming of distributed augmented e

ronments. The example illustrates both the ease of sharing arbitrary application stat

the simplicity of modifying an application to share previously unshared state.

As part of the Augmented Reality for Construction (ARC) project, we built an A

system to assist with the construction of space frame buildings. Our system prompte

worker by displaying the next part to be installed in the correct location on the partia

completed space frame, as shown in Figure 4-5(a). This prototype was built with the in

version of Coterie that did not have distributed object support, and is discussed in

(a) Repo callback notifier for objects in Figure 4-3(a) and (c).
This object is equivalent to the one in Figure 3-6 (b).

(b) Repo callback notifier for objects in Figure 4-3(b).

Figure 4-4: An example of notifier callback objects in Repo. Callback objects for
the Repo tracker distribution objects in Figure 4-3. Notice that they are very similar
in content to the Modula-3 callback objects shown in Figure 3-6 and discussed in
Section 3.3.3. The only noticeable difference is that the names use a backquote (‘)
instead of an underscore (_) after thepre andpost keywords in the method
names (e.g.,pre‘set instead ofpre_set). This is because underscore is not a
valid character in identifiers, with backquote begin used where underscore nor-
mally would be.

let trackerCB = {simple,
pre ‘set => meth (self, obj, val)

(*do something before set is called*)
 true;
end,

post‘anyChange => meth (self, obj)
 (* do something after any update *)
end

};

replica_notify(trackerDist, trackerCB);

let trackerCB = {simple,
post‘data => meth (self, obj, val)

 (*do something after data changes*)
end

};

replica_notify(trackerDist, trackerCB);

103

plore

nitor-

e

truc-

ext

ction

and

itor-

itor

ns.

led

tions

n

Section 2.6. After this support was added, via the creation of Repo, we wished to ex

how an AR construction assistant could be leveraged in other ways, ranging from mo

ing the progress of the project to allowing workers to discuss problems with a remot

expert. The first step in this exploration was to create a new visualization of the cons

tion site, showing the status of the space frame, the location of the worker and the n

piece they should install, as shown in Figure 4-5(b).

The new visualization prototype first needed to share the state of the constru

task with the ARC prototype. Therefore, we modified the ARC prototype to move its

single state variable (step , representing the current task step) into a replicated object,

exported this variable to the network. We imported this variable into our remote mon

ing prototype, and allowed both programs to change the construction step.

However, we noticed that this did not give us all the information a remote mon

would need, especially information about when the worker performed incorrect actio

To distribute this information, we added routines to the replicated object that are cal

when various interesting conditions are noticed, shown in Figure 4-6(a). These condi

include the task being completed (done), the user scanning the wrong part

(a) What the worker sees through their
head-worn display during the

installation of strut 11 (see Figure 2-8).

(b) What a remote consultant sees on
their desktop display when the
worker is installing strut 10.

Figure 4-5: Extending the space frame prototype for remote consultation. To
experiment with the idea of having a remote expert consult with a worker, we
implemented a simple remote viewer for our space frame construction assistant. I
this version, the remote viewer can change the construction step the worker is
performing.

104

llback

s was

ul-
n

,

(wrongPart) and the user scanning the correct part in the wrong location (wrongPo-

sition). Notice that thewrongPart andwrongPosition methods do nothing; they

are simply used to distribute a message, which can be noticed and reacted to in a ca

notification object (as is done in Figure 4-6(b)).

This example illustrates the simplicity of prototyping with Repo. Modifying the

code to access the construction step variable from the replicated object was trivial, a

(a) The replicated state variable. In our demonstration setup,
the worker starts with the spaceframe partially completed,

which is why the initial step number is 28.

(b) The notifer for the replicated state variable.

Figure 4-6: The replicated state for the distributed ARC prototype. By moving the
state of the ARC prototype into a replicated variable, we can share it between m
tiple processes. Each process can create a notifier variable, similar to the one show
in (b) to perform whatever action is desired to react to the change. In this example
taken from the prototype code, the notification methods contain a mixture of inline
code and calls to other procedures defined elsewhere in the code.

let initialStepNumber = 28;
....
let stepObj = {replicated,

step => initialStepNumber,
done => umeth (s) s.step := -1 end,
wrongPart => umeth (s, barcode) end,
wrongPosition => umeth (s) end

};

let stepCB = {simple,
post`step => meth(s,o,v)

goToStep(v);
end,

post`done => meth(s,o)
let oldGo = dummy.findName(stepName);
if oldGo isnot ok then

dummy.remove(oldGo);
dummy.add(congratsText);
congratsText.setName(stepName);

end;
goToStep(-1);

end,
post`wrongPart => meth(s,o,v)

doWrongBC(v);
end,

post`wrongPosition => meth(s,o)
doWrongPos();

end
};

let stepNotify = replica_notify(stepObj, stepCB);

105

ld

tion

utes

king

 own

le-

use

ffi-

ing

ch-

r of

lusion

ted

ech-

s not

ple-

an be

call

the
adding thewrongPart andwrongPosition notification methods. In addition, none

of this information is “typical” distributed virtual environment data, of the sort that wou

be supported by a distributed VE toolkit, but Repo allows us to distribute the informa

and react to changes in the various programs in a few lines of code that took a few min

to write.

4.6.4 Distributed Mutexes

In the original design of the Shared Object package, we had intended to support loc

objects globally. The main motivation for this feature was to allow the programmer to

invoke multiple methods atomically by ensuring no update methods aside from their

would be executed while the object was locked. However, this facility was never imp

mented, partially because the implementation effort was non-trivial, but mostly beca

the need for it rarely arises: since locking an object globally is expensive, it is more e

cient to implement a new method that encapsulates the functionality of a set of exist

methods.

However, while this approach allows programmers to circumvent the need to

atomically call multiple methods on a single object, it is not possible to use similar te

niques to atomically invoke methods on a group of objects. While there are a numbe

ways this could be done, the simplest approach is to create a distributed mutual exc

lock (mutex). In this section, we will describe a number of ways of creating a distribu

mutex in Repo, and use this example to illustrate a number of useful programming t

niques. This example is also important since the Shared Object replication model doe

provide any distributed synchronization primitives, leaving it to the programmer to im

ment them. It is therefore instructive to see how this might be done.

A simple implementation of a distributed mutex is shown in Figure 4-7, and is

implemented using a client-server object that contains a normal mutex. The object c

transmitted to any number of sites, and when they want to acquire the lock they will

back to the original object and attempt to acquire the local mutex. Similarly, to release

mutex, they will make a remote call and release the local mutex at the original site.

106

ple-

anted

how-

ueried

user

ect is

oves

. An

 until

give

or the

 pro-

ehav-
This implementation is fine for simple programs, but suppose we wanted to im

ment a mutex that represents a lock around some important piece of state, and we w

to include information about the state of the mutex on a graphical display, perhaps s

ing if the lock is held and who holds its. In this case, it would be more appropriate to

implement the mutex with a replicated object, so that the state is local and can be q

at any time, and callback notification objects can be used to asynchronously notify the

when the state of the mutex changes. A simple implementation using a replicated obj

shown in Figure 4-8. This object implements a mutex by having the acquire method

enqueue anid in a replicated queue (theq data field) and waiting until itsid has reached

the head of the queue before returning to the caller. The release method simply rem

the top element from the queue. We enqueue events in the distributed queueq to ensure

the mutex is fair and will not give preferential access to sites close to the sequencer

unfair implementation might have an internal update method that tries to acquire the

mutex, and raises an exception if the mutex is held. The acquire method would wait

the mutex is released and then try again to acquire it. Such an implementation would

preferential access to sites that have a faster network connection to the sequencer f

mutex object, which is undesirable.

Notice that in both these implementations, the mutex can be released by any

cess, not just the one that acquired it. This may seem odd, but it is analogous to the b

Figure 4-7: A simple client-server mutex. The external routines (acquire and
release) allow the mutex to be acquired and released by any site. The mutex
exists at one site and all other sites make remote method calls to the object.

module mutex;
let new = proc ()

let ret = {
mu => thread_mutex(),
acquire => meth (s)

thread_acquire(s.mu);
end,

release => meth (s)
thread_release(s.mu);

end
};
ret;

end;
end module;

107

 that

ay to

o ser-

d

r be
ior of a non-distributed mutex, which can be released by any thread, not just the one

acquired the mutex. In fact, the implementation in Section 4-7 would not work if the

mutex had to be released by the same thread that acquired it, because there is no w

guarantee that the thread servicing the remote method call for the acquire would als

vice the remote method call for the release.

However, this feature creates a potential problem with both of these distribute

mutexes: if the process holding the mutex terminates without releasing it, it will neve

Figure 4-8: A simple replicated mutex. The external routines (acquire and
release) allow the mutex to be acquired and released by any site.

module mutex;
let held = exception("held mutex");
let new = proc ()

let ret = {replicated,
cv => thread_condition(),
id => meth (s)

sys_address & "." & fmt_int(process_myId) &
"." & fmt_int(thread_id(thread_self()))

end,
q => [],
enqueueId => umeth (s,id)

s.q := s.q @ [id];
end,

dequeueId => umeth (s)
s.q := s.q[1 for (#(s.q)-1)];
thread_signal(s.cv);

end

acquire => meth (s)
let id = s.id();
if #(s.q) > 0 then

if s.q[0] is id then raise(held) end;
end;
s.enqueueId(id);
watch s.cv until (s.q[0] is id) end;

end,
release => meth (s)

s.dequeueId();
end

};
objectpickler ret

reader {simple,
cv => meth (s,c) thread_condition() end,
q => meth (s,q) q end}

writer {simple,
cv => meth (s,c) ok end,
q => meth (s,q) q end};

ret;
end;

end module;

108

con-

uch

ex if

a cli-

od,

e

lock

ting

can

h

ro-

ady

r

or

s.

nts

on

ing a

 refer-
unlocked. While this behavior is also analogous to a non-distributed mutex, it may be

sidered undesirable in many cases because processes in a distributed system are m

more likely to terminate unexpectedly than threads in a process. Therefore, we have

implemented a version of the replicated mutex in Appendix E that will release the mut

the process that acquired the mutex terminates without releasing it. This version uses

ent-server object (rather than a text string) as theid when acquiring the mutex, and if the

id object becomes unreachable, the mutex is automatically unlocked.

The version of the mutex in Appendix E also implements another useful meth

tryAcquire . This method attempts to lock the mutex, but if the mutex is locked, th

method fails and raises an exception instead of blocking. ThetryAcquire method is

useful when creating distributed, interactive applications where you do not want to b

the user-interaction for any significant length of time. For example, imagine implemen

an interactive, multi-user graphical editor. If we want to ensure that only one person

manipulate an object at a time, we may use a distributed mutex such as this for eac

object. When the user clicks on an object to modify it, the system could issue atryAc-

quire on that object’s mutex. If the mutex is available, it would be locked, and the p

gram could change the object to indicate that user may modify it. If the mutex is alre

locked, thetryAcquire would fail, and the program could beep (or issue some othe

notification), indicating that the object is not available for updating by the user.

4.6.5 Hierarchical Object Directories

In this section, we will describe how hierarchicalobject directories (HOD) would be

implemented in Repo. The goal of the object directories is to provide a mechanism f

structuring applications that is useful for both stand-alone and distributed application

The HOD is similar in flavor to directories in a file system, the hierarchical environme

used in dVS [Grimsdale, 1991], or the name spaces used in many different applicati

domains. We will not include the code for our HOD, as it is fairly long.

The purpose of a HOD is to handle object lookup and management. It was

designed to be analogous to a file-system, with a single object directory (OD) contain

set of key-value pairs that associate objects with textual names. An OD can contain

109

ally

refer-

 [Cou-

ly of

an

uni-

ed in

s of

the

.

pro-

li-

f
f-
ences to other ODs, allowing arbitrary hierarchies to be created. References to virtu

any kind of object can be stored in an OD. The OD can contain the actual objects or

ences to entries in other ODs (the equivalent to symbolic links in a file-system).

In addition to providing a general solution to thenaming problem (how to mean-

ingfully assign names to services and resolve those names to computer addresses)

louris et al., 1994], the HOD can serve as the primary structuring metaphor for a fami

distributed applications. By allowing an OD to contain references to other ODs, we c

organize the HODs into a single global name space that allows applications to comm

cate with each other in a meaningful way. Within this hierarchy, data can be organiz

well-defined subhierarchies so that applications know where to look for particular kind

data and services. Furthermore, by allowing clients to watch one or more ODs for

changes, such as the addition or deletion of entries, clients can react to changes in

world without the need for direct communication with the instigator of those changes

Such shared data-space techniques are widely used in AI blackboard systems and

gramming languages such as Linda [Carriero and Gelernter, 1992].

To build a simple OD, each of the three types of objects is used, as shown in

Figure 4-9. The OD itself is implemented using an unsynchronized replicatedwrapper

Figure 4-9: A single Object Directory (OD). The server on the left consists of (a)
an unsynchronized replicated object acting as a wrapper, (b) a synchronized, rep
cated object implementing the notifier directory and (c) a client-server object
implementing the storage directory. The client on the right has (d) its own copy o
the wrapper object, (e) a shared copy of the notifier directory, and (f) a remote re
erence to the storage directory.

c

a d

Process A Process B

OD Server OD Client

f

e
b

110

 the

 ele-

es to

sing

The

ize

d is

 not

at

ith a

py of

stand

emote

 the

er, as

 the

 cre-

lds of

new

re 4-

new

Con-
object (Figure 4-9(a) and (d)). This object has data fields and methods to implement

OD functionality. For example, there would be methods to add elements to, or delete

ments from, the OD. In addition to any other incidental data, the OD contains referenc

two important objects in its data fields, astorage directory and anotifier directory. The

storage directory is a client-server object that implements a centralized object store u

key-value pairs (Figure 4-9(c)). It contains the actual data objects stored in the OD.

notifier directoryis a synchronized replicated object that contains a small, constant-s

piece of information for each entry in the directory, such as the type of the object, an

also used to receive notification of changes to the directory (Figure 4-9(b) and (e)).

Because the storage directory is implemented with a client-server object, it is

replicated. The single copy is accessed via remote method calls from any process th

receives a copy of the OD. Conversely, since the notifier directory is implemented w

synchronized replicated object, it is fully replicated in all processes that receive a co

the OD, with any updates to the OD distributed to it. There are three things to under

about why the OD is designed this way: what happens when an OD is passed to a r

process, how OD methods are implemented, and how Callback Objects are used by

OD.

First, consider what happens when an OD is passed from one process to anoth

a parameter or return value of a client-server or replicated object method call. Since

OD is an unsynchronized replicated object, a new, independent copy of the object is

ated in the second process. As part of the process of creating that copy, the data fie

the object are copied using their semantics. Therefore, the new process will contain a

replica of the notifier directory, and a remote reference to the storage directory (Figu

9(f)). All of this happens automatically when a reference to the OD is transmitted to a

process.

Given the structure shown in Figure 4-9, how are OD methods implemented?

sider adding an element to an OD with a simpleputmethod, “put(name, object),” which

storesobjectin the OD under the keyname. Theputmethod of the OD would perform the

following actions:

111

r

tory,

ng

er

ve

 the

repli-

ple-

d by

s and

al

d

ct rep-

r

• store the object in the storage directory using the corresponding storage directoryput

method, and

• store the type of the object in the notifier directory using the corresponding notifie

directoryput method, which has been designated as a shared update method.

No matter which process performs theput operation, the outcome is the same:

• a remote procedure call is performed to store the object in the central storage direc

and

• the type of the object is stored in the shared notifier directory in all replicas, causi

any Callback Objects registered for these replicas to have theirputnotifier methods

invoked.

The wrapper object would use the Callback Objects associated with the notifi

directory to monitor an object directory for changes on behalf of local clients that ha

requested notification when the OD changes.

4.7 Implementation

In this section, we will discuss the implementation of Repo. In particular, we will use

implementation of Repo as an example of using the Shared Object package to add

cated data to a complex application. Another interesting aspect of our experience im

menting Repo, how we dealt with an efficiency problem of Obliq that was exacerbate

the addition of replicated data, will be discussed in Appendix D.3.

To create Repo, there were three kinds of objects (representing objects, array

variables) in the Obliq runtime that needed to be updated to support the two addition

replicated distribution semantics. We shall look at the implementation of the Obliq an

Repo array objects in detail, and then comment on an interesting aspect of the obje

resenting Repo objects.

The definitions for the Obliq array object are shown in Figure 4-10. All objects

that represent Obliq values inherit from theVal object. The array objectValArray is an

Obliq value that contains a single field,remote , that holds a reference to a client-serve

112

es a

ct.

di-

as

th-

.

he

in
Network Object,RemArray , implementing the actual array. When an instance ofVal-

Array is transmitted over the network, the Network Object runtime system substitut

proxy object forremote that redirects all access across the network to the original obje

Obliq objects and variables are implemented in exactly the same way.

To convert the Obliq runtime to support replicated data, we added a level of in

rection, as shown in Figure 4-11. In the Obliq runtime, when an array method (such

Size or Obtain) needed to be invoked, the code would explicitly dereference the

remote field of theValArray object. In the Repo runtime, the methods have been

pushed out to theValArray object, and the runtime code modified to invoke those me

ods directly without referring to theremote field, which is removed from the object.

Three subtypes ofValArray are defined, which represent the three object semantics

Each of these objects has a field, analogous to theremote field ofValArray in the

Obliq objects, that contains an object of the appropriate type (a Network Object for t

client-server array, a Shared Object for the synchronized replicated array, and a pla

Figure 4-10:The internal definition of an Obliq array.ValArray is an Obliq
value object, which contains a reference to the client-server objectRemArray .
RemArrayServer is the concrete local implementation of the array object that
serves the remote method calls. Methods are invoked through theremote field.

Val = BRANDED "Val" OBJECT END;
ValArray = Val BRANDED "ValArray" OBJECT

remote: RemArray;
END;

RemArrayServer <: RemArray;
RemArray = NetObj.T BRANDED "RemArray" OBJECT METHODS

Size(): INTEGER RAISES {NetObj.Error};
Get(i: INTEGER): Val RAISES {ServerError, NetObj.Error};
Set(i: INTEGER; val: Val)

RAISES {ServerError, NetObj.Error};
Sub(start,size: INTEGER): ValArray

RAISES {ServerError, NetObj.Error};
(* Extract the subarray self[start for size]. *)

Upd(start, size: INTEGER; READONLY other: REF Vals)
RAISES {ServerError, NetObj.Error};
(* Update self[start for size] with other[0 for size]. *)

Obtain(): REF Vals RAISES {NetObj.Error};
(* Return self.array if local, or a copy of it if remote.

Modifying the result of Obtain may violate network
transparency. *)

END;

113

pe,
d.
Figure 4-11:The internal definition of a Repo array. We move the methods for
accessing the array to the Repo value objectValArray , and create three subtypes
for the three distribution semantics. The methods of these subtypes invoke the
methods of their appropriate internal object (remote , replica or simple).
The Obliq runtime code was modified to invoke the methods of the array value
object (ValArray), instead of dereferencing theremote field directly. The code
to generate new arrays also had to be changed to generate the appropriate subty
but aside from these well defined changes, the code was not substantially modifie

Val = BRANDED "Val" OBJECT END;
ValArray = Val BRANDED "ObValue.ValArray" OBJECT METHODS

Size(): INTEGER RAISES {SharedObj.Error, NetObj.Error,
Thread.Alerted};

Get(i: INTEGER): Val RAISES {SharedObj.Error, ServerError,
NetObj.Error, Thread.Alerted};

Set(i: INTEGER; val: Val) RAISES {SharedObj.Error,
ServerError, NetObj.Error, Thread.Alerted};

Sub(start,size: INTEGER): ValArray RAISES {SharedObj.Error,
ServerError, NetObj.Error, Thread.Alerted};

Upd(start, size: INTEGER; READONLY other: REF Vals)
RAISES {SharedObj.Error, ServerError, NetObj.Error,

 Thread.Alerted};
Obtain(): REF Vals RAISES {SharedObj.Error, NetObj.Error,

 Thread.Alerted};
END;

ValRemArray <: ValRemArrayPublic;
ValRemArrayPublic = ValArray OBJECT remote: RemArray END;

ValReplArray <: ValReplArrayPublic;
ValReplArrayPublic = ValArray OBJECT replica: ReplArray END;

ValSimpleArray <: ValSimpleArrayPublic;
ValSimpleArrayPublic = ValArray OBJECT simple: SimpleArray END;

... RemArray is unchanged ...

... SimpleArray is defined analogously ...

ReplArrayStd <: ReplArray;
<* SHARED UPDATE METHODS ReplArrayStd.init, ReplArrayStd.Set,

 ReplArrayStd.Upd *>
ReplArray <: ReplArrayPublic;
ReplArrayPublic = SharedObj.T BRANDED

"ObValue.ReplArrayServerPublic" OBJECT METHODS
init (): ReplArray RAISES {SharedObj.Error};
Size(): INTEGER RAISES {SharedObj.Error};
Get(i: INTEGER): Val RAISES {ServerError, SharedObj.Error};
Set(i: INTEGER; val: Val)

RAISES {ServerError, SharedObj.Error};
Sub(start,size: INTEGER): ValArray

RAISES {ServerError, SharedObj.Error};
Upd(start, size: INTEGER; READONLY other: REF Vals)

RAISES {ServerError, SharedObj.Error};
Obtain(): REF Vals RAISES {SharedObj.Error};

END;

114

ans-

ting

 there

e

al
Modula-3 object for the unsynchronized replicated array). When these objects are tr

mitted across the network, the Network or Shared Object runtimes handle implemen

the semantics.

Repo objects and variables are implemented in an analogous way. However,

is one detail of the implementation of Repo objects that is interesting, concerning th

(a) The replicated object definition.

(b) Excerpts from the private part of the replicated object definition.

Figure 4-12:The internal definition of a Repo replicated object. This object is
interesting because, unlike the array object in Figure 4-11, it makes use of intern
update methods.

ReplObjStd <: ReplObj;
<* SHARED UPDATE METHODS ReplObjStd.init, ReplObjStd.InvokeUpdate,

ReplObjStd.Update, ReplObjStd.RedirectFields *>
ReplObj <: ReplObjPublic;
ReplObjPublic = SharedObj.T BRANDED "ObValue.ReplObjServerPublic"

OBJECT METHODS
init (): ReplObj RAISES {SharedObj.Error};
Who(VAR(*out*) protected: BOOLEAN): TEXT

RAISES {SharedObj.Error};
Select(swr: SynWr.T; label: TEXT; VAR hint: INTEGER): Val

RAISES {Error, Exception, ServerError, SharedObj.Error};
Invoke(swr: SynWr.T; label: TEXT; argNo: INTEGER;

READONLY args: Vals; VAR hint: INTEGER): Val
RAISES {Error, Exception, ServerError, SharedObj.Error};

Update(label: TEXT; val: Val; internal: BOOLEAN;
VAR hint: INTEGER)

RAISES {ServerError, SharedObj.Error};
Redirect(val: Val; internal: BOOLEAN)

RAISES {ServerError, SharedObj.Error};
Has(label: TEXT; VAR hint: INTEGER): BOOLEAN

RAISES {SharedObj.Error};
Obtain(internal: BOOLEAN): REF ObjFields

RAISES {ServerError, SharedObj.Error};
... other methods, needed by the reflection package ...

END;

REVEAL
ReplObj = ReplObjPublic BRANDED "ObValueRep.ReplObjServerRep"
OBJECT

... data fields ...
METHODS

InvokeUpdate(swr: SynWr.T; label: TEXT; argNo: INTEGER;
 READONLY args: Vals; VAR hint: INTEGER): Val

RAISES {Error, Exception, ServerError, SharedObj.Error} :=
ReplObjInvokeUpdate;

... other internal methods ...
OVERRIDES

... external method overrides ...
END;

115

rep-

nvok-

s

update

re the

make

face

ired

hout

and

rays

ed us

in

ese

atory

ore,

ition

cts

e

a pro-

mple,

t as a
implementation of update methods to Repo objects. If we look at the Modula-3 object

resenting Repo objects, shown in Figure 4-12, we see that there is one method for i

ing Repo methods (Invoke). Since some Repo object methods need to be invoked a

Shared Object non-update methods and some need to be invoked as Shared Object

methods, we add a new method (InvokeUpdate) for invoking update methods, and

denote it as a Shared Object update method. However, since we do not want to requi

runtime code to know if the method they are calling is an update method or not, we

theInvokeUpdate method an internal method, and add a check inside theInvoke

method to see if the method being invoked is an update method. If it is, theInvokeUp-

date method is called to handle the method invocation. In this way, the external inter

of theRepoObj object is unchanged from Obliq to Repo, reducing the changes requ

in the rest of the code.

4.8 Usability of Repo

We have used Repo to build a number of prototypes, including those described throug

this dissertation, and our experiences have been mostly positive. The ability to quickly

effortlessly create distributed applications using arbitrary combinations of objects, ar

and variables with both client-server and replicated distribution semantics has allow

to concentrate on the applications and the interaction techniques we are interested

exploring, and take the distribution of data largely for granted.

While programmers can also build data structures in Modula-3 that combine th

distribution semantics, courtesy of the Shared and Network Objects packages, explor

programming in an interpreted language such as Repo is significantly faster. Furtherm

Repo’s dynamic type system, and the ability to distribute arrays and variables in add

to objects, gives the programmer greater flexibility. While Shared and Network Obje

can be used just as normal objects, Modula-3’s strong static typing combined with th

requirement that these objects inherit from different distinguished types means that

grammer can not mix them quite so freely as objects can be mixed in Repo. For exa

in Modula-3, a procedure must be defined to take one of a Network or Shared Objec

116

ocedure

tions).

lly

ures

them-

ave

ced

us to

heck-

eck-

n

 the

 told

not

e

ro-

 gen-

there

ust

bject

bject

fore

ss

s the

led

ave

data
parameter, but in Repo any data value can be passed as a parameter to the same pr

(it is up to the programmer to ensure that correct values are used in the correct loca

However, there is a price to be paid for the increased flexibility of a dynamica

typed language, and that is the greater difficulty in tracking down bugs; since proced

are untyped, incorrect usage may not cause errors immediately, since the variables

selves may not be used immediately. While the prototypes we have been creating h

typically only been a few hundred to a few thousand lines of code, we have experien

problems debugging some of the larger ones. It was these problems that motivated

create the reflection module (see Appendix D.2) to allow programmers to add type c

ing and controlled object access to their programs when they see fit. By judiciously ch

ing parameters in a few key locations in a program, debugging of programs has bee

greatly simplified.

We have also learned some lessons about our design of Repo. One relates to

usefulness of the custom pickling facilities. It turns out that programmers need to be

that the pickling facilities in Repo are much less efficient than in Modula-3, and should

be used to try and obtain small performance improvements. In Modula-3, picklers ar

associated with objects of a certain type, and are compiled into all instances of the p

gram. Therefore, aside from sending a small value to identify the type, only the data

erated by the pickling routine is sent across the network. In Repo, on the other hand,

are no object types, so these pickling objects are associated withinstances of Repo

objects. Therefore, before these pickling object methods are run, the infrastructure m

copy the basic object structure, including the pickling objects themselves and all the o

methods, between processes. As a result, attaching custom pickling objects to an o

initially increases the amount of information that is sent over the network, and is there

useful primarily for situations, such as the example in Section 4.4.3, where correctne

(i.e., a condition variable can not be copied over the network), rather than efficiency, i

motivation for creating the custom pickler.

Finally, we have noticed a recurring problem with novice programmers that has

us to desire changing our decision to aim for backward compatibility with Obliq. We h

found that novice programmers tend to forget to specify the distribution semantics of

117

ed

s. We

ir dis-

g

duce

m,
values as they are programming, implicitly assuming that the default is unsynchroniz

replication because that is what they are used to in traditional programming language

suspect that if we required all data values (arrays, objects and variables) to have the

tribution semantics specified, instead of having objects default to client-server sharin

with replication as an option, novices would learn to think about the semantics of the

objects they are creating more quickly, and experienced programmers would not intro

bugs into their programs by forgetting to specify the semantics. However, this proble

and the others mentioned in this section, are relatively minor, especially in relation to

Repo’s advantages for building distributed applications.

118

oterie.

m-

We

kage,

trib-

cting

-3D

this

nal

ulk

 to

ed

 to

nd is

htfor-

o-3D,

sing

ing
CHAPTER 5 Repo-3D

“It's part of the lattice of coincidence that lays on top of everything”

– Miller, from Repo Man

In the previous chapters, we have discussed the design of various components of C

We started with the Shared Object package, a flexible system for exploratory progra

ming of distributed interactive applications, and showed examples of its usefulness.

then discussed Repo, the interpreted language built on top of the Shared Object pac

in which all Coterie applications are written. Repo presents the programmer with a dis

uted language and a set of libraries for doing various common tasks, such as intera

with trackers or file systems, or building 3D graphical scenes using Obliq-3D. (Obliq

was introduced in Section 2.5 and will be discussed in greater depth in Section 5.2.) In

chapter, we will discuss Repo-3D, a novel distributed graphics package that is the fi

significant component of Coterie.

Looking back at the prototypes described in Section 2.6, it turns out that the b

of our development time, and the bulk of the resulting code, involved using Obliq-3D

create 3D graphical displays. Unfortunately, since Obliq-3D data structures are not

directly distributed, if we use it to build distributed prototypes programmers will be forc

to build their own distributed graphical data structures in Repo and synchronize them

the Obliq-3D scenes in each process. This is a tedious and error prone endeavor, a

contrary to our original goal of having distributed prototypes be as simple and straig

ward to implement as non-distributed ones. To address this problem, we created Rep

a successor to Obliq-3D in which most of the objects in the graphical scene are built u

Shared Objects and are therefore directly distributable. Repo-3D is aimed at simplify

the creation of the graphical components of our distributed applications.

119

., our

ers,

])

 the

e fea-

s

ts

. In

pli-

tate

is

ing

r-

imi-

All

e

Traditionally,distributed graphicshas referred to the architecture of a single

graphical application whose components are distributed over multiple machines (e.g

initial single-user AR prototypes, discussed in Section 2.1, as well as the work of oth

such as [Fairen and Vinacua, 1997], [Holbrook et al., 1995], and [Phillips et al., 1989

(Figure 5-1a). By taking advantage of the combined power of multiple machines, and

particular features of individual machines, otherwise impractical applications becam

sible. However, as machines have grown more powerful, application domains such a

Computer Supported Cooperative Work (CSCW) and Distributed Virtual Environmen

(DVEs) have been making the transition from research labs to commercial products

addition, it is finally becoming feasible to experiment with more heavily distributed ap

cation domains, such as augmented environments (AEs). As a result, the termdistributed

graphicsis increasingly used to refer to systems for distributing the shared graphical s

of multi-display/multi-person, distributed, interactive applications (Figure 5-1b). This

the definition that interests us, and that we use here.

While many excellent, high-level programming libraries are available for build

stand-alone 3D applications (e.g., Obliq-3D, Inventor [Strauss and Carey, 1992], Pe

former [Rohlf and Helman, 1994] and Java 3D [Sowizral et al., 1998]), there are no s

larly powerful and general libraries for building distributed 3D graphics applications.

(a) (b)

Figure 5-1: Two meanings ofdistributed graphics. (a) a single logical graphics system
with distributed components, and (b) multiple distributed logical graphics systems. W
use the second definition here.

120

the

te

g

play

se

ing

e

abase

ies,

ene

 is the

lude

ilding

ay

s

e

them

ppli-

ified

and

not

cally.

et of
CSCW and DVE systems with which we are familiar (discussed in Section 2.4) use

approach mentioned above: a mechanism is provided for distributing application sta

(either a custom solution or one based on a general-purpose distributed programmin

environment, such as ISIS [Birman, 1993] or Repo), and the state of the graphical dis

is maintained separately in the local graphics library. As we have found, keeping the

“dual databases” synchronized is a complex, tedious, and error-prone endeavor.

This problem is similar to the “dual database” problem encountered when build

non-distributed graphical applications, where application and graphical state must b

maintained separately and manually synchronized by the programmer. The dual dat

problem is addressed by the designers of modern non-distributed 3D graphics librar

such as Obliq-3D and Inventor, by allowing programmers to extend the graphical sc

objects to encode application state. Extending this approach to a distributed context

basis for our design of Repo-3D; Repo-3D’s distributed objects can be extended to inc

application state, helping the programmer avoid the dual database problem when bu

distributed graphical applications.

However, no matter how simple the construction of a distributed application m

be, a number of differences between distributed and monolithic graphical application

must be addressed. These include:

• Distributed control. In a monolithic application, a single component can oversee th

application and coordinate activities among the separate components by notifying

of changes to the application state. This is not possible in a non-trivial distributed a

cation. Therefore, we must provide mechanisms for different components to be not

of changes to the distributed state.

• Interactivity.Updates to distributed state will be slower than updates to local state,

the amount of data that can be distributed is limited by network bandwidth. If we do

want to sacrifice interactive speed, we must be able to perform some operations lo

For example, an object could be dragged locally with the mouse, with only a subs

the changes applied to the replicated state.

121

modi-

e

bject,

jects.

tive

rob-

ph to

ew

by

ed in

ith a

 of

ial

d

hical

te

g.

play,

or

pport

t for
• Local variations. There are times when a shared graphical scene may need to be

fied locally. For example, a programmer may want to highlight the object under on

user’s mouse pointer without affecting the scene graph viewed by other users.

Repo-3D addresses these problems in two ways. First, as with any Shared O

a programmer can associate a Shared Object Callback Object with most Repo-3D ob

When combined with Repo’s general purpose programming facilities, this allows reac

programs to be built in a straightforward manner. To deal with the second and third p

lems, we introduce the notion oflocal variations to graphical objects. That is, we allow

the properties of a graphical object to be modified locally, and parts of the scene gra

be locally added, removed, or replaced.

In Section 5.1 we will discuss related work, followed by a more in-depth overvi

of Obliq-3D in Section 5.2. The design of Repo-3D is covered in Section 5.3, followed

some examples of Repo-3D in use in Section 5.4. The implementation will be discuss

Section 5.5, and some performance issues in Section 5.6. We will close the chapter w

discussion of our experiences using Repo-3D.

5.1 Related Work

There has been a significant amount of work that falls under the first, older definition

distributed graphics. A large number of systems, ranging from established commerc

products (e.g., IBM Visualization Data Explorer [Lucas et al., 1992, IBM

Corporation, 1993]) to research systems (e.g., PARADISE [Holbrook et al., 1995] an

ATLAS [Fairen and Vinacua, 1997]), have been created to distribute interactive grap

applications over a set of machines. However, the goal of these systems is to facilita

sharing of application data between processes, with one process doing the renderin

While some of these systems can be used to display graphics on more than one dis

they were not designed to support high-level sharing of graphical scenes.

Most high-level graphics libraries, such as UGA [Zeleznik et al., 1991], Invent

[Strauss and Carey, 1992] and Java 3D [Sowizral et al., 1998], do not provide any su

for distribution. Others, such as Performer [Rohlf and Helman, 1994], provide suppor

122

sors,

AG

k.

unc-

hen

s. How-

bility is

ether

cene

but

ited

ort

ct

tantly,

ram-

o-

d

inal—

e is

and

n

ing

t

ilitate

rtu-
distributing components of the 3D graphics rendering system across multiple proces

but do not support distribution across multiple machines. One notable exception is TB

[Elliott et al., 1994], a high-level constraint-based, declarative 3D graphics framewor

Scenes in TBAG are defined using constrained relationships between time-varying f

tions. TBAG allows a set of processes to share a single, replicated constraint graph. W

any process asserts or retracts a constraint, it is asserted or retracted in all processe

ever, this means that all processes share the same scene, and that the system’s scala

limited because all processes have a copy of (and must evaluate) all constraints, wh

or not they are interested in them. There is also no support for local variations of the s

in different processes.

Machiraju [Machiraju, 1997] investigated an approach similar in flavor to ours,

it was not aimed at the same fine-grained level of interactivity and was ultimately lim

by the constraints of the implementation platform (CORBA and C++). For example,

CORBA objects are heavyweight and do not support replication, so much of their eff

was spent developing techniques to support object migration and “fine-grained” obje

sharing. However, their fine-grained objects are coarser than ours, and, more impor

they do not support the kind of lightweight, transparent replication we desire. A prog

mer must explicitly choose whether to replicate, move, or copy an object between pr

cesses when the action is to occur (as opposed to at object creation time). Replicate

objects are independent new copies that can be modified and used to replace the orig

simultaneous editing of objects, or real-time distribution of changes as they are mad

not supported.

Of greater significance is the growing interest of this sort of system in the Java

VRML communities. Java, like Modula-3, is much more suitable as an implementatio

language than C or C++ because of its cross-platform compatibility and support for

threads and garbage collection: Without the latter two language features, implement

complex, large-scale distributed applications is extremely difficult. Most of the curren

effort in these communities has been focused on using Java as a mechanism to fac

multi-user VRML worlds (e.g., Open Communities [Open Communities, 1997]). Unfo

nately, these efforts concentrate on the particulars of implementing shared virtual

123

or

.

d a

:

of var-

fies

rs are

d, its

anged
environments and fall short of providing a general-purpose shared graphics library. F

example, the Open Communities work is being done on top of SPLINE [Waters

et al., 1997], which supports only a single top-level world in the local scene database

5.2 Obliq-3D: An Overview

Obliq-3D is composed of Anim-3D, a 3D animation package written in Modula-3, an

set of wrappers that expose Anim-3D to the Obliq programming language (see

Section 2.5). Anim-3D is based on three simple and powerful concepts:graphical objects

for building graphical scenes,properties for specifying the behavior of the graphical

objects, and input eventcallbacks to support interactive behavior (these callbacks are

unrelated to the Shared Object Callback Objects). Anim-3D uses thedamage-repair

model: whenever a graphical object or property changes (is damaged), the image is

repaired without programmer intervention.

Graphical objects (GOs) represent all the logical entities in the graphical scene

geometry (e.g., lines, polygons, spheres, polygon sets, and text), lights and cameras

ious sorts, and groups of other GOs. One special type of group, theRootGO, represents a

window into which graphics are rendered. GOs can be grouped together in any valid

directed acyclic graph (DAG). The GO class hierarchy is shown in Figure 5-2.

A propertyis defined by anameand avalue. The name determines which attribute

is affected by the property, such as “Texture Mode” or “Box Corner1”. The value speci

how it is affected and is determined by itsbehavior, a time-varying function that takes the

current animation time and returns a value. Properties, property values, and behavio

all objects, and their relationships are shown in Figure 5-3. When a property is create

name and value are fixed. However, values are mutable and their behavior may be ch

at any time. There are four kinds of behaviors for each type of property:constant (do not

vary over time),synchronous(follow a programmed set ofrequests, such as “move from A

to B, starting at time t=1 and taking 2 seconds”),asynchronous(execute an arbitrary time-

dependent function to compute the value) anddependent (asynchronous properties that

depend on other properties). Synchronous properties are linked toanimation handles and

124

g

hro-

er-

e a

”

fect

t

-

do not start satisfying their requests until the animation handle is signalled. By linkin

multiple properties to the same handle, a set of property value changes can be sync

nized.

Associated with each GOg is a partial mapping of property names to values det

mined by the properties that have been associated withg. A property associated withg

affects not onlyg but all the descendants ofg that do not override the property. A single

property may be associated with any number of GOs. It is perfectly legal to associat

property with a GO that is not affected by it; for example, attaching a “Surface Color

property to a GroupGO does not affect the group node itself, but could potentially af

the surface color of any GO contained in that group. A RootGO sets an initial defaul

value for each named property.

Figure 5-2: The Repo-3D GO class hierarchy. Most of the classes are also in Obliq
3D. The italicized ones were added to Repo-3D. The bold classes are abstract.

GroupGO

GO

CameraGO

LightGO

NonSurfaceGO

SurfaceGO

RootGO
ChoiceGroupGO
OrthoCameraGO
PerspCameraGO
AmbientLightGO
VectorLightGO
PointLightGO
SpotLightGO
LineGO
MarkerGO
TextGO
PolygonGO
BoxGO
SphereGO
CylinderGO
DiskGO
TorusGO
QuadMeshGO

Text2DGO

IndexedLineSetGO

IndexedPolygonSetGO

125

he

active

ate

 to

ome

are

en-

ups,

ch as

ap-

e

be

ch
There are three types of input event callbacks in Anim-3D, corresponding to t

three kinds of interactive events they handle:mouse callbacks (triggered by mouse button

events),motion callbacks (triggered by mouse motion events) andkeyboard callbacks

(triggered by key press events). Each object has three callback stacks, and the inter

behavior of an object can be redefined by pushing a new callback onto the appropri

stack. Any event that occurs within a root window associated with a RootGOr will be

delivered to the top handler onr’s callback stack. The handler could delegate the event

one ofr’s children, or it may handle it itself, perhaps changing the graphical scene in s

way.

DistAnim-3D is the Modula-3 3D graphics and animation library underneath

Repo-3D. It is a direct descendant of Anim-3D in which many of the graphical objects

distributed by being implemented with the Shared Object package. In addition to the

objects being distributed, it has had many additional facilities added to it to support g

eral-purpose 3D graphical applications, which are discussed in Appendix G. These

include the addition of new GOs supporting indexed line and polygon sets, choice gro

and text (as shown in Figure 5-2), plus new properties to support these new nodes (su

font name or text style) and to enhance existing GOs with features such as texture m

ping. DistAnin-3D also includes a new pair of callbacks (projection andtransformation

callbacks) and support for 2D picking.

Since DistAnim-3D is embedded in Repo instead of Obliq (see Chapter 4), th

resulting library is called Repo-3D. The interfaces for all of Repo-3D’s modules can

Figure 5-3: The relationship between properties, names, values, and behaviors. Ea
oval represents an object and arrows show containment.

Value Behavior

Property

Name

Request

Request

. . .

126

r

oduc-

.3.1

n-

, and

igned

that

er

de

its

scene

ro-

al

jects

as the

 using

(i.e.,

f those
found in Appendix H. In the rest of this chapter, we will refer to either DistAnim-3D o

Repo-3D, as appropriate.

5.3 Design Of Repo-3D

Repo-3D’s design has three logical parts: the conversion to Shared Objects, the intr

tion of local variations, and support for extensibility. These are the topics of Sections 5

through 5.3.3. Local variations are introduced to handle two issues mentioned in

Section 5.1: transient local changes and responsive local editing.

5.3.1 Conversion to Shared Objects

The Anim-3D scene-graph model is well suited for adaptation to a distributed enviro

ment. First, in Anim-3D, properties are attached to nodes, not inserted into the graph

the property and child lists are unordered (i.e., the order in which properties are ass

to a node, or children are added to a group, does not affect the final result). In libraries

insert properties and nodes in the graph and execute the graph in a well-defined ord

(such as Inventor), thesiblings of a node (or subtree) can affect the attributes of that no

(or subtree). In Anim-3D, and similar libraries (such as Java 3D), properties are only

inheriteddown the graph, so a node’s properties are a function of the node itself and

ancestors—its siblings do not affect it. Therefore, subtrees can be added to different

graphs, perhaps in different processes, with predictable results.

Second, the interface (both compiled Anim-3D and interpreted Obliq-3D) is p

grammatic and declarative. There is no “graphical scene” file format per se: graphic

scenes are created as the side effect of executing programs that explicitly create ob

and manipulate them via the object methods. Thus, all graphical objects are stored

Repo-3D programs that are executed to create them. This is significant, because by

the Shared Object package to make the graphical objects distributed, the “file format”

a Repo-3D program) is updated for free.

Converting Anim-3D objects to Shared Objects involved three choices: what

objects should be replicated using Shared Objects, what methods update the state o

127

ed

ncy

ated

turn:

and

pdate

 deter-

po-

te

om-

ated

e

neral-

ight-

d by

s

 verti-
ethod
o
tation
objects, and what the global, replicated state of each of those objects is. Since Shar

Objects have more overhead (e.g., method execution time, memory usage, and late

when passed between processes), not every category of object in Repo-3D is replic

using them. We will consider each of the object categories described in Figure 5.2 in

graphical objects (GOs), properties (values, names, behaviors), animation handles,

input callbacks. For each of these objects, the obvious methods are designated as u

methods, and, as discussed in Chapter 3, the global state of each object is implicitly

mined by those update methods. After discussing those three classes of objects, Re

3D’s support for change notification will be discussed.

5.3.1.1 Graphical Objects

GOs are the most straightforward to address. There are currently twenty-one concre

types of GOs, as shown in Figure 5-2, and all but the RootGOs are replicated. For c

plete details of all the Repo-3D GOs, see Appendix H.1. Since RootGOs are associ

with an onscreen window, they are not replicated—window creation remains an activ

decision of the local process. Furthermore, if replicated windows are needed, the ge

purpose programming facilities of Repo can be used to support this in a relatively stra

forward manner.

A GO’s state is comprised of the properties attached to the object (manipulate

the methodssetProp , getProp andunsetProp), its name (manipulated by the

methodssetName , getName andfindName), and some other non-inherited property

attributes.1 The update methods are those that modify the properties (setProp and

unsetProp) or change the name (setName). The class definition for the base GO clas

is shown in Figures 5-10 and 5-11, and an example of a concrete GO (BoxGO) is shown in

Figure 5-12.

1. Some attributes of a GO, such as the arrays of Point3D properties that define the
ces of a polygon set, are not attached to the object, but are manipulated through m
calls. This was an outgrowth of the original Obliq-3D design that we decided not t
change because the benefit of doing so would be small compared to the implemen
effort.

128

thods

O

there

cted

teen

te

y-

 its

exam-

n-

ned

the

ew

Since

cop-

mple

re-

rity of
Group GOs also contain a set of child nodes, and have additional update me

that modify that set (add , remove , replace , flush andcontent). Each of these

methods, exceptcontent , is an update method. The class definition for the Group G

class is shown in Figure 5-13.

5.3.1.2 Properties

Properties are more complex. There are far more properties in a graphical scene than

are graphical objects, they change much more rapidly, and each property is constru

from a set of Modula-3 objects. There are currently 101 different properties of seven

different types in Repo-3D, and any of them can be attached to any GO. For comple

details of all the Repo-3D properties, see Appendix H.2. A typical GO would have an

where from two or three (e.g., a BoxGO would have at least two properties to define

corners) to a dozen or more. And, each of these properties could be complex: in the

ple in Section 5.4, a single synchronous property for a long animation could have hu

dreds of requests enqueued within it.

Consider again the object structure illustrated in Figure 5-3. A property is defi

by a name and a value, with the value being a container for a behavior. Only one of

Modula-3 objects is replicated using Shared Objects, the propertyvalue.Property values

serve as the replicated containers for property behaviors. To change a property, a n

behavior is assigned to its value viasetBeh , which is a property value’s only update

method. The state of the value is the current behavior.

The other Modula-3 objects that make up a property are not replicated using

Shared Objects, for the following reasons:

• Propertiesrepresent a permanent binding between a property value and a name.

they are immutable, they have no synchronization requirements and can simply be

ied between processes.

• Namesrepresent simple constant identifiers, and are therefore also replicated by si

copying.

• Behaviors andrequests are not replicated. While they can be modified after being c

ated, they are treated as immutable data types for two reasons. First, the vast majo

129

n cre-

lls

tical

y the

w

ning

ty

ly be

 sys-

ted

 in

-14

-

ry-

t take

hat

corre-
behaviors, even complex synchronous ones, are not changed once they have bee

ated and initialized. Thus, there is some justification for classifying the method ca

that modify them as part of their initialization process. The second reason is prac

and much more significant. Once a scene has been created and is being “used” b

application, the bulk of the time-critical changes to it tend to be assignments of ne

behaviors to the existing property values. For example, an object is moved by assig

a new (often constant) behavior to itsGO_Transform property value. Therefore, the

overall performance of the system depends heavily on the performance of proper

value behavior changes. By treating behaviors as immutable objects, they can simp

copied between processes without incurring the overhead of the replicated object

tem.

5.3.1.3 Animation Handles

Animation handles are also replicated using Shared Objects. They tie groups of rela

synchronous properties together, and are the basis for the interaction in the example

Section 5.4. For the details of the Repo-3D animation handle modules, see Figure 5

and Appendix H.3. In Anim-3D, handles have oneanimate method, which starts an ani

mation and blocks until it finishes. However, since update methods are executed eve

where, and block access to the object while they are being executed, they should no

such an extended period of time. Therefore, in Repo-3D theanimate method is a non-

update method that simply calls two new methods in sequence: an update method t

starts the animation and returns immediately (startAnimation), and a non-update

method that waits for the animation to finish (finishAnimation).

Repo-3D animation handles also include methods to pause (pauseAnimation)

and resume (continueAnimation) an animation, to retrieve (getAnimation-

Time) and change (gotoAnimationTime) the current relative time of an animation

handle, to retrieve the length of the animation (getAnimationLength), and to stop an

animation early (stopAnimation). The global state of an Animation handle is two

boolean values that indicate if it is active and/or paused or not, plus two real values

sponding to the start and current times of the animation.

130

ation

, an

ch all

. In

d indi-

th the

s

nima-

hat

ions

ses

syn-

fore

 con-

d by

hed

ished

plest

ful

se the
This
e

obal
ocal
e in

refore,
Aside from these changes, there is another important difference between anim

handles in Obliq-3D and Repo-3D, resulting from the distributed context. In Obliq-3D

animation handle “finishes” (i.e., thefinishAnimation method returns in that pro-

cess) when it reaches the end of the animation, which is defined to be the time at whi

of the synchronous properties attached to the handle have finished their animations

Repo-3D, since animation handles might be replicated across a set of processes, an

vidual properties are only distributed to processes that need them, it is unlikely that

exactly the same set of synchronous properties will exist, and thus be associated wi

handle, in all processes. This implies that the finishing time for the set of synchronou

properties associated with an animation handle may vary across the replicas of that a

tion handle.

Therefore, when an animation handle is signalled, there are two options for w

time to use as the “end” of the animation: when the local properties finish their animat

(the local time), or when all properties attached to the animation handle in all proces

finish their animations (theglobal time). If we choose to enforce a common global end

time, that end time may be significantly different at each replica than the length of the

chronous properties at that site, causing the animation handle not to “finish” until be

or after the local animations have completed. Furthermore, there are other issues to

sider if we use a uniform global end time, such as whether or not to count the time use

local property variations in the “total time” of the animation.2

We opted for the local solution, where the animation handle is considered finis

in some process when the synchronous properties that exist in that process have fin

their animations. We chose this option for three reasons. First, this was by far the sim

solution to implement and easiest for programmers to understand. Second, this use

2. There are other choices, such as having all the replicas of the animation handle u
local animation length of the replica at the site that signaled the animation handle.
would allow all sites to see a uniform ending time, without needing to determine th
global animation length. However, this option has the main disadvantage of the gl
time (the animation handle “finishes” in most processes at a different time than the l
animations finish) with the further disadvantage that the animation handle’s end tim
most processes is meaningless with respect to the animations in that process. The
we decided not to use options such as this.

131

be

ima-

put

other

, per-

 the

graph

y dele-

call-

mming

f the

a

rtu-

s Call-

po

e

ck

 indi-
piece of information (when are the animations in the local process finished?) would

hard to obtain in any other way. Finally, if a programmer needs to know when the an

tions have finished at all sites, they can use Repo’s general programming facilities to

implement such a feature in an application specific way.

5.3.1.4 Input Callbacks

In Repo-3D, input event callbacks are not replicated. As discussed in Section 5.2, in

events are delivered to the callback stacks of a RootGO. Callbacks attached to any

object receive input events only if they are delivered to that object by the programmer

haps recursively from another input event callback (such as the one attached to the

RootGO). Therefore, the interactive behavior of a root window is defined not only by

callbacks attached to its RootGO, but also by the set of callbacks associated with the

rooted at that RootGO. Since the RootGOs are not replicated, the callbacks that the

gate event handling to are not replicated either. If a programmer wants to associate

backs with objects as they travel between processes, Repo’s general-purpose progra

facilities can be used to accomplish this in a straightforward manner. For the details o

Repo-3D input callback modules, see Appendix H.4.

5.3.1.5 Change Notification

The final component of Repo-3D is support for notification of changes to distributed

objects. For example, when an object’s position changes or a new child is added to

group, some of the processes containing replicas may wish to react in some way. Fo

nately, as discussed in Chapter 3, the Shared Object package automatically generate

back Object types for each replicated object type, which provide the required

functionality.

The Callback Objects are exposed into Repo via three modules:AnimHandleCB ,

GOCBandPropCB . The animation handle Callback Object is exposed directly into Re

via theAnimHandleCB module, and is used analogously to the Modula-3 object (se

Appendix H.3.2). Unlike the animation handle Callback Object, the multitude of Callba

Objects for the various GO and property value Shared Objects are not exposed into

vidual modules; while each has a separate Callback Object generated for it, they are

132

-

(a) The Repo help for thePropCB module.

(b) Excerpts from the Repo help for theGOCB module.
The type of the GO determines which methods of theoverrides
objects will actually be used, and what parameters they should have.

Figure 5-4: TheGOCB andPropCB modules. There are two commands in each mod
ule, one to create a new callback and another to cancel an existing one. Theover-
rides parameter is a simple object containing the callback methods.

PropCB_New(obj: Prop, overrides: Obj): T;
PropCB_Cancel(cbobj: T): T;

WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:

pre`init(obj: Prop, beh: PropBeh): bool;
post`init(obj: Prop, beh: PropBeh): bool;
pre`setBeh(obj: Prop, beh: PropBeh): bool;
post`setBeh(obj: Prop, beh: PropBeh): bool;
pre`anyChange(obj: Prop);
post`anyChange(obj: Prop);

Where Prop is a Property and PropBeh is a Property Behavior of
the appropriate types

GOCB_New(obj: GO, overrides: Obj): T;
GOCB_Cancel(cbobj: T): T;

WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:

pre`propagateLocalProps(obj: GO, add del: [Prop_T]): Bool
post`propagateLocalProps(obj: GO, add del: [Prop_T]): Bool
pre`setProp(obj: GO, prop: Prop_T): Bool
post`setProp(obj: GO, prop: Prop_T): Bool
pre`unsetProp(obj: GO, name: Prop_Name): Bool
post`unsetProp(obj: GO, name: Prop_Name): Bool
pre`setName(obj: GO, name: Text): Bool
post`setName(obj: GO, name: Text): Bool
pre`anyChange(obj: GO);
post`anyChange(obj: GO);

If T is GroupGO or ChoiceGroupGO overrides may also contain:
pre`add(obj new: GO): Bool
post`add(obj new: GO): Bool
pre`remove(obj old: GO): Bool
post`remove(obj old: GO): Bool
pre`replace(obj old new: GO): Bool
post`replace(obj old new: GO): Bool
pre`flush(obj: GO): Bool
post`flush(obj: GO): Bool
pre`propagateLocalChildren(obj: GO, add remove: [GO]): Bool
post`propagateLocalChildren(obj: GO, add remove: [GO]): Bool

... and so on for object specific methods of other GOs ...

133

ro-

pe of

 only

rly,

update

e

o-

g a

wrap-

Call-

 in

he

o-

, cre-

nd all

nges

till be

jects
merged into theGOCB (for notification of changes to GOs) andPropCB (for notification

of changes to property values) modules. This is primarily done for simplicity, since p

grammers frequently want to be notified of some change that is independent of the ty

the GO or property value (e.g., the attachment of a new property to the object, or the

assignment of a new behavior to a property value).

Hiding the property value callbacks insidePropCB is straightforward, since all of

the property value Callback Objects have exactly the same set of methods, differing

in the type of their parameters (as shown in Figure 5-4(a) and Appendix H.2.2). Simila

the GO callback objects share many methods because most of the commonly used

methods are part ofGO.T, the root of the object hierarchy (as shown in Figure 5-4(b)).

However, many GOs have additional update methods, so theGOCB module is more com-

plex; the additional callback methods for group GOs are shown in Figure 5-4(b). (Th

complete specification of theGOCB module can be found in Appendix H.1.2.)

By integrating these change notification callbacks into a pair of modules, a pr

grammer need not know the specific kind of GO or Property for which they are creatin

Callback Object, as long as the object is a subtype of the one they are expecting; the

per modules look at the type of the GO or Property and create the appropriate type of

back Object.

5.3.2 Local Variations

Repo-3D’slocal variations solve a set of problems particular to the distributed context

which Repo-3D lives: maintaining interactivity and supporting local modifications to t

shared scene graph.

If the graphical objects and their properties were always strictly replicated, pr

grammers would have to create local variations by copying the objects to be modified

ating a set of Callback Objects on the original objects, the copies of those objects, a

their properties (to be notified when either change), and reflecting the appropriate cha

between the instances. While this process could be automated somewhat, it would s

tedious and error prone. More seriously, the overhead of creating this vast array of ob

134

nges,

ared

oup—

on

tions,

pies

plica.

t is not

eth-

hods

o the

cal

DS

ical

 is not

ou-

mpty

erty

ons:

hide

, and

to

GO

 inter-
and links between them would make this approach impractical for short transient cha

such as highlighting an object under the mouse.

To overcome this problem, Repo-3D allows the two major elements of the sh

state of the graphical scene—the properties attached to a GO and the children of a gr

to havelocal variationsapplied to them. Local variations on property values or animati

handles are not currently supported.

Conceptually, local state is the state added to each object (the additions, dele

and replacements to the properties or children) that is only accessible to the local co

and is not passed to remote processes when the object is copied to create a new re

The existence of local state is possible because the shared state of a replicated objec

a function of the data elements of the object, but is instead defined implicitly by the m

ods that update the object, as discussed in Chapter 3. Therefore, since the new met

that manipulate the local variations do not modify the shared state, they are added t

GOs asnon-updatemethods; notice that in Figure 5-13, none of the GO or group GO lo

variation methods are denoted as update methods in the SHARED UPDATE METHO

pragma. Repo-3D combines both the global and local state when creating the graph

scene using the underlying graphics package. Repo-3D ensures that the local state

copied when an object is first passed to a new process by defining custom pickling r

tines that pass the global state and initialize the local state on the receiving side to e

values (recall the discussion of custom pickling routines in Section 3.4.1.3).

As mentioned above, local variations come in two flavors:

• Property variations. There are three methods to set, unset, and get the global prop

list attached to a GO. We added the following methods to manipulate local variati

add or remove local properties (overriding the value normally used for the object),

or reveal properties (causing the property value of the parent node to be inherited)

flush the set of local variations (removing them in one step) or atomically apply them

the global state of the object. See Figure 5-10 for the specification of the Modula-3

object that includes these methods, and Appendix H.1.1 for the Repo-3D module

face.

135

the

al

ally,

one

3 for

eth-

ned

po-3D

 the

eted

n

ular,

First,

is-

repli-

ta

chro-

y in

epo

the
• Child variations.There are five methods to add, remove, replace, retrieve, and flush

set of children contained in a group node. We added the following ones: add a loc

node, remove a global node locally, replace a global node with some other node loc

remove each of these local variations, flush the local variations (remove them all in

step), and atomically apply the local variations to the global state. See Figure 5-1

the complete specification of the Modula-3 group GO object that includes these m

ods, and Appendix H.1.10 for the Repo-3D module interface.

This set of local operations supports the problems local variations were desig

to solve, although some possible enhancements are discussed in Section 7.1.

5.3.3 Extensibility

Repo-3D objects are extensible so that the application state can be added to the Re

objects, allowing programmers to avoid the dual database problem (as discussed at

beginning of the chapter). Objects can be extended at both the compiled and interpr

levels of Coterie. At the Modula-3 level, DistAnim-3D objects can be subtyped and

extended to create new Shared Objects, as discussed in Chapter 3.

Programmers can extend the Repo-3D objects as well, but care must be take

because of the way DistAnim-3D’s replicated objects are embedded in Repo. In partic

programmers must keep two restrictions in mind when extending Repo-3D objects.

Repo-3D objects cannot be extended like other Repo objects (by cloning them, as d

cussed in Section 4.4.2). Instead, programmers must use a Repo-3D object’sextend

method for this purpose. Second, the Repo-3D object that exposes the DistAnim-3D

cated object into Repo is asimple (unsynchronized replicated) Repo object, so if a da

field is to be changed after an object is distributed, the data field itself must be a syn

nized replicated object or the changes will not be distributed to all replicas.

To understand where these restrictions come from, we need to explain the wa

which the DistAnim-3D objects are embedded in Repo (shown in Figure 5-5). The R

object that exposes a DistAnim-3D object into Repo has methods corresponding to

various methods of the DistAnim-3D object, and a single data field (raw) that points at

136

,

at the

type

 fol-

ate

, but

on

have

our
s,

e

t,
ins

f

the underlying DistAnim-3D object. The choice of whether a given object (i.e., a GO

property value, property behavior, etc.) is synchronized or unsynchronized is made

DistAnim-3D level, and all of the Repo objects are unsynchronized (regardless of the

of the underlying DistAnim-3D object).

The primary reason for having the Repo wrapper object unsynchronized is as

lows: if both the Repo and DistAnim-3D objects were synchronized, invoking an upd

method in the wrapper object would result in that method being invoked everywhere

the action taken at every site by that method would typically include invoking a method

the underlying DistAnim-3D objectat every site. Each invocation of the DistAnim-3D

method would cause the method to be invoked on all replicas. The result would be to

the DistAnim-3D method invokedN2 times (if there areN replicas),N times for each of

theN invocations of the Repo update method.

Figure 5-5: Embedding DistAnim-3D objects in Repo. Anim-3D (and, therefore,
DistAnim-3D) was designed to be embedded in an interpreted language, which in
case is Repo. Therefore, each DistAnim-3D object (i.e., GOs, properties, behavior
etc.) has aproxy field that will point to aProxy object when the representation of the
object in Repo (the “proxy”) has been created (this proxy can be created when the
graphical object is created, or deferred until the object is accessed from Repo). Th
Proxy object contains an untyped reference fieldobject that points at the Repo
wrapper object. To allow the DistAnim-3D object to be retrieved from the Repo objec
an opaque Repo type is created for every type of graphical object. This object conta
a single field,proxiedObj , that points at the original graphical object. An instance o
the appropriate type is assigned to a field named “raw ” in the Repo object.

...

DistAnim-3D

proxy

Proxy

object

Repo
Object

...

fields

“raw”

Opaque

proxiedObj

Repo ObjectGO

137

o-3D

ds to

he old

the

 only

ucture

d appli-

ound

d glo-

the

Repo-

e exam-

3D.

ted

ple

ibuted

cts

 Trun-

rie

ill
The structure of the Repo-3D object in Figure 5-5 is also the reason that Rep

objects should only be extended to contain additional fields by calling the object’s

extend method. This method takes a single argument, an object containing the fiel

be added to the Repo-3D object. The method creates a new Repo object combining t

Repo object and these new fields, and updates theProxy object’sobject field to point

at this new Repo object. If the Repo object were extended using Repo’sclone operator,

the internal Proxy object would continue to point at the original Repo object, breaking

circular reference structure. This structure also implies that Repo-3D objects should

be extended before they are first passed out of their original process, because the str

would only be updated at the local site.

The final implication of the way DistAnim-3D objects are embedded in Repo

arises because the Repo objects are unsynchronized. If a programmer wishes to ad

cation data fields to the Repo-3D objects, and then distribute the Repo-3D object ar

the network, subsequent changes to the application data fields will not be propagate

bally because the Repo objects are not synchronized. To get around this limitation,

programmer should add synchronized data fields to these unsynchronized Repo-3D

objects. These replicated data objects would be pulled around the network with the

3D object, and any changes made to those data values would be propagated. See th

ple in Section 6.2 for an illustration of extending objects in this way.

5.4 Examples

In this section we will give a number of examples that demonstrate the utility of Repo-

First, we will give a simple tutorial example that shows how to build a simple distribu

graphical scene. In Section 5.4.2, we will return to the tracker report distribution exam

introduced in Section 2.5.1, and discuss how tracker data can be transparently distr

using Repo-3D properties.

Next, we will show how the ability to embed application state in replicated obje

neatly solves the dual database problem, using an example of the creation of a new

cated Pyramid GO taken from our integration of the Brown Sketch system into Cote

(this integration will be discussed further in Section 6.2). Finally, in Section 5.4.4 we w

138

 run-

orts it

ir

 one

his

nges

plex

e, if

rately

the

ts are

ing a

data

is

A

Sec-

ts in

nd

 previ-
discuss the design of a distributed animation viewer, and show how local variations

address a number of common problems in distributed, collaborative applications.

5.4.1 A Tutorial Example

The first example we will give, shown in Figure 5-6, highlights the simplicity of using

Repo-3D to create a distributed graphical scene. In this example, two processes are

ning, each containing a Repo-3D root GO. One process creates a group GO and exp

to the network, and the other process imports it. When both link this group GO to the

root GO, they now have a symmetric, shared graphical scene. Any changes made to

are reflected in the other (e.g., adding an object, such as the sphere in the figure).

While one could imagine writing a simple distributed data structure to mimic t

behavior, by sharing a group of objects and changing the local root GO to reflect cha

to the contents of this shared data structure, realistic applications require more com

data sharing, which Repo-3D also provides in a straightforward manner. For exampl

one wanted to ensure the objects in our hypothetical shared data structure were accu

reflected in our local root GO, we would also have to watch for all possible changes to

properties of those objects and apply those changes locally. Since Repo-3D’s objec

fully replicated, it provides this behavior transparently. Similarly, if the objects being

shared were more complex than the simple sphere in the example, perhaps contain

complex hierarchy of group GOs, the programmer creating our hypothetical shared

structure would have to watch the entire hierarchy for changes. Repo-3D provides th

behavior for free as well.

5.4.2 Yet Another Tracker Example

Now, we shall return to the tracker distribution example introduced in Section 2.5.1.

simple tracker distribution object was implemented as a Modula-3 Shared Object in

tion 3.4.1, and reimplemented a number of different ways using Repo replicated objec

Section 4.6.1. Repo-3D properties provide a simple way of distributing the position a

orientation of a tracker, which is more appropriate than the approaches discussed in

139

e,
(a) The timeline of the simple animation, showing the two windows at different
times, with arrows indicating data flow between the processes.

(b) The code executed at time=t0, in windowR0 (left) andR1 (right)

(c) The code executed in windowR0 at time=t1

(d) The code executed in windowR1 at time=t3

(e) The code executed in windowR1 at time=t5

Figure 5-6: A simple Repo-3D example. In this example, for which all the code is
shown, we have two windows (R0 andR1) in two separate processes. The two win-
dows are initialized at timet0, as shown, so that they contain a shared group GO. If
either processes changes the GO, the changes will be reflected in both. Therefor
when a sphere is added toR0 (at timet1), the update is distributed and applied in the
process containingR1 (at timet2). This sphere is also shared; when it is scaled inR1
(at timet3), it is also scaled inR0 (at timet4). However, local updates can be applied
to either without requiring network traffic: when the color of the sphere is locally
changed and a 2D text object locally added inR1 (at timet5), these changes are not
sent to, or reflected in,R0.

t0 t1 t2 t4 t5t3

R1

R0

scaleadd
local

changes

let r = RootGO_NewStd();
let g = GroupGO_New();
net_export(“g”, host, g);
r.add(g);

let r = RootGO_NewStd();
let g = net_import(“g”, host);
r.add(g);

let s = SphereGO_New([0,0,0],1);
g.add(s);

GO_SetTransform(g,Matrix4_Scale(Matrix4_Id, 2,2,2));

s.setLocalProp(SurfaceGO_Color,ColorProp_NewConst(“purple”));
let t = Text2DGO_New([0,1.1,0], “Big Purple Ball”, “Center”);
g.localAdd(t);

140

racker

e

ess

perty

 These

pro-

w

tain

one

ed in

un-

ated

con-

he

the

ition

e

ce the

e

ject.
ous chapters in certain situations, such as when the position and orientation of the t

are only used to position objects in the graphical scene.

In those cases, Repo-3D properties can be used to transparently distribute th

tracker data. Instead of setting the value of a shared tracker position object, the proc

reading and processing the tracker can create Repo-3D constant transformation pro

behaviors, and assign each new behavior to one or more transformation properties.

properties can be attached to any number of GOs and distributed to any number of

cesses, and those GOs will transparently follow the tracker.

5.4.3 A Truncated Pyramid Object

One of the common things to do when building graphical applications is to create ne

domain-specific objects that can be treated like the built-in graphical objects, but con

addition semantic information specific to that domain. In this section, we will present

such object, a Truncated Pyramid, that was created for the Sketch example present

Section 6.2. In that example, we created four new Repo-3D, objects representing Tr

cated Pyramids and Cones, Extrusions and Surfaces of Revolution. While the Trunc

Pyramid is quite simple, it serves as an example of how to extend Repo-3D objects to

tain application specific state.

A Truncated Pyramid is defined as follows. The pyramid is centered around t

origin, with its bottom face being a square from (–1,–1,–1) to (1,–1,1). The top face of

pyramid can be of any size, but will always lie in theY=1 plane. Thetaper vector deter-

mines how much the top face of the pyramid should be tapered in from the default pos

of (x=1, z=1) and (x=–1,z=–1). Theshear vector determines how much the center of th

top face of the pyramid should be offset from theYaxis. We define the Truncated Pyramid

as an extension to theIndexedPolygonSet object, as shown in Figure 5-7. By using a

replicated object to contain the taper and offset information (as discussed in Section

5.3.3), and defining the polygon set using asynchronous point properties that referen

fields of this object, the offset and taper values of the truncated pyramid object can b

modified at any time by simply changing the corresponding field of this replicated ob

141

epo-

tion

n of

s

li-
he
5.4.4 An Animation Examiner

A more complex and complete example of prototyping distributed applications with R

3D is the distributed animation examiner we created for the CATHI animation genera

system. CATHI generates short informational animation clips to explain the operatio

Figure 5-7: TheTruncPyr object. The Truncated Pyramid object is an indexed
polygon set with eight vertices and six faces. The bottom four vertices are con-
stants, defining the square from [–1,–1,–1] to [1,–1,1]. The top four vertices are
asynchronous point properties, that compute their values using the current value
of the offset and taper fields of the replicated objectobj . The objectobj is added
to the indexed polygon set object as a new field,data . When either the taper or
offset field of the replicated object is changed, the changes are reflected in all rep
cas and the indexed polygon set immediately changes its appearance to reflect t
new values.

module TruncPyrGO;
let New = proc (taper, offset)

let obj = {replicated, offset => simple(offset),
taper => simple(taper)};

IndexedPolygonSetGO_NewWithShapeHint(
[[-1.0,-1.0,-1.0], [1.0,-1.0,-1.0],
 [1.0,-1.0, 1.0], [-1.0,-1.0, 1.0],
 PointProp_NewAsync(meth (s,t)

[(obj.offset[0] - obj.taper[0]), 1.0,
 (obj.offset[1] - obj.taper[1])]

end),
 PointProp_NewAsync(meth (s,t)

[(obj.offset[0] + obj.taper[0]), 1.0,
 (obj.offset[1] - obj.taper[1])]

end),
 PointProp_NewAsync(meth (s,t)

[(obj.offset[0] + obj.taper[0]), 1.0,
 (obj.offset[1] + obj.taper[1])]

end),
 PointProp_NewAsync(meth (s,t)

[(obj.offset[0] - obj.taper[0]), 1.0,
 (obj.offset[1] + obj.taper[1])]

end)],
[[0,1,2,3], [7,6,5,4], [1,0,4,5],
 [2,1,5,6], [3,2,6,7], [0,3,7,4]],
1.57, "Convex").extend({simple, data => obj});

end;
end module;

addhelp TruncPyrGO short "A truncated pyramid GO" full
" TruncPyrGO_New(taper: Point2, offset: Point2):

IndexedPolygonSetGO
";

142

ions,

am

ation

 their

sts of

e of

cuss-

iner

 to

ation

ed ten

rk

 ani-

m.

s

sing

ges

, all

con-

l

d to

seen
technical devices [Butz, 1997]. The scripts it generates describe full-featured animat

including camera and object motion, color and opacity effects, and lighting setup.

It was reasonably straightforward to modify CATHI to generate Repo-3D progr

files. The Repo-3D program creates two scene graphs: a camera graph and an anim

scene graph. The objects in these graphs have synchronous behaviors specified for

surface and transformation properties. An entire animation is enqueued in the reque

these behaviors, and can last anywhere from a few seconds to a few minutes.

We built a distributed, multi-user examiner for these animations over the cours

a weekend. The examiner allows multiple users to view the same animation while dis

ing it (e.g., via electronic chat or on the phone). Figure 5-8 shows images of the exam

running on four machines, each with a different view of the scene. The first step was

build a simple “loader” that reads the animation file, creates a root GO, adds the anim

scene and camera to this GO, and exports the animation to the network. This requir

lines of Repo-3D code. A “network” client, which imports the animation from the netwo

instead of reading it from disk, replaced the two lines of code to read and export the

mation with a single line to import it, but was otherwise identical to the loader progra

Figure 5-8(a) shows an animation being viewed by one of these clients.

An animation examiner program is loaded by both these simple clients, and i

about 450 lines long. The examiner supports:

• Pausing and continuing the animation, and changing the current animation time u

the mouse. Since this is done by operating on the shared animation handle, chan

performed by any viewer are seen by all. Because of the consistency guarantees

users can freely attempt to change the time, and the system will maintain all views

sistently.

• Opening and closing a second “overview” window (Figure 5-8(b)), where a new

camera watches the animation scene and camera from a distant viewpoint. A loca

graphical child (representing a portion of the animation camera’s frustum) is adde

the shared animation camera group to let the attributes of the animation camera be

in the overview window.

143

by

raphi-

n-

the

ne.
n

is.
• A local animation meter (bottom of Figure 5-8(c)), that can be added to any window

pressing a key, and which shows the current time offset into the animation both g

cally and numerically. It is added in front of the camera in the animation viewer wi

dow, as a local child of a GO in the camera graph, so that it is fixed to the screen in

animation viewer.

(a) (b)

(c) (d)

Figure 5-8: The distributed CATHI animation viewer. Simultaneous images from a
session with the viewer, running on four machines, showing an animation of an engi
(a) Plain animation viewer, running on Windows NT. (b) Overview window, running o
Windows 95. (c) Animation viewer with local animation meter, running on IRIX. (d)
Animation viewer with local transparency to expose hidden parts, running on Solar

144

spar-

seful

light-

prop-

than

obal

ent-

cam-

amera

lor on

ess

l

 con-

m

ared

e

re is an

ling

exter-
• Local editing (Figure 5-8(d)), so that users can select objects and make them tran

ent (to better see what was happening in the animation) or hide them completely (u

on slow machines, to speed up rendering). Assorted local feedback, such as high

ing the object under the mouse and flashing the selected object, is done with local

erty changes to the shared GOs in the scene graph.

Given the attention paid to the design of Repo-3D, it was not necessary to be

overly concerned with the distributed behavior of the application (we spent no more

an hour or so). Much of that time was spent deciding if a given operation should be gl

or a local variation. The bulk of programming and debugging time was spent implem

ing application code. For example, in the overview window, the representation of the

era moves dynamically, based on the bounding values of the animation’s scene and c

graphs. In editing mode, the property that flashes the selected node bases its local co

the current global color (allowing a user who is editing while an animation is in progr

to see any color changes to the selected node.)

5.5 Implementation

In this section, we will discuss the implementation of DistAnim-3D’s shared graphica

objects, highlighting the changes made to Anim-3D during the move to a distributed

text based on the Shared Object programming model.

The differences in the internal structure of Anim-3D and DistAnim-3D result fro

both the rendering optimizations (discussed in Appendix G), and the conversion to Sh

Objects, shown in Figure 5-9. While the data structures have changed considerably, th

basic structure of the code has not; user threads update the graphics objects, and the

animation server threadthat is responsible for rendering the graphical scene and hand

input. The package has two global locks, referred to as theexternal lock and theinternal

lock. Each time through its rendering loop, the animation server thread acquires the

nal lock and the internal lock in sequence, reacts to input from the user, handles any

changes to the scene graph, and then renders the windows (if needed).

145

 nec-

erver

ternal

aph-
cts.
 and

ed out
The external lock is available to programmers, and can be acquired when it is

essary to make multiple changes to the scene graph atomically; since the animation s

thread needs to acquire the lock to render the scene, all changes made while the ex

(a) The internal structure of Anim-3D. User threads and the animation
server thread access the graphical objects. The animation server thread

renders the scene directly from the graphical objects.

(b) The internal structure of DistAnim-3D. The user-threads access the Shared Gr
ical Objects, and any changes they make are immediately reflected in the State obje
The animation server thread accesses only the State objects, using them to build

update the rendering cache used to refresh the graphics display

Figure 5-9: The internal structure of Anim-3D and DistAnim-3D. The Rendering
Cache was created to enhance the performance, and the Object State was separat
during the conversion to Shared Objects.

...

GO

...

GO

...

GO

...

GO

TTT T

Animation
Server

Graphics Objects

User Threads Thread

...

GO

...

GO

...

GO

...

GO

TTT

State

State

State

State

...
...

T
Animation
Server

Rendering Cache
Object StateShared Graphics Objects

User Threads

Thread

TTT

Shared Object
Update Threads

146

ired

 (Two

e lock

ods

 tried

ting

d

struc-

fely

locks

ct

. While

e for

epair

n inter-

 each

hs to

head.

ks,

set of

and

the

ation

e
ode
).
lock is held are atomic from the local viewers point of view. The internal lock is acqu

by the graphical object methods when they update the scene graph data structures.

locks are needed because Modula-3 mutexes are not reentrant; if there was only on

and the programmer acquired it to perform multiple actions atomically, the GO meth

that would be called to perform those actions would deadlock the system when they

to acquire the same lock before modifying the internal data structures.)

The straightforward part of the conversion to using Shared Objects was selec

which object methods should be update methods, as discussed in Section 5.3.1, an

changing the definitions in the object class hierarchy to follow the guidelines for the

Shared Object package, as discussed in Section 3.4.1. However, the Anim-3D data

tures are complex, and, like most thread-safe libraries, were already designed to sa

handle multiple simultaneous access to the objects through the use of the two global

mentioned above. This means that the additional locks supplied by the Shared Obje

package for its objects are unnecessary to ensure the safe access to the global state

the overhead incurred by these locks is not normally significant, in this case it is caus

concern; the animation server thread will potentially access hundreds of objects to r

and redisplay the graphical scene, and these graphical objects have over three doze

nal methods that are called repeatedly during this repair and redisplay process, with

call needing to reaquire the object’s lock. Since we had previously gone to great lengt

make this repair process as efficient as possible, we want to avoid this additional over

To allow the animation thread to avoid having to repeatedly acquire these loc

we moved the internal methods and all the state of the graphical objects to a second

parallelState objects, as illustrated in Figure 5-9 (and can be seen in Figures 5-11

5-14(b)).3 Each GO and property value now has a corresponding state object. All of

methods called by the animation server thread are in the newState objects, and are

therefore not subject to the Shared Object locks. The methods relating to the modific

3. While we could have left the state data in the graphical objects and moved only th
methods, moving both allowed us to automate the resulting modifications to the c
(since both the internal method and data access now go through the state objects

147

and

ct sys-

ckage

nt

g,

ht

xist-

 the

ject

tion

the

d the

tails

al

r-

param-

er:

e this
of, and access to, the global state (and only those methods) remain in the graphical

objects, and are subject to the Shared Object locks.

While these modifications and optimizations required much of the code for

DistAnim-3D to be touched and modified, the changes were not conceptually difficult

serve to illustrate the usefulness of the programming model. Since the Shared Obje

tem only examines the method definitions, not the internal data, and because the pa

it tightly integrated with the programming language (including following the predomina

Modula-3 programming style) it was straightforward to apply the model to an existin

complex software package such as Anim-3D. To further illustrate this, we will highlig

some of the main objects in DistAnim-3D and show how the package fit in with the e

ing code.

The Anim-3D and DistAnim-3D definitions ofGO.T, the base class for all GOs,

are shown in Figure 5-10. Notice that we do not declare update methods here (using

SHARED UPDATE METHODS pragma), as this is an abstract type. Therefore, this ob

does not have the characteristic “hole” in the inheritance hierarchy (described in Sec

3.4.1) that is to be filled in by the Shared Object code generator; this hole will be left in

concrete subtypes. The only changes from Anim-3D are the object inherited from, an

addition of the new methods for local property manipulation. Some of the internal de

of this object are shown in Figure 5-11. The one new method defined here,

globalPropagateLocalProps , is an update method used internally by the extern

setLocalPropsGlobally method; the external method extracts the lists of prope

ties to be added and removed, and calls the internal method with these two lists as

eters.

This is an excellent example of the flexibility and power of the Shared Object

package design, illustrating how update and non-update properties can work togeth

conceptually, the external method (setLocalPropsGlobally) is an update method,

but it must do some work locally to package up the data needed for the update, sinc

data is local to the process where the method is invoked. The internal method

148

.

(globalPropagateLocalProps) can then be called with this additional data sup-

plied in its arguments.

(a) The Anim-3D definition ofGO.T. We omit the methods here.
ProxiedObj.T is used to embed objects in an interpreted

language, such as Repo or Obliq.

(b) The DistAnim-3D definition ofGO.T. The newGO.T inherits from
SharedObj.T (which is a subclass ofProxiedObj.T).

Figure 5-10:TheGO.T class. This is the Modula-3 base class for all DistAnim-
3D GOs. In this, and all other code in this chapter, we have removed the RAISES
clauses from the method and procedure declarations for clarity. We have high-
lighted the groups of methods used to manipulate the local and global properties

TYPE
T <: Public;
Public = ProxiedObj.T OBJECT METHODS

... methods ...
END;

TYPE
 T <: Public;
 Public = SharedObj.T OBJECT METHODS

init () : T;
setName (name : TEXT);
getName () : TEXT;
findName (name : TEXT) : T;

(* the original methods to manipulate properties *)
getProp (pn : Prop.Name) : Prop.Val;
setProp (p : Prop.T);
unsetProp (pn : Prop.Name);

(* the methods to manipulate local properties *)
setLocalProp (p : Prop.T);
unsetLocalProp (pn : Prop.Name);
getLocalProp (pn : Prop.Name) : Prop.Val;
hideGlobalProp (pn : Prop.Name);
revealGlobalProp (pn : Prop.Name);
isPropHidden (pn : Prop.Name) : BOOLEAN;
setLocalPropsGlobally ();

pushMouseCB (cb : MouseCB.T);
popMouseCB ();
removeMouseCB (cb : MouseCB.T);
invokeMouseCB (mr : MouseCB.Rec);
... same four methods for PositionCB’s and KeyCB’s ...

addProjectionCB (cb : ProjectionCB.T);
removeProjectionCB (cb : ProjectionCB.T);
invokeProjectionCB (READONLY pr : ProjectionCB.Rec);
... same three methods for TransformCB’s ...

END;

Global Property Manipulation

Local Property Manipulation

149

s,

eth-
The definition of one of the concrete GO types,BoxGO.T, is shown in Figure 5-

12.BoxGO.T is a representative example of the majority of GOs, since, like most GO

its state is defined entirely by the properties attached to it. Therefore, no additional m

ods are defined (aside from an initialization method,init()). TheSHARED UPDATE

METHODS pragma includes all of the update methods defined inGO.T. Notice that, as

discussed above,globalPropagateLocalProps is an update method, but

setLocalPropsGlobally is not.

Figure 5-11:Excerpts fromGOPrivate.i3 . As withTrackerPosi-
tionF.i3 , the internal details of theGO.T object are exposed in this private
interface. We define one additional method on the object (globalPropagate-
LocalProps), which is an update method that is used internally, and define a
separate object to hold the state. TheState object contains the local and global
state, as well as methods to manipulate that state.

REVEAL
T = Public BRANDED "GO.T" OBJECT

state: State := NIL;
METHODS

globalPropagateLocalProps (add, remove: PropList.T);
 OVERRIDES

... method overrides ...
END;

(a)BoxGO.T

(a) Excerpts fromBoxGOPrivate.i3

Figure 5-12: BoxGO.T class definitions. Most of the GOs are similar to the
BoxGO.T definition, and have no other methods. The internal details of the
BoxGO.T object, including method overrides, are exposed in the private
BoxGOPrivate.i3 interface.

TYPE
T <: Private;
Private <: Public;
<* SHARED UPDATE METHODS T.init, T.setProp, T.unsetProp,

T.globalPropagateLocalProps, T.setName *>
Public = SurfaceGO.T OBJECT
METHODS

init () : T;
END;

REVEAL
Private = Public BRANDED "BoxGO.T" OBJECT
OVERRIDES

... method overrides ...
END;

150

ce it

 the

5-13,

e

The definition ofGroupGO.T , the class for Repo-3D group objects, is shown in

Figure 5-13. This object serves as a more complex example of a Shared Object, sin

inherits fromGO.T, but also defines a new set of methods. It includes all ofGO.T’s global

and local state manipulation methods, and adds additional methods for manipulating

global and local children of a group GO. As with theGO.T object, one of the local meth-

ods (mergeLocalToGlobal) uses a private update method (globalPropagate-

LocalChildren) to propagate the local child variations into the global state;

mergeLocalToGlobal extracts the lists of children to be added and removed, and

calls the internal method with these two lists as parameters. As can be seen in Figure

all of the update methods ofGO.T andGroupGO.T , including the two private methods,

are listed in the SHARED UPDATE METHODS pragma.

Figure 5-13:TheGroupGO.T class definition. This is the Modula-3 class for
DistAnim-3D grouping objects. We have highlighted the groups of methods used
to manipulate the local and global child lists. ThemergeLocalToGlobal
method causes the local properties to be merged into the global state, through th
use of an internal update methodglobalPropagateLocalChildren (the
internal details are not shown here, for brevity).

TYPE
T <: Private;
Private <: Public;
<* SHARED UPDATE METHODS T.init, T.setProp, T.unsetProp,

T.globalPropagateLocalProps, T.setName, T.add, T.remove,
T.replace, T.flush, T.globalPropagateLocalChildren *>

Public = GO.T OBJECT METHODS
init (initSize := 5) : Public;

add (o : GO.T);
remove (o : GO.T);
replace (new, old: GO.T);
flush ();
content () : REF ARRAY OF GO.T;

addLocal (o : GO.T);
removeLocal (o : GO.T);
replaceLocal (new, old: GO.T);
removeLocalAddition (o : GO.T);
removeLocalRemoval (o : GO.T);
removeLocalReplacement (old: GO.T);
flushLocal ();
localContent () : REF ARRAY OF GO.T;
mergeLocalToGlobal ();

END;
Local Children Manipulation

Global Children Manipulation

151

e

r,

ing

of

of the

s

nima-

The

hard

he

ject,

ed ani-

llow-

from

ot

 an

vels

 differ-

 is sig-
The definition ofProp.Val , the base class for all Repo-3D property values, is

similar in spirit to those ofGO.T andBoxGO.T. Like the GO objects, the property value

objects have an internal state object so that the animation server thread can avoid th

Shared Object locks. Each of the seventeen different properties is defined in a simila

straightforward way, so we will not include the details here.

The final Shared Object in DistAnim-3D is the animation handle object,

AnimHandle.T , which is shown in Figure 5-14. This object presents another interest

example of the use of private update methods, as well as being the one component

Anim-3D that was substantially changed during the conversion to DistAnim-3D (as

discussed in Section 5.3.1.3 and Appendix G). As was noted in those sections, one

reasons we chose to have thefinishAnimation method return when the synchronou

behavior animations finish at the local site, as opposed to having it return when the a

tions at all sites finish, is because the implementation of the global version is difficult.

difficulty arises because of the asynchronous nature of the object updates; it would be

to determine the current total animation length at all sites at exactly the point when t

animation is signalled.

The most interesting aspect of the implementation of the animation handle ob

however, is how the private update methods are used to guarantee that the distribut

mations stay synchronized. Before looking at the implementation, considering the fo

ing scenario. If an animation handle is signaled at timet0 (by having itssignal method

invoked), the animation update will not be executed until the message has returned

the sequencer, say at timet1. In addition, the update message invoking this method will n

arrive at a remote replica until some other time, sayt2. Therefore, the animation will start

with a time difference oft2-t1 at these two sites. Whilet1 andt2 are likely to be close, they

will not, in general, be equal. If the two sites have different sequencers, there will be

even greater delay caused by the additional hop on the network as the message tra

between the sequencers.

There are two problems here that must be addressed: the animation starts at

ent times at different sites, and the animation does not start at any site at the time it

152

oth

 at the

syn-
roto-

,

nalled, including the site at which the animation handle was signalled. We address b

problems by using private update methods that take an additionaltimeparameter that is set

to the time the action was invoked at the calling site.4 Regardless of when the update

arrives and is executed at a site, the animation handle behaves as if it were signaled

4. In the current implementation, we assume that all of the machines have their clocks
chronized using a time-synchronization protocol such as NTP, the Network Time P
col [Mills, 1992]

(a) FromAnimHandle.i3 . The definition of the animation
handle object. Notice that many of the update methods are variations of

the externally visible methods, with “Time” added to their names.

(b) FromAnimHandlePrivate.i3 . Excerpts from
the revelation of theAnimHandle.Private .

Figure 5-14:TheAnimHandle class. Unlike the GO and property value classes,
the animation handle class was changed substantially from the Obliq-3D version
which had one method,animate .

TYPE
T <: Private;
Private <: Public;
<* SHARED UPDATE METHODS T.init, T.startAnimationTime,

T.pauseAnimationTime, T.stopAnimation,
T.continueAnimationTime, T.goToAnimationTimeTime *>

Public = SharedObj.T OBJECT METHODS
init () : T;
startAnimation();
finishAnimation();
animate ();
stopAnimation();
pauseAnimation();
continueAnimation();
getAnimationTime(): LONGREAL;
goToAnimationTime(time: LONGREAL);
getAnimationLength(): LONGREAL;

END;

REVEAL
Private = Public BRANDED "AnimHandle.T" OBJECT

state : State;
METHODS

startAnimationTime(time: LONGREAL) := StartAnimationTime;
pauseAnimationTime(time: LONGREAL) := PauseAnimationTime;
continueAnimationTime(time: LONGREAL) :=

ContinueAnimationTime;
goToAnimationTimeTime(time, relTime: LONGREAL) :=

GoToAnimationTimeTime;
OVERRIDES

... method overrides ...
END;

153

d stop

g the

d will

me

hen

lica-

data

een

to per-

the

bject

ments

d in

eady

bject

ed

forms

erfor-

raph.

l

ting
time specified by this time parameter, ensuring that the animation appears to start an

at exactly the same time at all sites. The network delays manifest themselves by havin

animation appear to “jump” when it is started or paused: because the update metho

not be invoked until timet1 in the above scenario, the animation corresponding to the ti

range [t0 ... t1) will simply be skipped at the invoking site, and the range [t0 ... t2) will be

skipped at the second site. Similarly, if thepauseAnimation method was invoked in

the same way, the animation at both sites will appear to “jump back” a small amount w

it is finally invoked.

5.6 Performance

In this section, we will discuss the performance of Repo-3D. When looking at an app

tion written using Repo-3D, it is useful to differentiate between two phases of its life

cycle: the “set-up” period, when the application is building up (possibly large) shared

structures, and the “steady state” period, when the bulk of the data structures have b

distributed and users are interacting with the system. Repo-3D has been optimized

form well during the application steady state, at the expense of performance during

set-up period.

This performance trade-off can be traced back to the design of the Shared O

package. Recall from Section 3.4.2, when a Shared Object is embedded in the argu

to a Shared Object update method, only the universal identifier of the object is include

the message. This makes passing Shared Objects very efficient when the object alr

exists in the destination process, but slows down object transfer somewhat when the o

does not yet exist. Where the application is in its steady state, and most of the Shar

Objects already exist in all the processes in which they will be used, the system per

quite well. However, when the objects are initially distributed to the processes, the p

mance is not as good as it might otherwise be.

Consider the example above, where an object is the root of a complex scene g

Imagine that we want to swap the location of two such complex graphs in a graphica

scene. Because of the above optimization, the arguments to the group GOreplace

method will only have their global identifiers sent, each of which is 8 bytes long, resul

154

phs

 mes-

 pro-

e

timized

ver,

s dis-

ect or

avior

ly

plica).

e

r this.

tures

e the

 it in

lex

ansfer

nt to

rom,

ple-

, and

ese

 a non-
in a small update message. Without the above optimization, both of the complex gra

would need to be pickled into the update message, making it much larger. This large

sage would then need to be copied across the network, and unpickled in the remote

cesses, only to have these objects thrown away because they already exist in the

destination processes.

If we look at the steady state behavior of our shared graphical applications, th

time critical activities that occur involve manipulating existing objects, changing their

position or appearance, and so on. We have discussed above how the system is op

for the manipulation of objects that already exist in the destination processes. Howe

the design is also geared toward efficient manipulation of the properties of objects, a

cussed in Section 5.3.1. When we change the behavior of a property (to move an obj

change it’s appearance, for example) the only data sent over the network is the beh

object, which is an unsynchronized replicated object and is therefore passed relative

quickly (because there is little overhead required to create a new unsynchronized re

Unfortunately, when large Repo-3D objects are passed across the network, w

have found that the performance is relatively poor. There are a number of reasons fo

First, the objects themselves are quite large because of relatively verbose data struc

used to embed the DistAnim-3D objects in Repo (see Figure 5-5). While we optimiz

transfer of objects somewhat by passing as little information as possible (recreating

the destination process), there are times when we cannot get around sending comp

Repo objects over the network. This is compounded by the unoptimized message tr

protocols of the Shared Object runtime system, which require all messages to be se

the sequencer and then forwarded to the clients. If the message is large, reading it f

and writing it to, the network inside the sequencer is costly, especially since we are im

menting these activities at the application layer, which requires the data to be copied

between memory buffers multiple times.

A third reason for the poor performance is that most of the objects in Repo-3D

scene graphs (i.e., GOs, property values, and animation handles) are synchronized

there is currently no facility for programmers to create unsynchronized versions of th

objects, even when they know it is safe to do so. This is a problem because there is

155

ated

chro-

ns,

refore

n

it.

s

ver,

have

syn-

part.

a pro-

ignifi-

iorate

t

epo-

ter-

llow-

han

f

cially

ared

Repo-
trivial amount of overhead involved in setting up new replicas of synchronized replic

objects, whereas there is little overhead involved in setting up new replicas of unsyn

nized replicated objects. As programmers design, and later optimize, their applicatio

there are often significant portions of the graphical scene that do not change, and the

do not need to be implemented using synchronized objects.

Consider the Distributed CATHI example in Section 5.4.4. The main animatio

object is a complex data structure with many GOs and properties embedded within

When one of the CATHI viewers starts up, it typically takes about 30 seconds for thi

object to be copied across the network from the viewer that reads it from disk. Howe

none of these GOs or properties are modified while the viewer is running; the only

changes made are to the animation handle, or are local variations. If it was possible to

unsynchronized Repo-3D objects, only the animation handle object would need to be

chronized in this example.

A final performance issue arises when dealing with collaborators who are far a

Since all of the updates to an object must pass through that object’s sequencer, when

cess updates an object whose sequencer is located far away, there is likely to be a s

cant delay associated with that update. Local variations, and clever design, can amel

this problem somewhat, but, this problem will exist, in some form, in any system tha

enforces strict consistency across replicas.

5.7 Discussion

In this chapter, we have discussed the design, implementation and performance of R

3D, the distributed, interactive 3D graphics component of Coterie. Since Repo-3D’s

objects are directly distributed, Repo-3D simplifies rapid prototyping of distributed, in

active 3D graphics applications by circumventing the “dual database” problem and a

ing programmers to concentrate on the application functionality of a system, rather t

its communication or synchronization components. We have introduced a number o

issues that must be considered when building a distributed 3D graphics library, espe

concerning efficient and clean support for data distribution and local variations of sh

graphical scenes, and discussed how Repo-3D addresses them. We have shown how

156

ple of

ey

hile

am-

h to

rs

re

nd-

ical

lica-

o a

ro-

ge to

 that

raph-

d a ref-

sed

nd

ck on

up

 to pro-

gram

sec-
3D builds on the Shared Object package, and how its implementation is a good exam

the flexibility and usefulness of the Shared Object package design.

However, while we have found the Repo-3D facilities to be extremely useful, th

are not a panacea for all the problems of building distributed graphical applications. W

it is possible to ignore the existence of the network during the initial exploratory progr

ming phase, programmers must still be conscious of their design choices if they wis

achieve good network performance. In particular, when using Repo-3D, programme

need to keep the limited bandwidth of the network in mind.

Network bandwidth is an important issue because Repo-3D data structures a

often large, so passing them around the network can be costly. When designing sta

alone applications, complex scene graphs can be added to or removed from a graph

scene with little thought to their size (aside from possible rendering performance imp

tions). This is not true in a distributed application, as distributing new scene graphs t

process can take significant amounts of time. This impacts the design of Repo-3D p

grams in a number of ways:

• Data should be distributed early. As discussed above, programmers should arran

distribute large data structures and scene graphs during program initialization, so

they do not need to pay the price during the steady state of program execution.

• Data should be distributed once. If a scene graph that is being removed from the g

ical scene may need to be added back later, a programmer should arrange to hol

erence to it in the process, so that it does not get garbage collected.

• Data should be distributed incrementally. If a large data structure needs to be pas

around the network, programmers should consider breaking the scene graph up a

passing parts around separately. For example, if it is necessary to provide feedba

the progress of copying a large data structure, the data structure must be broken

because each method call made to pass an object is atomic, and there is no way

vide feedback as to its progress. If a complex scene graph is broken down, the pro

can provide feedback as each piece is transferred. Consider the CATHI animation

viewer in Section 5.4.4; the animation used in the example takes approximately 30

157

aw

 feed-

sses,

ntext,

n

begin-

on. In

pro-

bout

hen
onds to send across the network during program initialization. Many people who s

the system being demonstrated commented that it would be useful if we provided

back about the progress of the initial transmission of the animation between proce

which we can not do because it is transferred as a single object.

While these design decisions are necessary because we are in a distributed co

they are not substantially different than the kinds of activities programmers engage i

when optimizing stand-alone applications, such as initializing data structures at the

ning of program execution, caching objects that are expensive to recompute, and so

general, we have found that optimizing Repo-3D programs is similar in flavor to what

grammers are used to doing with non-distributed applications, but requires thinking a

different kinds of performance issues and bottlenecks than one would think about w

optimizing stand-alone applications.

158

 Repo-

f the

ug-

ave

cribe

se

ed

ality

to-

iscus-

(the

f that

 sys-

on-

s in
CHAPTER 6 Coterie Examples

“Simple things should be simple, complex things should be possible.” –Alan Kay

In the previous chapters, we have discussed the Shared Object package, Repo and

3D. Repo and Repo-3D are built on top of the Shared Object package and are two o

key components of Coterie, our system for exploratory programming of distributed a

mented environments, introduced in Chapter 2. For each of these components, we h

given examples of their use in the corresponding chapter. In this chapter, we will des

two examples of current work in our lab, created with Coterie, that illustrate how the

components work together.

6.1 Of Vampire Mirrors and Privacy Lamps

One of the current research projects in the Computer Graphics Lab is called EMMIE

(Environment Management for Multi-user Information Environments), and is concern

with the exploration of user-interface issues that arise in collaborative augmented re

systems, such as how one deals with information privacy [Butz et al., 1998]. The pro

type is an interesting example of the use of Repo and Repo-3D. We will focus our d

sion of EMMIE on one aspect of the system, namely how replicated object directories

ODs from Section 4.6.5) are used as the basis for information sharing. In the course o

discussion, we will show how Repo-3D is used to construct the main objects for this

tem.

An EMMIE application is built around a data structure the authors call a VUB1,

which is an OD containing Repo objects with a well defined structure. The objects c

tained in the VUB are replicated objects representing both the virtual and physical item

1. The origin of this name is lost, but it has been retained for historical reasons.

159

act

f the

 and

dd it

cre-

type,

in an

e
 are
nt. In

phic
l of
-
th
the world. The EMMIE clients can be thought of as viewers that allow people to inter

with these objects. An image of the current prototype is shown in Figure 6-1. Each o

virtual items (the model being manipulated by the user, the two small video cameras

the photographic slide) are VUB items. Any process can create a new VUB item and a

to the shared OD, which will cause it to appear in all other viewers.

The routine used to create a VUB item is shown in Figure 6-2. When a process

ates an item, some informational attributes are specified (such as a symbolic name, a

and the owner), in addition to a Repo-3D graphical representation (localGO) and an ini-

tial 3D position. In addition, arbitrary data can be added to a VUB item using theraw

field. Since the VUB item is replicated, clients can update these values at any time (

object or application dependent manner) and all copies will receive the changes.

Figure 6-1: The EMMIE system for collaborative augmented environments. Here w
see a view of a user of the system, taken from the viewpoint of a second user. Both
wearing see-through head-worn displays, and see a shared augmented environme
this scene, there are generic icons in the world representing images (the photogra
slide) and movies (the video cameras), as well as other objects, such as the mode
our lab currently being manipulated by the user. EMMIE integrates this virtual infor
mation with other displays. This allows, for example, the information associated wi
the icons to be viewed on the laptop that is sitting on the desk.

160

pport

once

ierar-

pli-

n-
g

f

Before adding the new item to the OD, a new GO scene graph is created to su

the needs of the EMMIE system, as described in Figure 6-3. This hierarchy is created

at the site where the item is created, freeing the viewers from having to create the h

chy for each item they import from the OD. More importantly, the choice groups are re

Figure 6-2: The routine to create a VUB item. In EMMIE, well defined objects are
contained in an OD (referred to as a VUB). These items are replicated objects co
taining a name, a type, an owner, a filename (initially unset) and a field containin
arbitrary data (raw). The GO for the object is embedded in a hierarchy of GOs that
encode the visual representation of the highlit/normal and public/private states o
the item using ChoiceGroups.

let hilitGO = proc(go)
let res = GroupGO_New();
let box = GroupGO_New();
res.add(go);
box.add(go);
res.add(box);

GO_SetTransform(box, Matrix4_Scale(Matrix4_Id,1.4, 1.4, 1.4));
SurfaceGO_SetTransmissionCoeff(box, 0.6);
SurfaceGO_SetEdgeColor(box, "white");
SurfaceGO_SetEdgeVisibility(box, true);
res;

end;

let newItem = proc (name, itype, owner, localGO, pos, raw)
(* the GO itself is a choice group, 0=visible, 1=hidden *)
let publicgrp = ChoiceGroupGO_New(0);
let invgo = GroupGO_New();
publicgrp.add(localGO);
publicgrp.add(invgo);

(* the hilightable GO is a choice group, 0=normal, 1=hilit *)
let highlightgroup = ChoiceGroupGO_New(0);
let hilitgrp = hilitGO(publicgrp);
highlightgroup.add(publicgrp);
highlightgroup.add(hilitgrp);
highlightgroup.setName(name);
GO_SetPickable(highlightgroup,true);
GO_SetTransform(highlightgroup,

(Matrix4_Translate(Matrix4_Id, pos[0], pos[1], pos[2])));

{replicated,
name => name,
type => option itype => 0 end,
owner => owner,
GO => highlightgroup,
filename => ok,
raw => raw}

end;

161

used

.

tual

eir

f

the

-

cated with the objects, which allows one of them (thepublicgo choice group) to be

used by the clients to experiment with privacy techniques. The two choice groups are

as follows:

• highlightgroup is used for highlighting objects as the user interacts with them

Each user has a 3D selection device that they use to manipulate objects in the vir

world. For example, the user in Figure 6-1 is manipulating the room model with th

3D device. The globalChoiceGroupGO_Display property of this node is set to 0,

selecting thepublicgrp node for display. As they move the pointer through the

scene, objects are highlighted by locally setting theChoiceGroupGO_Display

property to 1, selectinghilitgrp instead.

• publicgrp is used for hiding and revealing the objects. In this implementation o

EMMIE, an item is visible everywhere unless it is somehow made private by one of

Figure 6-3: The structure of a VUB item’s GO. The names in this diagram refer to
the variable names in the code that creates this hierarchy (shown in Figure 6-2).
localGO is the arbitrary hierarchy of GOs representing the item, passed into the
newItem procedure.highlightgroup andpublicgrp are ChoiceGroups.
publicgrp chooses between displaying the object (choice 0) or hiding it by dis
playing the empty groupinvgo (1).highlightgroup chooses between dis-
playing the object (0) or displaying the highlighted object (1). Highlighting is
accomplished by giving the groupres two children, the object to be highlighted
and another group node,box , that creates the highlight.box has one child, the
object to be highlighted, and has properties that scale it, make it transparent and
turn on white polygon edges. Thus, no matter what the child looks like, or how it
changes,box will be a enlarged ghost with white edges around it.

highlightgroup

hilitgrp

publicgrp

localGO

invgo

...

res box

1
1

0

0

Properties
Scale by 140%

Turn on white edges

Make 40% transparent

162

e

t-

e

n

f

ited

g a

ious

clients

e of

ble.

 inter-

s.

with

Ds

 cre-

ow to

.

ypes

for-

tch

been
users (the various ways of managing privacy is the topic of [Butz et al., 1998]). Th

globalChoiceGroupGO_Display property of this node is normally set to 0, selec

ing thelocalGO node for display. When a user makes an item private, they set th

globalChoiceGroupGO_Display property ofpublicgrp to 1, selecting the

emptyinvgo group node for display everywhere, and set the local value of the

ChoiceGroupGO_Display property to 0, making it visible locally.

As can be seen, fairly complex and interesting interaction behaviors have bee

implemented by combining a relatively simple object hierarchy with a judicious use o

local and global property values. Also, notice that while these techniques are well su

for experimentation with these interaction issues, they are not well suited for creatin

final, deployable system, as these techniques reply on cooperation between the var

processes and provide no security. For example, there is nothing to stop one of the

from changing the GO hierarchies arbitrarily, breaking the system. Or, more subtly, on

the clients could set their localChoiceGroupGO_Display property on thepub-

licgrp node to 0, thus ignoring the global setting and always making the object visi

However, these issues do not concern us at this stage of interface design, as we are

ested in building and evaluating prototypes to explore different interaction technique

The example also demonstrates how simple, well defined objects can be used

the ODs to create a relatively powerful application. By combining the ODs with Repo-3

graphical objects, the graphical components of the application are straightforward to

ate, and the programmers can focus on other tasks, such as how to specify privacy, h

integrate other displays such as laptop computers into the environment, and so forth

6.2 Shared Sketch

One of the tasks that we would like to perform in our augmented environment protot

is informal collaborative creation of 3D objects. Unfortunately, intuitive and powerful

interfaces for this task are non-trivial to implement. One example of an interface for in

mal creation of 3D objects, using a sketching metaphor, is the Brown University Ske

system [Zeleznik et al., 1996]. Rather than develop a new system (which would have

163

ph-

ystem

plex

eome-

nion of

ject

en
a prohibitive amount of work), we worked with members of the Brown Computer Gra

ics Lab to integrate the Sketch system into our environment.

The Sketch system allows the user to sketch 3D scenes using gestures. The s

allows the user to create seven basic types of objects, detailed in Table 6-1. More com

objects are created by performing the Boolean set operations of constructive solid g

try (CSG) operations on instances of these seven object types, such as taking the u

two objects or subtracting one object from another object. All operations, including ob

Object Specification

Cube Parameters: none
The canonical cube between [-1,-1, -1] to [1, 1, 1]

Cylinder
Parameters: none
The canonical cylinder with base at [0,-1, 0], tip at [0, 1, 0] and
radius of the base of 1

Cone
Parameters: none
The canonical cone with bottom at [0,-1, 0], top at [0, 1, 0] and
radius of 1

Truncated
Cone

Parameters:rad
The cone is centered around the origin, with its bottom face a
circle of radius 1 centered at (0,-1,0). The top face of the
truncated cone will always be in the plane Y=1, centered on the
Y axis, and will have a radius ofrad .

Truncated
Pyramid

Parameters:taperX taperZ shearX shearZ
The pyramid is centered around the origin, with its bottom face
a square going from [-1,-1,-1] to [1,-1,1]. The top face of the
pyramid can be of any size, but will always lie in the plane
Y=1. The taper vector determines how much the top face of the
pyramid should be tapered in from the default of [1,1]. The
shear vector determines how much the top face of the pyramid
should be offset from the Y axis.

Extrusion
Parameters:num_pts x1 z1 x2 z2 x3 z3 ...
The profile lies in the plane Y=-1. The length of the extrusion
should always be 2 units, up the Y axis to the plane Y=1.

Surface of
Revolution

Parameters:num_pts x1 z1 x2 z2 x3 z3 ...
The profile lies in the half plane X>0, Z=0. The axis of
revolution is the Y axis, and the profile is swept 360 degrees

Table 6-1:Sketch Object Definitions. Sketch supports seven objects. All Sketch
scenes are created using these basic objects, and Boolean set operations betwe
them.

164

uping

 speci-

ll of

ing

per-

side

ped

f the

at

cene.

 initial

modi-

ects.

rt that

anges.

cor-

recre-

ule is

cene

s

enes

aintain

hies,

s.

ble

ne are

ow-

s, and
creation, deletion and CSGs, are done using gestures. The system infers object gro

based on how and where the objects are created and allows interactive and intuitive

fication of CSG.

To integrate Sketch with Coterie, we defined a TCP protocol that describes a

the logical operations Sketch can perform, such as creating, deleting, hiding or show

objects, changing their position or color, changing object grouping, performing CSG o

ations, and so on. Loring Holden (a researcher at Brown) implemented this protocol in

the Sketch application, and we implemented it in Repo. The Repo module we develo

uses a Repo-3D GO for each object in Sketch, and a Repo-3D group GO to hold all o

objects in a Sketch scene. The module is symmetric, ensuring that the contents of th

group match the contents of the Sketch world, regardless of which side changes the s

When the system is started, it obtains the current scene from Sketch and creates an

set of Repo-3D objects corresponding to the Sketch objects. When the Sketch user

fies the scene in any way, the corresponding changes are made to the Repo-3D obj

The module watches the Repo-3D objects for a well defined set of changes (of the so

the module itself would perform) and issues commands to Sketch to reflect these ch

From a Coterie programmers point of view, this module maintains a group GO

responding to a Sketch scene. This group GO contains all the information needed to

ated the scene in a running instance of the Sketch program. Therefore, after the mod

initialized and connected to a running Sketch, a group GO containing a valid Sketch s

can be passed to the module, and the associated Sketch will have its current object

removed and the new objects (corresponding to the group GO) loaded into it. New sc

can be created by passing an empty group GO to the module. Therefore, we can m

many different Sketch scenes in Coterie and switch between as needed.

Since the group GOs representing Sketch scenes are Repo-3D object hierarc

they may be passed to any Coterie process and used like any other Repo-3D object

Currently, a group GO representing a Sketch scene should be treated as an immuta

object to ensure that it remains a valid Sketch scene, since the objects in a Sketch sce

defined in relation to one another (including their grouping and CSG specification). H

ever, the group GO can still be added to other Repo-3D scenes, watched for change

165

d by

d

ears

e

o an

 in

d the

 see

etch

ic

be

ed to

rep-

be

ting

ed as

he

on.

h

ts,

er-

ne user

tch
so on. It may also have other non-Sketch objects added to it, as these will be ignore

the Sketch synchronization module.

As described so far, this is an interesting example of software engineering an

“program reuse”. We have created a module within Coterie that is a black box and app

to be the Sketch system, from the viewpoint of the Coterie programmer. However, if w

look at how the Sketch objects are implemented in Coterie, we will see that this is als

interesting example of how Repo-3D’s distributable and extensible objects are used

practice.

Since the group GOs containing Coterie Sketch scenes can be passed aroun

network, and will continuously reflect the changes made by the Sketch user, we can

how the distributability of Repo-3D objects is useful. However, the mere fact that the

objects are distributable is not sufficient to allow them to be used to represent the Sk

scenes. As mentioned above, a Sketch scene is composed of a set of the seven bas

objects listed in Table 6-1, plus CSG operations on them. Furthermore, objects can

grouped together, used to interactively perform CSG operations on each other (referr

as the object being a “cutter”), and be visible or hidden. Therefore, if we want to fully

resent the Sketch scene with a Repo-3D group, this additional information needs to

embedded in the Repo-3D objects.

To carry this information with the Sketch scene, each Repo-3D object represen

a Sketch object is extended with a field namedinfo that contains a replicated object

holding this additional state, as shown in Figure 6-4. Every Sketch object is represent

a choice group GO with two children, one for the Repo-3D object corresponding to t

Sketch object, and one to hold the CSG result if this object is used in a CSG operati

The objects created in Figure 6-4 contain sufficient information to recreate the Sketc

scene. Furthermore, since the additional information is contained in replicated objec

when any site changes a Sketch object, all sites will be notified of the change. Furth

more, if multiple processes are editing the same Sketch scene, changes made by o

will be forwarded to the other users’ Coterie processes, and from there into their Ske

programs. Thus, each user will see changes made by other users in real time.

166

asic

 to

rs

four,

t, and

rs

e
a

es
The extensibility of Repo-3D objects is also used to create four of the seven b

Sketch objects. If we look at the list of Sketch objects in Table 6-1 and compare them

the Repo-3D objects in Appendix H.1, we see that only the first three (cones, cylinde

and cubes) are available in Repo-3D. We created a new module for each of the other

using group and indexed polygon set GOs (see Appendix H.1.12 for a description of

indexed polygon sets).

The implementation of one of these new objects, the Truncated Pyramid, is

described in Section 5.4.3. A truncated pyramid is created as an indexed polygon se

extended with a newdata field holding a replicated object that contains the paramete

Figure 6-4: The definition of a Coterie Sketch object. The Sketch object is
represented as a Repo-3D choice group GO, where the two possible children of th
group are the object itself, and a CSG result object. The object is extended with
replicated object containing the information needed to reconstruct the object in
Sketch. A transformation property and color property are assigned to the object,
and the property value is set to the new value when any instance of Sketch chang
it.

let obj = ChoiceGroupGO_New(-1).extend(
{simple, info => {replicated,

name => name, (* our sketch object name *)
type => typ, (* our sketch object type *)
group => simple[], (* which objects we are grouped with *)
cutter => false, (* are we a cutter? *)
cutting => ok, (* the name of the object we are cutting *)
data => objData, (* object data *)
visible => false, (* are we visible? *)
csgOp => ok, (* are we CSGed? *)
csgGeom => ok (* the geometry of our CSG result *)

}
});

let t = TransformProp_NewConst(Matrix4_Id);
obj.setProp(GO_Transform, t);

let c = ColorProp_NewConst("white");
obj.setProp(SurfaceGO_Color, c);
obj.setProp(SurfaceGO_BackColor, c);

let objGO = GroupGO_New();
let csgObjGO = GroupGO_New();
obj.setName(name);
objGO.setName("go");
csgObjGO.setName("csg");
obj.add(data.objGO);
obj.add(data.csgObjGO);

167

 the

on the

ll sites

er

ined

sys-

proto-

p of

tration

of

i-
defining the truncated pyramid. The vertices of the indexed polygon set representing

pyramid are defined using asynchronous properties that compute their values based

values of the items in thedata field. Therefore, when the values in thedata object are

changed, the pyramid changes shape accordingly. And, since thedata field is replicated,

if we pass the object around the network, the values can be changed at any site and a

will be updated (and have the shape of their pyramid changed accordingly). The oth

three objects are defined similarly, with the parameters that define the objects conta

within them.

As we described above, the goal of the module is to allow the Brown Sketch

tem to be used to create 3D models that can be easily integrated with our research

types. To demonstrate the ease with which this can be done, we created a simple

demonstration program that allows any number of users to cooperatively edit a grou

four Sketch scenes, represented as colored “sketchpads”. An image of this demons

Figure 6-5: Distributed Sketch in use. The wall-sized display shows the shared
Sketch world, containing four sketchpads. In this image, the two client worksta-
tions in the foreground are editing the same sketchpad (the one in the foreground
the shared world), but they could also be editing different ones. The system
supports any number of simultaneous clients editing the sketchpads in any comb
nation.

168

e

plays

cene

ar

dow

ct

 pro-

 a cli-

 four

ed

o-

li-
ent
rie
program is shown in Figure 6-5, where a wall-sized projection screen is displaying th

four Sketch scenes on their sketchpads, and two clients are running on the smaller dis

in the lower corners of the image. In this image, the two clients are editing the same s

in their Sketch programs (the one on the sketchpad in the foreground of the large, re

image). Each client screen contains a large Sketch window, and a small Repo-3D win

(in the upper right corner of the display). This small Repo-3D window is used to sele

which of the four sketchpads should be edited in the local Sketch program.

The structure of this application is shown in Figure 6-6. There are two simple

grams in this prototype, a server (implemented in about 90 lines of Repo code), and

ent program (implemented in about 40 lines of Repo code). The server code creates

Figure 6-6: The structure of the Distributed Sketch prototype. The organization of
the Distributed Sketch prototype shown in Figure 6-5. The server creates four
sketchpads as group GOs and exports them to the network. Each client is compos
of a Coterie program and a Sketch program, connected together by a symmetric
TCP protocol that keeps their sketchpad synchronized. Therefore, if the client
switches sketchpads, by importing a different one, the sketchpad in the Sketch pr
cess is loaded with the new scene. Conversely, if the user modifies the scene in
Sketch, the sketchpad in the Coterie process is updated. In this case, all other rep
cas of the sketchpad are also changed (such as the one in the server, or in any cli
that is also editing the same sketchpad), because the sketchpad objects in Cote
are built using Repo-3D objects.

Coterie (Server)
(create and export 4 Groups)s)

TCP TCP

Sketch Sketch

Coterie
(Sketch Client)

Coterie
(Sketch Client)

Object Communication

Client: ~40 lines of code
Server: ~90 lines of code

169

reates

e

This

he

lta-

and in

rie

mple-

d

ts

here

does
sketchpads, exports them to the network and creates the display shown. The client c

a small window and waits for input telling it which of the sketchpads to import from th

network and pass to the Coterie Sketch module (causing it to be loaded into Sketch).

trivial prototype took very little time to write, and allows any number of clients to edit t

shared sketchpads, including have more than one editing the same sketchpad simu

neously. Any changes made to a sketchpad are reflected on the large server display,

any clients sharing that sketchpad, in real time.

What this prototype does not implement is any form of floor control. While Cote

guarantees that the objects will remain synchronized, it is up to the programmer to i

ment whatever kind of shared editing policies they desire. For example, the replicate

mutexes of Section 4.6.4 can be used to allow one site to lock a sketchpad, or objec

within the sketchpad, when they want to edit them. The important thing to remember

is that Coterie supports the programmer in creating whatever policies they desire, but

not impose any on them.

170

user-

n on

e

g

ents

ide

dom

evices

plest

 con-

 the

n par-

e dis-

ely

ntal

se,

then

uilt

e

CHAPTER 7 Conclusions and Future Work

In this dissertation, we have examined the design and implementation of various

components of Coterie, our research platform for building prototypes to explore the

interaction issues of multi-user augmented environments (AEs). We based our desig

our previous experience building single-user augmented reality (AR) prototypes, som

examples of which were discussed in Section 2.1.

Based on this previous experience, it was obvious to us early on that explorin

multi-user AEs would be unusually challenging. On one hand, the physical environm

themselves are extremely difficult to work with. Multiple users, multiple displays of

different kinds (from see-through head-worn to wall-mounted to hand-held), and a w

variety of input devices (from pens and mice to voice to three and six degree-of-free

sensors) must be integrated into a single cohesive system. On the other hand, these d

and displays are attached to an assortment of computers, requiring that even the sim

of applications be distributed over many machines. It is this latter problem that most

cerns us, as building distributed applications can be extremely difficult, especially in

highly interactive application domains such as ours. This difficulty is exacerbated by

exploratory nature of prototyping systems to investigate a completely new interactio

adigm: neither the structure of the applications, the kind of data being shared, nor th

tribution characteristics of that data are necessarily known ahead of time, and will lik

be modified continuously as the applications are developed.

Our solution to this problem is embodied in our Coterie testbed. The fundame

design choice we made with Coterie was to first create a general purpose, easy-to-u

flexible and efficient programming environment as the lowest level of our system, and

build the other tools we need on top of it. To ensure flexibility and ease of use, we b

this lowest layer by tightly integrating transparent support for data distribution into th

171

ro-

ogram-

s a

-

By

n

s are

r-

ough

es,

 pro-

 Call

een

d eas-

ava

st

se we

ed for

ta

-

 one pro-

ontain-

-offs

te dis-

nd so
object system of Modula-3. We elected to integrate data distribution with a popular p

gramming language so that we can take advantage of both existing software and pr

ming skills.

Transparent integration is only possible if the programming language support

programming model that is suitable for distributed programming. Modula-3’s program

ming model—multiple threads of control communicating via shared objects—is ideal.

providing an object-based implementation of distributed shared memory (DSM), ofte

called a distributed object memory (DOM), both stand-alone and distributed program

built the same way, with local and distributed data being used transparently and inte

changeably, and with threads on the same or different machines communicating thr

shared objects.

The DOM approach is not revolutionary in and of itself: over the past two decad

many others have recognized the importance of integrating data distribution into the

gramming languages they use. Starting with the popularity of the Remote Procedure

system (RPC) [Birrell and Nelson, 1984], client-server data sharing packages have b

built for many programming languages, and have become more tightly integrated an

ier to use along the way. Packages for modern, multi-threaded languages, such as J

RMI [Wollrath et al., 1996] or Modula-3 Network Objects [Birrell et al., 1993] are almo

transparent to the programmers using them.

Unfortunately, these popular packages are not sufficient for our needs becau

require both client-server and replicated data, and none of the DOM packages creat

popular languages support replicated data. This is understandable, as replicated da

sharing is significantly harder to implement than client-server data sharing. All client

server data sharing packages use the same general approach: a data item exists in

cess, and any access to that data in any other process is forwarded to the process c

ing the data. Support for replicated data is not as simple, as a variety of design trade

must be made that do not arise with client-server data, affecting the latency of upda

tribution, efficiency of access and network usage, data consistency, fault tolerance, a

on.

172

ed

ted

 our

ovid-

ing

xist-

r dis-

g the

ages.

are

n the

ctures

l

to

d the

ince

e

d

nd

s pre-

epo-

d

e

The first contribution of this dissertation, therefore, is the creation of the Shar

Objects DOM package for Modula-3. The Shared Objects package supports replica

data, and the design trade-offs mentioned above have been made with the needs of

application domain in mind. In particular, the Shared Objects package focuses on pr

ing a high degree of flexibility to support exploratory programming, as well as provid

low latency update distribution and strictly consistent data. When combined with the e

ing Network Objects client-server package, we have the solid foundation we need fo

tributed programming: a DOM programming system supporting client-server,

unsynchronized replicated and synchronized replicated data.

On this foundation, we built the other major components of Coterie, the most

important of which are Repo and Repo-3D. Repo is an interpreted language supportin

same DOM programming model provided by the Shared and Network Objects pack

Repo-3D is a novel, high-level 3D graphics package in which all the graphical objects

both extensible and directly distributable (since they are implemented with Shared

Objects). This allows graphical application programmers to encode application state i

3D graphics objects and use these objects directly as part of the distributed data stru

of their application.

The combination of Repo and Repo-3D allow distributed, interactive graphica

applications to be built with a minimum of effort because programmers do not need

overly concern themselves with issues of data distribution, and can therefore expen

vast majority of their programming and design efforts on application development. S

more time and effort can be expended on the applications themselves, rather than th

mechanics of data distribution, previously impractical applications become possible.

Repo and Repo-3D are both contributions for two reasons: each is an new an

interesting research result in and of itself, and both are examples of how a flexible a

easy to use infrastructure, combined with an existing programming language, enable

viously difficult problems to be tackled in a straightforward manner. Both Repo and R

3D are based on existing Modula-3 packages (Obliq and Obliq-3D, respectively), an

modifying them to support replicated data was feasible because of the flexibility of th

Shared Object package, and its tight integration with Modula-3.

173

data

am-

en

ar

those

uch

lt, the

buted

ther

at

 the

eat

rts

st and

rm

lo-

pdate

rgu-

e-

al to

ith the

al

er by

eth-
If we had chosen to build a new language, or had added support for replicated

to Modula-3 in a way that was inflexible or not compatible with the predominant progr

ming style, creating these packages would have been significantly more difficult. Giv

the usefulness of Repo and Repo-3D, we hypothesize that the main reason no simil

packages have been built previously is the lack of data replication facilities such as

provided by the Shared Objects package; building them is simply too hard without s

facilities, because the details of managing replicated data are too complex. As a resu

people who would benefit most from these tools (researchers and developers of distri

interactive applications such as ourselves) do not embark upon building them, but ra

focus on building custom solutions to solve their immediate problems.

The flexibility of the Shared Objects package derives primarily from the fact th

consistency is defined in terms of method execution (both the order of execution and

whether the method modifies the global state), with almost nothing being said about

contents of an object’s data fields. For example, the programmer of an object has gr

flexibility in partitioning the work into parts executed once (at the calling site) and pa

executed at all sites, by taking advantage of the fact that update methods are broadca

executed at all sites while read methods are not. A read method can therefore perfo

some work locally, and then call an update method to perform the rest of the work g

bally. This same technique can be used to lessen the impact of the restrictions on u

method argument types; for example, a read method can manipulate the restricted a

ment locally and use the results as arguments to an update method.

We make use of the ability to perform arbitrary actions in methods in the impl

mentation of both Repo and Repo-3D, but especially in Repo-3D (as discussed in

Section 5.5). Since part of the state of each graphical object is global, and part is loc

each machine (both the part that associates the conceptual graphical object state w

concrete state used by the rendering subsystem, and the local variations to the glob

state), we can manage these data structures in a straightforward and efficient mann

manipulating local data within the read methods and global data within the update m

ods.

174

ity

imple

racker

 and

bers

d that

 a

wed

Per-

ose

ur

dents.

ram-

trib-

ding

e

con-

d to

ains

ent

ry

xam-

een

iliza-

e dis-

such
Throughout this dissertation, we have demonstrated the simplicity and flexibil

of the various components of Coterie through illustrative examples. These include s

examples that demonstrate important techniques, such as the recurring example of t

report distribution, the distributed mutex examples of Section 4.6.4 and Appendix F,

the complete single and multi-user prototypes of Section 2.6 and Chapter 7 that mem

of our research group have built using Coterie over the past few years. We have foun

having a system in which distributed and stand-alone applications can be built using

common high-level programming model has greatly simplified development, and allo

us to explore applications and domains that would otherwise have been intractable.

haps more importantly, programmers with varying levels of experience, especially th

with little distributed programming experience, have used the system successfully. O

programmers have included undergraduate, masters, doctoral and post-doctoral stu

7.1 Future Work

In this dissertation, we have developed a system that is well suited to exploratory prog

ming of tightly-coupled, distributed, highly interactive systems. Our choice of the dis

uted object memory (DOM) programming model, and the approach we took to provi

replicated data within that model, were guided by both the application domain and th

exploratory style of programming in which we engage. In the future, we hope both to

tinue building on this approach to prototyping distributed interactive applications, an

explore different programming models that may be more appropriate to different dom

and programming styles.

This latter question is an important one. While tightly-coupled, strictly consist

objects that are distributed using a DOM programming style are useful for explorato

programming, they may not be the most appropriate choice for other domains. For e

ple, if one is building long lived, production quality systems, the trade-offs made betw

ease-of-use and efficiency might be different; efficiency of execution and network ut

tion are likely to be much more important than the ease of changing objects from on

tribution semantic to another, not to mention the increased importance of other issues

175

 into

are

ing

ss,

el to

s,

her

date

r the

rned

d, so

n

f a

t of

y from

ry

n the

to

ater.)

le,

phics

num-
as fault tolerance. Therefore, the transparency with which the objects are integrated

the programming languages may not be the most important issue, as it is for us.

However, returning to the programming style with which we are familiar, there

a number of ways we envision improving our implementation of the DOM programm

model: by decreasing the latency of update distribution, improving network awarene

adding additional per-object replication semantics, extending the programming mod

support multi-object operations, improving the flexibility of the consistency guarantee

and improving the handling of time. Finally, we would like to explore these ideas in ot

programming languages, especially Java.

7.1.1 Shared Object Update Latency

When designing the Shared Objects package, we were extremely concerned that up

distribution might be too slow because of the requirement that all updates travel ove

network at least twice, passing through one or more sequencers on the way. As it tu

out, this has never been a significant problem with the applications we have develope

we have not needed to address it.

However, we did design one possible solution into the runtime, which has bee

partially implemented. Our solution is to allow a programmer to designate a replica o

Shared Object as requiring updates in atimely fashion. By either designating a replica as

the primary updater, or by having the runtime notice that one site is performing mos

the updates, the system would be able to arrange for update events to be sent directl

the primary updater to those replicas requesting timely updates. By having the prima

updater handle the sequencing for this object, we would bypass the sequencer and

decrease the typical network hops from two to one. (Updates by any process other tha

primary updater will now take longer, having their network hops increased from two

four because the sequencer must now route update events through the primary upd

This facility is only needed in cases where minimizing lag is critical. For examp

it may be used when a head tracker is connected to a different machine than the gra

display. In this case, only the primary updater will update the object, so the increased

176

nted

stem,

ffi-

 the

hat

cation

cated

ance

e

ct.

 to the

y, and

ep to

, and

lar to

e an

the

t. No

to a

ur-

wing

, the

t to
ber of network hops for other updaters is not an issue. This facility was not impleme

because Moore’s Law obviated the need for it: between the time we designed the sy

and the time it would have been implemented, the machines being used became su

ciently powerful that it was always the case that a head tracker could be attached to

same machine (and thus read from the same process) that generated graphics for t

user’s display.

An alternative approach, which would obviate the need for the above facility,

would be to support per-object sequencer migration. In the general case, as an appli

evolves over time, it is possible that the sequencer for an object may no longer be lo

in a cluster that contains processes issuing updates on that object. For both perform

and network utilization, it would be best if the sequencer for an object is located in th

cluster that contains the processes that are issuing most of the updates on that obje

Therefore, the system should be able to migrate the sequencing duties for an object

sequencer for the cluster where the updates are being performed. Given such a facilit

the fact that all processes are capable of sequencing updates, it would be a small st

notice that one particular process is issuing most, or all, of the updates for an object

allow it to do the sequencing for that object. Such techniques are in many ways simi

the optimistic locking of objects done in many CSCW and distributed systems, wher

object is allowed to be updated only if the process holds the lock on the object, and

system arranges to acquire the lock when the process attempts to update the objec

sequencer-based systems that we know of allow the sequencing duties to migrate in

client process in this manner.

7.1.2 Network Awareness

Another area that we would like to address is that ofnetwork awareness, or the amount of

information a programmer can obtain about the network behavior of the program. C

rently, the Shared Object package provides a basic level of network awareness, follo

the approach of the Network Object system: when a distribution problem is detected

runtime raises aSharedObj.Error exception, analogous to theNetObj.Error

exception raised by the Network Object package. This allows a programmer to reac

177

hey

er by

rm

need

an

 the

ary to

. Cur-

to be

deal

ts

 to

eated

an

e

back

abili-

ent

, we

er to

ve sites

can

es.
problems, but does not require using a radically different programming model than t

are used to. The Shared Object package further exposes the network to the programm

supporting the definition of custom pickling routines, allowing a programmer to perfo

(arbitrary) special actions when an object is passed between processes.

One facility that would enhance network awareness, and that we have found a

for, is to allow the programmer to specify cleanup code to be run in a process when

object is removed from that process: if a programmer wishes to do arbitrary things in

pickling routines when a new replica is created in a process, it is sometimes necess

be able to undo some of these actions when the object is removed from the process

rently, this is not a major drawback because the prototypes being developed tend not

long-lived and situations where this is absolutely necessary are rare.

Network awareness is more of an issue when designing objects that need to

directly with the fact that they are replicated. Unlike Network Objects, Shared Objec

exist simultaneously in multiple processes, and it occasionally turns out to be useful

know where these replicas reside, and to be notified when additional replicas are cr

or removed. Furthermore, we have found that it is also sometimes useful to know if

update was initiated locally or remotely, as well as which remote process initiated th

update. This information could be made available to one or both of the Shared or Call

Object methods. These facilities can be useful in implementing permissions and cap

ties inside objects, for example, allowing them to present different information to differ

clients.

Recall the discussion of a distributed mutex from Section 4.6.4. In that section

describe how to create a fair mutex that will not give preferential access to sites clos

the sequencer. To do this, we need to enqueue requests for the mutex, rather than ha

try to reacquire the mutex when they notice it has been released. But, if we enqueue

requests for locking the mutex, we then require notification if a site crashes so that we

remove that site’s outstanding requests from the queue in the replicas at all other sit

178

tics.

ods

pro-

 with

the

wn

ult

er of

r-

the

dates

in the

ld be

sis-

d. The

ent

object

eci-

a

d

ates
7.1.3 Additional Replication Semantics

Currently, a Shared Object is created by inheriting from theSharedObj.T type and fol-

lowing a few simple rules. There are two alternatives for supporting additional seman

On one hand, procedures could be provided in the Shared Object package, or meth

added to theSharedObj.T type, that allow the programmer to control the replication

semantics of a generic “replicated” object type. Alternatively, new semantics could be

vided by creating subtypes ofSharedObj.T and having the programmer inherit from

them as appropriate. We prefer this latter approach, as it is cleaner and more in line

our goal of tight integration with the type system of Modula-3.

Ideally, we would like to extend the replication semantics to be as flexible as

Penumbra system is for client-server objects, allowing programmers to define their o

consistency semantics [Kristensen and Low, 1995]. However, while this may be diffic

to accomplish while keeping the system easy to use for novice programmers, a numb

specific new replication semantics could be provided without supporting programme

defined consistency. We are particularly interested in replication semantics that fit with

current write-update scheme. Currently, the Shared Objects runtime assumes all up

must be applied to all replicas, and ensures that all updates are applied to all replicas

same order. During our work, we have discovered two additional semantics that wou

particularly useful for distributed interactive applications, which we will callany-order

update andlatest-only update.

An any-order updatescheme asserts that the object in question will remain con

tent regardless of the order the updates are applied, as long as all updates are applie

most obvious example of such an object is an up-down counter that supports increm

and decrement operations: as long as all operations are executed, all replicas of the

will be consistent. independent of the order of execution of the operations.

A latest-only update scheme asserts that each update operation completely sp

fies the state of the object, and that only the most recent update is of interest. Such

scheme is useful for rapidly changing objects that satisfy these properties, as misse

messages can be thrown away, instead of retransmitted. Furthermore, incoming upd

179

er than

also

of

3.4.1,

i-

set,

to the

also

e

man-

s be

ts with

ion

nner.

s

tics

s and

f it

 (or

nd

-

 sites

 only
need never be queued up, since an update can be executed immediately if it is new

the current state of the replica, and thrown away if it is not. Such an update scheme is

very well suited for efficient implementation using UDP or multicast UDP. Examples

applicable objects include the TrackerPosition object used as an example in Section

and Repo-3D property values. The TrackerPosition object has aset() method that com-

pletely updates the state of the object, and aget() method that retrieves the current pos

tion of a tracker. The Repo-3D property values are similar: the current behavior can be

used or retrieved, but is independent of any other behaviors that might be assigned

property value at any other time.

The addition of new replication semantics to the Shared Objects package will

affect the other layers of Coterie. Most importantly, such semantics would need to b

exposed into Repo to be truly useful to the programmer. Fortunately, adding new se

tics to Repo, such as the two described above, would only require that new keyword

added to the language to allow programmers to create (and convert between) objec

the new replication semantics. Currently, Repo uses thesimple andreplicated key-

words to modify object, array and variable creation, and to convert between distribut

semantics. New keywords, and thus new semantics, could be added in a similar ma

For example,latest andanyorder keywords that could be used in the same way a

simple andreplicated , with no other changes being required. These new seman

would be particularly useful for arrays, as many uses of arrays in our programs acces

update array elements independently.

Additional replication semantics would also improve Repo-3D. For example, i

were possible to specify thelatest-only updatesemantics, the efficiency of the distribution

of property values would improve significantly; in this case, updates could be applied

discarded) when they arrive, without waiting for all previous updates to be applied, a

could be applied locally without waiting for the round trip to the sequencer. While pro

grammers may occasionally want all updates to a property value to be applied at all

(for example, if the changes to the value are being recorded via callbacks), typically

the latest value of a property is of interest.

180

roni-

pport

ld

 order

algo-

ot

t

reason-

oup

 lan-

r, we

e the

odel,

at of

le-

y the

need-

ities

acili-

ns

uiring
7.1.4 Multi-object Consistency

There are times when it would be useful to support some sort of consistency or synch

zation guarantee across multiple objects. One end of the spectrum we would be to su

causal ordering (as provided by systems such as Isis [Birman, 1993]), so that we cou

ensure that multiple updates to distinct objects would appear to happen in the same

in distributed processes if they were causally related. However, the causal ordering

rithms with which we are familiar require full replication, and do not scale well, so it is n

clear how one would provide efficient causal order in a system such as ours.

Another option would be to provide a more well defined, restricted multi-objec

consistency guarantee by allowing the programmer to explicitly specify the group of

actions that are to be applied as a unit. Based on our current experiences, it seems

able to provide this facility by allowing a thread to mark the beginning and end of a gr

of actions that should be associated in this way. Since we do not want to modify the

guage, we would have to use procedure calls to implement this in Modula-3. Howeve

could easily modify Repo to add a structured statement to support this model, to mak

process clearer to the programmer. It may also be useful to implement a transaction m

so that large groups of changes could be applied atomically, or not at all.

7.1.5 More Flexible Consistency Guarantees

Another issue we have encountered with our use of the Shared Object package is th

strict consistency. While we have found the model useful, the local variations we imp

mented in Repo-3D point out the need for local variations to be directly supported b

object system. Similarly, while many of the data structures we build in Repo benefit

strongly from the guarantees provided by strict consistency, we often find ourselves

ing to support local variations to replicated objects. Instead of implementing such facil

on an object by object basis, it would be useful if the object system provided these f

ties directly. This would greatly benefit exploratory programming, as more applicatio

would then be able to encode their state using the distributed objects, instead of req

a combination of distributed and local objects.

181

e

bjects

t at

appli-

ime to

ally

replicas

ous

r

e able

g to

ed on

 on.

eir

rk

ount-

espe-

lab

rob-

ild

 Sim-
Another problem we would like to address relates to the transparent use of th

Modula-3 type system to enforce consistency. Since we create replicas by passing o

between sites, it is impossible to create replicated objects without creating the objec

one site and passing it to the others. As we have found in some of our more complex

cations, large objects (such as Repo-3D scene graphs) take a significant amount of t

pass between processes. This is particularly annoying when these objects are static

defined on disk, and the only reason we pass them between processes is to tie the

in these processes together.

This is important for both efficiency and software engineering reasons: it is tedi

and time consuming (both during program development and execution) to arrange fo

these replicas to be downloaded from other processes. What we need is a facility to b

to name an object, effectively saying “object A is the same as object B” without havin

pass it across the network. Such a facility would allow local object caches to be stor

disk and reloaded on demand, objects to be created from local program files, and so

7.1.6 Better Handling of Time

In the current implementation of Coterie, we assume that all of the machines have th

clocks synchronized using a time-synchronization protocol such as NTP (the Netwo

Time Protocol [Mills, 1992]). The library uses an internal animation time offset1 (instead

of the system-specific time offset) because different OSs (e.g., NT and UNIX) start c

ing time at different dates. Unfortunately, this assumption is not always reasonable,

cially when mobile computers are involved. We have found that even in our controlled

environment, the clocks on our machines do not always remain synchronized. This p

lem is most apparent when using time-based animations in Repo-3D.

To address this problem, hooks have been provided in theAnim3D module (see

Appendix H.7.1) to allow a programmer to specify their own function to compute the

“current” animation time offset within a process. Using this facility, it is possible to bu

inter-process time synchronization protocols; we have implemented a version of the

1. Computed as an offset from January 1, 1997.

182

 of

solu-

f com-

ks

cal

h to

ths

t

rre-

thods

 the

jects.

age

to

it dif-
ple Network Time Protocol (SNTP) [Mills, 1996] using approximately a hundred lines

Repo code (shown in Appendix I). Future systems should integrate more advanced

tions, such as adjusting time values as they travel between machines, so that users o

puters with unsynchronized clocks can collaborate.2 This will become more important as

mobile computers increase in popularity, as it may not be practical to keep their cloc

synchronized.

7.1.7 Generalized Local Variations in Repo-3D

Another way the current implementation could be improved is in the specification of lo

variations, which could benefit from adopting the notion ofpaths (as used in Java 3D and

Inventor, for example). A path is an array of objects leading from the root of the grap

an object; when an object occurs in multiple places in one or more scene graphs, pa

allow these instances to be differentiated. By specifying local variations using paths,

nodes in the shared scene graphs could have variationswithin a process as well asbetween

processes.

One other limitation of Repo-3D, arising from our use of the Replicated Objec

package, is that there is no way to be notified when local variations are applied to an

object. Recall that the methods of an automatically generated Notification Object co

spond to the update methods of the corresponding Replicated Object. Since the me

that manipulate the local variations are non-update methods (i.e., they do not modify

replicated state), there are no corresponding methods for them in the Notification Ob

Of course, it would be relatively straightforward to modify the Replicated Object pack

to support this, but we have not yet found a need for these notifiers.

7.1.8 Application to Other Languages

While Modula-3 was a popular programming language when this work started, it has

declined in use over the years. If we want to popularize these techniques, we need

2. Implementation details of the combination of Network and Shared Objects made
ficult for us to adopt a more advanced solution.

183

f the

l archi-

o

epli-

ich

 a

 is

s

ade.

echa-

Java

oterie
implement them in a more widely used language, such as Java. Java shares many o

advantages of Modula-3 (e.g., threads and garbage collection are common across al

tectures) and the packages needed to create a Coterie-like platform are beginning t

appear.

While Java does not yet have a replicated object system as powerful as the R

cated Object package, a package such as JSDT [Sun Microsystems, Inc., 1998] (wh

focuses more on data communication than high-level object semantics) may provide

good starting point. Work is also being done on interpreted, distributed programming

languages on top of Java (e.g., Ambit [Cardelli and Gordon, 1998]). Finally, Java 3D

powerful enough to serve as the basis for a library such as Anim-3D, even though it

design leans toward efficiency instead of generality when there are trade-offs to be m

For example, the designers chose to forgo Anim-3D’s general property inheritance m

nism because it imposes computational overhead. By combining packages such as

3D, JSDT, and Ambit, it should be possible to build a prototyping testbed such as C

in Java.

184

allel

and
stem.

a. In

y for
t. of

ting.

ual

l

ivacy

he
References

Arnold, K. and Gosling, J. (1998).The Java Programming Language. Addison Wesley,
Reading, MA, USA, second edition.

Bal, H., Kaashoek, M., and Tanenbaum, A. (1992). Orca: A language for par
programming of distributed systems.IEEE Transactions on Software Engineering,
18(3):190–205.

Bal, H. E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Ruhl, T.,
Kaashoek, M. F. (1998). Performance evaluation of the orca shared object sy
ACM Transactions on Computer Systems, 16(1):1–40.

Bal, H. E. and Tanenbaum, A. S. (1988). Distributed programming with shared dat
Proc. of the 1988 Int’l Conf. on Computer Languages, pages 82–91.

Bennett, J. K., Carter, J. B., and Zwaenepoel, W. (1989). Munin: Shared memor
distributed memory multiprocessors. Technical Report COMP TR89-91, Dep
Computer Science, Rice University.

Birman, K. P. (1993). The process group approach to reliable distributed compu
Communications of the ACM, 36(12):36–53.

Birrell, A. and Nelson, B. (1984). Implementing remote procedure calls.ACM Trans.
Computer Systems, 2(1):39–59.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. (1993). Network objects. InProc. 14th
ACM Symp. on Operating Systems Principles.

Blau, B., Hughes, C. E., Moshell, M. J., and Lisle, C. (1992). Networked virt
environments. InProc. 1992 ACM Symp. on Interactive 3D Graphics, pages 157–
164.

Bricken, W. and Coco, G. (1994). The VEOS project.Presence: Teleoperators and Virtua
Environments, 3(2):111–129.

Butz, A. (1997). Anymation with CATHI. InProceedings of AAAI/IAAI ’97, pages 957–
962. AAAI Press.

Butz, A., Beshers, C., and Feiner, S. (1998). Of vampire mirrors and privacy lamps: Pr
management in multi-user augmented environments. InProc. ACM UIST ’98, pages
171–172, San Francisco, CA.

Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D. (1993). T
SIMNET virtual world architecture. InProc. IEEE VRAIS ’93, pages 450–455.

Cardelli, L. (1995). A language with distributed scope.Computing Systems, 8(1):27–59.

185

tion

89).

lti-

d

k-80

el

ons.

: 2D

ine:
ban

nted

gger

: The
ience

ural
Cardelli, L. and Gordon, A. D. (1998). Mobile ambients. InProceedings of the First
International Conference on Foundations of Software Science and Computa
Structures (FoSSaCS ’98),pages 140–155.

Carlsson, C. and Hagsand, O. (1993). DIVE—a multi-user virtual reality system. InProc.
IEEE VRAIS ’93, pages 394–400.

Carriero, N. and Gelernter, D. (1992). Linda in context.Communications of the ACM,
32(4):444–458.

Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littlefield, R. J. (19
The amber system: Parallel programming on a network of multiprocessors. InProc.
of the 12th ACM Symp. on Operating Systems Principles (SOSP-12), pages 147–158.

Codella, C. F., Jalili, R., Koved, L., and Lewis, J. B. (1993). A toolkit for developing mu
user, distributed virtual environments. InProc. IEEE VRAIS ’93, pages 401–407.

Coulouris, G., Dollimore, J., and Kindberg, T. (1994).Distributed Systems: Concepts an
Design. Addison Wesley.

Decouchant, D. (1986). Design of a distributed object manager for the Smalltal
system.ACM SIGPLAN Notices, 21(11):444–444.

Dourish, P. (1996).Open Implementation and Flexibility in CSCW Toolkits. PhD thesis,
University College Londen.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (1994). TBAG: A high lev
framework for interactive, animated 3D graphics applications. InComputer Graphics
(Proc. ACM SIGGRAPH ’94), Annual Conference Series, pages 421–434.

Fairen, M. and Vinacua, A. (1997). Atlas, a platform for distributed graphics applicati
In Arbab, F. and Slusallek, P., editors,Proc. VI Eurographics Workshop on
Programming Paradigms in Graphics, pages 91–102.

Feiner, S., MacIntyre, B., Haupt, M., and Solomon, E. (1993a). Windows on the world
windows for 3D augmented reality. InProc. ACM UIST ’93, pages 145–155.

Feiner, S., MacIntyre, B., Höllerer, T., and Webster, A. (1997). A touring mach
Prototyping 3D mobile augmented reality systems for exploring the ur
environment.Personal Technologies, 1(4):208–217.

Feiner, S., MacIntyre, B., and Seligmann, D. (1993b). Knowledge-based augme
reality.Communications of the ACM, 36(7):52–63.

Feiner, S. and Shamash, A. (1991). Hybrid user interfaces: Breeding virtually bi
interfaces for physically smaller computers. InProc. ACM UIST ’91, pages 9–17,
Hilton Head, SC.

Feo, J.T., editor. (1992). A Comparative Study of Parallel Programming Languages
Salishan Problems, Special Topics in Supercomputing, Volume 6, Elsevier Sc
Publishers, North-Holland.

Feiner, S., Webster, A., Krueger, T., MacIntyre, B., and Keller, E. (1995). Architect
anatomy.Presence: Teleoperators and Virtual Environments, 4(3):318–325.

186

al

icast

erox

he

nd

zing

two

ality

P.

95).
Funkhouser, T. A. (1995). RING: A client-server system for multi-user virtu
environments. InProc. 1995 ACM Symp. on Interactive 3D Graphics, pages 85–92.

Gray, R. S. (1996). Agent Tcl: A flexible and secure mobile-agent system. In4th Annual
Tcl/Tk Workshop ’96, pages 9–23, Monterey, CA.

Grimsdale, G. (1991). dVS—distributed virtual environment system. InProc. Computer
Graphics ’91 Conference.

Harbison, S. P. (1992).Modula-3. Prentice-Hall.

Holbrook, H., Singhal, S., and Cheriton, D. (1995). Log-based receiver-reliable mult
for distributed interactive simulation. InProceedings of SIGCOMM’95, pages 328–
341.

Holloway, R. (1991).Trackerlib User’s Maunal. UNC Chapel Hill Computer Science
Department.

IBM Corporation (1993).IBM visualization Data Explorer. IBM Corporation, Yorktown
Heights, NY, fourth edition.

Janssen, B., Spreitzer, M., Larner, D., Jacobi, C. (1998). ILU Reference Manual. X
Palo Alto Research Center, Palo Alto, CA.

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grained mobility in t
Emerald system.ACM Trans. on Computer Systems, 6(1):109–133.

Kazman, R. (1993). Making WAVES: On the design of architectures for low-e
distributed virtual environments. InProc. IEEE VRAIS ’93, pages 443–449.

Kristensen, A. and Low, C. (1995). Problem-oriented object memory: Customi
consistency. InProc. ACM OOPSLA ’95, pages 399–413.

Levelt, W., Kaashoek, M., Bal, H., and Tanenbaum, A. (1992). A comparison of
paradigms for distributed shared memory.Software Practice and Experience,
22(11):985–1010.

Li, K. (1986). Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Department of Computer Science, Yale University.

Li, K. and Hudak, P. (1989). Memory coherence in shared virtual memory systems.ACM
Trans. on Computer Systems, 7(4):321–359.

Liang, J., Shaw, C., and Green, M. (1991). On temporal-spatial realism in the virtual re
environment. InProc. ACM UIST ’91, pages 19–25.

Liskov, B. (1988). Distributed programming in Argus.Communications of the ACM,
31(3):300–312.

Lucas, B., Abram, G. D., Collins, N. S., Epstein, D. A., Gresh, D. L., and McAuliffe, K.
(1992). An architecture for a scientific visualization system. InProc. Visualization
’92, pages 107–114, Boston, MA.

Macedonia, M. R., Zyda, M. J., Pratt, D. R., Brutzman, D. P., and Barham, P. T. (19
Exploiting reality with multicast groups.IEEE Computer Graphics and Applications,
15(5):38–45.

187

ics
uter

ry

ents
r on
eport

tory

0,

ted

4,

n,

D
s

ents.
over,

e at
Machiraju, V. (1997). A framework for migrating objects in distributed graph
applications. Masters dissertation, University of Utah, Department of Comp
Science, Salt Lake City, UT.

MacIntyre, B. (1995). A testbed for distributed augmented reality systems. InOOPSLA ’95
Workshop on Reliability and Scalability in Distributed Object Systems, Austin, TX.

MacIntyre, B. (1997). COTERIE: Columbia object-oriented toolkit for explorato
research in interactive environments. InIEEE WETICE ’97 Workshop on Distributed
Systems Aspects of Sharing a Virtual Reality, Cambridge, MA.

MacIntyre, B. and Feiner, S. (1994). New multimedia user interfaces: Virtual environm
and ubiquitous computing. Technical Report Proc. Schloss Dagstuhl Semina
Fundamentals and Perspectives on Multimedia Systems, Seminar No. 9427, R
No. 92, Schloss Dagstuhl, Germany.

MacIntyre, B. and Feiner, S. (1996a). Future multimedia user interfaces.Multimedia
Systems, 4(5):250–268.

MacIntyre, B. and Feiner, S. (1996b). Language-level support for explora
programming of distributed virtual environments. InProc. UIST ’96, pages 83–94,
Seattle, WA.

MacIntyre, B. and Feiner, S. (1998). A distributed 3D graphics library. InComputer
Graphics (Proc. ACM SIGGRAPH ’98), Annual Conference Series, pages 361–37
Orlando, FL.

MacIntyre, B. and Mynatt, E. (1998). Augmenting intelligent environments: Augmen
reality as an interface to intelligent environments. InIntelligent Environments
Symposium, AAAI Spring Symposium Series, Stanford University.

Manasse, M. S. (1993). The Trestle Toolkit.The X Resource, 5(1):107–112.

Manasse, M. S. (1995). The millicent protocols for electronic commerce. InProceedings
of the First USENIX Workshop of Electronic Commerce.

Mills, D. L. (1996). RFC 2030: Simple network time protocol (SNTP) version 4 for IPv
IPv6 and OSI.

Mills, D. L. (1992). RFC 1305: Network time protocol (version 3) specificatio
implementation.

Najork, M. A. and Brown, M. H. (1995). Obliq-3D: A high-level, fast-turnaround 3
animation system.IEEE Transactions on Visualization and Computer Graphic,
1(2):175–145.

Nog, S., Chawla, S., and Kotz, D. (1996). An RPC Mechanism for Transportable Ag
Technical Report PCS-TR96-280, Dartmouth College, Computer Science, Han
NH.

OMG (1992).The Common Object Request Broker: Architecture and Specification. Object
Management Group, Inc., Framingham, MA, 1.1 edition.

Open Communities (1997). The OpenCommunities Initiative. Information availabl
http://www.meitca.com/opencom.

188

n, J.,
for

ted
le at

tive

sing

it, a

3D

35,

ject

87).
g in

49.

ous

WI -

itta
Ousterhout, J. K. (1990). Tcl: An embeddable command language. InUSENIX Conference
Proceedings, pages 133–146.

Pausch, R., Burnette, T., Capehart, A., Conway, M., Cosgrove, D., DeLine, R., Durbi
Gossweiler, R., Koga, S., and White, J. (1995). Alice: A rapid prototyping system
3D graphics.IEEE Computer Graphics and Applications, 15(3):8–11.

Perham, M., Smith, B. C., Janosi, T., and Lam, I. K. (1997). Redesigning Tcl-DP. In5th
Annual Tcl/Tk Workshop ’97, pages 49–53, Boston, MA.

Phillips, D., Pique, M., Moler, C., Torborg, J., and Greenberg, D. (1989). Distribu
graphics: Where to draw the lines? SIGGRAPH 89 Panels, Boston, MA. Availab
http://www.siggraph.org/publications/panels/siggraph89/.

Prakash, A. and Shim, H. S. (1994). DistView: Support for building efficient collabora
applications using replicated objects. InProc. ACM CSCW ’94, pages 153–162.

Rohlf, J. and Helman, J. (1994). IRIS performer: A high performance multiproces
toolkit for real-time 3D graphics. InComputer Graphics (Proc. ACM SIGGRAPH
’94), Annual Conference Series, pages 381–394.

Roseman, M. and Greenberg, S. (1996). Building real-time groupware with GroupK
groupware toolkit.ACM Transactions on Computer-Human Interaction, 3(1):66–
106.

Seligmann, D. D. and Feiner, S. (1991). Automated generation of intent-based
illustrations. InComputer Graphics (SIGGRAPH ’91 Proceedings), pages 123–132.

Shaw, C. and Green, M. (1993). The MR toolkit peers package and experiment. InProc.
IEEE VRAIS ’93, pages 18–22.

Shivers, O. (1994). A scheme shell. Technical Report MIT-LCS//MIT/LCS/TR-6
Massachusetts Institute of Technology, Laboratory for Computer Science.

Singh, G., Serra, L., Png, W., Wong, A., and Ng, H. (1995). BrickNet: Sharing ob
behaviors on the net. InProc. IEEE VRAIS ’95, pages 19–25.

Sowizral, H., Rushforth, K., and Deering, M. (1998).The Java 3D API Specification.
Addison Wesley, Reading, MA.

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., and Suchman, L. (19
Beyond the chalkboard: Computer support for collaboration and problem solvin
meetings.Communications of the ACM, 30(1):32–47.

Strauss, P. S. and Carey, R. (1992). An object-oriented 3D graphics toolkit. InComputer
Graphics (Proc. ACM SIGGRAPH ’92), Annual Conference Series, pages 341–3

Sun Microsystems, Inc. (1998). The Java Shared Data Toolkit.

Tou, I., Berson, S., Estrin, G., Eterovic, Y., and Wu, E. (1994). Prototyping synchron
group applications.IEEE Computer, 27(5):48–56.

van Rossum, G. (1995). Python library reference. Technical Report CS-R9524, C
Centrum voor Wiskunde en Informatica.

Waters R.C, Anderson D.B., Barrus J.W., Brogan D.C., Casey M.A., McKeown S.G., N

189

tual
ty,

nted

nted

lace.
040.

ava

rd,
ect-

In

for

ET:
T., Sterns I.B., Yerazunis, W.S. (1997). Diamond Park and Spline: Social Vir
Reality with 3D Animation, Spoken Interaction, and Runtime Extendabili
Presence: Teleoperators and Virtual Environments, 6(4):461--480.

Webster, A., Feiner, S., MacIntyre, B., Massie, B., and Krueger, T. (1996a). Augme
reality in architectural construction, inspection and renovation. InProc. ASCE Third
Congress on Computing in Civil Engineering, pages 913–919, Anaheim, CA.

Webster, A., Feiner, S., MacIntyre, B., Massie, W., and Krueger, T. (1996b). Augme
reality applications in architectural construction. In Bertol, D., editor,Designing
Digital Space: An Architect’s Guide to Virtual Reality, pages 193–200. John Wiley
& Sons, New York, NY.

White, J. E. (1994). Telescript technology: The foundation for the electronic marketp
White paper, General Magic, Inc., 2465 Latham Street, Mountain View, CA 94

Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed object model for the J
system.Computing Systems, 9(4):265–290.

Zeleznik, R. C., Conner, D. B., Wloka, M. M., Aliaga, D. G., Huang, N. T., Hubba
P. M., Knep, B., Kaufman, H., Hughes, J. F., and van Dam, A. (1991). An obj
oriented framework for the integration of interactive animation techniques.
Computer Graphics (SIGGRAPH ’91 Proceedings), pages 105–112.

Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. (1996). SKETCH: An interface
sketching 3D scenes.SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 163–170.

Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P. (1992). NPSN
Constructing a 3D virtual world. InProc. 1992 ACM Symp. on Interactive 3D
Graphics, pages 147–156.

190

 this

ted,

e

 for a

et of

mers

 by

d A.5

ared
APPENDIX A Example Generated Code

In Section 3.4.1, a detailed example of a Shared Object is presented. In order to use

shared object, a code generator is run at compile time, and six source files are crea

which are presented here for the interested reader.

Section A.1 contains the implementation of the Shared Object, including the

update event dispatch function (ApplyUpdate_T), the dispatch stubs (Stub_*), and

the method wrappers (Shared_*). The file also contains the “pickling” routines that ar

used to marshal the object between sites. These pickling routines support the ability

programmer to define a set of routines to read and write the object data. A default s

routines that marshall all the internal data fields are supplied. The object that program

use to define custom marshalling routines is defined in the interface in Section A.6.

Sections A.2 and A.3 contain the module defining the Callback objects, used

programmers to receive notification of changes to an object instance. Sections A.4 an

contain the interfaces defining proxy objects that can be used to embed both the Sh

Object and its associated Callback object in an interpreted language such as Repo.

A.1 TrackerPositionSO.m3
(***
 * TrackerPositionSO.m3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998
 ***)

MODULE TrackerPositionSO EXPORTS TrackerPositionPickle,
 TrackerPosition, TrackerPositionProxy;
IMPORT ThreadF, Rd, Tracker, SharedObjError, SharedObjStubLib,
 EventStubLib, SharedObjRep, TrackerPositionF, Wr,
TrackerPositionCB,
 EventProtocol, Event, PickleStubs, WeakRef, SharedObj, AtomList,
 EmbProxiedObj, Thread, Pickle2 AS Pickle, TrackerPosition,
 ObjectSpace;

191
CONST SharedObj_Protocol: EventProtocol.StubProtocol = 1;
EXCEPTION DuplicateSpecial;
TYPE T_SOMethods = {init, set};

REVEAL
 T = S BRANDED “Shared TrackerPosition.T v1.0” OBJECT
 OVERRIDES
 makeProxy := MakeProxy_T;
 applyUpdate := ApplyUpdate_T;

 init := Shared_init_T;
 set := Shared_set_T;
 get := Shared_get_T;
 END;

PROCEDURE MakeProxy_T (self: T) =
 BEGIN
 IF MkProxyT # NIL THEN
 MkProxyT(self);
 END;
 END MakeProxy_T;

PROCEDURE ApplyUpdate_T (self: T; ev: Event.T; h: EventStubLib.Handle)
 RAISES {SharedObj.Error, Event.Error, Rd.Failure, Thread.Alerted} =
 BEGIN
 IF ev.prot # SharedObj_Protocol THEN
 EventStubLib.RaiseUnmarshalFailure();
 END;
 WITH meth = SharedObjStubLib.InInt32(h) DO
 TRY
 SharedObjStubLib.AcquireWriteLock(self);
 self.updating := ThreadF.MyId();
 CASE meth OF
 | ORD(T_SOMethods.init) => Stub_init_T(self, h);
 | ORD(T_SOMethods.set) => Stub_set_T(self, h);
 ELSE
 EventStubLib.RaiseUnmarshalFailure();
 END;
 FINALLY
 self.updating := -1;
 SharedObjStubLib.ReleaseWriteLock(self);
 END;
 END;
 END ApplyUpdate_T;

PROCEDURE Shared_init_T(self: S): T RAISES {SharedObj.Error} =
 VAR out: SharedObjStubLib.Handle;
 id := ThreadF.MyId();
 dataPresent: BOOLEAN; <* NOWARN *>
 BEGIN
 (**)
 (* This get’s done once. After that, it’s a noop. *)
 (**)
 self := NARROW(SharedObj.Init(self), T);
 self.makeProxy();
 (**)
 IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
 TRY

192
 SharedObjStubLib.AcquireReadLock(self);
 IF self.updating = id THEN
 (* do a simple, non-update call to the method *)
 RETURN S.init(self);
 END;
 FINALLY
 SharedObjStubLib.ReleaseReadLock(self);
 END;
 TRY
 out := SharedObjStubLib.StartCall(self);
 IF SharedObjStubLib.MarshalArgs(out) THEN
 SharedObjStubLib.OutInt32(out, ORD(T_SOMethods.init));
 END;
 SharedObjStubLib.SequenceCall(out, SharedObj_Protocol);
 TRY
 SharedObjStubLib.AcquireWriteLock(self);
 self.updating := id;
 Callback_pre_init_T(self);
 WITH res = S.init(self) DO
 Callback_post_init_T(self);
 RETURN res;
 END;
 FINALLY
 self.updating := -1;
 SharedObjStubLib.ReleaseWriteLock(self);
 SharedObjStubLib.EndCall(out);
 END;
 EXCEPT
 | Wr.Failure (ec) => SharedObjError.RaiseCommFailure(ec); <*ASSERT
FALSE*>
 | Thread.Alerted => SharedObjError.RaiseAlerted(); <*ASSERT FALSE*>
 END;
 END Shared_init_T;

PROCEDURE Shared_set_T(self: S; READONLY val_arg: Tracker.Report)
 RAISES {SharedObj.Error} =
 VAR out: SharedObjStubLib.Handle;
 id := ThreadF.MyId();
 dataPresent: BOOLEAN; <* NOWARN *>
 BEGIN
 IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
 TRY
 SharedObjStubLib.AcquireReadLock(self);
 IF self.updating = id THEN
 (* do a simple, non-update call to the method *)
 S.set(self, val_arg);
 RETURN;
 END;
 FINALLY
 SharedObjStubLib.ReleaseReadLock(self);
 END;
 TRY
 out := SharedObjStubLib.StartCall(self);
 IF SharedObjStubLib.MarshalArgs(out) THEN
 SharedObjStubLib.OutInt32(out, ORD(T_SOMethods.set));
 SharedObjStubLib.OutRef(out, val_arg);
 END;
 SharedObjStubLib.SequenceCall(out, SharedObj_Protocol);
 TRY

193
 SharedObjStubLib.AcquireWriteLock(self);
 self.updating := id;
 Callback_pre_set_T(self, val_arg);
 S.set(self, val_arg);
 Callback_post_set_T(self, val_arg);
 FINALLY
 self.updating := -1;
 SharedObjStubLib.ReleaseWriteLock(self);
 SharedObjStubLib.EndCall(out);
 END;
 EXCEPT
 | Wr.Failure (ec) => SharedObjError.RaiseCommFailure(ec);
 | Thread.Alerted => SharedObjError.RaiseAlerted();
 END;
 END Shared_set_T;

PROCEDURE Shared_get_T(self: S): Tracker.Report RAISES {SharedObj.Error,
 Thread.Alerted} =
 BEGIN
 IF NOT self.ok THEN SharedObjError.RaiseDeadObject() END;
 TRY
 SharedObjStubLib.AcquireReadLock(self);
 RETURN S.get(self);
 FINALLY
 SharedObjStubLib.ReleaseReadLock(self);
 END;
 END Shared_get_T;

PROCEDURE Stub_init_T(self: S; <* NOWARN *> in: EventStubLib.Handle)
 RAISES {SharedObj.Error} =
 BEGIN
 Callback_pre_init_T(self);
 EVAL S.init(self);
 Callback_post_init_T(self);
 END Stub_init_T;

PROCEDURE Stub_set_T(self: S; <* NOWARN *> in: EventStubLib.Handle)
 RAISES {SharedObj.Error, Rd.Failure, Thread.Alerted} =
 VAR val_arg: Tracker.Report;
 dataPresent: BOOLEAN <* NOWARN *>;
 BEGIN
 val_arg := SharedObjStubLib.InRef(in, TYPECODE(Tracker.Report));
 Callback_pre_set_T(self, val_arg);
 S.set(self, val_arg);
 Callback_post_set_T(self, val_arg);
 END Stub_set_T;

PROCEDURE Callback_pre_init_T(self: T) =
 VAR cbs := self.callbacks;
 BEGIN
 WHILE cbs # NIL DO
 IF cbs.head.ready THEN
 WITH ref = WeakRef.ToRef(cbs.head.weakRef) DO
 IF ref # NIL THEN
 WITH cb = NARROW(ref, TrackerPositionCB.T) DO
 IF NOT cb.pre_init(self) THEN
 cb.pre_anyChange(self);
 END;
 END;

194
 END;
 END;
 END;
 cbs := cbs.tail;
 END;
 END Callback_pre_init_T;

PROCEDURE Callback_post_init_T(self: T) =
 VAR cbs := self.callbacks;
 BEGIN
 WHILE cbs # NIL DO
 IF cbs.head.ready THEN
 WITH ref = WeakRef.ToRef(cbs.head.weakRef) DO
 IF ref # NIL THEN
 WITH cb = NARROW(ref, TrackerPositionCB.T) DO
 IF NOT cb.post_init(self) THEN
 cb.post_anyChange(self);
 END;
 END;
 END;
 END;
 END;
 cbs := cbs.tail;
 END;
 END Callback_post_init_T;

PROCEDURE Callback_pre_set_T(self: T; READONLY val_arg: Tracker.Report)
=
 VAR cbs := self.callbacks;
 BEGIN
 WHILE cbs # NIL DO
 IF cbs.head.ready THEN
 WITH ref = WeakRef.ToRef(cbs.head.weakRef) DO
 IF ref # NIL THEN
 WITH cb = NARROW(ref, TrackerPositionCB.T) DO
 IF NOT cb.pre_set(self, val_arg) THEN
 cb.pre_anyChange(self);
 END;
 END;
 END;
 END;
 END;
 cbs := cbs.tail;
 END;
 END Callback_pre_set_T;

PROCEDURE Callback_post_set_T(self: T; READONLY val_arg: Tracker.Report)
=
 VAR cbs := self.callbacks;
 BEGIN
 WHILE cbs # NIL DO
 IF cbs.head.ready THEN
 WITH ref = WeakRef.ToRef(cbs.head.weakRef) DO
 IF ref # NIL THEN
 WITH cb = NARROW(ref, TrackerPositionCB.T) DO
 IF NOT cb.post_set(self, val_arg) THEN
 cb.post_anyChange(self);
 END;
 END;

195
 END;
 END;
 END;
 cbs := cbs.tail;
 END;
 END Callback_post_set_T;

(* The pickling routine for this shared object. We will register a
 pickler for TrackerPosition.S, and then handle both S and T.
 Pickling subtypes of T is illegal. *)
REVEAL
 TSpecial = SharedObj.Special BRANDED “TrackerPosition.TSpecial” OBJECT
 OVERRIDES
 write := DefaultSpWrite_T;
 read := DefaultSpRead_T;
 END;

TYPE
 T_Special = Pickle.Special OBJECT
 mu: MUTEX;
 sp: TSpecial;
 registered: BOOLEAN := FALSE;
 OVERRIDES
 write := Write_T;
 read := Read_T;
 END;

PROCEDURE DefaultSpWrite_T (<*UNUSED*>self: TSpecial; shobj:
SharedObj.T;
 out: Pickle.Writer)
 RAISES {Pickle.Error, Wr.Failure,
Thread.Alerted} =
 VAR
 obj := NARROW(shobj, S);
 BEGIN
 PickleStubs.OutRef(out, obj.data);

 END DefaultSpWrite_T;

PROCEDURE Write_T (<*UNUSED*>ts: T_Special; ref: REFANY;
 out: Pickle.Writer)
 RAISES {Pickle.Error, Wr.Failure, Thread.Alerted} =
 VAR
 obj: S;
 sp: TSpecial;
 tc := TYPECODE(ref);
 BEGIN
 IF tc # TYPECODE(S) AND tc # TYPECODE(T) THEN
 RAISE Pickle.Error(“Can’t pickle subtypes of TrackerPosition.T”);
 END;
 obj := NARROW(ref, S);
 out.writeType(tc);
 SharedObjStubLib.StartWritePickle(obj, out);
 LOCK spT.mu DO
 sp := spT.sp;
 END;
 sp.write(obj, out);
 SharedObjStubLib.EndWritePickle(obj, out);
 END Write_T;

196
PROCEDURE DefaultSpRead_T (<*UNUSED*>self: TSpecial; shobj: SharedObj.T;
 in: Pickle.Reader) RAISES {
 Pickle.Error, Rd.EndOfFile, Rd.Failure, Thread.Alerted} =
 VAR
 obj := NARROW(shobj, S);
 BEGIN
 obj.data := PickleStubs.InRef(in, TYPECODE(Tracker.Report));

 END DefaultSpRead_T;

PROCEDURE Read_T (<*UNUSED*>ts: T_Special; in: Pickle.Reader;
 id: Pickle.RefID):REFANY RAISES {
 Pickle.Error, Rd.EndOfFile, Rd.Failure, Thread.Alerted} =
 VAR
 space: ObjectSpace.T;
 obj: S;
 sp: TSpecial;
 proxy: EmbProxiedObj.Proxy;
 tc := in.readType();
 BEGIN
 IF tc = TYPECODE(T) THEN
 obj := NEW(T);
 ELSIF tc = TYPECODE(S) THEN
 obj := NEW(S);
 ELSE

RAISE Pickle.Error(“Can’t unpickle subtypes of TrackerPosition.T”);
 END;
 space := in.read();
 SharedObjStubLib.StartReadPickle(obj, in, space);
 LOCK spT.mu DO
 sp := spT.sp;
 END;
 sp.read(obj, in);
 IF tc = TYPECODE(T) THEN
 obj := SharedObjStubLib.SetupNewCopy(obj, in, id, space);
 proxy := PickleStubs.InRef(in);
 IF obj.proxy = NIL THEN
 obj.proxy := proxy;
 END;
 obj.makeProxy();
 ELSE
 obj.proxy := NIL;
 obj.proxy := PickleStubs.InRef(in);
 END;
 RETURN obj;
 END Read_T;

PROCEDURE RegisterSpecial_T (sp: TSpecial) =
 <* FATAL DuplicateSpecial *>
 BEGIN
 (* we will need to NEW it here if RegisterSpecial_T
 is called from TrackerPosition *)
 IF spT = NIL THEN
 spT := NEW(T_Special, sc := TYPECODE(S), mu := NEW(MUTEX));
 END;
 LOCK spT.mu DO
 IF spT.registered THEN
 RAISE DuplicateSpecial;

197
 END;
 spT.registered := TRUE;
 spT.sp := sp;
 END;
 END RegisterSpecial_T;

VAR
 spT: T_Special := NIL;

BEGIN
 IF spT = NIL THEN
 spT := NEW(T_Special,
 sc := TYPECODE(S),
 mu := NEW(MUTEX),
 sp := NEW(TSpecial));
 END;
 Pickle.RegisterSpecial(spT);
END TrackerPositionSO.

A.2 TrackerPositionCB.i3
(***
 * TrackerPositionCB.i3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998
 ***)

INTERFACE TrackerPositionCB;

IMPORT Tracker, SharedObj, TrackerPosition;

TYPE
 T <: PublicT;
 PublicT = SharedObj.Callback OBJECT
 METHODS
 init (obj: TrackerPosition.T): T;
 cancel ();
 pre_anyChange (READONLY obj: TrackerPosition.T);
 post_anyChange (READONLY obj: TrackerPosition.T);
 pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 pre_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 post_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 END;

END TrackerPositionCB.

A.3 TrackerPositionCB.m3
(***
 * TrackerPositionCB.m3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998

198
 ***)

MODULE TrackerPositionCB EXPORTS TrackerPositionCB,
TrackerPositionCBProxy;
IMPORT Tracker, SharedObjStubLib, SharedObjRep, WeakRefListFuncs,
 WeakRefList, WeakRef, TrackerPosition, WeakerRef;

REVEAL
 T = PublicT BRANDED OBJECT
 obj: TrackerPosition.T;
 wref: WeakerRef.T;
 OVERRIDES
 init := Init_T;
 cancel := Cancel_T;
 pre_anyChange := Pre_anyChange_T;
 post_anyChange := Post_anyChange_T;
 pre_init := Pre_init_T;
 post_init := Post_init_T;
 pre_set := Pre_set_T;
 post_set := Post_set_T;
 END;

PROCEDURE Init_T (self: T; obj: TrackerPosition.T): T =
 VAR
 wref := NEW(WeakerRef.T,
 weakRef := WeakRef.FromRef(self, Cleanup_T_CB),
 ready := TRUE);
 BEGIN
 self.obj := obj;
 self.wref := wref;
 IF MkProxyTCB # NIL AND self.proxy = NIL THEN
 MkProxyTCB (self);
 END;
 SharedObjStubLib.AcquireWriteLock(obj);
 TRY
 obj.callbacks := WeakRefList.Cons(wref, obj.callbacks);
 FINALLY
 SharedObjStubLib.ReleaseWriteLock(obj);
 END;
 RETURN self;
 END Init_T;

PROCEDURE Cancel_T (self: T) =
 BEGIN
 SharedObjStubLib.AcquireWriteLock(self.obj);
 TRY
 EVAL WeakRefListFuncs.DeleteD(self.obj.callbacks, self.wref);
 FINALLY
 SharedObjStubLib.ReleaseWriteLock(self.obj);
 END;
 END Cancel_T;

PROCEDURE Cleanup_T_CB (READONLY wref: WeakRef.T; ref: REFANY) =
 VAR
 cb := NARROW(ref, T);
 weakerRef := NEW(WeakerRef.T, weakRef := wref);
 BEGIN
 SharedObjStubLib.AcquireWriteLock(cb.obj);
 TRY

199
 (* Callback is gone, so delete it *)
 EVAL WeakRefListFuncs.DeleteD(cb.obj.callbacks, weakerRef);
 FINALLY
 SharedObjStubLib.ReleaseWriteLock(cb.obj);
 END;
 END Cleanup_T_CB;

PROCEDURE Pre_anyChange_T (self: T; READONLY obj: TrackerPosition.T) =
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 NARROW (self.proxy, CBProxyT).pre_anyChange (obj);
 END;
 END Pre_anyChange_T;

PROCEDURE Post_anyChange_T (self: T; READONLY obj: TrackerPosition.T) =
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 NARROW (self.proxy, CBProxyT).post_anyChange (obj);
 END;
 END Post_anyChange_T;

PROCEDURE Pre_init_T (self: T; READONLY obj: TrackerPosition.T): BOOLEAN
=
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 RETURN NARROW (self.proxy, CBProxyT).pre_init (obj);
 END;
 RETURN FALSE;
 END Pre_init_T;

PROCEDURE Post_init_T (self: T; READONLY obj: TrackerPosition.T):
BOOLEAN =
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 RETURN NARROW (self.proxy, CBProxyT).post_init (obj);
 END;
 RETURN FALSE;
 END Post_init_T;

PROCEDURE Pre_set_T (self: T; READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN =
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 RETURN NARROW (self.proxy, CBProxyT).pre_set (obj, val);
 END;
 RETURN FALSE;
 END Pre_set_T;

PROCEDURE Post_set_T (self: T; READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN =
 BEGIN
 (* Default calls proxy or does nothing. *)
 IF self.proxy # NIL THEN
 RETURN NARROW (self.proxy, CBProxyT).post_set (obj, val);

200
 END;
 RETURN FALSE;
 END Post_set_T;

BEGIN
SharedObjStubLib.InhibitTransmission(TYPECODE(T), "default T callback
cannot be transmitted/duplicated");
END TrackerPositionCB.

A.4 TrackerPositionProxy.i3
(***
 * TrackerPositionProxy.i3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998
 ***)

INTERFACE TrackerPositionProxy;

IMPORT TrackerPosition;

VAR
 MkProxyT : PROCEDURE(x: TrackerPosition.T) := NIL;

END TrackerPositionProxy.

A.5 TrackerPositionCBProxy.i3
(***
 * TrackerPositionCBProxy.i3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998
 ***)

INTERFACE TrackerPositionCBProxy;

IMPORT Tracker, TrackerPositionCB, EmbProxiedObj, TrackerPosition;

VAR
 MkProxyTCB : PROCEDURE(x: TrackerPositionCB.T) := NIL;

TYPE
 CBProxyT = EmbProxiedObj.Proxy OBJECT METHODS
 pre_anyChange (READONLY obj: TrackerPosition.T);
 post_anyChange (READONLY obj: TrackerPosition.T);
 pre_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 post_init (READONLY obj: TrackerPosition.T): BOOLEAN;
 pre_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 post_set (READONLY obj: TrackerPosition.T;
 READONLY val: Tracker.Report): BOOLEAN;
 END;

END TrackerPositionCBProxy.

201
A.6 TrackerPositionPickle.i3
(***
 * TrackerPositionPickle.i3
 * DO NOT EDIT --> generated by shobjcodegen
 * Fri Aug 28 22:02:36 EDT 1998
 ***)

INTERFACE TrackerPositionPickle;

IMPORT SharedObj;

TYPE
TSpecial <: SharedObj.Special;
PROCEDURE RegisterSpecial_T(sp: TSpecial);
END TrackerPositionPickle.

202

e

es in

ed in
APPENDIX B Tracker Modules

In this appendix, we present the Repo help files for the various modules related to th

tracker system, first discussed in Section 2.5.1 and used as the basis of the exampl

Section 3.4.1, Section 4.6.1 and Section 5.4.2.

B.1 The Basic Modules

B.1.1 Kalman

Kalman_New(): T
Kalman_Filter(T, Quaternion): Quaternion

WHERE
Kalman <: EmbProxiedObj &

{ filter: (Quaternion) => Quaternion }

This module implements a simple Kalman predictive filter, based on the approach us

[Liang et al., 1991].

B.1.2 Tracker

Tracker_EndOfFile: Exception
Tracker_Error: Exception
Tracker_NewReport(ReportProto): Tracker_Report
Tracker_NewReport2D(Report2DProto): Tracker_Report2D
Tracker_NewReport3D(Report3DProto): Tracker_Report3D
Tracker_GetTimestamp(Tracker_Report): Real
Tracker_GetButtons(Tracker_Report, Buttons): Ok
Tracker_GetPosition2D(Tracker_Report2D): Point2
Tracker_GetPosition3D(Tracker_Report3D): Point3
Tracker_GetPosition3DError(Tracker_Report3D): Real
Tracker_GetOrientationM(Tracker_Report3D): Matrix4
Tracker_GetOrientationQ(Tracker_Report3D): Quaternion
Tracker_GetOrientationError(Tracker_Report3D): Real

WHERE

203

ted by

s the

4.1,
Tracker <: EmbProxiedObj &
{ calculateStatistics: () => Text,

reset: () => Ok ! Tracker_Error thread_alerted,
read: () => TrackerReport ! Tracker_EndOfFile Tracker_Error

thread_alerted,
close: () => Ok ! Tracker_Error }

Tracker_Report <: EmbProxiedObj
Tracker_Report2D <: Tracker_Report
Tracker_Report3D <: Tracker_Report
ReportProto = { ts: Real, buttons: Buttons }
Report2DProto = ReportObj & { pos: Point2 }
Report3DProto = ReportObj & { pos: Point3, pos_error: Real,

 orientation: Orientation,
 orientation_error: Real }

Buttons = [n*Bool]
Point2 = [2*Int]
Orientation: Quaternion & Matrix4

This is the abstract Tracker module. It defines the basic methods that must be suppor

the concrete trackers in Section B.2, and defines the basic Tracker Report, as well a

prototype 2D and 3D Reports used by the concrete trackers.

B.1.3 TrackerPosition

TrackerPosition_New(): T;
WHERE

T <: SharedObj_T & { init: () => T ! SharedObj_Error Thread_alerted,
get: () => Tracker_Report ! SharedObj_Error

Thread_alerted,
set: (Tracker_Report) => Ok ! SharedObj_Error

Thread_alerted }

This module exposes the replicated Tracker Position object, discussed in Section 3.

into Repo.

B.1.4 TrackerPositionCB

TrackerPositionCB_New(obj: TrackerPosition_T, overrides: Obj): T;
TrackerPositionCB_Cancel(cbobj: T): T;

WHERE
T <: SharedObj_T & overrides;
overrides contains one or more of these callback methods:

pre`init(obj: TrackerPosition_T): bool;
post`init(obj: TrackerPosition_T): bool;
pre`set(obj: TrackerPosition_T, val: Tracker_Report): bool;
post`set(obj: TrackerPosition_T, val: Tracker_Report): bool;

204

ads

There

dware

in

ently
pre`anyChange(obj: TrackerPosition_T);
post`anyChange(obj: TrackerPosition_T);

This module exposes the replicated Tracker Position Callback object, discussed in

Section 3.4.1, into Repo.

B.1.5 TrackerServer

TrackerServer_New(Tracker): T;
TrackerServer_NewLatest(Tracker): T;
TrackerServer_NewLatestMulti(Tracker): Multi;

WHERE
T <: SharedObj_T &

{ add: (TrackerPosition) => Ok,
remove: (TrackerPosition) => Ok,
start: () => Ok,
stop: () => Ok }

Multi <: T &
{ addSingle: (TrackerPosition, index) => Ok }

This module defines a simple “tracker server,” which is a thread that continuously re

from a tracker and stores the Reports read in one or more Tracker Position objects.

are three forms of the server: the basic one (created withTrackerServer_New), one

that only reads the latest value if it cannot read the reports as fast as the tracker har

produces them (created withTrackerServer_NewLatest), and one that reads from

a multi-device tracker (such as the Flock of Birds in Section B.2.2 or the DynaSight

Section B.2.1).

B.2 The Tracking Device Modules

This section contains the help files for each of the concrete tracking devices we curr

support.

B.2.1 Dynasight

Dynasight_Open(path: text; mode: Mode): T ! Tracker_Error
Dynasight_GetStatus(Dynasight_Report): SensorStatus
Dynasight_GetSync(Dynasight_Report): Bool
Dynasight_GetTargetNumber(Dynasight_Report): Int

205
WHERE
Dynasight <: Tracker
Dynasight_Report <: Tracker_Report3D
SensorStatus = Text (one of "Search", "Coast", "Caution", "Track")
Mode = Text ("Passive", "ATA1", "ATA2", "ATA3", "ATA4",

"ATA3T", "ATA4T", "ATA4Y2", or "ATA4Y3")
There are no buttons

The Origin Instruments DynaSight optical radar system.

B.2.2 FOB

FOB_Open(path: Text, num: Int, fast: Bool): T ! thread_alerted
Tracker_Error

FOB_GetTargetNumber(FOB_Report): Int
WHERE

FOB <: Tracker &
{ demandReporting: () => Ok ! thread_alerted Tracker_Error,

streamReporting: () => Ok ! thread_alerted Tracker_Error,
enableTransmitter: () => Ok ! thread_alerted Tracker_Error,
disableTransmitter: () => Ok ! thread_alerted Tracker_Error,
flipHemisphere: (unit: Int) => Ok ! thread_alerted Tracker_Error,
setHemisphere: (hemi: Hemi) => Ok ! thread_alerted Tracker_Error

}
FOB_Report <: Tracker_Report3D
Hemi = Text ("Foward", "Aft", "Left", "Right", "Upper", "Lower")

The Ascension Technologies Flock of Birds magnetic tracking system.

B.2.3 Logitech

Logitech_Open(path: text): T ! thread_alerted Tracker_Error
Logitech_GetStatus(Logitech_Report): SensorStatus
Logitech_GetButtons(Logitech_Report, Buttons): Ok

WHERE
Logitech <: Tracker &

{ demandReporting: () => Ok ! thread_alerted Tracker_Error,
streamReporting: () => Ok ! thread_alerted Tracker_Error,
enableTransmitter: () => Ok ! thread_alerted Tracker_Error,
disableTransmitter: () => Ok ! thread_alerted Tracker_Error,
incrementalReporting: () => Ok ! thread_alerted Tracker_Error,
setFilterCount: (count: FilterCount) => Ok ! thread_alerted

Tracker_Error }
FilterCount = 0...10
Logitech_Report <: Tracker_Report3D
SensorStatus = Text (one of "Fringe", "Out", "Track")
Buttons = { left: Bool, right: Bool, middle: Bool, suspend: Bool }

206
The Logitech 6DOF ultrasonic tracking system.

B.2.4 MSMouse

MSMouse_Open(path: text): T ! Tracker_Error
MSMouse_GetButtons(MSMouse_Report, Buttons): Ok

WHERE
MSMouse <: Tracker
MSMouse_Report <: Tracker_Report2D
Buttons = { left: Bool, right: Bool, middle: Bool}

The Microsoft 2D 3-button mouse.

B.2.5 PTU

PTU_Open(path: text): T ! thread_alerted Tracker_Error
WHERE

PTU <: Tracker &
{ hardReset: () => Ok ! Tracker_Error thread_alerted,

awaitExecution: () => Ok ! thread_alerted Tracker_Error,
moveAbsPanAngle: (pan: Real) => Bool ! thread_alerted

Tracker_Error,
moveAbsTiltAngle: (tilt: Real): => Bool ! thread_alerted

Tracker_Error,
moveAbsAngle: (pan, tilt: Real) => Bool ! thread_alerted

Tracker_Error,
moveOffsetAngle: (pan, tilt: Real)=> Bool ! thread_alerted

Tracker_Error,
haltPan: () => Ok ! thread_alerted Tracker_Error,
haltTilt: () => Ok ! thread_alerted Tracker_Error,
haltAll: () => Ok ! thread_alerted Tracker_Error,
getPanRange: () => [Real,Real],
getTiltRange: () => [Real,Real]

}

PTU_Report <: Tracker_Report3D

There are no buttons

The Directed Perception 3DOF Pan/Tilt unit.

B.2.6 RingMouse

RingMouse_Open(path: text): T ! Tracker_Error
RingMouse_GetStatus(RingMouse_Report): SensorStatus

207
RingMouse_GetButtons(RingMouse_Report, Buttons): Ok
WHERE

RingMouse <: Tracker
RingMouse_Report <: Tracker_Report3D
Buttons = Tracker_Buttons & { left: Bool, right: Bool}
SensorStatus = Text (one of "Sleep", "Track")

The Kantek Spectrum RingMouse ultrasonic 3DOF position tracker.

B.2.7 Scanner

Scanner_Open(path: text): T ! Tracker_Error
Scanner_GetBarcode(Scanner_Report): Text

WHERE
Scanner <: Tracker
Scanner_Report <: Tracker_Report
There are no buttons

The PSC Inc. QuickScan barcode scanner.

B.2.8 Trimble

Trimble_Open(path: text, out: Wr|Ok): T ! thread_alerted Tracker_Error
Trimble_GetHealth(Trimble_Report): Health
Trimble_GetVelocity(Trimble_Report): Velocity
Trimble_GetVersion(Trimble_Report): Real
Trimble_GetSatellites(Trimble_Report): Satellites
Trimble_GetMessage(Trimble_Report): SystemMessage
Trimble_GetLLA(Trimble_Report): LLA

WHERE
Trimble <: Tracker;
Trimble_Report <: Tracker_Report3D;

Satellites = {number: Int, used: [Int,Int,Int,Int], ts: Real};
Velocity = {x y z: Real, xyzts: Real,

east north up: Real, enuts: Real};
SystemMessage = {severeFailureReport message: Text, ts: Real};
Health = {status: Text, statusCode: Int,

batteryBackup antennaStatus timeClockStatus
atoDConverterStatus almanacStatus: BOOLEAN, ts: Real};

LLA = {longitude latitude altitude relativeLong relativeLat: Real};

The Trimble GPS 3DOF position tracker.

208
B.2.9 vIO

vIO_Open(path: text): T ! thread_alerted Tracker_Error
WHERE

vIO <: Tracker &
{ demandReporting: () => Ok ! thread_alerted Tracker_Error,

streamReporting: () => Ok ! thread_alerted Tracker_Error,
setAngleMode: (mode: Mode) => Ok ! thread_alerted Tracker_Error }

vIO_Report <: Tracker_Report3D

Mode = Text (one of "Tilt", "Yaw", "All")
There are no buttons

The Virtual I/O 3DOF orientation tracker.

209

ilar
APPENDIX C Repo Syntax

This Appendix contains a summary of Repo’s syntax. This is based on (and is very sim

to) the Obliq syntax summary in [Cardelli, 1995].

TOP-LEVEL PHRASES any term or definition ended by ";"
a;

DEFINITIONS (identifiers are denoted by "x", terms are denoted by "a")
let x1=a1,...,xn=an definition of constant identifiers
let rec x1=a1,...,xn=an definition of recursive procedures
var x1=a1,...,xn=an definition of updatable identifiers
var replicated x1=a1,...,xn=an definition of replicated updatable ids
var simple x1=a1,...,xn=an definition of simple updatable ids

SEQUENCES (denoted by "s") each "ai" (a term or a definition) is
a1;...;an executed; yields "an" (or "ok" if n=0)

TERMS (denoted by "a","b","c"; identifiers are denoted by "x","l";
modules are denoted by "m")

xm_x identifiers
x:=a assignment

ok true false 'a' "abc" 3 1.5 constants

[a1,...,an] arrays
replicated [a1,...,an] replicated arrays
simple [a1,...,an] simple arrays
a[b]a[b]:=c array selection, array update
a[b for b']a[b for b']:=c subarray selection, subarray update

option "l" => s end term "s" tagged by "l"

proc(x1,...,xn) s end procedures
a(b1,...,bn) procedure invocation
m_x(a1,...,an) invocation of "x" from module "m"
a b c infix (right-ass.) version of "b(a,c)"

meth(x,x1,...,xn) s end method with self "x"
umeth(x,x1,...,xn) s end replicated object update method
{l1=>a1,...,ln=>an} object with fields named "l1"..."ln"
{protected, serialized, ...} protected and serialized object
{simple, ...} simple object
{replicated, ...} replicated object
{l1=>alias l2 of a2 end,...} object with delegated fields

210
a.l a.l(a1, ..., an) field selection / method invocation
a.l:=b field update / method override
clone(a1,...,an) object cloning
replicated(a,umethlist) replicated clone of object "a"
replicated(a) replicated copy of array "a"
simple(a) simple clone/copy of object/array "a"
remote(a) remote clone/copy of object/array "a"
a1.l1:=alias l2 of a2 end field delegation
delegate a1 to a2 end object delegation
unreachable a1 do a2 unreachable data value notification
objectpickler a1 reader a2 writer a3

pickle a1 using a2 for reading and
a3 for writing

addhelp m sort "s1" short "s2" full "s3"
setup help entry for m

d definition
if s1 then s2 conditional

elsif s3 then s4... else sn end ("elsif", "else" optional)
a andif ba orif b conditional conjunction/disjunction
case s of "l1"(x1,m1)=>s1,..., case over the tag "li" of an option

"ln"(xn,m1)=>snbinding "xi" in "si" ("mi" optional)
else s0 end ("else" optional)

of match subexpressions of "li"
loop s end loop
for i=a to b do s end iteration through successive integers
foreach i in a do s end iteration through an array
foreach i in a map s end yielding an array of the results
exit exit the innermost loop, for, foreach

exception("exc") new exception value named "exc"
raise(a) raise an exception
try s except exception capture

a1=>s1,...,an=>sn else s0 end ("else" optional)
try s1 finally s2 end finalization

condition() signal(a) broadcast(a)
creating and signaling a condition

watch s1 until s2 end waiting for a signal and a boolean
guard

fork(a1,a2) join(a) forking and joining a thread
pause(a) pausing the current thread

mutex() creating a mutex
lock s1 do s2 end locking a mutex in a scope
wait(a1,a2) waiting on a mutex for a condition

(s) block structure / precedence group

211

ion of

 were

ally

to-

to the

s

g,

 the
APPENDIX D Additional Enhancements to
Repo

In addition to the changes to the language syntax and semantic required by the addit

replicated data, there are a number of other enhancements in Repo. These changes

made to support exploratory programming of distributed interactive applications, usu

in response to a specific need or problem we encountered while developing our pro

types.

D.1 Additional Syntax Changes

At the beginning of Section 4.4, we mentioned that there was one change we made

Repo syntax that is not compatible with Obliq. That change is the addition of regular

expression support to Obliq’scase statement, which is used in conjunction with Obliq’

option values. Options are created by associating an arbitrary value with a textual ta

using the following statement:

option tag => value end

This statement returns an option value that can be used in a case statement,

syntax of which is:

case o of

l 1(x 1)=> s 1,..., l n(x n)=> s n else s 0 end

212

s as

 not

s, and

or the

so that

w the

fol-

object

bject

ted,

he
Given an optiono, if one of the labelsl i exactly matcheso’s tag, the correspond-

ing statementsi is executed. If the optional variable namexi is supplied,o’s value is

assigned to it in the context ofsi . If no labels match, the else statement is executed.

However, the tags are not arbitrary text strings, but follow the same guideline

identifiers (i.e., variable names). We found that the options and case statement were

very useful when defined this way. In particular, most of the time we found ourselves

wanting a case statement, we wanted to be able to select between arbitrary text string

we wanted to be able to partially match these strings using regular expressions.

Therefore, we changed the syntax of these two statements to use text strings f

tags and case labels, and added support for regular expressions to the case labels

the labels do not have to match the option tag exactly. The regular expressions follo

Unix regex syntax, including supporting substring matching using the “()” syntax. We

added a second optional variable nameyi that, if present, will be the name of a variable to

contain an array describing the matched substrings in the text string (the full match

lowed by the substring matches, listed as integer [start,end] pairs):

option “tag string” => value end

case o of

l 1(x 1,y 1)=> s 1,..., l n(x n,y n)=> s n else s 0 end

We make extensive use of the new case statement in our code, such as in the

directories of Section 4.6.5 or the Sketch example of Section 6.2.

Another change we made to the Repo syntax was to add theunreachable state-

ment. This statement provides notification when a local reference to a client-server o

becomes invalid because the network address of the object can no longer be contac

either because the process has terminated, or there is a problem with the network. T

213

sys-

f the

 is

dules

e the

4-8)

 on-

it. We

 mod-

here,

e to
unreachable statement takes a procedure argument that will be executed when the

tem determines that the object is unreachable.

unreachable object do notification-proc

Here is an example of this statement in use, taken from the enhanced version o

replicated mutex example in Appendix E (the simple version of the distributed mutex

presented in Section 4.6.4):

unreachable id do

proc (o,st)

try

s.dequeueId(localId, localId.txt);

except unheld => end;

end;

In this example, when the objectid becomes unreachable, the method

s.dequeueId is called. See the appendix for a more in depth discussion.

The other changes to Repo’s syntax are minor enhancements to the way mo

are defined, aimed at supporting the creation of more complex programs. This includ

ability to define on-line help files for Repo modules (the syntax can be seen in Figure

and to hide information inside modules. Previously, only built-in modules could have

line help, and any values defined inside a module could be accessed from outside of

will not detail those changes here.

D.2 Module Enhancements and Additions

During the development of Repo and Coterie, we created a wide range of new Repo

ules, and enhanced a number of others. While we will not detail all of those changes

we will highlight some of them to give an idea of the kinds of enhancements we mad

214

po

. We

eter

d type

val-

r

exist-

om

e

ro-

, arbi-
the system, both large and small. See Appendix E for the details of all the built-in Re

modules, including the new and modified ones.

As mentioned in Appendix D.1, one of the modules we created, thereflect

module, supports a simple form ofreflection (see Appendix E.1.3). Reflection, as we

implement it, is the ability for a programming language to operate on its type system

implement this package primarily to allow programmers to check the types of param

values, to make debugging large programs easier. However, the module goes beyon

checking. We can not only query values about their types (including generating option

ues with the tag strings describing the types), but operate extensively on objects. Fo

example, the module supports invoking object methods, querying objects about the

ence of fields and methods, extracting the fields of an object, and creating objects fr

those extracted fields.

One of the most useful functions in thereflect module is thematch function,

which supports object-based pattern matching, modeled after a similar facility in the

Scheme Shell [Shivers, 1994]. The rules for constructing pattern matching values ar

shown in Figure D-1. Notice that if the match value is an object or array, the match p

cess is performed recursively on the fields or elements of the match value. Therefore

Figure D-1: Pattern matching with the Repo reflection module. Pattern matching
allows a programmer to create a prototype valuematchand check if the Repo value
val matches it.Match will match a Repo valueval if these condition are met.

• match is the Repo null valueok

• match is val

• val is a text string andmatch is a regular expression that matches it exactly
(i.e.,val matches this regular expression:"^" & match & "$")

• matchis a regular expression that exactly matches the option key returned
by reflect_getType(val) (i.e.,match is val’s type)

• match is an option whose key is a regular expression that exactly matches
the option key returned byreflect_getType(val) , and the value of
the option is eitherok or also matchesval

• val andmatch are objects, and for each field ofmatch, val has a correspond-
ing field whose contents are matched by the contents of the field ofmatch

• val andmatch are arrays of the same size, and each element of the array
matches

215

g to

ch

l the

t our

 sys-

ay

iables

e used

ures

 exe-

r and

 so

 net-

ple,

o pro-

po pro-

fact

ta to
trarily complex structures can be matched, allowing fairly complex argument checkin

be performed in a single step. We make use of the match facility in the Shared Sket

example in Section 6.2, to check that the objects imported from the network have al

required fields for use as Sketch objects. By doing this check, we can be confident tha

code will not be broken either maliciously, or by bugs in other parts of the distributed

tem.

One final interesting change we made to the Obliq libraries was to modify the w

filesystem and processor objects work. When a repo process starts, it has three var

defined in its environment (in this case, Repo is running on a host namedelvis):

let processor = <Processor at elvis>

let fileSys = <FileSystem at elvis>

let fileSysReader = <FileSystem at elvis>

Filesystem objects are used to access the filesystem, and processor objects ar

to create processes. processor is the local processor variable,fileSys is the local

file system, andfileSysReader is a read-only version of the local file system. Since

these handles are defined in the scope of the initial Repo thread, lexical scoping ens

that these handles can only be accessed by source code interpreted (as opposed to

cuted) by that thread. Therefore, these variables provide security to the local processo

file system. In Obliq, these objects cannot be transmitted across the network (doing

results in an exception). In Repo, we allow these variables to be transmitted over the

work, where they always refer back to the resources in their original process. For exam

we could have a group of processes transmit their processor variables to a single Rep

cess, which could then start processes on any of the machines containing those Re

cesses.

D.3 Efficient Module Distribution

There is a subtle efficiency problem with the implementation of Obliq, related to the

that the language is interpreted, that was not noticeable until we added replicated da

216

ary

tedly

e the

that

hav-

ry

r

 suc-

that

been

tifier

ped,

iden-

e

refer-

unt of

tself,

 not

 fre-

uge

.

dures

s been

r Repo

s have
the language. The problem is that the data structures representing modules (the prim

code structuring mechanism in Obliq and Repo) can end up being transferred repea

over the network, and instantiated many times in remote processes. We will describ

problem, and the solution we adopted, because it illustrates the kind of subtle problem

can arise when building distributed applications. It also illustrates the importance of

ing a robust, general purpose infrastructure to free programmers from having to wor

about such details.

To understand the problem (which will be described fully below), first conside

what happens when an object is transferred between processes in Modula-3. To be

cessfully transferred, the object’s type must exist in the remote process, which implies

the modules related to that object (that define the type, the methods, and so on) have

compiled into both programs. Therefore, when the object is transferred, a small iden

representing its type can be sent along with the instance data of the object.

Now, consider what happens in Repo (or Obliq). First, Repo objects are not ty

but are simply collections of fields, methods and aliases, so there is no simple way of

tifying these objects between processes using a small identifier. Therefore, the entir

object definition, including the closures defining the methods, and any free variables

enced from those methods, must be transmitted. This could represent a sizable amo

data, and there is no simple way to avoid it. This is not a serious problem in and of i

as programmers will typically ensure that objects that are to be copied frequently do

have huge data structures embedded in them. Furthermore, objects that are copied

quently (such as events describing tracker or mouse motion) do not typically have h

numbers of methods.

However, if any of these methods reference a Repo module, a problem arises

Modules are the code structuring facility in Repo, and are used to group related proce

and data together. Unlike the compiled code in a Modula-3 binary (in which we can

assume that similar programs are communicating), just because a set of modules ha

loaded into a Repo process, we cannot assume they have been loaded into any othe

process. Furthermore, even if modules with the same name, variables and procedure

217

e

ct’s

ject

e pro-

 with

ans-

imple

odule

tly.

r as a

repli-

refer-

some

nt

 these

ting in

n

o dif-

cause

g

 want

source

cing

e)
been loaded into two processes, there is no guarantee that they are actually the sam

module.

If we create an object that refers to some module (perhaps because the obje

methods call procedures or reference variables in the module), and we pass that ob

between processes, we must ensure that the referenced module exists in the remot

cess. Therefore, the data structures defining the modules must be transferred along

the object. Furthermore, if the module refers to other modules, those must also be tr

ferred at the same time. Since the internal module data structures are created with s

Modula-3 objects (i.e., unsynchronized replicated data), each time a reference to a m

is sent to another process, the module definition is copied again.

This was not a serious problem in Obliq because copying happens infrequen

However, in Repo, serious network utilization and memory usage problems can occu

result of these duplicate copies. Imagine that we are generating an unsynchronized

cated object each time a tracker moves, and distributing these objects. If this object

ences even a simple variable in some module, and that module happens to reference

other module, and so on, the resulting message could be huge (and take a significa

amount of time to create and extract). Furthermore, the data structures representing

modules would be created repeatedly in the destination processes, potentially resul

many copies of each module definition. This is clearly unacceptable.

There are a number of solutions to this problem. The most aggressive solutio

would be to recognize when two modules with the exact same code were loaded int

ferent processes, and not copy module definitions that are not needed. However, be

we operate in a heterogeneous environment, and modules can have virtually anythin

defined within them, an automated approach to this seemed difficult, and we did not

to resort to a manual approach (such as having programmers annotate the module

files with version numbers) because the chance of programmers accidentally introdu

obscure bugs into their programs (by not changing the version numbers, for exampl

seemed high.

218

nt,

ular

ule

then

The

e

 the

dule

ted it.

 not

ared

 effi-

is the
Instead, we adopted a more conservative, and significantly easier to impleme

solution, ensuring that at most one copy of a particular module generated in a partic

Repo process exists in any other Repo process. While multiple copies of some mod

could still exist in each process if the module was loaded into multiple processes and

transferred around, at least we limit the number of copies to a well defined number.

implementation assigns each module a unique network identifier (identifying both th

module and the process in which it was generated) and passes that identifier around

network rather than the module definition. If a process receives an identifier for a mo

it does not currently have a copy of, it acquires the module from the process that crea

While distributing modules in this way is slightly less efficient when the module does

yet exist in the destination process (requiring an extra round trip on the network comp

with sending the module data structures along with an object), it is significantly more

cient when the module data structures already exist in the destination process (which

case we are worried about).

219

build-

ew

to the

 last

gging
APPENDIX E Repo Modules

In Appendix D, we described a number of Repo modules that we created to enable

ing applications in our domain. In this appendix, we include the help files of all of the n

and modified Repo modules to serve as a reference to the kinds of features we added

system.

E.1 New Modules

E.1.1 debug

All(T) debug_assertFree (v: T)
Assert that this value is free.

debug_checkHeap()
Check the heap for all locations of any value that was
asserted free.

debug_collectNow()
A hint that this might be a good time to do a garbage collection

debug_reportReachable()
Generate a report to stderr of all reachable data

debug_disableCollector()
Prevent garbage collection

debug_enableCollector()
All garbage collection to resume

debug_dumpReplicaState()
Dump a report about the state of the replicated object runtime

debug_replicaDebugLevel(level: Int): Ok
level>0 causes debugging info to go to stderr

The debug module exposes some of the Modula-3 debugging facilities in Repo. The

two routines are used for debugging the Shared Object runtime, and the rest are debu

routines implemented in the Modula-3 garbage collector.

220

h

r than
E.1.2 dict

dict_invalidKey: Exception
dict_new (): Dict

Create a new dictionary that maps Texts to any Obliq value.
dict_get (t: Dict, key: Text): Val ! dict_invalidKey

Look up "key" in dictionary "t". If it exists, return the value
"Val" that it maps to. Otherwise, raise "dict_invalidKey".

dict_put (t: Dict, key: Text, val: Val): Bool
Set the value mapped from "key" in the dictionary "t" to "val". If
"key" already mapped to something in "t", return "true", otherwise
return "false."

dict_delete (t: Dict, key: Text): Val ! dict_invalidKey
Delete the mapping for "key" from dictionary "t". If it exists,
return the value "Val" that it mapped to. Otherwise, raise
"dict_invalidKey".

dict_size (t: Dict): Int
Return the number of elements (mappings) in dictionary "t"

dict_iterate (t: Dict): Iterator
Return an Iterator, which is an object that can be used to iterate
over the key-value pairs in "t".

dict_iteratorNext (i: Iterator): [Text, Val] | Ok
If "i" is the result of the call "dict_iterate(t)", then the call
"dict_iteratorNext(i)" selects an entry from "t" that has not
already been returned by "i", and returns the pair ["k","v"]
corresponding to its key and value. If no entries remain, the call
returns "Ok". It is a checked runtime error to call "iteratorNext"
after it has returned "Ok". The client must ensure that while an
iterator is in use, the parent dictionary is not modified.

dict_iteratorInit (i: Iterator, t: Dict): Iterator
Reinitialize "i" to iterate over all the values of a dictionary "t".
Return "i"

WHERE
Dict is a dictionary
Iterator is a dictionary iterator

This module exposes a dictionary (implemented using a hash table) into Repo, whic

maps text keys to any Repo value. We decided to implement this as a module, rathe

extending the language to support associative arrays.

E.1.3 reflect

reflect_error: Exception
All(T) reflect_isArray(v: T): Bool

is v an array?
All(T) reflect_isObject(v: T): Bool

is v an object?
All(T) reflect_isClosure(v: T): Bool

is v a closure?
All(T) reflect_isException(v: T): Bool

221
is v an exception?
All(T) reflect_isMethod(v: T): Bool

is v a method?
All(T) reflect_isUpdateMethod(v: T): Bool

is v an update method?
All(T) reflect_isOption(v: T): Bool

is v an option?
All(T) reflect_isBasic(v: T): Bool

is v a basic value? (ok, Bool, Char, Text, Int, Real)
All(T) reflect_isNative(v: T): Bool

is v a native value? (an opaque value)
All(T) reflect_isAlias(v: T): Bool

is v an alias?
All(T) reflect_isLocal(v: T): Bool

is the location of v local to this site?
All(T) reflect_isProtected(v: T): Bool

is v a protected object?
All(T) reflect_isSerialized(v: T): Bool

is v a serialized object?
All(T) reflect_isSimple(v: T): Bool

is v a simple object?
All(T) reflect_isReplicated(v: T): Bool

is v a replicated object?
All(T) reflect_isRemote(v: T): Bool

is v a remote object?
All(T<:option(tag,val)) reflect_getOptionTag(o: T): tag

return the tag of the option
All(T<:option(tag,val)) reflect_getOptionVal(o: T): val

return the value of the option
All(T) reflect_getType(v: T): option(type,ok)

return an option whose label describes the type of v, and whose
value is ok

All(T) reflect_getTypedVal(v: T): option(type,v)
return an option whose label describes the type of v, and whose
value is v

All(T<:{}) reflect_getFieldTypes(v: T): [[Text,option(type,ok)]]
return an array describing the fields of v. Each array element is a
2 element array containing the field label and an option describing
its type. The value of the option is always ok.

All(T<:{}) reflect_getObjectType(v: T): option(objectType,v)
return an option created by appending all the option tags of the
fields of v using the text template "label=>tag" for each field
Obtaining the type of a remote object does not require the field
values to be copied to the local machine.

All(T<:{}) reflect_getObjectInterface(v: T): option(objectType,v)
similar to getObjectType, but only methods of v are included.

All(T<:{}) reflect_objectWho(v: T): Text
return the text that is used to identify the object v when it is
printed

All(T<:{}) reflect_getField(v: T, label: Text) ! reflect_error
get the named field from the object.

All(T<:{}) All(S) reflect_getFields(v: T): [[Text,S]] ! reflect_error
return an array of pairs of field labels and their values.

All(T<:{}) reflect_select(v: T, label: Text): S ! reflect_error
the same as calling 'v.label'.

All(T<:{}) All(S,U) reflect_update(v: T, label: Text, nv:S):U !
reflect_error

the same as calling 'v.label := nv'.
All(T<:{}) All(S,U) reflect_invoke(v: T, label: Text,

222

create

eth-
args: [S]): U !reflect_error
the same as calling 'v.label(args)', where args is expanded to an
arg list

All(T<:{}) All(S) reflect_newObject(v: ObjectType,
protected serialized: Bool,
who: Text, fields: [[Text,val]]): S

create a new object.
All(T,U) reflect_match(match: T, val: S): bool !reflect_error

Test to see if "val" matches "match", using the rules below.
WHERE

ObjectType = one of {"Remote","Replicated","Simple"}

A value "val" matches a "match" value if:
- "match is ok"
- "match is val"
- "val" is a text string and "match" is a regular expression that

matches all of it (ie. "val" matches "^" & match & "$")
- "match" is a regular expression that matches all of the option key

of "reflect_getType(val)"
- "match" is an option whose key is a regular expression matches all

of the option key of "reflect_getType(val)", and the value of the
option is either "ok" or also matches "val".

- "val" and "match" are objects, and for each field of "match",
"val" has a corresponding field whose contents are matched by the
contents of the field of "match".

- "val" and "match" are arrays of the same size, and each element of
the array matches

Here are the possible types strings of the basic Repo types:
"Var", "Var`Replicated", "Var`Simple", "Ok", "Bool", "Char", "Text",
"Int", "Real", "Option", "Alias", "Array`Remote", "Array`Replicated",
"Array`Simple", "Closure`#", "Method`#`Update", "Method`#",
"Object`Remote", "Object`Replicated", "Object`Simple", "Engine",
"Exception"

Opaque data types introduced by libraries have a type string of either
"ValAnything" or a value provided by the library.

This module adds reflection to Repo, as discussed in Appendix D.

E.1.4 replica

replica_failure: Exception
replica_fatal: Exception
All(T<:[replica]{}, S:[simple]{}) replica_notify(o: T, n: S): callback

! replica_failure
All(T<:[replica]{}) replica_cancelNotifier(cb: callback)
replica_flushIncomingUpdates(): Ok ! thread_alerted
replica_flushQueuedUpdates(): Ok ! thread_alerted

This module defines the replicated object exceptions, and provides the functions to

and destroy Shared Object callbacks in Repo. The callback is a simple object with m

223

rmed

ueue,

ack-
ods corresponding to the pre and post updates that the programmer wishes to be info

of. The module also exposes the Shared Object runtime routines to flush the update q

as described in Section 3.4.2.1.

E.2 New Modules for Modula-3 Packages

The modules in this section are new to Repo, but simply expose existing Modula-3 p

ages that we needed access to in Repo.

E.2.1 dir

dir_failure: Exception
dir_getAbsolutePathname(fs: FileSystem, p: Text): Text ! dir_failure

Return an absolute pathname referring to the same file or
directory as "p". The new pathname will not involve any symbolic
links or relative arcs (that is, occurrences of "path_parent" or
"path_current".

dir_createDirectory(fs: FileSystem, p: Text): Ok ! dir_failure
Create a directory named by "p".

dir_deleteDirectory(fs: FileSystem, p: Text): Ok ! dir_failure
Delete the directory named by "p". "dir_failure" is raised if the
directory contains entries (other than perhaps "path_current"
and "path_parent").

dir_deleteFile(fs: FileSystem, p: Text): Ok ! dir_failure
Delete the file or device named by "p". "dir_failure" is raised if
"p" names a directory.
Note: Under Win32, "DeleteFile" raises "dir_failure" if "p" is open.
Under POSIX, an open file may be deleted; the file doesn't actually
disappear until every link (path) for it is deleted.

dir_rename(fs: FileSystem, p0 p1: Text): Ok ! dir_failure
Rename the file or directory named "p0" as "p1".
Some implementations automatically delete an existing file named
"p1", others raise "dir_failure". Some implementations disallow a
rename where "p0" and "p1" name different physical storage devices
(different root directories or file systems).

dir_iterate(fs: FileSystem, p: Text): Iterator ! dir_failure
Return an iterator for the entries of the directory named by "p".
An "Iterator" supplies information about the entries in a
directory: names and, optionally, status. The iteration does not
include entries corresponding to "path_current" or "path_parent".

dir_iteratorNext(i: Iterator): [Text, Bool]
If more entries remain, returns ["n",True], with "n" set to the name
of the next one. It returns ["n",False], with "n" undefined, if no
more entries remain.

dir_iteratorNextWithStatus(i: Iterator): [Text, Bool, Status] !
dir_failure

If more entries remain, returns ["n",True,Status], with "n" set to
the name of the next one and "Status" set to its status (see
dir_status). It returns ["n",False,ok], with "n" undefined, if no

224

 are
more entries remain.
dir_iteratorClose(i: Iterator): Ok

The call "i.close()" releases the resources used by "i", after
which time it is a checked runtime error to use "i". Every
iterator should be closed.

dir_status(fs: FileSystem, p: Text): Status ! dir_failure
Return information about the file or directory named by "p".
The type field includes the values "Directory" for directories,
"RegularFile" for disk files,"Terminal" for terminals and "Pipe" for
pipes.

dir_setModificationTime(fs: FileSystem, p: Text, t: Real): Ok !
dir_failure

Change the modification time of the file or directory named by "p"
to "t".

WHERE
Iterator is a directory iterator
FileSystem is a file system. The local file system is available

through the predefined lexically scoped identifier "fileSys".
Status = {type => Text, modificationTime => Real, size => Int};

This module exposes the Modula-3 directory manipulation routines into Repo. Paths

specified in a OS independent fashion using thepath module (Section E.2.5).

E.2.2 http

http_error: Exception
http_notAuthorized: Exception
http_badQuery: Exception

http_logging(on: Bool): Ok
turn logging on and off

http_setDefaultViaFieldValue(v: Version, port: Int, alias: Text): Ok
generate and set the default viaFieldValue for the default style
This field MUST be set for proxies. If alias is not "", it is used
in place of the host name.

http_toText(h: Header, proxy: Bool): Text ! http_error
http_lookupField(h: Header, name value: TEXT): Field
http_addField(h: Header, field after: Field): Field
http_removeField(h: Header, field: Field): Bool
http_copyFields(from to: Header)
http_iterateFields(h: Header): FieldIterator
http_iterateNextField(i: FieldIterator): Field

http_newRequest(m: Method, url: URL, v: Version): Request
create a new request

http_parseRequest(rd: Rd): Request ! http_error
parse a request header from rd

http_writeRequest(r: Request, wr: Wr, proxyRequest: Bool) ! http_error
http_requestMethod(r: Request): Method
http_requestURL(r: Request): URL
http_requestVersion(r: Request): Version
http_requestPostData(r: Request): Text

225
http_version9: Version
http_version10: Version
http_version11: Version
http_currentVersion: Version

supported HTTP versions (0.9, 1.0, 1.1)

http_statusCode(status: HttpStatus): Int
http_statusReason(status: HttpStatus): Text

http_newReply(v: Version, code: Int, reason: Text): Reply
create a new reply

http_parseReply(rd: Rd): Reply ! http_error
parse a reply header from rd

http_writeReply(r: Reply, wr: Wr): Ok ! http_error
http_replyVersion(r: Reply): Version
http_replyCode(r: Reply): Int
http_replyReason(r: Reply): Text
http_writeSimpleReplyHeader(wr: Wr, code: Int, reason: Text): Ok !

http_error
http_writeRedirectReply(wr: Wr, url, htmlMsg: Text): Ok ! http_error

http_writeTime(wr: Wr, time: Real): Ok ! http_error
http_readTime(rd: Rd): Real ! http_error
http_setProgramInfo(prog: ProgramType, name: Text, auth: AuthType,

authRealm authAccount: Text): Ok
http_getProgramInfo(): {programType => ProgramType, name => Text,

authType => AuthType, authRealm => Text,
authAccount => Text}

http_newFormQuery(query: Text): FormQuery ! http_badQuery
http_newFormQueryFromRd(rd: Rd): FormQuery ! http_badQuery

parse a query from a text or rd
http_writeFormQuery(f: FormQuery, wr: Wr): Ok ! http_error

http_basicAuthField(account: Text, auth: AuthType): Field
create a Basic authorization field where account is "name:passwd"

http_authorizedRequest(r: Request, auth: AuthType,
account: Text): Bool ! http_error

check if request has a valid auth field for account
http_replyUnauthorized(wr: Wr, auth: AuthType, realm: Text,

defaultMsg: Bool): Ok ! http_error
write an "unauthorized" reply to wr for realm. If "defaultMsg",
write a simple message.

http_authorizationAccount(r: Request, auth: AuthType): Text !
http_error

return the authorization field
http_readBody(h: Header, rd: Rd, dest:(data:text)->Ok): Ok !

http_error
read the body from "rd" by calling "dest" as necessary

http_writeBody(h: Header, wr: Wr, src:(len:Int)->Text): Ok !
http_error

write the body to "wr" by calling "src" as necessary. the end of
the body is signified by "src" returning less than "len" characters

http_escapeURLEntry(entry: Text): Text
http_unescapeURLEntry(entry: Text): Text ! http_error
http_encodeTextForHTML(text: Text): Text
http_decodeTextForHTML(text: Text): Text ! http_error

226
http_getUserAgent(r: Request): [Text,Int]
return the agent name and version number

http_addProxy(rule: Text): Ok
add a rule to the proxy server list.
Rules are of the form "pattern <server>,[<server>]*"

http_anyPort: Int
http_anyService: Int
All(T) http_serve(port,service: Int, serverData: T): Ok ! http_error

enter wait loop for HTTP requests on "port". "serverData" is passed
to the "accept" and "request" methods of the RequestHandlers

http_serverPort(port,service: Int): Bool
return True if there has been a call on "serve" for "port"

http_client(r: Request, v: Version, rd: Rd, wr: Wr,
hander: (Reply,rd,wr)->Ok, service): Ok ! http_error

Make a client request or proxy a client request. The request is
made directly if the destination server does not match against the
noProxy list. Program information (user-agent, or via) and host
header is added automatically to the request. The contents of "rd"
are sent with the request. After "request" is sent to the server,
the header of the reply is parsed and "handler" is called with "wr"
for its output.

All(S,T) http_registerRequestHandler(port: Int, pr: Priority,
accept: (Request,S)->[T,Bool],
request: (Request,S,T,Rd,Wr)->Ok): Ok

Register a server request handler for a port. For an incoming
request, all handler "accept" procedures are called (in Priority
order) until one returns True. The corresponding "request"
procedure is then called. S is the "serverData" item passed to
http_serve. The "T" returned by "accept" is passed to "request".
The handler will only get called if "port" matches the server's port
or "port = AnyPort" or if "port" < 0 then "port" represents a
service type, and the request handler is invoked if "port" matches
the server's service type.

http_serverPushSupported(r: Request): Bool
http_serverPushFrame(wr: Wr, contentType, msg: Text): Ok ! http_error

http_rootForm: Form
Forms and Values provide an interface for applictions to be
controlled via an HTTP form interface. This returns the root
control form.

All(T) http_newForm(name: Text, accept: (Form,Request,Text)->[T,Bool],
respond: (Form,Request,FormQuery,Wr,T)->Ok !

http_notAuthorized): Ok
A specialized request handler for forms.

http_formName(f: Form): Text
http_iterateValues(f: Form): ValueIterator
http_iterateNextValue(i: ValueIterator): Value

Iterate the values of a form.
http_registerForm(f: Form, name url: Text, addToRoot: Bool): Ok

Register the form so that the form's accept procedure is called to
see if the form handles the request. If "addToRoot" the form
is added to the root form.

http_formLookup(name: Text): Form
returns the form registered under "name", or ok if there is no form
registered under that name.

http_newStaticForm(name url title: Text, hasButton register: Bool):
StaticForm

227
A StaticForm is a form that has a fixed URL for its address and
fixed contents (made up of values).

http_staticFormUrl(f: StaticForm): Text
http_staticFormAddValue(f: StaticForm, v: Value): Value

http_newValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
getText: (self,Request)->Text ! http_notAuthorized,
setText: (self,Request,Text)->Ok ! http_notAuthorized,
setDefault: (self,Request)->Ok ! http_notAuthorized,
writeFormItem: (self,Request,Wr)->Ok ! http_notAuthorized):

Value
a generic form value. getText and setText retrieve and set the text
representation of the value contents. setDefault restores the value
to its default state. writeFormItem writes the html form contents
to wr.

http_newContainerValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
getText: (self,Request)->Text ! http_notAuthorized,
setText: (self,Request,Text)->Ok ! http_notAuthorized,
setDefault: (self,Request)->Ok ! http_notAuthorized,
writeFormItem: (self,Request,Wr)->Ok ! http_notAuthorized,
setValues: (self,Request,FormQuery)->Ok ! http_notAuthorized):

ContainerValue
a generic form container value. getText and setText retrieve and set
the text representation of the value contents. setDefault restores
the value to its default state. writeFormItem writes the html form
contents to wr. setValues sets the container values from an HTTP
form query.

http_valueId(v: Value): Text
http_valueLeader(v: Value): Text
http_valueLabel(v: Value): Text
http_valueTrailer(v: Value): Text
http_valueEditable(v: Value): Boolean
http_setValueId(v: Value, id: Text): Text
http_setValueLeader(v: Value, leader: Text): Text
http_setValueLabel(v: Value, label: Text): Text
http_setValueTrailer(v: Value, trailer: Text): Text
http_setValueEditable(v: Value, editable: Bool): Bool

retrieve and set value attributes. The set functions return
their arguments.

http_valueText(v: Value,r: Request): Text ! http_notAuthorized
http_setValueText(v: Value, r: Request,

txt: Text): Ok ! http_error http_notAuthorized
Most kinds of values get be set from a text representation of their
value, which is how the forms are set from an HTTP POST.

http_valueSetDefault(v: Value, r: Request): Ok! http_error
http_notAuthorized

reset the value to its default.
http_writeFormItem(v: Value, r: Request,

wr: Wr): Ok ! http_error http_notAuthorized
http_setContainerValues(v: ContainerValue, r: Request,

q: FormQuery): Ok ! http_error http_notAuthorized
Set the subvalues of a container value from an HTTP query

http_newBooleanValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Bool ! http_notAuthorized,
set: (self,Request,Bool)->Ok ! http_notAuthorized): Value

228
http_newIntValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Int ! http_notAuthorized,
set: (self,Request,Int)->Ok ! http_notAuthorized): Value

http_newRealValue(id: Text, [leader label trailer]: [Text],
editable: Bool,
get: (self,Request)->Real ! http_notAuthorized,
set: (self,Request,Real)->Ok ! http_notAuthorized): Value

http_newImageValue(id: Text, [leader label trailer]: [Text],
get: (self,Request)->URL ! http_notAuthorized,
set: (self,Request,URL)->Ok ! http_notAuthorized): Value

an image
http_newUrlValue(id: Text, [leader label trailer]: [Text],

get: (self,Request)->Text ! http_notAuthorized,
set: (self,Request,Text)->Ok ! http_notAuthorized): Value

a link
http_newFormValue(id: Text, [leader label trailer]: [Text],

f: Form, name url: Text): Value
http_newMsgValue(leader trailer msg: Text): Value

a non-editable message
http_newChoiceValue(id: Text, [leader label trailer]: [Text],

editable: Bool,
names: [Text],
get: (self,Request)->Int ! http_notAuthorized,
set: (self,Request,Int)->Ok ! http_notAuthorized): Value

a list of alternatives
http_newTextValue(id: Text, [leader label trailer]: [Text],

editable: Bool,
scrollable: Bool, width height: Int,
get: (self,Request)->Text ! http_notAuthorized,
set: (self,Request,Text)->Ok ! http_notAuthorized): Value

a text area. It is may or may not be scrollable.
http_textValueDim(v: Value): [Bool,Int,Int] ! http_error
http_setTextValueDim(v: Value, scrollable: Bool,

 width height: Int): Ok! http_error
change the properties of the text area

http_newTableValue(id: Text, caption: Text,
values:[[Value]]): ContainerValue

http_tableValue(request: Request,
v: Value): [[Value]] ! http_error http_notAuthorized

http_setTable(request: Request, v: Value,
values: [[Value]]): Ok ! http_error http_notAuthorized
a table is a specific container value that creates an HTML Table.

WHERE
Request <: Header
Reply <: Header
FormQuery <: Header
ContainerValue <: Value
Method = Text(one of "OPTIONS", "GET", "POST", "PUT",

"DELETE", "HEAD", "TRACE", "CONNECT")
ProgramType = Text (one of "Client", "Proxy", "Server", "Tunnel")
AuthType = Text (one of "None", "Proxy", "Server")
Priority = Text (one of "High", "Normal", "Low")
Field = [Text,FieldValue]
FieldValue = Text or ok
Iterator = FieldIterator or ValueIterator
FieldOrValue = Field or Value

229

n of

data

sim-

nally
This module exposes the Modula-3 HTTP package into Repo. It supports the creatio

HTTP clients and servers, and includes support for authentication, getting and putting

to/from the servers, proxying and forms. The forms facility includes support for both

ple predefined forms, and more general forms creation. The HTTP package was origi

created as part of the Millicent project in electronic microcommerce at DEC SRC

[Manasse, 1995].

E.2.3 httpField

httpField_accept: Text
httpField_acceptCharset: Text
httpField_acceptEncoding: Text
httpField_acceptLanguage: Text
httpField_acceptRanges: Text
httpField_age: Text
httpField_allow: Text
httpField_authorization: Text
httpField_cacheControl: Text
httpField_connection: Text
httpField_contentBase: Text
httpField_contentEncoding: Text
httpField_contentLanguage: Text
httpField_contentLength: Text
httpField_contentLocation: Text
httpField_contentMD5: Text
httpField_contentRange: Text
httpField_contentType: Text
httpField_date: Text
httpField_eTag: Text
httpField_expires: Text
httpField_from: Text
httpField_host: Text
httpField_ifModifiedSince: Text
httpField_ifMatch: Text
httpField_ifNoneMatch: Text
httpField_ifRange: Text
httpField_ifUnmodifiedSince: Text
httpField_lastModified: Text
httpField_location: Text
httpField_maxForwards: Text
httpField_pragma: Text
httpField_proxyAuthenticate: Text
httpField_proxyAuthorization: Text
httpField_public: Text
httpField_range: Text
httpField_referer: Text
httpField_retryAfter: Text
httpField_server: Text
httpField_transferEncoding: Text
httpField_upgrade: Text

230

TTP
httpField_userAgent: Text
httpField_vary: Text
httpField_via: Text
httpField_warning: Text
httpField_WWWAuthenticate: Text

Return the text value of the field name. This interface is provided
to ensure only valid field names are used unless explicitely
intended.

The package is used by the HTTP package (Section E.2.2). It predefines all of the H

protocol field names.

E.2.4 httpStatus

httpStatus_continue: HttpStatus
httpStatus_switchingProtocols: HttpStatus
httpStatus_ok: HttpStatus
httpStatus_created: HttpStatus
httpStatus_accepted: HttpStatus
httpStatus_nonAuthoritative_Information: HttpStatus
httpStatus_noContent: HttpStatus
httpStatus_resetContent: HttpStatus
httpStatus_partialContent: HttpStatus
httpStatus_multipleChoices: HttpStatus
httpStatus_movedPermanently: HttpStatus
httpStatus_movedTemporarily: HttpStatus
httpStatus_seeOther: HttpStatus
httpStatus_notModified: HttpStatus
httpStatus_useProxy: HttpStatus
httpStatus_badRequest: HttpStatus
httpStatus_unauthorized: HttpStatus
httpStatus_paymentRequired: HttpStatus
httpStatus_forbidden: HttpStatus
httpStatus_notFound: HttpStatus
httpStatus_methodNotAllowed: HttpStatus
httpStatus_notAcceptable: HttpStatus
httpStatus_proxyAuthenticationRequired: HttpStatus
httpStatus_requestTimeout: HttpStatus
httpStatus_conflict: HttpStatus
httpStatus_gone: HttpStatus
httpStatus_lengthRequired: HttpStatus
httpStatus_preconditionFailed: HttpStatus
httpStatus_requestEntityTooLarge: HttpStatus
httpStatus_requestURITooLarge: HttpStatus
httpStatus_unsupportedMediaType: HttpStatus
httpStatus_internalServerError: HttpStatus
httpStatus_notImplemented: HttpStatus
httpStatus_badGateway: HttpStatus
httpStatus_serviceUnavailable: HttpStatus
httpStatus_gatewayTimeout: HttpStatus
httpStatus_httpVersionNotSupported: HttpStatus

WHERE
HttpStatus is a predefined HTTP Status code. The corresponding code

231

TTP
and textual reason can be obtained from the http interface.

The package is used by the HTTP package (Section E.2.2). It predefines all of the H

protocol status codes.

E.2.5 path

path_invalid: Exception
When a path with invalid syntax is passed to a procedure in
this interface not declared as raising the exception "invalid",
the result is undefined, but safe.

path_valid(fs: FileSystem, pn: Text): Bool
Return "True" iff "pn" conforms to the path syntax of this
operating system.

path_decompose(fs: FileSystem, pn: Text): [Text] ! path_invalid
Parse "pn", returning a sequence whose first element is a root
directory name (possibly "") and whose remaining elements
consist of zero or more arc names. Raise "path_invalid" if
"path_valid(pn)" is "False". "path_decompose" returns exactly the
sequence of arc names present in "pn"; it doesn't attempt to produce
a canonical form. Some operating systems allow zero-length arc
names.

path_compose(fs: FileSystem, arcs: [Text]): Text ! path_invalid
Combine the elements of "arcs" to form a path corresponding to the
syntax of this operating system. Raise "path_invalid" if "arcs" is
[], if "arcs[0]" is neither "" nor a valid root directory name, or
if one of the elments of "arcs" is not a valid arc name.

path_absolute(fs: FileSystem, pn: Text): Bool
Return "True" iff "pn" is an absolute path. Equivalent to
"not(text_equal(path_decompose(pn)[0],""))", but faster.

path_prefix(fs: FileSystem, pn: Text): Text
Return a path equal to "pn" up to, but not including, the final
arc name. If "pn" consists only of a root directory name,
"path_prefix(pn)" returns "pn".

path_last(fs: FileSystem, pn: Text): Text
Return the final arc name in "pn". If "pn" consists only of a root
directory name, "path_last(pn)" returns the empty string.

path_base(fs: FileSystem, pn: Text): Text
Return a path equal to "pn" except with "path_last(pn)" replaced by
its base.

path_join(fs: FileSystem, pn base ext: Text): Text
Return a path formed by prepending "pn" to "base" (if "pn" is
not "") and appending "ext" to "base" (if "ext" is not "").
More precisely, this is equivalent to the following, in which "a"
is an array of Text:

if text_equal(pn, "") then a := [];
else

if path_absolute(base) then `Cause checked runtime error` end;
a := path_decompose(pn);

end;
if text_length(ext) > 0 then base := base & "." & ext end;
let ba = path_decompose(base);

path_compose(a @ ba[1 for (#(ba)-1)]);

232

mod-
The value returned by "path_join" will be a valid path only if the
"base" and "ext" conform to the syntax of the particular operating
system.

path_lastBase(fs: FileSystem, pn: Text): Text
Return the base of the final arc name of "pn". It is a checked
runtime error if "pn" is empty or consists only of a root directory
name.

path_lastExt(fs: FileSystem, pn: Text): Text
Return the extension of the last arc name of "pn". It is a checked
runtime error if "pn" is empty or consists only of a root directory
name.

path_replaceExt(fs: FileSystem, pn ext: Text): Text
Return a path equal to "pn" except with the extension of the
final arc name replaced with "ext", which must not be "".

path_parent(fs: FileSystem): Text
A special arc name that, when encountered during a path lookup,
stands for the parent of the directory currently being examined.

path_current(fs: FileSystem): Text
A special arc name that, when encountered during a path lookup,
stands for the directory currently being examined.

path_searchSeparator(fs: FileSystem): Text
The search path separator charactor, used for appending multiple
paths together.

path_separator(fs: FileSystem): Text
The path separator charactor. Used to separate the arcs in a path.

This module exposes the Modula-3 path manipulation routines into Repo. The path

ule is used to manipulate pathnames in an operating system independent way.

E.2.6 random

random_int(min, max: Int): Int
random_real(min, max: Real): Real

return a random number in the range [min, max]

The module exposes the Modula-3 random number generator into Repo.

E.2.7 regex

regex_error: Exception
regex_compile(pat: Text): Pattern ! regex_error

compile a regular expression string into an regular expression
Pattern

regex_decompile(pat: Pattern): Text
decompile an executable Pattern into the original regular expression

regex_dump(pat: Pattern): Text
dump an executable Pattern into a readable text string for debugging

regex_execute(pat: Pattern, text: Text): Int

233

ckage
compare the regular expression 'pat' against the text data returning
the starting position in 'data' if there was a match, -1 otherwise.

regex_executeRes(pat: Pattern, text: Text): [[Int,Int]] or ok
if there is a match, return indices for the (..) sequences.
Otherwise, return ok.

regex_executeSub(pat: Pattern, text: Text, start len: Int): Int
regex_executeSubRes(pat:Pattern, text:Text,

start len:Int): [[Int,Int]] or ok
consider only text_sub(text,start,len) portion of 'text'

This module exposes the regular expression package into Repo. This is the regex pa

that is also used to implement the regular expression matching in the Repocase state-

ment, and in thereflect module.

E.2.8 tcp

tcp_error: Exception
tcp_getHostByName(name: Text): Ok or Address ! tcp_error

look up the IP address of a host. Return Ok if the host cannot be
found

tcp_getCanonicalByName(name: Text): Text ! tcp_error
tcp_getCanonicalByAddr(addr: Address): Text ! tcp_error

return the canonical host name
tcp_getHostAddr(): Address

return one of this hosts address
tcp_newConnector(ep: Endpoint): Connector ! tcp_error

the address portion should be zeros or a valid IP address of this
host. if the port is zero, a free one will be chosen. Use
getEndpoint to find out which one

tcp_getEndPoint(conn: Connector): Endpoint
get the endpoint of the Connector

tcp_closeConnector(conn: Connector)
close the Connector

tcp_connect(ep: Endpoint): T ! tcp_error thread_alerted
connect to some TCP address

tcp_accept(conn: Connector): T ! tcp_error thread_alerted
accept an incoming connection on a Connector

tcp_close(tcp: T)
close a TCP connection

tcp_eof(tcp: T)
returns "True" if and only if there are no more bytes to be read
from this connection, and the connection indicates end-of-file (e.g.
the other side closed it.

tcp_startConnect(ep: Endpoint): T ! tcp_error
initiate a request to connect to the destination specified by "ep".

tcp_finishConnect(tcp: T, waitFor: Real): Bool ! tcp_error
thread_alerted

returns a "Bool" to indicate if a connection request initiated via
"startConnect" has successfully completed. A result of "True"
indicates that it has. "False" means that the connection request is
still outstanding. If "waitFor" is negative, then "finishConnect"
waits indefinitely until the operation completes, otherwise it waits

234

P-

muni-

xam-
for a maximum of "waitFor" seconds. The caller should continue to
call this procedure until it either returns "True" or raises an
error.

tcp_getPeer(tcp: T): Endpoint ! tcp_error
return the peer endpoint for TCP connection.

tcp_getPeerName(tcp: T): Text ! tcp_error
return the peer name for TCP connection.

tcp_matchPeer(tcp: T, addr: Address, maskBits: MaskBits): Bool !
tcp_error

returns "True" if the first maskBits bits of peer's endpoint address
match the given address.

tcp_localEndpoint(tcp: T): Endpoint ! tcp_error
return the local Endpoint of a TCP connection.

tcp_getRd(tcp: T): Rd
get a reader on the TCP connection

tcp_getWr(tcp: T): Wr
get a writer on the TCP connection

WHERE
MastBits = [0 .. 32]
Address = [Int,Int,Int,Int]

A valid IP address
Endpoint = [Int,Int,Int,Int,Int]

A valid IP address and port number
Connector = an opaque TCP connector

In this module, we expose the Modula-3 TCP and IP modules. This allows simple TC

based communication to be implemented at the Repo level, which is needed to com

cate with other, non-Modula-3 programs. We used this module in the Shared Sketch e

ple, in Section 6.2, to communicate with the Brown Sketch system.

E.2.9 url

url_new(textRep: Text): URL
url_newFromRd(rd: Rd): URL
url_toText(url: URL, f: Format): Text
url_equivalent(url1,url2: URL): Bool
url_local(url: URL, service: Int): Bool
url_derelativize(self, root: URL): URL
url_absPath(url: URL): Bool
url_scheme(url: URL): Text
url_host(url: URL): Text
url_port(url: URL): Int
url_path(url: URL): Text
url_params(url: URL): Text
url_query(url: URL): Text
url_fragment(url: URL): Text

WHERE
Format = Text(one of "Default", "Canonical", "BodyOnly")

235

y of

cant)
This module is used with the HTTP module (Section E.2.2) to provide a high-level wa

manipulating URLs.

E.2.10 word

word_bitnot(w: Int): Int
the bitwise not of w.

word_bitand(w1 w2: Int): Int
the bitwise and of w1 and w2.

word_bitor(w1 w2: Int): Int
the bitwise or of w1 and w2.

word_bitxor(w1 w2: Int): Int
the bitwise xor of w1 and w2.

word_bitshift(w n: Int): Int
the bitwise shift of w by n bits.

word_bitrotate(w n: Int): Int
the bitwise rotate of w by n bits.

The word module exposes the Modula-3 bitwise word manipulation operators.

E.3 Changed Modules

The modules in this section existed in Obliq, but were enhanced in (sometimes signifi

ways in Repo.

E.3.1 array

[e1, ..., en]: [T]
(for e1...en: T). Creates a remote array.

All(T) array_new(size: Int, init: T): [T]
All(T) array_newRemote(size: Int, init: T): [T]
All(T) array_newReplicated(size: Int, init: T): [T]
All(T) array_newSimple(size: Int, init: T): [T]

A remote, replicated or simple array of size 'size', all filled
with 'init'. 'new' is a shorthand for 'newRemote'.

All(T) array_gen(size: Int, proc: (Int)->T): [T]
All(T) array_genRemote(size: Int, proc: (Int)->T): [T]
All(T) array_genReplicated(size: Int, proc: (Int)->T): [T]
All(T) array_genSimple(size: Int, proc: (Int)->T): [T]

A remote, replicated or simple array of size 'size', filled with
'proc(i)' for 'i' between '0' and 'size-1'. 'new' is a shorthand
for 'genRemote'

All(T) array_#(a: [T]): Int ! net_failure
(also '#(a)') Size of an array.

All(T) array_get(a: [T], i: Int): T ! net_failure

236

rent

re-
(also 'a[i]') The i-th element (if it exists), zero-based.
All(T) array_set(a: [T], i: Int, b: T): Ok ! net_failure

(also 'a[i]:=b') Update the i-th element (if it exists).
All(T) array_sub(a: [T], i: Int, n: Int): [T] ! net_failure

(also 'a[i for n]') A new array, of the same kind as 'a', filled
with the elements of 'a' beginning at 'i', and of size 'n' (if it
exists).

All(T) array_upd(a: [T], i: Int, n: Int, b: [T]): Ok ! net_failure
(also 'a[i for n]:=b') Same as 'a[n+i]:=b[n]; ... ; a[i]:=b[0]'.
I.e. 'a[i for n]' gets 'b[0 for n]'.

All(T) array_@(a1: [T], a2: [T]): [T] ! net_failure
(also infix '@') A new array, of the same kind as 'a1', filled with
the concatenation of the elements of 'a1' and 'a2'.

A set of new constructor functions was added to this module to create arrays with diffe

distribution semantics.

E.3.2 fmt

fmt_padLft(t: Text, length: Int): Text
If t is shorted then length, pad t with blanks on the left so that
it has the given length.

fmt_padRht(t: Text, length: Int): Text
If t is shorted then length, pad t with blanks on the right so that
it has the given length.

fmt_bool(b: Bool): Text
Convert a boolean to its printable form.

fmt_int(n: Int): Text
Convert an integer to its printable form.

fmt_real(r: Real): Text
Convert a real to its printable form.

fmt_realPrec(r: Real, prec: Int): Text
Convert a real to its printable form. Use a maximum precision of
"prec"

ThereadPrec routine was added to allow real numbers to be formatted with a fixed p

cision.

E.3.3 lex

lex_failure: Exception
lex_scan(r: Rd, t: Text): Text ! rd_failure thread_alerted

Read from r the longest prefix formed of characters listed in t, and
return it.

lex_scanNonBlanks(r: Rd): Text ! rd_failure thread_alerted
Read from r the longest prefix formed of characters nonblank
characters, which means any in the range {'!' .. '~'), and return

237

ou-

tine
it.
lex_skip(r: Rd, t: Text): Ok ! rd_failure thread_alerted

Read from r the longest prefix formed of characters listed in t, and
discard it.

lex_skipBlanks(r: Rd): Ok ! rd_failure thread_alerted
Read from r the longest prefix formed of blanks, which means any of
{' ', '', '

lex_match(r: Rd, t: Text): Ok ! lex_failure rd_failure thread_alerted
Read from r the string t and discard it; raise failure if not found.

lex_bool(r: Rd): Bool ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read a boolean from r.

lex_int(r: Rd): Int ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read an integer from r.

lex_real(r: Rd): Real ! lex_failure rd_failure thread_alerted
Skip blanks, and attempt to read a real from r.

Thescan , scanNonBlanks , skip , andskipBlanks routines were added to make

this module more useful.

E.3.4 net

net_failure: Exception
All(T) net_who(o: T): Text ! net_failure thread_alerted

Return a text indicating where a network object or engine is
registered, or the empty text if the argument is an object that has
not been registered with a name server.

All(T<:{}) net_export(name: Text, server: Text, o: T): T
! net_failure thread_alerted
Export an object under name 'name', to the name server at IP address
'server'. The empty text denotes the local IP address.

Some(T<:{}) net_import(name: Text, server: Text): T
! net_failure thread_alerted
Import the object of name 'name', from the name server at IP address
'server'. The empty text denotes the local IP address.

All(T) net_exportEngine(name: Text, server: Text, arg: T): Ok
! net_failure thread_alerted
Export an engine under name 'name', to the name server at IP address
'server'. The empty text denotes the local IP address. The 'arg' is
given as an argument to all procedures received by the engine to
execute.

Some(T)All(U) net_importEngine(name: Text, server: Text): ((T)->U)->U
! net_failure thread_alerted
Import the object of name 'name', from the name server at IP
address 'server'. The empty text denotes the local IP address.

net_setSiteName(name: Text): Text ! net_failure thread_alerted
net_setDefaultSequencer(host name: Text): Ok ! net_failure

thread_alerted

We added two routines to thenet module to support the Shared Object runtime. The r

tinesetSiteName is used to assign a symbolic name to the current process. The rou

238

m-

d

on

ns

for
setDefaultSequencer defines the sequencer for this process by specifying its sy

bolic name and the host on which it resides.

E.3.5 os

os_error: Exception
A generic operating system exception, raise by various libraries.

os_type: Text
A string describing the general type of this OS. Currently, one of
"POSIX" or "WIN32".

os_target: Text
The Modula-3 build target for this process. Examples include
"HPPA", "NT386", "SOLgnu", "SOLsun", "IRIX5, and "LINUXELF".

os_newPipe(): [Wr,Rd] ! os_error
Create a new channel allowing bytes written to the "Wr" to be read
from "Rd".

We added two constants to theos module,type andtarget . These are Modula-3 con-

stants that identify the operating system as Unix (“POSIX”) or Windows (“WIN32”), an

identify the specific variation of the operating system (for example, “HPPA” is HP-UX

the HPPA processor, and “LINUXELF” is Linux with ELF object files.) These variatio

are guidelines, as (for example) “NT386” is the only version of the Windows compiler

the x86 architecture, but it runs on both NT and Windows95.

We also added a function to create a local pipe.

E.3.6 process

process_new(pr: Processor, nameAndArgs: [Text], mergeOut: Bool,
wd: Text): Process ! os_error

Create a process from a processor and the given process name and
arguments. The local processor is available as the lexically scoped
identifier "processor". If mergeOut is true, use a single pipe for
stdout and stderr. If "wd" is not "", it specifies the working
directory for the process.

process_id(p: Process): Int
Get the process id of the process 'p'

process_myId: Int
The process id of this process

process_in(p: Process): Wr
The stdin pipe of a process.

process_out(p: Process): Rd
The stdout pipe of a process.

process_err(p: Process): Rd

239

epo

et
The stderr pipe of a process.
process_complete(p: Process): Int

Wait for the process to exit, close all its pipes, and return the
exit code

process_filter(pr: Processor, nameAndArgs: [Text], wd: Text,
input:Text):Text ! net_failure os_error

Create a process from a processor and the given process name and
arguments. The local processor is available as the lexically scoped
identifier "processor". The stderr output is merged to stdout.
If "wd" is not "", it specifies the working directory for the
process.
Usage: feed the input to its stdin pipe and close it; read all the
output from its stdout pipe and close it; return the output.

process_getWorkingDirectory(pr: Processor): Text ! os_error
The current working directory of this process.

process_setWorkingDirectory(pr: Processor, dir: Text) ! os_error
Change then current working directory of this process.

We added the facilities to get the ID of a process created with this interface, or of the R

process specified by theprocessor argument. We also added the ability to get and s

the current working directory of the Repo process specified by theprocessor argu-

ment.

E.3.7 sys

All(T) sys_copy(x: T): T ! net_failure
(also 'copy(x)') Make a local copy of a value, including most
distributed values.

sys_address: Text
Return network the address of this process.

sys_getEnvVar(t: Text): Text
Return the value of the env variable whose name is t, or "" if there
is no such variable.

sys_paramCount: Int
The number of program parameters.

sys_getParam(n: Int): Text
Return the n-th program parameter (indexed from 0).

sys_callFailure: Exception
Can be raised by Modula-3 code during a sys_call.

Some(T)Some(U) sys_call(name: Text, args: [T]): U ! sys_callFailure
Call a pre-registered Modula-3 procedure.

sys_timeNow: Real
The current time

sys_timeGrain: Real
The time clock granularity

sys_timeShort(t: Real): Text
A short formated representation of time "t"

sys_timeLong(t: Real): Text
A long formated representation of time "t"

sys_registerExitor (proc: ()->ok): ok
Provide a proc to be called when the process exits. The proc takes

240

We

ocess
no arguments and the return value is ignored.

We added the ability to retrieve environment variables and the system time (in both

numeric and text formats), including an indication of the granularity of the time clock.

also added the ability to register Repo functions that should be executed when the pr

terminates.

E.3.8 text

t: Text
A string in double quotes.

text_new(size: Int, init: Char): Text
A text of size 'size', all filled with 'init'.

text_empty(t: Text): Bool
Test for empty text.

text_length(t: Text): Int
Length of a text.

text_equal(t1: Text, t2: Text): Bool
Text equality (case sensitive).

text_char(t: Text, i: Int): Char
The i-th character of a text (if it exists); zero-indexed.

text_sub(t: Text, start: Int, size: Int): Text
The subtext beginning at 'start', and of size 'size' (if it exists).

text_&(t1: Text, t2: Text): Text
(also infix '&') The concatenation of two texts.

text_precedes(t1: Text, t2: Text): Bool
Whether 't1' precedes 't2' in lexicographic (ascii) order.

text_decode(t: Text): Text
Every occurrence of an escape sequence is replaced by the
corresponding non-printing formatting character: \\ = \; \' = ';
\" = "; \n = LF; \r = CR; \t = HT; \f = FF; \t = HT;
\xxx = xxx (octals 000..177); \c = c (otherwise).

text_encode(t: Text): Text
Every occurrence of a non-printing formatting character is replaced
by an escape sequence.

text_explode(seps: Text, t: Text): [Text]
Splits an input text into a similarly ordered array of texts, each a
maximal subsequence of the input text not containing sep chars. The
empty text is exploded as a singleton array of the empty text. Each
sep char in the input produces a break, so the size of the result is
1 + the number of sep chars in the text.
implode(explode("c",text),'c') is the identity.

text_implode(sep: Char, a: [Text]): Text ! net_failure
Concatenate an array of texts into a single text, separating the
pieces by a single sep char. A zero-length array is imploded as the
empty text. explode("c",implode('c',text)) is the identity
provided that the array has positive size and sep does not occur in
the array elements.

text_hash(t: Text): Int
A hash function.

text_toInt(t: Text): Int

241
Convert a text to an integer (see also fmt_).
text_fromInt(n: Int): Text

Convert an integer to a text (see also lex_).
text_findFirstChar(c: Char, t: Text, n: Int): Int

The index of the first occurrence of 'c' in 't', past 'n'. -1 if not
found.

text_findLastChar(c: Char, t: Text, n: Int): Int
The index of the last occurrence of 'c' in 't', before 'n'. -1 if
not found.

text_findFirst(p: Text, t: Text, n: Int): Int
The index of the first char of the first occurrence of 'p' in 't',
past 'n'. -1 if not found.

text_findLast(p: Text, t: Text, n: Int): Int
The index of the first char of the last occurrence of 'p' in 't',
before 'n'. -1 if not found.

text_replaceAll(old: Text, new: Text, t: Text): Text
Replace all occurrences of 'old' by 'new' in 't', as found by
iterating 'findFirst'.

text_toUpper(t: Text): Int
Return a text with all the lower case letters converted to upper
case ones.

text_toLower(t: Text): Int
Return a text with all the upper case letters converted to lower
case ones.

We added the conversions to upper or lower case.

E.3.9 thread

thread_mutex(): Mutex
(also 'mutex()') A new mutex.

thread_condition(): Condition
(also 'condition()') A new condition.

Some(T) thread_self(): Thread(T)
The current thread.

thread_id(th: Thread(T)): Int
The id of the thread.

thread_yield(): Ok
If there are other threads ready to run, transfer control to one
of them; otherwise continue with the current thread.
Implementation note: the exact semantics of "yield" varies widely
from system to system. You shouldn't use it without consulting the
detailed documentation for your implementation.

All(T) thread_fork(f: ()->T, stackSize: Int): Thread(T)
(also 'fork(f,n)') Fork a new thread executing f. If stackSize is
zero, a small default size is used.

All(T) thread_join(th: Thread(T)): T
(also 'join(th)') Wait for a thread to complete, and return the
result of its procedure.

thread_wait(mx: Mutex, cd: Condition): Ok
(also 'wait(mx,cd)') Wait on a mutex and a condition.

thread_acquire(mx: Mutex): Ok
Acquire a mutex (use lock ... end instead).

thread_release(mx: Mutex): Ok

242

.1.

o

po.
Release a mutex (use lock ... end instead)
thread_broadcast(cd: Condition): Ok

(also 'broadcast(cd)') Wake-up to all threads waiting on a
condition.

thread_signal(cd: Condition): Ok
(also 'signal(cd)') Wake-up at least one thread waiting on a
condition.

thread_pause(r: Real): Ok
(also 'pause(r)') Pause the current thread for r seconds.

All(T) thread_lock(m: Mutex, body: ()->T): T
Execute under a locked mutex (use lock ... end instead).

thread_alerted: Exception
(See the threads spec.)

All(T) thread_alert(t: Thread(T)): Ok
(See the threads spec.)

thread_testAlert(): Bool
(See the threads spec.)

thread_alertWait(mx: Mutex, cd: Condition): Ok ! thread_alerted
(See the threads spec.)

All(T) thread_alertJoin(th: Thread(T)): Ok ! thread_alerted
(See the threads spec.)

thread_alertPause(r: Real): Ok ! thread_alerted
(See the threads spec.)

thread_pool(maxThreads maxIdleThreads stackSize: int): WorkerPool
create a new thread worker pool, with at most maxThreads active
threads, maxIdleThreads idle threads. If stackSize is zero, a
small default size is used.

thread_addWork(pool: WorkerPool, work: ()->ok): Ok
add a piece of work to the work queue for the thread pool. work
is represented by a procedure that performs the work

thread_stealWorker(pool: WorkerPool): Bool
steal a worker thread from a worker pool. Removes the current
thread from the list of threads performing work for the pool
(allowing another to be created). If a piece of work will require
a thread to be idle for a long period of time, this function can be
called.

thread_finish(pool: WorkerPool): Ok
wait for all the work in the thread pool work queue to be finished.

We added support to thethread module for thread pools, as described in Section 3.4.2

A thread pool is created withthread_pool , and work objects are added to the pool’s

work queue withthread_addWork . Work is represented as a function closure with n

arguments whose return value is ignored.

E.4 Unchanged Modules

The modules in this section were present in Obliq and have not been changed in Re

They are included here for reference.

243
E.4.1 bool

true: Bool
The constant true.

false: Bool
The constant false.

All(T)All(U) bool_is(x: T, y: U): Bool
(also infix 'is') Identity predicate: value equality for
Ok, Bool, Int, Real, Char, Text, Exception; pointer equality
otherwise.

All(T)All(U) bool_isnot(x: T, y: U): Bool
(also infix 'isnot') Negation of 'is'.

bool_not(b: Bool): Bool
(also 'not(b)')

bool_and(b1: Bool, b2: Bool): Bool
(also infix 'and')

bool_or(b1: Bool, b2: Bool): Bool
(also infix 'or')

E.4.2 char

c: Char
A character in single quotes.

ascii_char(n: Int): Char
The ascii character of integer code 'n'.

ascii_val(c: Char): Int
The integer code of the ascii character 'c'.

E.4.3 color

color_named(name: Text): Color
Get a color from its name (see the ColorName M3 interface).

color_rgb(r: Real, g: Real, b: Real): Color
Get a color from rgb (each 0.0 .. 1.0).

color_hsv(hr: Real, sr: Real, v: Real): Color
Get a color from hsv (each 0.0 .. 1.0).

color_r(c: Color): Real
The red color component.

color_g(c: Color): Real
The green color component.

color_b(c: Color): Real
The blue color component.

color_h(c: Color): Real
The hue color component.

color_s(c: Color): Real
The saturation color component.

color_v(c: Color): Real

244
The value color component.
color_brightness(c: Color): Real

The total brightness (0.0 .. 1.0).

E.4.4 form

form_failure: Exception
form_new(t: Text): Form ! form_failure

Read a form description from a text.
form_fromFile(file: Text): Form ! form_failure thread_alerted

Read a form description from a file.
form_attach(fv: Form, name: Text, f: (Form)->Ok): Ok ! form_failure

Attach a procedure to an event, under a form. The procedure is
passed back the form when the event happens.

form_getBool(fv: Form, name: Text, property: Text): Bool !
form_failure

Get the boolean value of the property of the named interactor.
(Do not confuse with form_getBoolean.)

form_putBool(fv: Form, name: Text, property: Text, b: Bool): Ok
! form_failure
Set the boolean value of the named property of the named interactor.
(Do not confuse with form_putBoolean.)

form_getInt(fv: Form, name: Text, property: Text): Int ! form_failure
Get the integer value of the named property of the named interactor.
If property is the empty text, get the ÒvalueÓ property.

form_putInt(fv: Form, name: Text, property: Text, n: Int): Ok
! form_failure

Set the integer value of the named property of the named interactor.
If property is the empty text, set the ÒvalueÓ property.

form_getText(fv: Form, name: Text, property: Text): Text !
form_failure

Get the text value of the named property of the named interactor. If
property is the empty text, get the ÒvalueÓ property.

form_putText(fv: Form, name: Text, property: Text, t: Text,
append: Bool): Ok ! form_failure

Set the text value of the named property of the named interactor. If
property is the empty text, set the ÒvalueÓ property.

form_getBoolean(fv: Form, name: Text): Bool ! form_failure
Get the boolean value of the named boolean-choice interactor.

form_putBoolean(fv: Form, name: Text, b: Bool): Ok ! form_failure
Set the boolean value of the named boolean-choice interactor.

form_getChoice(fv: Form, radioName: Text): Text ! form_failure
Get the choice value of the named radio interactor.

form_putChoice(fv: Form, radioName: Text, choiceName: Text): Ok
! form_failure
Set the choice value of the named radio interactor.

form_getReactivity(fv: Form, name: Text): Text ! form_failure
Get the reactivity of the named interactor. It can be "active",
"passive", "dormant", or "vanished".

form_putReactivity(fv: Form, name: Text, r: Text): Ok ! form_failure
Set the reactivity of the named interactor. It can be "active",
"passive", "dormant", or "vanished".

form_popUp(fv: Form, name: Text): Ok ! form_failure
Pop up the named interactor.

245
form_popDown(fv: Form, name: Text): Ok ! form_failure
Pop down the named interactor.

form_numOfChildren(fv: Form, parent: Text): Int ! form_failure
Return the number of children of parent.

form_child(fv: Form, parent: Text, n: Int): Text ! form_failure
Return the n-th child of parent.

form_childIndex(fv: Form, parent: Text, child: Text): Int !
form_failure

Return the index of the given child of parent.
form_insert(fv: Form, parent: Text, t: Text, n: Int): Ok !

form_failure
Insert the form described by t as child n of parent.

form_move(fv: Form, parent: Text, child: Text, toChild: Text,
before: Bool): Ok ! form_failure

Move child before or after toChild of parent; after "" means first,
before "" means last.

form_delete(fv: Form, parent: Text, child: Text): Ok ! form_failure
Delete the named child of parent.

form_deleteRange(fv: Form, parent: Text, n: Int, count: Int): Ok
! form_failure
Delete count children of parent, from child n.

form_takeFocus(fv: Form, name: Text, select: Bool): Ok ! form_failure
Make the named interactor acquire the keyboard focus, and optionally
select its entire text contents.

form_show(fv: Form): Ok ! form_failure
Show a window containing the form on the default display.

form_showAt(fv: Form, at: Text, title: Text): Ok ! form_failure
Show a window containing the form on a display. For an X display,
at=<machine name>(':'|'::')<num>(''|'.'<num>); at="" is the default
display. The title is shown in the window header.

form_hide(fv: Form): Ok ! form_failure
Hide the window containing the form.

This module is used to manipulate the Modula-3 Trestle windowing system

[Manasse, 1993].

E.4.5 int

n: Int
Positive integer constants.

~n: Int
Negative integer constants.

int_minus(n: Int): Int
Integer negation.

int_+(n1: Int, n2: Int): Int
Integer addition.

int_-(n1: Int, n2: Int): Int
Integer difference.

int_*(n1: Int, n2: Int): Int
Integer multiplication.

int_/(n1: Int, n2: Int): Int
Integer division.

int_%(n1: Int, n2: Int): Int

246
(also infix '%') Integer modulo.
int_<(n1: Int, n2: Int): Bool

Integer less-than predicate.
int_>(n1: Int, n2: Int): Bool

Integer greater-than predicate.
int_<=(n1: Int, n2: Int): Bool

Integer no-greater-than predicate.
int_>=(n1: Int, n2: Int): Bool

Integer no-less-than predicate.

E.4.6 math

math_pi: Real
3.1415926535897932384626433833.

math_e: Real
2.7182818284590452353602874714.

math_degree: Real
0.017453292519943295769236907684; 1 degree in radiants.

math_exp(n: Real): Real
e to the n-th power.

math_log(n: Real): Real
log base e.

math_sqrt(n: Real): Real
Square root.

math_hypot(n: Real, m: Real): Real
sqrt((n*n)+(m*m)).

math_pow(n: Real, m: Real): Real
n to the m-th power.

math_cos(n: Real): Real
Cosine in radians.

math_sin(n: Real): Real
Sine in radians.

math_tan(n: Real): Real
Tangent in radians.

math_acos(n: Real): Real
Arc cosine in radians.

math_asin(n: Real): Real
Arc sine in radians.

math_atan(n: Real): Real
Arc tangent in radians.

math_atan2(n: Real, m: Real): Real
Arc tangent of n/m in radians.

E.4.7 online

All(T) sys_print(x: T, depth: Int): Ok
Print an arbitrary value to stdout, up to some print depth. (Only
available on-line.)

sys_printText(t: Text): Ok

247
Print a text to stdout. (Only available on-line.)
sys_printFlush(): Ok

Flush stdout. (Only available on-line.)
sys_pushSilence(): Ok

Push the silence stack; when non-empty nothing is printed. (Only
available on-line.)

sys_popSilence(): Ok
Pop the silence stack (no-op on empty stack). (Only available
on-line.)

sys_setPrompt(first: Text, next: Text): Ok
Set the interactive prompts (defaults: first="- ", next=" "). (Only
available on-line.)

sys_getSearchPath(): Text
Get the current search path for 'load' and such. (Only available
on-line.)

sys_setSearchPath(t: Text): Ok
Set the current search path for 'load' and such. (Only available
on-line.)

E.4.8 pickle

pickle_failure: Exception
All(T) pickle_write(w: Wr, v: T): Ok

! pickle_failure wr_failure thread_alerted
Copy a value to a writer, similarly to sys_copy.

Some(T) pickle_read(r: Rd): T
! pickle_failure rd_failure rd_eofFailure thread_alerted
Copy a value from a reader, similarly to sys_copy.

E.4.9 rd

rd_failure: Exception
rd_eofFailure: Exception
rd_new(t: Text): Rd

A reader on a text (a Modula-3 TextRd).
rd_stdin: Rd

The standard input (the Modula-3 Stdio.Stdin).
rd_open(fs: FileSystem, t: Text): Rd ! rd_failure

Given a file system and a file name, returns a reader on a file
(a Modula-3 FileRd, open for read). The local file system is
available through the predefined lexically scoped identifier
"fileSys". Moreover, "fileSysReader" is a read-only local file
system.

rd_getChar(r: Rd): Char ! rd_failure rd_eofFailure thread_alerted
Get the next character from a reader.

rd_eof(r: Rd): Bool ! rd_failure thread_alerted
Test for the end-of-stream on a reader.

rd_unGetChar(r: Rd): Ok
Put the last character obtained by getChar back into the reader

248
(unfortunately, it may crash if misused!).
rd_charsReady(r: Rd): Int ! rd_failure

The number of characters that can be read without blocking.
rd_getText(r: Rd, n: Int): Text ! rd_failure thread_alerted

Read the next n characters, or at most n on end-of-file.
rd_getLine(r: Rd): Text ! rd_failure rd_eofFailure thread_alerted

Read the next line and return it without including the end-of-line
character.

rd_index(r: Rd): Int
The current reader position.

rd_length(r: Rd): Int ! rd_failure thread_alerted
Length of a reader (including read part).

rd_seek(r: Rd, n: Int): Ok ! rd_failure thread_alerted
Reposition a reader.

rd_close(r: Rd): Ok ! rd_failure thread_alerted
Close a reader.

rd_intermittent(r: Rd): Bool
Whether the reader is stream-like (not file-like).

rd_seekable(r: Rd): Bool
Whether the reader can be repositioned.

rd_closed(r: Rd): Bool
Whether the reader is closed.

E.4.10 real

n.m: Int
Positive real constants; m is optional.

~n.m: Int
Negative real constants; m is optional.

real_minus(n: Real): Real
(also '-n') Real negation.

real_minus(n: Int): Int
(also '-n') Overloaded integer negation.

real_+(n1: Real, n2: Real): Real
(also infix '+') Real addition.

real_+(n1: Int, n2: Int): Int
(also infix '+') Overloaded integer addition.

real_-(n1: Real, n2: Real): Real
(also infix '-') Real difference.

real_-(n1: Int, n2: Int): Int
(also infix '-') Overloaded integer difference.

real_*(n1: Real, n2: Real): Real
(also infix '*') Real multiplication.

real_*(n1: Int, n2: Int): Int
(also infix '*') Overloaded integer multiplication.

real_/(n1: Real, n2: Real): Real
(also infix '/') Real division.

real_/(n1: Int, n2: Int): Int
(also infix '/') Overloaded integer division.

real_<(n1: Real, n2: Real): Bool
(also infix '<') Real less-than predicate

real_<(n1: Int, n2: Int): Bool
(also infix '<') Overloaded integer less-than predicate

real_>(n1: Real, n2: Real): Bool

249
(also infix '>') Real greater-than predicate
real_>(n1: Int, n2: Int): Bool

(also infix '>') Overloaded integer greater-than predicate
real_<=(n1: Real, n2: Real): Bool

(also infix '<=') Real no-greater-than predicate
real_<=(n1: Int, n2: Int): Bool

(also infix '<=') Overloaded integer no-greater-than pred.
real_>=(n1: Real, n2: Real): Bool

(also infix '>=') Real no-less-than predicate.
real_>=(n1: Int, n2: Int): Bool

(also infix '>=') Overloaded integer no-less-than pred.
real_float(n: Int): Real

(also 'float(n)') Integer-to-real conversion.
real_float(n: Real): Real

(also 'float(n)') Overloaded; identity on reals.
real_round(n: Real): Int

(also 'round(n)') Real-to-integer rounding.
real_round(n: Int): Int

(also 'round(n)') Overloaded; identity on integers.
real_floor(n: Real): Int

Greatest integers no greater than n.
real_floor(n: Int): Int

Overloaded; identity on integers.
real_ceiling(n: Real): Int

Least integers no less than n.
real_ceiling(n: Int): Int

Overloaded; identity on integers.
real_isNaN(n: Real): Bool

Overloaded; false on integers.

E.4.11 vbt

vbt_failure: Exception
vbt_mu: Mutex
vbt_show(vbt: VBT): Ok

This module is also part of the Trestle Window System interface, as described in

Section E.4.4.

E.4.12 wr

wr_failure: Exception
wr_new(): Wr

A writer to a text (a Modula-3 TextWr).
wr_toText(w: Wr): Text

Emptying a writer to a text..
wr_stdout: Wr

The standard output (the Modula-3 Stdio.Stdout).

250
wr_stderr: Wr
The standard error (the Modula-3 Stdio.Stderr).

wr_open(fs: FileSystem, t: Text): Wr ! wr_failure
Given a file system and a file name, returns a writer to the
beginning of a file (a Modula-3 FileWr, open for write). The local
file system is available through the predefined lexically scoped
identifier "fileSys".

wr_openAppend(fs: FileSystem, t: Text): Wr ! wr_failure
Given a file system and a file name, returns a writer to the end of
file (a Modula-3 FileWr, open for append). The local file system is
available through the predefined lexically scoped identifier
"fileSys".

wr_putChar(w: Wr, c: Char): Ok ! wr_failure thread_alerted
Put a character to a writer .

wr_putText(w: Wr, t: Text): Ok ! wr_failure thread_alerted
Put a text to a writer .

wr_flush(w: Wr): Ok ! wr_failure thread_alerted
Flush a writer: all buffered writes to their final destination.

wr_index(w: Wr): Int
The current writer position

wr_length(w: Wr): Int ! wr_failure thread_alerted
Length of a writer.

wr_seek(w: Wr, n: Int): Ok ! wr_failure thread_alerted
Reposition a writer.

wr_close(w: Wr): Ok ! wr_failure thread_alerted
Close a writer.

wr_buffered(w: Wr): Bool
Whether the writer is buffered.

wr_seekable(w: Wr): Bool
Whether the writer can be repositioned.

wr_closed(w: Wr): Bool
Whether the writer is closed.

251

ple

the

this

cli-

he

ed

ted in

safe

 subse-

keli-

ade

p the

ill be
APPENDIX F Another Replicated Mutex

In Section 4.6.4 we discussed the design of a distributed mutex, and presented a sim

implementation in Figure 4-8. That version suffered from the problem that the mutex

would not be released if the process containing the holder ended without unlocking

mutex.

In this appendix, we present a slightly more complex version, to show one way

problem can be overcome. In this version, theid method now returns a client-server

object with a field containing the textual id of the client. When the lock is acquired, all

ents request notification if the id object becomes unreachable, using theunreachable

statement (in theenqueueId method). Objects typically become unreachable when t

process that contains them terminates.

Theunreachable statement takes a procedure argument that will be execut

when the system determines that the object is unreachable. This procedure is execu

all copies of the mutex, and releases the lock held by the now unreachable client. It is

to execute this in all copies because the first release of the mutex will succeed, and

quent releases will quietly fail. Since all clients are watching for disconnection, the li

hood of one of them noticing in a timely manner increases.

Since the runtime only checks sites for disconnection when a method call is m

to that site, or every few minutes if no calls are made, we added a facility to speed u

process. If a site executes thestartWatcher method, a thread will be forked that polls

the current mutex holder every second. Therefore, if that process dies, the thread w

guaranteed to notice is less than a second, and release the lock.

252
F.1 mutex.obl
module mutex;

(* exceptions raised when release and acquire are used incorrectly *)
let unheld = exception("unheld mutex");
let held = exception("held mutex");

let new = proc ()
let ret = {replicated,

(* create a return a client-server object that represents this
process *)

id => meth (s)
{txt => sys_address & "." & fmt_int(process_myId) & "."&

fmt_int(thread_id(thread_self()))
};

end,

(* variables used to control the mutex. A condition variable,
and the current holder object and their text id *)

cv => thread_condition(),
holder => ok,
holderId => ok,

(* a utility routine to start a watcher thread that polls the
current holder, to see if they are still alive *)

startWatcher => meth (s)
thread_fork (proc ()

try
loop

thread_alertPause(1.0);
if s.holder isnot ok then

try
s.holder.txt;

except net_failure =>
s.dequeueId(s.holderId);

end;
end;

end;
except thread_alerted => end;
ok;

end, 50000);
end,

(* internal update methods, that enqueues/dequeues the current id
in the mutex. The names are a holdover from an earlier
implementation. enqueueId succeeds if the mutex is free,
fails otherwise. dequeueId succeeds if the current thread
holds the mutex, fails otherwise. *)

enqueueId => umeth (s,id,txt)
if s.holder isnot ok then raise (held) end;
s.holder := id;
s.holderId := txt;
unreachable id do

proc (o,st)
try

s.dequeueId(txt);
except unheld => end;

253
end;
end,

dequeueId => umeth (s,txt)
if s.holderId isnot txt then raise(unheld) end;
s.holder := ok;
s.holderId := ok;
thread_signal(s.cv);

end

(* acquire the mutex, block until successful *)
acquire => meth (s)

let id = s.id;
if s.holder isnot ok then

if s.holderId is id.txt then raise(held) end;
end;
watch s.cv until

try
s.enqueueId(id, id.txt);

except held => end;
s.holderId is id.txt;

end;
end,

(* try to acquire the mutex, return if successful, raise an
exception if not successful (already locked) *)

tryAcquire => meth (s)
let id = s.id;
s.enqueueId(id, id.txt);

end,
(* release the mutex, return is successful, raise an exception

if not held by this thread *)
release => meth (s)

s.dequeueId(s.holderId);
end,

};

(* define the pickler for the mutex object. Send holder and holderId
across the network, but recreate a new condition variable at the
new site. *)

objectpickler ret
reader {simple,

cv => meth (s,c) thread_condition() end,
holder => meth (s,q) q end,
holderId => meth (s,q) q end}

writer {simple,
cv => meth (s,c) ok end,
holder => meth (s,q) q end,
holderId => meth (s,q) q end};

ret;
end;

end module;

254

.

tly

nta-

clud-

ultiple

oes no

3D

syn-

 to see

aph,

nal-

cific

ll of

ince it

se is

a-

er

t

wing
APPENDIX G Additional Enhancements To
Repo-3D

Aside from being distributed, Repo-3D improves upon Obliq-3D in a number of ways

One important enhancement is in the area of performance; DistAnim-3D is significan

faster than Anim-3D, for two reasons. First, DistAnim-3D caches the internal represe

tion of scene subgraphs (i.e., using OpenGL display lists or Renderware Clumps), in

ing keeping multiple caches when a subgraph is attached to one or more scenes in m

locations. These caches are only rebuilt as necessary. Anim-3D, on the other hand, d

caching, rerendering the scene in immediate mode every frame. Second, DistAnim-

keeps track of when and where scene damage occurs (or may occur, in the case of

chronous and asynchronous properties) and only examines those parts of the graph

if the caches need to be rebuilt. Anim-3D, on the other hand, examines the entire gr

and all properties, before each frame.

In addition to improving the performance, Repo-3D also increases the functio

ity of Obliq-3D by the addition of new GOs and properties. The new GOs address spe

needs of our domain:

• Choice groups are group nodes that display only one of their children, rather than a

them. They are needed to allow efficient alternate representations of a subgraph, s

is possible to implement them so that changing the choice of which subgraph to u

significantly more efficient than replacing the subtree of a normal group node, prim

rily because the internal caches for all the subnodes can be prebuilt.

• Text objects allow text to be rendered more efficiently than if it was built using oth

Repo-3D facilities, and allow the use of properties to specify the details of the tex

objects. 2D text objects render text as flat bitmaps in the plane of the screen, allo

us to present readable text labels to the user.

255

x

ults

, as

es.

el of

use

l

most

es by

. For

the

se two

f the

r

n the

pty

 is

oved

roto-

m of

per-

s for
• Indexed line and polygon sets allow complex models to be used. Creating comple

scenes one polygon or line at a time (using Obliq-3D’s polygon and line objects) res

in extremely inefficient scenes (both in terms of time and space), and is also limiting

multiple adjoining polygon objects are not smoothly shaded across their boundari

When designing these additional GOs, we attempted to maintain the high lev

flexibility that made Obliq-3D unique. For example, indexed line and polygon sets can

dynamic point properties for all of their 3D points, making it easy to create polygona

objects that deform over time, or in reaction to their environment.

In addition to these new GOs, we added a number of properties to the system,

notably support for texture maps on all GOs that inherit from theSurfaceGO object.

Repo-3D also introduces a new class of callback objects that may be attached to nod

a programmer, to monitor the location of the origin of the node’s coordinate system;trans-

form callbacks are used to monitor the transformed 3D position of the node, whileprojec-

tion callbacks are used to monitor the 2D projection of that node on the root window

the details of the Repo-3D location callback modules, see Appendix H.5. Each time

scene is refreshed, the object’s callback method is invoked with the current 3D or 2D

information.

These callbacks were created because we often found ourselves needing the

pieces of information in the programs we were building, but the declarative nature o

graphics library made this information hard to obtain in a straightforward manner. Fo

example, to integrate 2D windows into the 3D worlds presented by Coterie, as seen i

Nynex crossbox maintenance prototype of Section 2.6 (shown in Figure 2-8), an em

group node is placed at the 3D position of the 2D window, and a projection callback

attached to that group. Each time the projected position changes, the 2D window is m

to the new position. The projection callbacks are also used in the Touring Machine p

type, both to determine the color of the labels and to construct the arrow at the botto

the screen that points at the currently selected building.

One final change between Obliq-3D and Repo-3D concerns synchronous pro

ties. In Obliq-3D, when an animation handle is signaled and completes the animation

256

ehav-

 reini-

e to

iting

ance,

t

nchro-
all attached synchronous properties, it flushes the requests from the synchronous b

iors of those properties. Therefore, to repeat an animation, a programmer must then

tialize those behaviors with the same set of requests. Furthermore, it was impossibl

flush requests from a synchronous behavior without signalling the animation and wa

for it to complete. Our programmers found both of these design choices to be a nuis

so we added a command to each of the synchronous properties to flush their curren

requests, and modified the animation handle so it did not flush requests from the sy

nous behaviors.

257

from

files

of a

er an

e

APPENDIX H Repo-3D Modules

In Chapter 5, we described different components of Repo-3D, and included excerpts

the help files of a few of the Repo-3D modules. In this appendix, we include the help

for all the Repo-3D modules, and provide occasional clarification when the purpose

module is not clear from the name, both as a reference and to give the curious read

idea of the scope of the library.

H.1 Graphics Objects

The graphical objects in Repo-3D all inherit from the abstract GO object, and use th

GOCB object for change notification.

H.1.1 GO

GO_PropUndefined: Exception
GO_StackError: Exception
GO_ListError: Exception
GO_PropError: Exception
GO_Transform: TransformPropName
GO_SetTransform(go: GO, xf: TransformVal): Ok ! replica_failure

PropError
GO_GetTransform(go: GO): TransformPropVal ! GO_PropUndefined

replica_failure
GO_Pickable: TransformPropName
GO_SetPickable(go: GO, xf: BooleanPropVal): Ok ! replica_failure

PropError
GO_GetPickable(go: GO): BooleanPropVal ! GO_PropUndefined

replica_failure
WHERE

GO <: ProxiedObj &
{ setProp: (PropName,PropVal) => Ok ! GO_PropError replica_failure,

unsetProp: (PropName) => Ok ! GO_PropUndefined replica_failure,
getProp: (PropName) => PropVal ! GO_PropUndefined

replica_failure,
setName: (Text) => Ok ! replica_failure,
getName: () => Text ! replica_failure,

258
findName: (Text) => GO ! replica_failure,
setLocalProp: (PropName,PropVal) => Ok ! GO_PropError

replica_failure,
unsetLocalProp: (PropName) => Ok ! GO_PropUndefined GO_PropError

replica_failure,
getLocalProp: (PropName) => PropVal ! GO_PropUndefined

replica_failure,
hideGlobalProp: (PropName) => Ok ! GO_PropError replica_failure,
revealGlobalProp: (PropName) => Ok ! GO_PropUndefined

GO_PropError, replica_failure,
isPropHidden: (PropName) => Bool ! replica_failure,
setLocalPropsGlobally: () => Ok ! GO_PropError replica_failure,
pushMouseCB: (cb: MouseCB) => Ok ! replica_failure,
popMouseCB: () => Ok ! GO_StackError ! replica_failure,
removeMouseCB: (cb: MouseCB) => Ok ! GO_StackError

replica_failure,
invokeMouseCB: (mr: MouseRec) => Ok ! replica_failure,
pushPositionCB: (cb: PositionCB) => Ok ! replica_failure,
popPositionCB: () => Ok ! GO_StackError replica_failure,
removePositionCB: (cb: PositionCB) => Ok ! GO_StackError

replica_failure,
invokePositionCB: (mr: PositionRec) => Ok ! replica_failure,
pushKeyCB: (cb: KeyCB) => Ok ! replica_failure,
popKeyCB: () => Ok ! GO_StackError replica_failure,
removeKeyCB: (cb: KeyCB) => Ok ! GO_StackError replica_failure,
invokeKeyCB: (mr: KeyRec) => Ok ! replica_failure,
addProjectionCB: (cb: ProjectionCB) => Ok ! replica_failure,
removeProjectionCB: (cb: ProjectionCB) => Ok ! GO_ListError

replica_failure
invokeProjectionCB: (mr: ProjectionRec) => Ok ! replica_failure,
addTransformCB: (cb: TransformCB) => Ok ! replica_failure,
removeTransformCB: (cb: TransformCB) => Ok ! GO_ListError

replica_failure,
invokeTransformCB: (mr: TransformRec) => Ok ! replica_failure,
getBoundingVolumeCenter: () => Point3 ! replica_failure,
getBoundingVolumeRadius: () => Real ! replica_failure }

TransformVal = TransformPropVal + Matrix4
BooleanVal = BooleanPropVal + Bool

H.1.2 GOCB

GOCB_New(obj: GO, overrides: Obj): T;
GOCB_Cancel(cbobj: T): T;

WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:

pre`propagateLocalProps(obj: GO, add remove: [Prop_T]): Bool
post`propagateLocalProps(obj: GO, add remove: [Prop_T]): Bool
pre`setProp(obj: GO, prop: Prop_T): Bool
post`setProp(obj: GO, prop: Prop_T): Bool
pre`unsetProp(obj: GO, name: Prop_Name): Bool
post`unsetProp(obj: GO, name: Prop_Name): Bool
pre`setName(obj: GO, name: Text): Bool
post`setName(obj: GO, name: Text): Bool

259
pre`anyChange(obj: GO);
post`anyChange(obj: GO);

If T is one of BoxGO, ConeGO, CylinderGO, DiskGO, SphereGO, TorusGO,
OrthoCameraGO, PerspCameraGO, AmbientLightGO, SpotLightGO,
PointLightGO, VectorLightGO, LineGO, Text2DGO, MarkerGO overrides
may also contain:

pre`init(obj: GO): Bool
post`init(obj: GO): Bool

If T is PolygonGO overrides may also contain:
pre`init(obj: GO, pts: PointArray, s: GO_Shape): Bool
post`init(obj: GO, pts: PointArray, s: GO_Shape): Bool

If T is QuadMeshGO overrides may also contain:
pre`init(obj: GO, pts: [Point3], s: GO_Shape): Bool
post`init(obj: GO, pts: [Point3], s: GO_Shape): Bool
pre`addFacetColors(obj: GO, cols: [[Color]]): Bool
post`addFacetColors(obj: GO, cols: [[Color]]): Bool
pre`setColorOfFacet(obj: GO, i j: Int, col: Color): Bool
post`setColorOfFacet(obj: GO, i j: Int, col: Color): Bool

If T is IndexedLineSetGO overrides may also contain:
pre`init(obj: GO, pts: PointArray, index: [[Int]]): Bool
post`init(obj: GO, pts: PointArray, index: [[Int]]): Bool
pre`setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
post`setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
pre`setVertices (obj: GO, pts: [Point3]): Bool
post`setVertices (obj: GO, pts: [Point3]): Bool

If T is IndexedPolygonSetGO overrides may also contain:
pre`init(obj: GO, pts: PointArray, index: [[Int]],

creaseAngle: Real, s: GO_Shape): Bool
post`init(obj: GO, pts: PointArray, index: [[Int]],

creaseAngle: Real, s: GO_Shape): Bool
pre`setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
post`setColor(obj: GO, clr: ColorArray, cpv: Bool): Bool
pre`setVertices (obj: GO, pts: [Point3]): Bool
post`setVertices (obj: GO, pts: [Point3]): Bool
pre`setTexCoords(obj: GO, pts: Point2Array, idx: [[Int]]): Bool
post`setTexCoords(obj: GO, pts: Point2Array, idx: [[Int]]): Bool

If T was created with provided normals, it may contain
pre`initWithNormals(obj: GO, pts: [Point3], index: [[Int]],

normalPerVertex : Bool, normals : [Point3],
creaseAngle: Real, s: GO_Shape): Bool

post`initWithNormals(obj: GO, pts: [Point3], index: [[Int]],
normalPerVertex : Bool, normals : [Point3],
creaseAngle: Real, s: GO_Shape): Bool

If T is GroupGO or ChoiceGroupGO overrides may also contain:
pre`add(obj new: GO): Bool
post`add(obj new: GO): Bool
pre`remove(obj old: GO): Bool
post`remove(obj old: GO): Bool
pre`replace(obj old new: GO): Bool
post`replace(obj old new: GO): Bool
pre`flush(obj: GO): Bool
post`flush(obj: GO): Bool

260
pre`propagateLocalChildren(obj: GO, add remove: [GO]): Bool
post`propagateLocalChildren(obj: GO, add remove: [GO]): Bool

PointArray = [Point3] + [PointProp]
Point2Array = [Point2] + [Point2Prop]
ColorArray = [Color] + [ColorProp]

H.1.3 AmbientLightGO

AmbientLightGO_New(c: ColorVal; int: RealVal): AmbientLightGO !
GO_PropError

WHERE
AmbientLightGO <: LightGO
ColorVal = ColorPropVal + Color + Text
RealVal = RealPropVal + Real + Int

For adding background ambient light to a scene.

H.1.4 BoxGO

BoxGO_New(p1 p2: PointVal): BoxGO ! GO_PropError
BoxGO_Corner1: PointPropName
BoxGO_Corner2: PointPropName
BoxGO_SetCorner1(o: GO, p: PointVal): Ok ! replica_failure

GO_PropError
BoxGO_SetCorner2(o: GO, p: PointVal): Ok ! replica_failure

GO_PropError
WHERE

BoxGO <: SurfaceGO
PointVal = PointPropVal + Point3

H.1.5 CameraGO

CameraGO_From: PointPropName
CameraGO_To: PointPropName
CameraGO_Up: PointPropName
CameraGO_Aspect: PointPropName
CameraGO_SetFrom(go: GO, PointVal): Ok ! replica_failure GO_PropError
CameraGO_SetTo(go: GO, PointVal): Ok ! replica_failure GO_PropError
CameraGO_SetUp(go: GO, PointVal): Ok ! replica_failure GO_PropError
CameraGO_SetAspect(go: GO, RealVal): Ok ! replica_failure

GO_PropError
CameraGO_Near: RealPropName;
CameraGO_SetNear(go: GO, RealVal): Ok ! replica_failure GO_PropError

261

a 3D
CameraGO_Far: RealPropName;
CameraGO_SetFar(go: GO, RealVal): Ok ! replica_failure GO_PropError
CameraGO_FixedNear: BooleanPropName;
CameraGO_SetFixedNear(go: GO, BoolVal): Ok ! replica_failure

GO_PropError
CameraGO_FixedFar: BooleanPropName;
CameraGO_SetFixedFar(go: GO, BoolVal): Ok ! replica_failure

GO_PropError
CameraGO_Stereo: BooleanPropName;
CameraGO_SetStereo(go: GO, BoolVal): Ok ! replica_failure

GO_PropError
CameraGO_EyeSeparation: RealPropName;
CameraGO_SetEyeSeparation(go: GO, RealVal): Ok ! replica_failure

GO_PropError
CameraGO_FocalDistance: RealPropName;
CameraGO_SetFocalDistance(go: GO, RealVal): Ok ! replica_failure

GO_PropError
TYPE

CameraGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
BoolVal = BooleanPropVal + Bool

The abstract base class for the various kinds of cameras. A camera is used to map

world to a 2D window (represented by a RootGO).

H.1.6 ChoiceGroupGO

ChoiceGroupGO_New(display: IntVal): ChoiceGroupGO
ChoiceGroupGO_NewWithSizeHint(display: IntVal, size: Int):

ChoiceGroupGO
ChoiceGroupGO_Display: IntPropName
ChoiceGroupGO_SetDisplay(go: GO, child: IntVal): Ok

WHERE
ChoiceGroupGO <: GroupGO
IntVal = IntPropVal + Int

H.1.7 ConeGO

ConeGO_New(base tip: PointVal, rad: RealVal): ConeGO
ConeGO_NewWithPrec(base tip: PointVal, rad: RealVal, prec: Int):

ConeGO
ConeGO_NewWithDoublePrec(base tip: PointVal, rad: RealVal,

prec1 prec2: Int): ConeGO
ConeGO_RotationPrecision: IntPropName
ConeGO_LengthPrecision: IntPropName
ConeGO_Base: PointPropName
ConeGO_Tip: PointPropName

262
ConeGO_Radius: RealPropName
ConeGO_SetRotationPrecision(o: GO, p: IntVal): Ok
ConeGO_SetLengthPrecision(o: GO, p: IntVal): Ok
ConeGO_SetBase(o: GO, p: PointVal): Ok
ConeGO_SetTip(o: GO, p: PointVal): Ok
ConeGO_SetRadius(o: GO, r: RealVal): Ok

WHERE
ConeGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

H.1.8 CylinderGO

CylinderGO_New(p1 p2: PointVal, rad: RealVal): CylinderGO
CylinderGO_NewWithPrec(p1 p2: PointVal, rad: RealVal, prec: Int):

CylinderGO
CylinderGO_NewWithDoublePrec(p1 p2: PointVal, rad: RealVal,

prec1 prec2: Int): CylinderGO
CylinderGO_RotationPrecision: IntPropName
CylinderGO_LengthPrecision: IntPropName
CylinderGO_Point1: PointPropName
CylinderGO_Point2: PointPropName
CylinderGO_Radius: RealPropName
CylinderGO_SetRotationPrecision(o: GO, p: IntVal): Ok
CylinderGO_SetLengthPrecision(o: GO, p: IntVal): Ok
CylinderGO_SetPoint1(o: GO, p: PointVal): Ok
CylinderGO_SetPoint2(o: GO, p: PointVal): Ok
CylinderGO_SetRadius(o: GO, r: RealVal): Ok

WHERE
CylinderGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

H.1.9 DiskGO

DiskGO_New(center normal: PointVal, rad: RealVal): DiskGO
DiskGO_NewWithPrec(center normal: PointVal, rad: RealVal, prec: Int):

DiskGO
DiskGO_Precision: IntPropName
DiskGO_Center: PointPropName
DiskGO_Normal: PointPropName
DiskGO_Radius: RealPropName
DiskGO_SetPrecision(go: GO, prec: IntVal): Ok
DiskGO_SetCenter(o: GO, p: PointVal): Ok
DiskGO_SetNormal(o: GO, p: PointVal3): Ok
DiskGO_SetRadius(o: GO, r: RealVal): Ok

WHERE

263
DiskGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

H.1.10 GroupGO

GroupGO_BadElement: Exception
GroupGO_New(): GroupGO
GroupGO_NewWithSizeHint(size: Int): GroupGO

WHERE
GroupGO <: GO &

{ add: (GO) => Ok ! GroupGO_BadElement replica_failure,
remove: (GO) => Ok ! GroupGO_BadElement replica_failure,
replace: (GO,GO) => Ok ! GroupGO_BadElement replica_failure,
flush: () => Ok ! replica_failure,
content: () => [GO] ! replica_failure,
addLocal: (GO) => Ok ! GroupGO_BadElement replica_failure,
removeLocal: (GO) => Ok ! GroupGO_BadElement replica_failure,
replaceLocal: (GO,GO) => Ok ! GroupGO_BadElement replica_failure,
removeLocalAddition: (GO) => Ok ! GroupGO_BadElement

replica_failure,
removeLocalRemoval: (GO) => Ok ! GroupGO_BadElement

replica_failure,
removeLocalReplacement: (GO) => Ok ! GroupGO_BadElement

replica_failure,
flushLocal: () => Ok ! replica_failure,
mergeLocalToGlobal: () => Ok ! replica_failure,
localContent: () => [GO] ! replica_failure }

H.1.11 IndexedLineSetGO

IndexedLineSetGO_BadVertexIndex : Exception;
IndexedLineSetGO_BadSize : Exception;
IndexedLineSetGO_NotAllowed : Exception;
IndexedLineSetGO_New(pts : [PointVal],

index : [[Int]]): IndexedLineSetGO

WHERE
PointVal = PointPropVal + Point3

IndexedLineSetGO <: GO & {
setStaticColor ([Color], Bool) => Ok ! IndexedLineSetGO_BadSize

replica_failure,
setDynamicColor ([ColorProp], Bool) => Ok !

IndexedLineSetGO_BadSize replica_failure,
setVertices ([Point3]) => Ok ! IndexedLineSetGO_BadSize

IndexedLineSetGO_NotAllowed replica_failure

264
}

H.1.12 IndexedPolygonSetGO

IndexedPolygonSetGO_BadVertexIndex : Exception;
IndexedPolygonSetGO_BadSize : Exception;
IndexedPolygonSetGO_NormalNotAllowed : Exception;
IndexedPolygonSetGO_NotAllowed : Exception;
IndexedPolygonSetGO_New(pts : [PointVal],

index : [[Int]],
creaseAngle: Real): IndexedPolygonSetGO

IndexedPolygonSetGO_NewWithNormal(
pts : [Point3],
index : [[Int]],
normalPerVertex : Bool,
normals : [Point3],
creaseAngle : Real): IndexedPolygonSetGO

IndexedPolygonSetGO_NewWithShapeHint(
pts : [PointVal],
index : [[Int]],
creaseAngle: Real,
shp : Shape): IndexedPolygonSetGO

IndexedPolygonSetGO_NewWithNormalAndShapeHint(
pts : [Point3],
index : [[Int]],
normalPerVertex : Bool,
normals : [Point3],
creaseAngle : Real,
shp : Shape): IndexedPolygonSetGO

WHERE
PointVal = PointPropVal + Point3

IndexedPolygonSetGO <: SurfaceGO & {
setStaticColor ([Color], Bool) => Ok !

IndexedPolygonSetGO_BadSize replica_failure,
setDynamicColor ([ColorProp], Bool) => Ok !

IndexedPolygonSetGO_BadSize replica_failure,
setStaticTexCoords ([Point2], [[Int]]) => Ok !

IndexedPolygonSetGO_BadSize replica_failure,
setDynamicTexCoords ([Point2Prop], [[Int]]) => Ok !

IndexedPolygonSetGO_BadSize replica_failure,
setVertices ([Point3]) => Ok ! IndexedPolygonSetGO_BadSize,

IndexedPolygonSetGO_NotAllowed replica_failure
}
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")

H.1.13 LightGO

LightGO_Color: ColorPropName

265
LightGO_Switch: BooleanPropName
LightGO_Intensity: RealPropName
LightGO_SetColor(go: GO, c: ColorVal): Ok ! replica_failure

GO_PropError
LightGO_SetSwitch(go: GO, b: BooleanVal): Ok ! replica_failure

GO_PropError
LightGO_SetIntensity(go: GO, i: RealVal): Ok ! replica_failure

GO_PropError
WHERE

LightGO <: GO
ColorVal = ColorPropVal + Color + Text
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real

H.1.14 LineGO

LineGO_New(p1 p2: PointVal): LineGO ! GO_PropError
LineGO_Color: ColorPropName
LineGO_Width: RealPropName
LineGO_Type: LineTypePropName
LineGO_Point1: PointPropName
LineGO_Point2: PointPropName
LineGO_SetColor(o: GO, c: ColorVal): Ok ! replica_failure

GO_PropError
LineGO_SetWidth(o: GO, r: RealVal): Ok ! replica_failure GO_PropError
LineGO_SetType(o: GO, t: LineType): Ok ! replica_failure GO_PropError
LineGO_SetPoint1(o: GO, p: PointVal): Ok ! replica_failure

GO_PropError
LineGO_SetPoint2(o: GO, p: PointVal): Ok ! replica_failure

GO_PropError
WHERE

LineGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
LineTypeVal = LineTypePropVal + LineType

H.1.15 MarkerGO

MarkerGO_New(point: PointVal): MarkerGO ! GO_PropError
MarkerGO_Center: PointPropName
MarkerGO_Color: ColorPropName
MarkerGO_Scale: RealPropName
MarkerGO_Type: MarkerTypePropName
MarkerGO_SetCenter(o: GO, p: PointVal): Ok ! replica_failure

GO_PropError
MarkerGO_SetColor(o: GO, c: ColorVal): Ok ! replica_failure

GO_PropError
MarkerGO_SetScale(o: GO, r: RealVal): Ok ! replica_failure

266
GO_PropError
MarkerGO_SetType(o: GO, t: MarkerTypeVal): Ok ! replica_failure

GO_PropError
WHERE

MarkerGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
MarkerTypeVal = MarkerTypePropVal + MarkerType

H.1.16 OrthoCameraGO

OrthoCameraGO_New(from to up: PointVal, height: RealVal):
OrthoCameraGO ! GO_PropError

OrthoCameraGO_Height: RealPropName
OrthoCameraGO_SetHeight(go: GO, height: RealVal): Ok !

replica_failure GO_PropError
WHERE

OrthoCameraGO <: CameraGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A camera that provides an orthographic projection of the world onto a RootGO.

H.1.17 PerspCameraGO

PerspCameraGO_New(from to up: PointVal, fovy: RealVal): PerspCameraGO
! GO_PropError

PerspCameraGO_Fovy: RealPropName
PerspCameraGO_SetFovy(go: GO, fovy: RealVal): Ok ! replica_failure

GO_PropError
WHERE

PerspCameraGO <: CameraGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A camera that provides a perspective projection of the world onto a RootGO.

H.1.18 PointLightGO

PointLightGO_New(c: ColorVal, orig: PointVal,
att0 att1 intensity: RealVal): PointLightGO ! GO_PropError

PointLightGO_Origin: PointPropName
PointLightGO_SetOrigin(go: GO, orig: PointVal): Ok ! replica_failure

GO_PropError

267
PointLightGO_Attenuation0: RealPropName
PointLightGO_SetAttenuation0(go: GO, att: RealVal): Ok !

replica_failure GO_PropError
PointLightGO_Attenuation1: RealPropName
PointLightGO_SetAttenuation1(go: GO, att: RealVal): Ok !

replica_failure GO_PropError
WHERE

PointLightGO <: LightGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

H.1.19 PolygonGO

PolygonGO_New(pts: [PointVal]): PolygonGO
PolygonGO_NewWithShapeHint(pts: [PointVal], s: Shape): PolygonGO

WHERE
PolygonGO <: SurfaceGO
PointVal = PointPropVal + Point3
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")

H.1.20 QuadMeshGO

QuadMeshGO_BadSize: Exception
QuadMeshGO_ColorsUndefined: Exception
QuadMeshGO_New(pts: [[Point3]]): QuadMeshGO
QuadMeshGO_NewWithShapeHint(pts: [[Point3]], s: Shape): QuadMeshGO

WHERE
QuadMeshGO <: SurfaceGO &

{ addFacetColors: ([[Col]]) => Ok ! QuadMeshGO_BadSize,
setColorOfFacet: (i j: Int, c: Col) => Ok !

QuadMeshGO_ColorsUndefined }
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")
Col = Color + Text

H.1.21 RootGO

RootGO_New(cam: CameraGO, base: GraphicsBase): RootGO
RootGO_NewStd(): RootGO | GraphicsBase_Failure
RootGO_NewStdWithBase(base: GraphicsBase): RootGO
RootGO_Background: ColorPropName
RootGO_DepthcueSwitch: BooleanPropName
RootGO_DepthcueColor: ColorPropName
RootGO_DepthcueFrontPlane: RealPropName

268

graph,

ct to
RootGO_DepthcueBackPlane: RealPropName
RootGO_DepthcueFrontScale: RealPropName
RootGO_DepthcueBackScale: RealPropName
RootGO_SetBackground(go: GO, c: ColorVal): Ok ! GO_PropError
RootGO_SetDepthcueSwitch(go: GO, b: BooleanVal): Ok ! GO_PropError
RootGO_SetDepthcueColor(go: GO, c: ColorVal): Ok ! GO_PropError
RootGO_SetDepthcueFrontPlane(go: GO, r: RealVal): Ok ! GO_PropError
RootGO_SetDepthcueBackPlane(go: GO, r: RealVal): Ok ! GO_PropError
RootGO_SetDepthcueFrontScale(go: GO, r: RealVal): Ok ! GO_PropError
RootGO_SetDepthcueBackScale(go: GO, r: RealVal): Ok ! GO_PropError

WHERE
RootGO <: GroupGO &

{ changeCamera: (CameraGO) => Ok,
getCamera: () => CameraGO,
picking (x, y: Int) => [PickingInfo],
addCameraTransformCB: (cb: TransformCB) => Ok,
removeCameraTransformCB: (cb: TransformCB) => Ok !

GO_ListError,
windowPosSize: () => PosSizeRec,
changeTitle: (Text) => Ok,
awaitDelete: () => Ok,
destroy: () => Ok }

Point2 = [2*Int]
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
PickingInfo = { gos: [ObGO.T],

minz, maxz: Int]}

A RootGO is a descendent of GroupGO, and serves as the root of a Repo-3D scene

manifesting itself as a 2D window. A camera maps the scene graph rooted at this obje

the 2D image in the window.

H.1.22 SphereGO

SphereGO_New(p: PointVal, rad: RealVal): SphereGO
SphereGO_NewWithPrec(p: PointVal, rad: RealVal, prec: Int): SphereGO
SphereGO_Precision: IntPropName
SphereGO_Center: PointPropName
SphereGO_Radius: RealPropName
SphereGO_SetPrecision(go: GO, prec: IntVal): Ok
SphereGO_SetCenter(go: GO, center: PointVal): Ok
SphereGO_SetRadius(go: GO, radius: RealVal): Ok

WHERE
SphereGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

269
H.1.23 SpotLightGO

SpotLightGO_New(c: ColorVal, orig dir: PointVal,
conc spread att0 att1 int: RealVal):

SpotLightGO ! GO_PropError
SpotLightGO_Origin: PointPropName
SpotLightGO_SetOrigin(go: GO, orig: PointVal): Ok ! replica_failure

GO_PropError
SpotLightGO_Direction: PointPropName
SpotLightGO_SetDirection(go: GO, dir: PointVal): Ok ! replica_failure

GO_PropError
SpotLightGO_Concentration: RealPropName
SpotLightGO_SetConcentration(go: GO, conc: RealVal): Ok !

replica_failure GO_PropError
SpotLightGO_SpreadAngle: RealPropName
SpotLightGO_SetSpreadAngle(go: GO, spread: RealVal): Ok !

replica_failure GO_PropError
SpotLightGO_Attenuation0: RealPropName
SpotLightGO_SetAttenuation0(go: GO, att: RealVal): Ok !

replica_failure GO_PropError
SpotLightGO_Attenuation1: RealPropName
SpotLightGO_SetAttenuation1(go: GO, att: RealVal): Ok !

replica_failure GO_PropError
WHERE

SpotLightGO <: LightGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

H.1.24 SurfaceGO

SurfaceGO_Color: ColorPropName
SurfaceGO_SetColor(o: GO, color: ColorVal): Ok ! replica_failure

GO_PropError
SurfaceGO_BackColor: ColorPropName
SurfaceGO_SetBackColor(o: GO, color: ColorVal): Ok ! replica_failure

GO_PropError
SurfaceGO_RasterMode: RasterModePropName
SurfaceGO_SetRasterMode(o: GO, t: RasterModeVal): Ok !

replica_failure GO_PropError
SurfaceGO_AmbientReflectionCoeff: RealPropName
SurfaceGO_SetAmbientReflectionCoeff(o: GO, r: RealVal): Ok !

replica_failure GO_PropError
SurfaceGO_DiffuseReflectionCoeff: RealPropName
SurfaceGO_SetDiffuseReflectionCoeff(o: GO, r: RealVal): Ok !

replica_failure GO_PropError
SurfaceGO_SpecularReflectionCoeff: RealPropName
SurfaceGO_SetSpecularReflectionCoeff(o: GO, r: RealVal): Ok !

replica_failure GO_PropError
SurfaceGO_SpecularReflectionConc: RealPropName
SurfaceGO_SetSpecularReflectionConc(o: GO, r: RealVal): Ok !

270
replica_failure GO_PropError
SurfaceGO_TransmissionCoeff: RealPropName
SurfaceGO_SetTransmissionCoeff(o: GO, r: RealVal): Ok !

replica_failure GO_PropError
SurfaceGO_SpecularReflectionColor: ColorPropName
SurfaceGO_SetSpecularReflectionColor(o: GO, color: ColorVal): Ok !

replica_failure GO_PropError
SurfaceGO_Lighting: BooleanPropName
SurfaceGO_SetLighting(o: GO, t: BooleanVal): Ok ! replica_failure

GO_PropError
SurfaceGO_BackfaceCulling: BooleanPropName
SurfaceGO_SetBackfaceCulling(o: GO, t: BooleanVal): Ok !

replica_failure GO_PropError
SurfaceGO_Shading: ShadingPropName
SurfaceGO_SetShading(o: GO, sh: ShadingVal): Ok ! replica_failure

GO_PropError
SurfaceGO_EdgeVisibility: BooleanPropName
SurfaceGO_SetEdgeVisibility(o: GO, b: BoolVal): Ok ! replica_failure

GO_PropError
SurfaceGO_EdgeColor: ColorPropName
SurfaceGO_SetEdgeColor(o: GO, color: ColorVal): Ok ! replica_failure

GO_PropError
SurfaceGO_EdgeType: LineTypePropName
SurfaceGO_SetEdgeType(o: GO, lt: LineTypeVal): Ok ! replica_failure

GO_PropError
SurfaceGO_EdgeWidth: RealPropName
SurfaceGO_SetEdgeWidth(o: GO, r: RealVal): Ok ! replica_failure

GO_PropError
SurfaceGO_TexImg: TexImagePropName
SurfaceGO_SetTexImg(o: GO, r: TexImage): Ok ! replica_failure

GO_PropError
SurfaceGO_TexRepeatS: BooleanPropName
SurfaceGO_SetTexRepeatS(o: GO, r: Bool): Ok ! replica_failure

GO_PropError
SurfaceGO_TexRepeatT: BooleanPropName
SurfaceGO_SetTexRepeatT(o: GO, r: Bool): Ok ! replica_failure

GO_PropError
SurfaceGO_TexOn: BooleanPropName
SurfaceGO_SetTexOn(o: GO, r: Bool): Ok ! replica_failure GO_PropError
SurfaceGO_TexModel: TexModelPropName
SurfaceGO_SetTexModel(o: GO, r: TexModel): Ok ! replica_failure

GO_PropError
SurfaceGO_TexBlendColor: ColorPropName
SurfaceGO_SetTexBlendColor(o: GO, r: Color): Ok ! replica_failure

GO_PropError
TYPE

SurfaceGO <: GO
ColorVal = ColorPropVal + Color + Text
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real + Int
LineTypeVal = LineTypePropVal + LineType
RasterModeVal = RasterModePropVal + RasterMode
ShadingVal = ShadingPropVal + Shading

271
H.1.25 Text2DGO

Text2DGO_New(p: PointVal, t: StringVal, a: AlignmentVal): Text2DGO
Text2DGO_NewWithSpacing(p: Pointval, t: StringVal, a: AlignmentVal,

s: RealVal): Text2DGO
Text2DGO_GetScreenPosition(t: Text2DGO): [Int,Int]
Text2DGO_GetScreenExtent(t: Text2DGO): [Int,Int]
Text2DGO_IsVisible(t: Text2DGO): Bool

WHERE
Text2DGO <: TextGO

H.1.26 TextGO

TextGO_Position: PositionPropName
TextGO_String: StringPropName
TextGO_Alignment: TextAlignPropName
TextGO_Spacing: RealPropName
TextGO_SetPosition(go: GO, pos: PointVal): OK
TextGO_SetString(go: GO, string: StringVal): Ok
TextGO_SetAlignment(go: GO, align: AlignmentVal): Ok
TextGO_SetSpacing(go: GO, radius: RealVal): Ok
TextGO_FontFamily: FontFamilyPropName
TextGO_SetFontFamily(go: GO, xf: FontFamilyVal): Ok
TextGO_GetFontFamily(go: GO): FontFamilyVal ! GO_PropUndefined
TextGO_FontStyle: FontStylePropName
TextGO_SetFontStyle(go: GO, xf: FontStyleVal): Ok
TextGO_GetFontStyle(go: GO): FontStyleVal ! GO_PropUndefined
TextGO_FontSize: RealPropName
TextGO_SetFontSize(go: GO, xf: RealVal): Ok
TextGO_GetFontSize(go: GO): RealVal ! GO_PropUndefined
TextGO_FontColor: ColorPropName
TextGO_SetFontColor(go: GO, c: ColorVal): Ok
TextGO_GetFontColor(go: GO): ColorVal ! GO_PropUndefined

WHERE
TextGO <: GO
PointVal = PointPropVal + Point3
StringVal = StringPropVal + TEXT
AlignmentVal = TEXT (One of "Left", "Right", "Center")
RealVal = RealPropVal + Real + Int
FontFamilyVal = StringPropVal + Text
FontStyleVal = FontStylePropVal +

Text (one of "None", "Bold", "Italic")
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

272

se
H.1.27 TorusGO

TorusGO_New(center normal: PointVal, rad1 rad2: RealVal): TorusGO
TorusGO_NewWithPrec(c n: PointVal, r1 r2: RealVal, prec: Int):

TorusGO
TorusGO_Precision: IntPropName
TorusGO_Center: PointPropName
TorusGO_Normal: PointPropName
TorusGO_Radius1: RealPropName
TorusGO_Radius2: RealPropName
TorusGO_SetCenter(go: GO, center: PointVal): Ok
TorusGO_SetNormal(go: GO, normal: PointVal): Ok
TorusGO_SetRadius1(go: GO, radius: RealVal): Ok
TorusGO_SetRadius2(go: GO, radius: RealVal): Ok
TorusGO_SetPrecision(go: GO, prec: IntVal): Ok

WHERE
TorusGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
IntVal = IntPropVal + Int

H.1.28 VectorLightGO

VectorLightGO_New(c: ColorVal, dir: PointVal, int: RealVal):
VectorLightGO ! GO_PropError

VectorLightGO_Direction: PointPropName
VectorLightGO_SetDirection(l: VectorLightGO, dir: PointVal): Ok !

replica_failure GO_PropError
WHERE

VectorLightGO <: LightGO
PointVal = PointPropVal + Point3
ColorVal = ColorPropVal + Color + Text
RealVal = RealPropVal + Real + Int

H.2 Properties

Properties are used to define the attributes of GOs. All properties inherit from the ba

Prop object, and use PropCB to be notified of changes.

H.2.1 Prop

Prop_BadMethod: Exception
Prop_BadInterval: Exception

273
TYPES
Prop <: ProxiedObj
PropName <: ProxiedObj
PropVal <: ProxiedObj
PropBeh <: ProxiedObj
PropRequest <: ProxiedObj & { start: () => Real, dur: () => Real }

H.2.2 PropCB

PropCB_New(obj: Prop, overrides: Obj): T;
PropCB_Cancel(cbobj: T): T;

WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:

pre`init(obj: Prop, beh: PropBeh): bool;
post`init(obj: Prop, beh: PropBeh): bool;
pre`setBeh(obj: Prop, beh: PropBeh): bool;
post`setBeh(obj: Prop, beh: PropBeh): bool;
pre`anyChange(obj: Prop);
post`anyChange(obj: Prop);

Where Prop is a Property and PropBeh is a Property Behavior of the
appropriate types

H.2.3 BooleanProp

BooleanProp_NewConst(b: Bool): BooleanPropVal
BooleanProp_NewSync(ah: AnimHandle, b: Bool): BooleanPropVal
BooleanProp_NewAsync(beh: BooleanPropAsyncBeh): BooleanPropVal
BooleanProp_NewDep(beh: BooleanPropDepBeh): BooleanPropVal
BooleanProp_NewConstBeh(b: Bool): BooleanPropConstBeh
BooleanProp_NewSyncBeh(ah: AnimHandle, b: Bool): BooleanPropSyncBeh
BooleanProp_NewAsyncBeh(compute: M1):BooleanPropAsyncBeh
BooleanProp_NewDepBeh(compute: M2):BooleanPropDepBeh
BooleanProp_NewRequest(start dur: Num, value: M3): BooleanPropRequest

WHERE
BooleanPropName <: PropName & { bind: (v: BooleanPropVal) => Prop }
BooleanPropVal <: PropVal &

{ getBeh: () => BooleanPropBeh ! replica_failure,
setBeh: (BooleanPropBeh) => Ok ! replica_failure,
get: () => Bool ! replica_failure,
value: (Num) => Bool ! replica_failure }

BooleanPropBeh <: PropBeh
BooleanPropConstBeh <: BooleanPropBeh & { set: (Bool) => Ok }
BooleanPropSyncBeh <: BooleanPropBeh &

{ addRequest: (BooleanPropRequest) => Ok ! Prop_BadInterval,
change: (Bool,Num) => Ok ! Prop_BadInterval }

BooleanPropAsyncBeh <: BooleanPropBeh & { compute: M1 }
BooleanPropDepBeh <: BooleanPropBeh & { compute: M2 }

274
BooleanPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: BooleanPropAsyncBeh) (Real) => Bool
M2 = Self (X <: BooleanPropDepBeh) (Real) => Bool
M3 = Self (X <: BooleanPropRequest) (Bool,Real) => Bool
Num = Real + Int

H.2.4 ColorProp

ColorProp_NewConst(r: Col): ColorPropVal
ColorProp_NewSync(ah: AnimHandle, r: Col): ColorPropVal
ColorProp_NewAsync(beh: ColorPropAsyncBeh): ColorPropVal
ColorProp_NewDep(beh: ColorPropDepBeh): ColorPropVal
ColorProp_NewConstBeh(r: Col): ColorPropConstBeh
ColorProp_NewSyncBeh(ah: AnimHandle, r: Col): ColorPropSyncBeh
ColorProp_NewAsyncBeh(compute: M1):ColorPropAsyncBeh
ColorProp_NewDepBeh(compute: M2):ColorPropDepBeh
ColorProp_NewRequest(start dur: Num, value: M3): ColorPropRequest

WHERE
ColorPropName <: PropNam e & { bind: (v: ColorPropVal) => Prop }
ColorPropVal <: PropVal &

{ getBeh: () => ColorPropBeh ! replica_failure,
setBeh: (ColorPropBeh) => Ok ! replica_failure,
get: () => Color ! replica_failure,
value: (Num) => Color ! replica_failure }

ColorPropBeh <: PropBeh
ColorPropConstBeh <: ColorPropBeh & { set: (Col) => Ok }
ColorPropSyncBeh <: ColorPropBeh &

{ addRequest: (ColorPropRequest) => Ok ! Prop_BadInterval,
rgbLinChangeTo: (Col,Num,Num) => Ok ! Prop_BadInterval }

ColorPropAsyncBeh <: ColorPropBeh & { compute: M1 }
ColorPropDepBeh <: ColorPropBe h & { compute: M2 }
ColorPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: ColorPropAsyncBeh) (Real) => Color
M2 = Self (X <: ColorPropDepBeh) (Real) => Color
M3 = Self (X <: ColorPropRequest) (Color,Real) => Color
Col = Color + Text
Num = Real + Int

H.2.5 FontStyleProp

FontStyleProp_NewConst(lt: FontStyle): FontStylePropVal
FontStyleProp_NewSync(ah: AnimHandle, lt: FontStyle):

FontStylePropVal
FontStyleProp_NewAsync(beh: FontStylePropAsyncBeh): FontStylePropVal
FontStyleProp_NewDep(beh: FontStylePropDepBeh): FontStylePropVal
FontStyleProp_NewConstBeh(lt: FontStyle): FontStylePropConstBeh
FontStyleProp_NewSyncBeh(ah: AnimHandle, lt: FontStyle):

FontStylePropSyncBeh
FontStyleProp_NewAsyncBeh(compute: M1):FontStylePropAsyncBeh

275
FontStyleProp_NewDepBeh(compute: M2):FontStylePropDepBeh
FontStyleProp_NewRequest(start dur: Num, value: M3):

FontStylePropRequest
WHERE

FontStylePropName <: PropNam e & { bind: (v: FontStylePropVal) => Prop
FontStylePropVal <: PropVal & { getBeh: () => FontStylePropBeh,

setBeh: (FontStylePropBeh) => Ok,
get: () => FontStyle,
value: (Num) => FontStyle }

FontStylePropBeh <: PropBeh
FontStylePropConstBeh <: FontStylePropBeh & {set: (FontStyle) => Ok }
FontStylePropSyncBeh <: FontStylePropBeh &

{ addRequest: (FontStylePropRequest) => Ok ! Prop_BadInterval,
change: (FontStyle,Num) => Ok ! Prop_BadInterval }

FontStylePropAsyncBeh <: FontStylePropBeh & { compute: M1 }
FontStylePropDepBeh <: FontStylePropBeh & { compute: M2 }
FontStylePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: FontStylePropAsyncBeh) (Real) => FontStyle
M2 = Self (X <: FontStylePropDepBeh) (Real) => FontStyle
M3 = Self (X <: FontStylePropRequest) (FontStyle,Real) => FontStyle
FontStyle = Text (one of "None","Bold","Italic", "BoldItalic")
Num = Real + Int

H.2.6 IntProp

IntProp_NewConst(r: Int): IntPropVal
IntProp_NewSync(ah: AnimHandle, r: Int): IntPropVal
IntProp_NewAsync(beh: IntPropAsyncBeh): IntPropVal
IntProp_NewDep(beh: IntPropDepBeh): IntPropVal
IntProp_NewConstBeh(r: Int): IntPropConstBeh
IntProp_NewSyncBeh(ah: AnimHandle, r: Int): IntPropSyncBeh
IntProp_NewAsyncBeh(compute: M1):IntPropAsyncBeh
IntProp_NewDepBeh(compute: M2):IntPropDepBeh
IntProp_NewRequest(start dur: Num, value: M3): IntPropRequest

WHERE
IntPropName <: PropName & { bind: (v: IntPropVal) => Prop }
IntPropVal <: PropVal & { getBeh: () => IntPropBeh ! replica_failure,

setBeh: (IntPropBeh) => Ok ! replica_failure,
get: () => Int ! replica_failure,
value: (Num) => Int ! replica_failure }

IntPropBeh <: PropBeh
IntPropConstBeh <: IntPropBeh & { set: (Int) => Ok }
IntPropSyncBeh <: IntPropBeh &

{ addRequest: (IntPropRequest) => Ok ! Prop_BadInterval,
linChangeTo: (Int,Num,Num) => Ok ! Prop_BadInterval,
linChangeBy: (Int,Num,Num) => Ok ! Prop_BadInterval }

IntPropAsyncBeh <: IntPropBeh & { compute: M1 }
IntPropDepBeh <: IntPropBeh & { compute: M2 }
IntPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: IntPropAsyncBeh) (Real) => Int
M2 = Self (X <: RealPropDepBeh) (Real) => Int
M3 = Self (X <: RealPropRequest) (Real,Real) => Int

276
Num = Real + Int

H.2.7 LineTypeProp

LineTypeProp_NewConst(lt: LineType): LineTypePropVal
LineTypeProp_NewSync(ah: AnimHandle, lt: LineType): LineTypePropVal
LineTypeProp_NewAsync(beh: LineTypePropAsyncBeh): LineTypePropVal
LineTypeProp_NewDep(beh: LineTypePropDepBeh): LineTypePropVal
LineTypeProp_NewConstBeh(lt: LineType): LineTypePropConstBeh
LineTypeProp_NewSyncBeh(ah: AnimHandle, lt: LineType):

LineTypePropSyncBeh
LineTypeProp_NewAsyncBeh(compute: M1):LineTypePropAsyncBeh
LineTypeProp_NewDepBeh(compute: M2):LineTypePropDepBeh
LineTypeProp_NewRequest(start dur: Num, value: M3):

LineTypePropRequest
WHERE

LineTypePropName <: PropNam e & { bind: (v: LineTypePropVal) => Prop }
LineTypePropVal <: PropVal &

{ getBeh: () => LineTypePropBeh ! replica_failure,
setBeh: (LineTypePropBeh) => Ok ! replica_failure,
get: () => LineType ! replica_failure,
value: (Num) => LineType ! replica_failure }

LineTypePropBeh <: PropBeh
LineTypePropConstBeh <: LineTypePropBeh & { set: (LineType) => Ok }
LineTypePropSyncBeh <: LineTypePropBeh &

{ addRequest: (LineTypePropRequest) => Ok ! Prop_BadInterval,
change: (LineType,Num) => Ok ! Prop_BadInterval }

LineTypePropAsyncBeh <: LineTypePropBeh & { compute: M1 }
LineTypePropDepBeh <: LineTypePropBeh & { compute: M2 }
LineTypePropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: LineTypePropAsyncBeh) (Real) => LineType
M2 = Self (X <: LineTypePropDepBeh) (Real) => LineType
M3 = Self (X <: LineTypePropRequest) (LineType,Real) => LineType
LineType = Text (one of "Solid", "Dashed", "Dotted", "DashDot")
Num = Real + Int

H.2.8 MarkerTypeProp

MarkerTypeProp_NewConst(lt: MarkerType): MarkerTypePropVal
MarkerTypeProp_NewSync(ah: AnimHandle, lt: MarkerType):

MarkerTypePropVal
MarkerTypeProp_NewAsync(beh: MarkerTypePropAsyncBeh):

MarkerTypePropVal
MarkerTypeProp_NewDep(beh: MarkerTypePropDepBeh): MarkerTypePropVal
MarkerTypeProp_NewConstBeh(lt: MarkerType): MarkerTypePropConstBeh
MarkerTypeProp_NewSyncBeh(ah: AnimHandle,

t: MarkerType): MarkerTypePropSyncBeh
MarkerTypeProp_NewAsyncBeh(compute: M1):MarkerTypePropAsyncBeh
MarkerTypeProp_NewDepBeh(compute: M2):MarkerTypePropDepBeh

277
MarkerTypeProp_NewRequest(start dur: Num, value: M3):
MarkerTypePropRequest

WHERE
MarkerTypePropName <: PropName &

{ bind: (v: MarkerTypePropVal) => Prop }
MarkerTypePropVal <: PropVal &

{ getBeh: () => MarkerTypePropBeh ! replica_failure,
setBeh: (MarkerTypePropBeh) => Ok ! replica_failure,
get: () => MarkerType ! replica_failure,
value: (Num) => MarkerType ! replica_failure }

MarkerTypePropBeh <: PropBeh
MarkerTypePropConstBeh <: MarkerTypePropBeh &

{ set: (MarkerType) => Ok }
MarkerTypePropSyncBeh <: MarkerTypePropBeh &

{ addRequest: (MarkerTypePropRequest) => Ok ! Prop_BadInterval,
change: (MarkerType,Num) => Ok ! Prop_BadInterval }

MarkerTypePropAsyncBeh <: MarkerTypePropBeh & { compute: M1 }
MarkerTypePropDepBeh <: MarkerTypePropBe h & { compute: M2 }
MarkerTypePropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: MarkerTypePropAsyncBeh) (Real) => MarkerType
M2 = Self (X <: MarkerTypePropDepBeh) (Real) => MarkerType
M3 = Self (X <: MarkerTypePropRequest) (MarkerType,Real) =>

MarkerType
MarkerType = Text (one of "Dot", "Circle", "Cross", "Asterisk", "X")
Num = Real + Int

H.2.9 Point2Prop

Point2Prop_NewConst(r: Point2): Point2PropVal
Point2Prop_NewSync(ah: AnimHandle, r: Point2): Point2PropVal
Point2Prop_NewAsync(beh: Point2PropAsyncBeh): Point2PropVal
Point2Prop_NewDep(beh: Point2PropDepBeh): Point2PropVal
Point2Prop_NewConstBeh(r: Point2): Point2PropConstBeh
Point2Prop_NewSyncBeh(ah: AnimHandle, r: Point2): Point2PropSyncBeh
Point2Prop_NewAsyncBeh(compute: M1):Point2PropAsyncBeh
Point2Prop_NewDepBeh(compute: M2):Point2PropDepBeh
Point2Prop_NewRequest(start dur: Num, value: M3): Point2PropRequest

WHERE
Point2PropName <: PropName & { bind: (v: Point2PropVal) => Prop }
Point2PropVal <: PropVal &

{ getBeh: () => Point2PropBeh ! replica_failure,
setBeh: (Point2PropBeh) => Ok ! replica_failure,
get: () => Point2 ! replica_failure,
value: (Num) => Point2 ! replica_failure }

Point2PropBeh <: PropBeh
Point2PropConstBeh <: Point2PropBeh & { set: (Point2) => Ok }
Point2PropSyncBeh <: Point2PropBeh &

{ addRequest: (Point2PropRequest) => Ok ! Prop_BadInterval,
linMoveTo: (Point2,Num,Num) => Ok ! Prop_BadInterval,
linMoveBy: (Point2,Num,Num) => Ok ! Prop_BadInterval }

Point2PropAsyncBeh <: Point2PropBeh & { compute: M1 }
Point2PropDepBeh <: Point2PropBeh & { compute: M2 }
Point2PropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: Point2PropAsyncBeh) (Real) => Point2

278
M2 = Self (X <: Point2PropDepBeh) (Real) => Point2
M3 = Self (X <: Point2PropRequest) (Point2,Real) => Point2
Num = Real + Int

H.2.10 PointProp

PointProp_NewConst(r: Point3): PointPropVal
PointProp_NewSync(ah: AnimHandle, r: Point3): PointPropVal
PointProp_NewAsync(beh: PointPropAsyncBeh): PointPropVal
PointProp_NewDep(beh: PointPropDepBeh): PointPropVal
PointProp_NewConstBeh(r: Point3): PointPropConstBeh
PointProp_NewSyncBeh(ah: AnimHandle, r: Point3): PointPropSyncBeh
PointProp_NewAsyncBeh(compute: M1):PointPropAsyncBeh
PointProp_NewDepBeh(compute: M2):PointPropDepBeh
PointProp_NewRequest(start dur: Num, value: M3): PointPropRequest

WHERE
PointPropName <: PropName & { bind: (v: PointPropVal) => Prop }
PointPropVal <: PropVal &

{ getBeh: () => PointPropBeh ! replica_failure,
setBeh: (PointPropBeh) => Ok ! replica_failure,
get: () => Point3 ! replica_failure,
value: (Num) => Point3 ! replica_failure }

PointPropBeh <: PropBeh
PointPropConstBeh <: PointPropBeh & { set: (Point3) => Ok }
PointPropSyncBeh <: PointPropBeh &

{ addRequest: (PointPropRequest) => Ok ! Prop_BadInterval,
linMoveTo: (Point3,Num,Num) => Ok ! Prop_BadInterval,
linMoveBy: (Point3,Num,Num) => Ok ! Prop_BadInterval }

PointPropAsyncBeh <: PointPropBeh & { compute: M1 }
PointPropDepBeh <: PointPropBeh & { compute: M2 }
PointPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: PointPropAsyncBeh) (Real) => Point3
M2 = Self (X <: PointPropDepBeh) (Real) => Point3
M3 = Self (X <: PointPropRequest) (Point3,Real) => Point3
Num = Real + Int

H.2.11 RasterModeProp

RasterModeProp_NewConst(lt: RasterMode): RasterModePropVal
RasterModeProp_NewSync(ah: AnimHandle, lt: RasterMode):

RasterModePropVal
RasterModeProp_NewAsync(beh: RasterModePropAsyncBeh):

RasterModePropVal
RasterModeProp_NewDep(beh: RasterModePropDepBeh): RasterModePropVal
RasterModeProp_NewConstBeh(lt: RasterMode): RasterModePropConstBeh
RasterModeProp_NewSyncBeh(ah: AnimHandle,

lt: RasterMode): RasterModePropSyncBeh
RasterModeProp_NewAsyncBeh(compute: M1):RasterModePropAsyncBeh
RasterModeProp_NewDepBeh(compute: M2):RasterModePropDepBeh

279
RasterModeProp_NewRequest(start dur: Num, value: M3):
RasterModePropRequest

WHERE
RasterModePropName <: PropName &

{ bind: (v: RasterModePropVal) => Prop }
RasterModePropVal <: PropVal &

{ getBeh: () => RasterModePropBeh ! replica_failure,
setBeh: (RasterModePropBeh) => Ok ! replica_failure,
get: () => RasterMode ! replica_failure,
value: (Num) => RasterMode ! replica_failure }

RasterModePropBeh <: PropBeh
RasterModePropConstBeh <: RasterModePropBeh &

{ set: (RasterMode) => Ok }
RasterModePropSyncBeh <: RasterModePropBeh &

{ addRequest: (RasterModePropRequest) => Ok ! Prop_BadInterval,
change: (RasterMode,Num) => Ok ! Prop_BadInterval }

RasterModePropAsyncBeh <: RasterModePropBeh & { compute: M1 }
RasterModePropDepBeh <: RasterModePropBeh & { compute: M2 }
RasterModePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: RasterModePropAsyncBeh) (Real) => RasterMode
M2 = Self (X <: RasterModePropDepBeh) (Real) => RasterMode
M3 = Self (X <: RasterModePropRequest) (RasterMode,Real) =>

RasterMode
RasterMode = Text (one of "Vector" "Hollow", "Solid", "Empty")
Num = Real + Int

H.2.12 RealProp

RealProp_NewConst(r: Num): RealPropVal
RealProp_NewSync(ah: AnimHandle, r: Num): RealPropVal
RealProp_NewAsync(beh: RealPropAsyncBeh): RealPropVal
RealProp_NewDep(beh: RealPropDepBeh): RealPropVal
RealProp_NewConstBeh(r: Num): RealPropConstBeh
RealProp_NewSyncBeh(ah: AnimHandle, r: Num): RealPropSyncBeh
RealProp_NewAsyncBeh(compute: M1):RealPropAsyncBeh
RealProp_NewDepBeh(compute: M2):RealPropDepBeh
RealProp_NewRequest(start dur: Num, value: M3): RealPropRequest

WHERE
RealPropName <: PropName & { bind: (v: RealPropVal) => Prop }
RealPropVal <: PropVal &

{ getBeh: () => RealPropBeh ! replica_failure,
setBeh: (RealPropBeh) => Ok ! replica_failure,
get: () => Real ! replica_failure,
value: (Num) => Real ! replica_failure }

RealPropBeh <: PropBeh
RealPropConstBeh <: RealPropBeh & { set: (Num) => Ok }
RealPropSyncBeh <: RealPropBeh &

{ addRequest: (RealPropRequest) => Ok ! Prop_BadInterval,
linChangeTo: (Num,Num,Num) => Ok ! Prop_BadInterval,
linChangeBy: (Num,Num,Num) => Ok ! Prop_BadInterval }

RealPropAsyncBeh <: RealPropBeh & { compute: M1 }
RealPropDepBeh <: RealPropBeh & { compute: M2 }
RealPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: RealPropAsyncBeh) (Real) => Real

280
M2 = Self (X <: RealPropDepBeh) (Real) => Real
M3 = Self (X <: RealPropRequest) (Real,Real) => Real
Num = Real + Int

H.2.13 ShadingProp

ShadingProp_NewConst(lt: Shading): ShadingPropVal
ShadingProp_NewSync(ah: AnimHandle, lt: Shading): ShadingPropVal
ShadingProp_NewAsync(beh: ShadingPropAsyncBeh): ShadingPropVal
ShadingProp_NewDep(beh: ShadingPropDepBeh): ShadingPropVal
ShadingProp_NewConstBeh(lt: Shading): ShadingPropConstBeh
ShadingProp_NewSyncBeh(ah: AnimHandle, lt: Shading):

ShadingPropSyncBeh
ShadingProp_NewAsyncBeh(compute: M1):ShadingPropAsyncBeh
ShadingProp_NewDepBeh(compute: M2):ShadingPropDepBeh
ShadingProp_NewRequest(start dur: Num, value: M3): ShadingPropRequest

WHERE
ShadingPropName <: PropName & { bind: (v: ShadingPropVal) => Prop }
ShadingPropVal <: PropVal &

{ getBeh: () => ShadingPropBeh ! replica_failure,
setBeh: (ShadingPropBeh) => Ok ! replica_failure,
get: () => Shading ! replica_failure,
value: (Num) => Shading ! replica_failure }

ShadingPropBeh <: PropBeh
ShadingPropConstBeh <: ShadingPropBeh & { set: (Shading) => Ok }
ShadingPropSyncBeh <: ShadingPropBeh &

{ addRequest: (ShadingPropRequest) => Ok ! Prop_BadInterval,
change: (Shading,Num) => Ok ! Prop_BadInterval }

ShadingPropAsyncBeh <: ShadingPropBeh & { compute : M1 }
ShadingPropDepBeh <: ShadingPropBeh & { compute: M2 }
ShadingPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: ShadingPropAsyncBeh) (Real) => Shading
M2 = Self (X <: ShadingPropDepBeh) (Real) => Shading
M3 = Self (X <: ShadingPropRequest) (Shading,Real) => Shading
Shading = Text ("Flat" or "Gouraud")
Num = Real + Int

H.2.14 StringProp

StringProp_NewConst(t: TEXT): StringPropVal
StringProp_NewSync(ah: AnimHandle, t: TEXT): StringPropVal
StringProp_NewAsync(beh: StringPropAsyncBeh): StringPropVal
StringProp_NewDep(beh: StringPropDepBeh): StringPropVal
StringProp_NewConstBeh(t: TEXT): StringPropConstBeh
StringProp_NewSyncBeh(ah: AnimHandle, t: TEXT): StringPropSyncBeh
StringProp_NewAsyncBeh(compute: M1):StringPropAsyncBeh
StringProp_NewDepBeh(compute: M2):StringPropDepBeh
StringProp_NewRequest(start dur: Num, value: M3): StringPropRequest

WHERE

281
StringPropName <: PropName & { bind: (v: StringPropVal) => Prop }
StringPropVal <: PropVal & { getBeh: () => StringPropBeh,

setBeh: (StringPropBeh) => Ok,
get: () => TEXT,
value: (Num) => TEXT }

StringPropBeh <: PropBeh
StringPropConstBeh <: StringPropBeh & { set: (TEXT) => Ok }
StringPropSyncBeh <: StringPropBeh &

{ addRequest: (StringPropRequest) => Ok ! Prop_BadInterval,
change: (TEXT,Num) => Ok ! Prop_BadInterval }

StringPropAsyncBeh <: StringPropBeh & { compute: M1 }
StringPropDepBeh <: StringPropBeh & { compute: M2 }
StringPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: StringPropAsyncBeh) (Real) => TEXT
M2 = Self (X <: StringPropDepBeh) (Real) => TEXT
M3 = Self (X <: StringPropRequest) (TEXT,Real) => TEXT
Num = Real + Int

H.2.15 TexImageProp

TexImageProp_NewConst(m: TexImage): TexImagePropVal
TexImageProp_NewSync(ah: AnimHandle, m: TexImage): TexImagePropVal
TexImageProp_NewAsync(beh: TexImagePropAsyncBeh): TexImagePropVal
TexImageProp_NewDep(beh: TexImagePropDepBeh): TexImagePropVal
TexImageProp_NewConstBeh(m: TexImage): TexImagePropConstBeh
TexImageProp_NewSyncBeh(ah: AnimHandle, m: TexImage):

TexImagePropSyncBeh
TexImageProp_NewAsyncBeh(compute: M1):TexImagePropAsyncBeh
TexImageProp_NewDepBeh(compute: M2):TexImagePropDepBeh
TexImageProp_NewRequest(start dur: Num, value: M3):

TexImagePropRequest
WHERE

TexImagePropName <: PropNam e & { bind: (v: TexImagePropVal) => Prop }
TexImagePropVal <: PropVal & { getBeh: () => TexImagePropBeh,

setBeh: (TexImagePropBeh) => Ok,
get: () => TexImage,
value: (Num) => TexImage }

TexImagePropBeh <: PropBeh
TexImagePropConstBeh <: TexImagePropBeh &

{ set: (TexImage) => Ok}
TexImagePropSyncBeh <: TexImagePropBeh &

{ addRequest: (TexImagePropRequest) => Ok ! Prop_BadInterval}
TexImagePropAsyncBeh <: TexImagePropBeh & { compute: M1 }
TexImagePropDepBeh <: TexImagePropBeh & { compute: M2 }
TexImagePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TexImagePropAsyncBeh) (Real) => TexImage
M2 = Self (X <: TexImagePropDepBeh) (Real) => TexImage
M3 = Self (X <: TexImagePropRequest) (TexImage,Real) => TexImage
Num = Real = Int

282
H.2.16 TexModelProp

TexModelProp_NewConst(lt: TexModel): TexModelPropVal
TexModelProp_NewSync(ah: AnimHandle, lt: TexModel): TexModelPropVal
TexModelProp_NewAsync(beh: TexModelPropAsyncBeh): TexModelPropVal
TexModelProp_NewDep(beh: TexModelPropDepBeh): TexModelPropVal
TexModelProp_NewConstBeh(lt: TexModel): TexModelPropConstBeh
TexModelProp_NewSyncBeh(ah: AnimHandle, lt: TexModel):

TexModelPropSyncBeh
TexModelProp_NewAsyncBeh(compute: M1):TexModelPropAsyncBeh
TexModelProp_NewDepBeh(compute: M2):TexModelPropDepBeh
TexModelProp_NewRequest(start dur: Num, value: M3):

TexModelPropRequest
WHERE

TexModelPropName <: PropNam e & { bind: (v: TexModelPropVal) => Prop }
TexModelPropVal <: PropVal & { getBeh: () => TexModelPropBeh,

setBeh: (TexModelPropBeh) => Ok,
get: () => TexModel,
value: (Num) => TexModel }

TexModelPropBeh <: PropBeh
TexModelPropConstBeh <: TexModelPropBeh & { set: (TexModel) => Ok }
TexModelPropSyncBeh <: TexModelPropBeh &

{ addRequest: (TexModelPropRequest) => Ok ! Prop_BadInterval,
change: (TexModel,Num) => Ok ! Prop_BadInterval }

TexModelPropAsyncBeh <: TexModelPropBeh & { compute: M1 }
TexModelPropDepBeh <: TexModelPropBeh & { compute: M2 }
TexModelPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: TexModelPropAsyncBeh) (Real) => TexModel
M2 = Self (X <: TexModelPropDepBeh) (Real) => TexModel
M3 = Self (X <: TexModelPropRequest) (TexModel,Real) => TexModel
TexModel = Text (one of "Modulate", "Decl", "Blend")
Num = Real + Int

H.2.17 TextAlignProp

TextAlignProp_NewConst(lt: TextAlign): TextAlignPropVal
TextAlignProp_NewSync(ah: AnimHandle, lt: TextAlign):

TextAlignPropVal
TextAlignProp_NewAsync(beh: TextAlignPropAsyncBeh): TextAlignPropVal
TextAlignProp_NewDep(beh: TextAlignPropDepBeh): TextAlignPropVal
TextAlignProp_NewConstBeh(lt: TextAlign): TextAlignPropConstBeh
TextAlignProp_NewSyncBeh(ah: AnimHandle, lt: TextAlign):

TextAlignPropSyncBeh
TextAlignProp_NewAsyncBeh(compute: M1):TextAlignPropAsyncBeh
TextAlignProp_NewDepBeh(compute: M2):TextAlignPropDepBeh
TextAlignProp_NewRequest(start dur: Num, value: M3):

TextAlignPropRequest
WHERE

TextAlignPropName <: PropName &
{ bind: (v: TextAlignPropVal) => Prop }

TextAlignPropVal <: PropVal & { getBeh: () => TextAlignPropBeh,

283
setBeh: (TextAlignPropBeh) => Ok,
get: () => TextAlign,
value: (Num) => TextAlign }

TextAlignPropBeh <: PropBeh
TextAlignPropConstBeh <: TextAlignPropBeh & { set: (TextAlign) => Ok}
TextAlignPropSyncBeh <: TextAlignPropBeh &

{ addRequest: (TextAlignPropRequest) => Ok ! Prop_BadInterval,
change: (TextAlign,Num) => Ok ! Prop_BadInterval }

TextAlignPropAsyncBeh <: TextAlignPropBeh & { compute: M1 }
TextAlignPropDepBeh <: TextAlignPropBeh & { compute: M2 }
TextAlignPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TextAlignPropAsyncBeh) (Real) => TextAlign
M2 = Self (X <: TextAlignPropDepBeh) (Real) => TextAlign
M3 = Self (X <: TextAlignPropRequest) (TextAlign,Real) => TextAlign
TextAlign = Text (one of "Left", "Right", "Center")
Num = Real + Int

H.2.18 TransformProp

TransformProp_NewConst(m: Matrix4): TransformPropVal
TransformProp_NewSync(ah: AnimHandle, m: Matrix4): TransformPropVal
TransformProp_NewAsync(beh: TransformPropAsyncBeh): TransformPropVal
TransformProp_NewDep(beh: TransformPropDepBeh): TransformPropVal
TransformProp_NewConstBeh(m: Matrix4): TransformPropConstBeh
TransformProp_NewSyncBeh(ah: AnimHandle, m: Matrix4):

TransformPropSyncBeh
TransformProp_NewAsyncBeh(compute: M1):TransformPropAsyncBeh
TransformProp_NewDepBeh(compute: M2):TransformPropDepBeh
TransformProp_NewRequest(start dur: Num, value: M3):

TransformPropRequest
WHERE

TransformPropName <: PropName &
{ bind: (v: TransformPropVal) => Prop }

TransformPropVal <: PropVal &
{ getBeh: () => TransformPropBeh ! replica_failure,

setBeh: (TransformPropBeh) => Ok ! replica_failure,
get: () => Matrix4 ! replica_failure,
value: (Num) => Matrix4 ! replica_failure }

TransformPropBeh <: PropBeh
TransformPropConstBeh <: TransformPropBeh &

{ set: (Matrix4) => Ok,
compose: (Matrix4) => Ok,
reset: () => Ok,
translate: (Num,Num,Num) => Ok,
scale: (Num,Num,Num) => Ok,
rotateX: (Num) => Ok,
rotateY: (Num) => Ok,
rotateZ: (Num) => Ok }

TransformPropSyncBeh <: TransformPropBeh &
{ addRequest: (TransformPropRequest) => Ok ! Prop_BadInterval,

reset: (Num) => Ok ! Prop_BadInterval,
changeTo: (Matrix4,Num,Num) => Ok ! Prop_BadInterval,
translate: (Num,Num,Num,Num,Num) => Ok ! Prop_BadInterval,
scale: (Num,Num,Num,Num,Num) => Ok ! Prop_BadInterval,

284
rotateX: (Num,Num,Num) => Ok ! Prop_BadInterval,
rotateY: (Num,Num,Num) => Ok ! Prop_BadInterval,
rotateZ: (Num,Num,Num) => Ok ! Prop_BadInterval }

TransformPropAsyncBeh <: TransformPropBe h & { compute: M1 }
TransformPropDepBeh <: TransformPropBeh & { compute: M2 }
TransformPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TransformPropAsyncBeh) (Real) => Matrix4
M2 = Self (X <: TransformPropDepBeh) (Real) => Matrix4
M3 = Self (X <: TransformPropRequest) (Matrix4,Real) => Matrix4
Num = Real = Int

H.2.19 TransmissionPatternProp

TransmissionPatternProp_NewConst(lt: TransmissionPattern):
TransmissionPatternPropVal

TransmissionPatternProp_NewSync(ah: AnimHandle,
lt: TransmissionPattern): TransmissionPatternPropVal

TransmissionPatternProp_NewAsync(
beh: TransmissionPatternPropAsyncBeh): TransmissionPatternPropVal

TransmissionPatternProp_NewDep(beh: TransmissionPatternPropDepBeh):
TransmissionPatternPropVal

TransmissionPatternProp_NewConstBeh(lt: TransmissionPattern):
TransmissionPatternPropConstBeh

TransmissionPatternProp_NewSyncBeh(ah: AnimHandle,
lt: TransmissionPattern): TransmissionPatternPropSyncBeh

TransmissionPatternProp_NewAsyncBeh(compute: M1):
TransmissionPatternPropAsyncBeh

TransmissionPatternProp_NewDepBeh(compute: M2):
TransmissionPatternPropDepBeh

TransmissionPatternProp_NewRequest(start dur: Num, value: M3):
TransmissionPatternPropRequest

WHERE
TransmissionPatternPropName <: PropName &

{ bind: (v: TransmissionPatternPropVal) => Prop }
TransmissionPatternPropVal <: PropVal &

{ getBeh: () => TransmissionPatternPropBeh ! replica_failure,
setBeh: (TransmissionPatternPropBeh) => Ok ! replica_failure,
get: () => TransmissionPattern ! replica_failure,
value: (Num) => TransmissionPattern ! replica_failure }

TransmissionPatternPropBeh <: PropBeh
TransmissionPatternPropConstBeh <: TransmissionPatternPropBeh &

{ set: (TransmissionPattern) => Ok }
TransmissionPatternPropSyncBeh <: TransmissionPatternPropBeh &

{ addRequest: (TransmissionPatternPropRequest) => Ok !
Prop_BadInterval,

change: (TransmissionPattern,Num) => Ok ! Prop_BadInterval }
TransmissionPatternPropAsyncBeh <: TransmissionPatternPropBeh &

{ compute: M1 }
TransmissionPatternPropDepBeh <: TransmissionPatternPropBeh &

{ compute: M2 }
TransmissionPatternPropRequest <: PropReques t & { value: M3 }
M1 = Self (X <: TransmissionPatternPropAsyncBeh) (Real) =>

TransmissionPattern
M2 = Self (X <: TransmissionPatternPropDepBeh) (Real) =>

285
TransmissionPattern
M3 = Self (X <: TransmissionPatternPropRequest)

(TransmissionPattern,Real) => TransmissionPattern
TransmissionPattern = Text (one of "Blending", "Stipple")
Num = Real + Int

H.3 Animation Handles

H.3.1 AnimHandle

AnimHandle_New(): AnimHandle
WHERE

AnimHandle <: ProxiedObj & { animate: () => Ok ! replica_failure,
startAnimation: () => Ok ! replica_failure,
finishAnimation: () => Ok ! replica_failure,
stopAnimation: () => Ok ! replica_failure,
pauseAnimation: () => Ok ! replica_failure,
continueAnimation: () => Ok ! replica_failure,
getAnimationTime:() => Real ! replica_failure,
getAnimationLength:() => Real ! replica_failure,
goToAnimationTime:(Real) => Ok! replica_failure}

H.3.2 AnimHandleCB

AnimHandleCB_New(obj: AnimHandle_T, overrides: Obj): T;
AnimHandleCB_Cancel(cbobj: T): T;

WHERE
T <: {simple} & overrides;
overrides contains one or more of these callback methods:

pre`anyChange(obj: AnimHandle_T);
post`anyChange(obj: AnimHandle_T);
pre`init(obj: AnimHandle_T): bool;
post`init(obj: AnimHandle_T): bool;
pre`startAnimation(obj: AnimHandle_T): bool;
post`startAnimation(obj: AnimHandle_T): bool;
pre`stopAnimation(obj: AnimHandle_T): bool;
post`stopAnimation(obj: AnimHandle_T): bool;
pre`pauseAnimation(obj: AnimHandle_T): bool;
post`pauseAnimation(obj: AnimHandle_T): bool;
pre`continueAnimation(obj: AnimHandle_T): bool;
post`continueAnimation(obj: AnimHandle_T): bool;
pre`goToAnimationTime(obj: AnimHandle_T, time: Real): bool;
post`goToAnimationTime(obj: AnimHandle_T, time: Real): bool;

286
H.4 Interaction Callbacks

Interaction callbacks are used to obtain input from the user via a RootGO.

H.4.1 KeyCB

KeyCB_New(invoke: M): KeyCB
WHERE

KeyCB <: ProxiedObj & { invoke: M }
M = Self (X <: KeyCB) (KeyRec) => Ok
KeyRec = { change: Text, wentDown: Bool, modifiers: [Modifier] }
Modifier = Text (one of "Left", "Middle", "Right",

"Shift", "Lock", "Control", "Option")

A KeyCB is used to obtain keystroke input.

H.4.2 MouseCB

MouseCB_New(invoke: M): MouseCB
WHERE

MouseCB <: ProxiedObj & { invoke: M }
M = Self (X <: MouseCB) (MouseRec) => Ok
MouseRec = { pos: Point2, change: Button,

modifiers: [Modifier], clickType: ClickType }
Point2 = [2*Int]
Button = Text (one of "Left", "Middle", "Right")
Modifier = Text (a Button or one of "Shift", "Lock", "Control",

"Option")
ClickType = Text (one of "FirstDown", "OtherDown", "OtherUp",

"LastUp")

A MouseCB is used to obtain mouse button presses and releases.

H.4.3 PositionCB

PositionCB_New(invoke: M): PositionCB
WHERE

PositionCB <: ProxiedObj & { invoke: M }
M = Self (X <: PositionCB) (PositionRec) => Ok
PositionRec = { pos: Point2, modifiers: [Modifier] }
Point2 = [2*Int]
Modifier = Text (one of "Left", "Middle", "Right",

"Shift", "Lock", "Control", "Option")

287

ate

e into
A PositionCB is used to obtain mouse motion input.

H.5 Location Callbacks

H.5.1 ProjectionCB

ProjectionCB_New(invoke: M): ProjectionCB
WHERE

ProjectionCB <: ProxiedObj & { invoke: M }
M = Self (X <: ProjectionCB) (ProjectionRec) => Ok
ProjectionRec = { base => GraphicsBase,

point => [Point3,Point3,Point3],
relPos => [RelPosition,RelPosition,RelPosition]}

where the 3 elements in point and relPos correspond to the
Left, Right and Monocular viewpoint

RelPosition = {"Front", "On", "Behind"}

A ProjectionCB is used to obtain the 2D projection of a 3D point in the scene.

H.5.2 TransformCB

TransformCB_New(invoke: M): TransformCB
WHERE

TransformCB <: ProxiedObj & { invoke: M }
M = Self (X <: TransformCB) (TransformRec) => Ok
TransformRec = { toWorld => Matrix4,

localOriginToWorld => Point3,
fromWorld => Matrix4,
worldOriginToLocal => Point3 }

A TransformCB is used to obtain the 3D transformations to and from the world coordin

system of a 3D point in the scene.

H.6 Graphics Bases

Graphics Bases specify which rendering subsystem is to be used to render a 3D scen

a RootGO. Not all Graphics Bases are available on all machines.

288
H.6.1 GraphicsBase

GraphicsBase_Failure: Exception
WHERE

GraphicsBase <: ProxiedObj &
{ windowPosSize: () => PosSizeRec,

changeTitle: (Text) => Ok,
awaitDelete: () => Ok,
destroy: () => Ok }

PosSizeRec = {origin, viewPortOrigin, viewPortDimen: Point}

GraphicsBase is the abstract base that all others inherit from.

H.6.2 Win_OpenGL_Base

Win`OpenGL`Base_New(title: Text, x y w h: Int): Win`OpenGL`Base !
GraphicsBase_Failure

Win`OpenGL`Base_NewInWindow(title: Text, x y w h: Int,
win class: Text):

Win`OpenGL`Base ! GraphicsBase_Failure
Win`OpenGL`Base_NewStd(): Win`OpenGL`Base ! GraphicsBase_Failure

WHERE
Win`OpenGL`Base <: GraphicsBase & {toggleFullScreen: () => Ok}

Render using OpenGL on the Windows platform.

H.6.3 Win_RW_Base

Win`RW`Base_New(title: Text, x y w h: Int): Win`RW`Base !
GraphicsBase_Failure

Win`RW`Base_NewInWindow(title: Text, x y w h: Int, name class: Text):
Win`RW`Base ! GraphicsBase_Failure

Win`RW`Base_NewStd(): Win`RW`Base ! GraphicsBase_Failure
WHERE

Win`RW`Base <: GraphicsBase & { toggleFullScreen: () => Ok}

Render using Renderware on the Windows platform.

H.6.4 X_OpenGL_Base

X`OpenGL`Base_New(title: Text, x y w h: Int): X`OpenGL`Base !
GraphicsBase_Failure

289
X`OpenGL`Base_NewWithDisplay(title: Text, x y w h: Int,
dpyName: Text): X`OpenGL`Base ! GraphicsBase_Failure

X`OpenGL`Base_NewOnRoot(title: Text, x y w h: Int): X`OpenGL`Base !
GraphicsBase_Failure

X`OpenGL`Base_NewOnRootWithDisplay(title: Text, x y w h: Int,
dpyName: Text): X`OpenGL`Base ! GraphicsBase_Failure

X`OpenGL`Base_NewInWindow(title: Text, x y w h winID: Int):
X`OpenGL`Base ! GraphicsBase_Failure

X`OpenGL`Base_NewInWindowWithDisplay(title: Text , x y w h winID: Int,
dpyName: Text): X`OpenGL`Base ! GraphicsBase_Failure

X`OpenGL`Base_NewStd(): X`OpenGL`Base ! GraphicsBase_Failure
WHERE

X`OpenGL`Base <: GraphicsBase

Render using OpenGL on the Unix/X11 platform.

H.7 Miscellaneous

H.7.1 Anim3D

Anim3D_lock: Mutex
Anim3D_now: Real

The current value of the animation clock.
Anim3D_ChangeClock(proc: ()->Real): Ok

Change the animation clock. The procedure "proc" is the new time
function that returns the "current time".

Anim3D_DefaultClock(): Ok
Revert to the default, real-time animation clock.

Anim3D_SetErrorWr(wr: Wr): Ok
Set the writer to which animation server error messages will be
written to be "wr". By default, error messages are written to
"wr_stderr".

H.7.2 AnimHook

AnimHook_AddBeforeHook(f: (Real)->Ok): Ok
AnimHook_RemoveBeforeHook(f: (Real)->Ok): ((Real)->Ok | Ok)
AnimHook_AddAfterHook(f: (Real)->Ok): Ok
AnimHook_RemoveAfterHook(f: (Real)->Ok): ((Real)->Ok | Ok)

H.7.3 ProxiedObj

TYPE ProxiedObj <: { extend: Self(X) All(Y<:{simple}) (Y) => X & Y }

290
Objects of this type also contain a field "raw",
which is for internal use only. All objects must
be simple.

H.7.4 TessSphere

TessSphere_NewOmniGO(prec: int): GO;

H.7.5 TexImage

TexImage_Error: Exception
TexImage_New(fileName: Text): TexImage ! Thread.Alerted, Error

WHERE
TexImage is opaque

291

ines.

rote a

pen-

ed in

d, and

 First,

y is

the

al

d

n a

have
APPENDIX I The Animation Time Module

In Section 5.7, we discuss our solution to clock synchronization across multiple mach

Since we cannot assume that all machines have their time clocks synchronized, we w

simple module to keep the clocks of our distributed processes synchronized. This ap

dix contains the code for that module.

To use the module, one process is chosen as a server and runs

animtime_serve(hostname) , wherehostname is the host to which the server

network object should be exported to; the server object is the one line object embedd

thenet_export statement, that contains aget() method to return the time on the

server process. Any process can elect to be a client process. The client forks a threa

uses a simple protocol to determine the time difference between the two processes.

the client calls the server’sget() method ten times, with a small pause between each

invocation. By assuming that the round trip time for the call is symmetric (i.e., the dela

equal for sending the method to the remote host, and returning the time value), half

delay is subtracted from the server time, giving an approximation of the server’s time

when the method was invoked. The difference between the server’s time and the loc

time, averaged over the ten invocations, is used to adjust the local time to correspon

roughly to the server time.

This protocol is not extremely robust, as variations in network delay (both withi

single call, and across multiple calls) exist and add noise to the system. However, we

found that it works reasonably well in practice, especially on local area networks.

292
I.1 animtime.obl
module animtime;

let serve = proc (host)
net_export("timeserver", host,

{get => meth(s) Anim3D_now end});
ok;

end;

let client = proc (host)
var timeserver = ok;

var offset = 0.0;

var th = ok;
var a = array_new(10, ok);
var b = array_new(10, ok);
var scan = true;
var stop = true;

let start = proc () thread_fork (proc ()
loop

try
if scan then

if timeserver is ok then
timeserver := net_import("timeserver",host);

end;
scan := false;
for i = 0 to 9 do

lock Anim3D_lock do
let t1 = sys_timeNow,
t2 = timeserver.get(),
t3 = sys_timeNow;
a[i] := (t2 - t1) - ((t3-t1)/2.0);

end;
thread_pause(0.1);
end;

offset := a[0];
for i = 1 to 9 do

b[i] := ((a[i] - a[0])/10.0);
offset := offset + b[i];

end;
end;

except net_failure =>
sys_printText("Timeserver.get() failed. " &

"Will try later.\n");
sys_printFlush();
timeserver := ok,

thread_alerted =>
sys_printText("Timeserver.get() interrupted. " &

"Will try later.\n");
sys_printFlush();

end;
(* pause for an hour *)
try

thread_alertPause (3600.0);

293
except thread_alerted => end;
if stop then exit end;

end;
timeserver := ok;

end, 20000) end;
let ret = { stop => meth (s)

if th isnot ok then
stop := true;
thread_alert(th);
thread_join(th);
th := ok;
Anim3D_DefaultClock();

end;
ok;

end,
set => meth (s)

if th isnot ok then
scan := true;
thread_alert(th);

end;
end,

offset => meth(s) offset end,
start => meth (s)

if th is ok then
th := start();
thread_pause(1.0);
Anim3D_ChangeClock(proc ()

sys_timeNow + offset;
end);

end;
ok;

end};
ret.start();
ret;

end;

end module;

addhelp animtime short "The animation time synchronization package" full
" animtime_serve(host: Text): Ok ! net_failure thread_alerted

Export an animation time server to \"host\". Other processes can
import this to synchronize their animation clocks to us.

animtime_client(host: Text): TimeClient ! net_failure thread_alerted
Import an animation time server client.

TYPE
TimeClient <: {start: () => Ok ! net_failure,

stop: () => Ok ! net_failure};
";

	Exploratory Programming of Distributed Augmented Environments
	Abstract
	Table of Contents
	CHAPTER 1 Introduction 1
	CHAPTER 2 An Overview of Coterie 13
	CHAPTER 3 Shared Objects 38
	CHAPTER 4 Repo 84
	CHAPTER 5 Repo-3D 118
	CHAPTER 6 Coterie Examples 158
	CHAPTER 7 Conclusions and Future Work 170
	References 184
	APPENDIX A Example Generated Code 190
	APPENDIX B Tracker Modules 202
	APPENDIX C Repo Syntax 209
	APPENDIX D Additional Enhancements to Repo 211
	APPENDIX E Repo Modules 219
	APPENDIX F Another Replicated Mutex 251
	APPENDIX G Additional Enhancements To Repo-3D 254
	APPENDIX H Repo-3D Modules 257
	APPENDIX I The Animation Time Module 291

	List of Figures
	List of Tables
	Acknowledgments
	CHAPTER 1 Introduction
	1.1 Exploratory Programming of Distributed Augmented Environments
	1.2 Research Contributions
	1. Shared Objects, a novel, tightly integrated replicated object package for a mainstream program...
	2. Repo, a distributed, interpreted language that presents a DOM to the programmer with both clie...
	3. Repo-3D, a high-level, structured graphics library with directly distributable and extensible ...
	4. Coterie, a testbed for fast prototyping of distributed AE applications that incorporates these...
	5. A number of prototypes implemented in Coterie that explore different augmented environment app...
	1.2.1 Shared Objects: A Distributed Shared Object Memory
	1.2.2 Repo: A Distributed Interpreted Language
	1.2.3 Repo-3D: A Distributed 3D Graphics Library
	1.2.4 Coterie: Exploratory Programming of AE Systems
	1.2.5 Prototype Augmented Reality Applications

	CHAPTER 2 An Overview of Coterie
	2.1 Previous Work: Augmented Reality
	2.1.1 KARMA
	Figure 2-1: The KARMA prototype

	2.1.2 Windows on the World
	Figure 2-2: The Windows on the World prototype

	2.1.3 Architectural Anatomy
	Figure 2-3: The Architectural Anatomy prototype

	2.2 Motivation
	Figure 2-4: An example architecture diagram

	2.3 Requirements for the Testbed
	Data replication
	Uniform treatment of data
	Responsive asynchronous data propagation
	Asynchronous update notification
	Embedded interpreted language
	Object-oriented and multithreaded environment
	High-level, platform-independent, extensible, 3D graphics package
	Other desirable distributed system characteristics

	2.4 Related Research Areas
	2.4.1 Virtual Environment Systems
	2.4.2 Distributed Groupware

	2.5 Implementation Overview
	2.5.1 Virtual Environments: Tracker Support
	Figure 2-5: The generic Tracker Report Object hierarchy

	2.6 Initial Prototypes
	2.6.1 Architectural Anatomy
	Figure 2-6: The new Architectural Anatomy prototype

	2.6.2 Telephone Crossbox Maintenance
	Figure 2-7: A prototype AR application for crossbox maintenance

	2.6.3 Spaceframe Construction
	Figure 2-8: A prototype AR application for space frame construction

	2.6.4 Automated Tour Guide
	Figure 2-9: A prototype campus information system
	Figure 2-10: Additional images of the Touring machine
	Figure 2-11: Software design of the prototype campus information system

	CHAPTER 3 Shared Objects
	3.1 Distributed Shared Memory
	3.2 Related Work
	Table 3-1: A comparison of distributed object-based programming systems

	3.3 Shared Object Package Design
	3.3.1 Goal: Tight Integration
	3.3.2 Model: Totally Ordered, Write-Update Objects
	1. All operations on an instance of an object are atomic and serializable. All operations are per...
	2. Property 1 applies to operations on single objects. Making sequences of operations atomic is u...
	Figure 3-1: Control and data flow for a Shared Object update
	Figure 3-2: The relationship between clients, sequencers and object managers

	3.3.3 Event Driven Control Flow: Callback Objects

	3.4 Implementation
	Figure 3-3: Object hierarchy for a Shared Object
	3.4.1 Object Definition and Runtime Code Generation
	3.4.1.1 Example Object Definition
	Figure 3-4: The Modula-3 interface definition for TrackerPosition.
	Figure 3-5: The Modula-3 implementation for TrackerPosition.
	TYPE
	REVEAL
	TYPE
	REVEAL
	REVEAL

	3.4.1.2 Callback Object Usage
	Figure 3-6: The TrackerPositionCB.T Callback Object
	VAR cbObj: Callback;

	3.4.1.3 Passing State Between Processes
	Figure 3-7: The default TrackerPosition.T marshalling code

	3.4.1.4 Additional Tracker Examples
	Figure 3-8: A low frequency tracker object

	3.4.2 The Shared Object Runtime
	3.4.2.1 Thread Management
	Figure 3-9: Data Flow in the Shared Object System
	1. An exclusive write lock is acquired for the object.
	2. All “pre_” methods are called for each Callback Object associated with the object.
	3. The update method is executed.
	4. All “post_” methods are called for each Callback Object associated with the object.
	5. The write lock is released.

	3.4.2.2 Exception and Return Value Handling

	3.4.3 Restrictions

	3.5 Performance and Usability
	3.5.1 Shared Object Performance
	Table 3-2: Local method call performance
	Table 3-3: Distributed method call performance
	Table 3-4: Orca Method call performance

	3.5.2 Shared Object Usability

	3.6 Discussion

	CHAPTER 4 Repo
	4.1 Related Work
	4.2 An Overview of Obliq and Repo
	4.3 Distributed Semantics
	Figure 4-1: The effect of different distribution semantics

	4.4 Replication Syntax
	4.4.1 Declarations
	Table 4-1: Entities with state in Obliq
	Table 4-2: Declaring entities with state in Repo
	Figure 4-2: Declaring objects in Repo

	4.4.2 Cloning Data
	let o1 = {simple,
	let o2 =

	4.4.3 User-defined Picklers
	objectpickler object reader read-actions-object
	objectpickler ret

	4.5 The Replication Module
	4.6 Examples
	4.6.1 Simple Tracker Report Distribution
	Figure 4-3: An example of synchronized replicated objects in Repo

	4.6.2 Asynchronous Change Notification
	Figure 4-4: An example of notifier callback objects in Repo

	4.6.3 Multi-person Spaceframe Construction
	Figure 4-5: Extending the space frame prototype for remote consultation
	Figure 4-6: The replicated state for the distributed ARC prototype

	4.6.4 Distributed Mutexes
	Figure 4-7: A simple client-server mutex
	Figure 4-8: A simple replicated mutex

	4.6.5 Hierarchical Object Directories
	Figure 4-9: A single Object Directory (OD)

	4.7 Implementation
	Figure 4-10: The internal definition of an Obliq array
	Figure 4-11: The internal definition of a Repo array
	Figure 4-12: The internal definition of a Repo replicated object

	4.8 Usability of Repo

	CHAPTER 5 Repo-3D
	Figure 5-1: Two meanings of distributed graphics
	5.1 Related Work
	5.2 Obliq-3D: An Overview
	Figure 5-2: The Repo-3D GO class hierarchy

	Whil
	Figure 5-3: The relationship between properties, names, values, and behaviors
	5.3 Design Of Repo-3D
	5.3.1 Conversion to Shared Objects
	5.3.1.1 Graphical Objects
	5.3.1.2 Properties
	5.3.1.3 Animation Handles
	5.3.1.4 Input Callbacks
	5.3.1.5 Change Notification
	Figure 5-4: The GOCB and PropCB modules

	5.3.2 Local Variations
	5.3.3 Extensibility
	Figure 5-5: Embedding DistAnim-3D objects in Repo

	5.4 Examples
	5.4.1 A Tutorial Example
	Figure 5-6: A simple Repo-3D example

	5.4.2 Yet Another Tracker Example
	5.4.3 A Truncated Pyramid Object
	Figure 5-7: The TruncPyr object

	5.4.4 An Animation Examiner
	Figure 5-8: The distributed CATHI animation viewer

	5.5 Implementation
	Figure 5-9: The internal structure of Anim-3D and DistAnim-3D
	Figure 5-10: The GO.T class
	Figure 5-11: Excerpts from GOPrivate.i3.
	Figure 5-12: BoxGO.T class definitions
	Figure 5-13: The GroupGO.T class definition
	Figure 5-14: The AnimHandle class

	5.6 Performance
	5.7 Discussion

	CHAPTER 6 Coterie Examples
	6.1 Of Vampire Mirrors and Privacy Lamps
	Figure 6-1: The EMMIE system for collaborative augmented environments
	Figure 6-2: The routine to create a VUB item
	Figure 6-3: The structure of a VUB item’s GO

	6.2 Shared Sketch
	Table 6-1: Sketch Object Definitions
	Figure 6-4: The definition of a Coterie Sketch object
	Figure 6-5: Distributed Sketch in use
	Figure 6-6: The structure of the Distributed Sketch prototype

	CHAPTER 7 Conclusions and Future Work
	7.1 Future Work
	7.1.1 Shared Object Update Latency
	7.1.2 Network Awareness
	7.1.3 Additional Replication Semantics
	7.1.4 Multi-object Consistency
	7.1.5 More Flexible Consistency Guarantees
	7.1.6 Better Handling of Time
	7.1.7 Generalized Local Variations in Repo-3D
	7.1.8 Application to Other Languages

	References
	APPENDIX A Example Generated Code
	A.1 TrackerPositionSO.m3
	A.2 TrackerPositionCB.i3
	A.3 TrackerPositionCB.m3
	A.4 TrackerPositionProxy.i3
	A.5 TrackerPositionCBProxy.i3
	A.6 TrackerPositionPickle.i3
	I.1 animtime.obl

	APPENDIX B Tracker Modules
	B.1 The Basic Modules
	B.1.1 Kalman
	B.1.2 Tracker
	B.1.3 TrackerPosition
	B.1.4 TrackerPositionCB
	B.1.5 TrackerServer

	B.2 The Tracking Device Modules
	B.2.1 Dynasight
	B.2.2 FOB
	B.2.3 Logitech
	B.2.4 MSMouse
	B.2.5 PTU
	B.2.6 RingMouse
	B.2.7 Scanner
	B.2.8 Trimble
	B.2.9 vIO

	APPENDIX C Repo Syntax
	APPENDIX D Additional Enhancements to Repo
	D.1 Additional Syntax Changes
	case o of
	option “tag string” => value end
	unreachable id do

	D.2 Module Enhancements and Additions
	Figure D-1: Pattern matching with the Repo reflection module
	let processor = <Processor at elvis>

	D.3 Efficient Module Distribution

	APPENDIX E Repo Modules
	E.1 New Modules
	E.1.1 debug
	E.1.2 dict
	E.1.3 reflect
	E.1.4 replica

	E.2 New Modules for Modula-3 Packages
	E.2.1 dir
	E.2.2 http
	E.2.3 httpField
	E.2.4 httpStatus
	E.2.5 path
	E.2.6 random
	E.2.7 regex
	E.2.8 tcp
	E.2.9 url
	E.2.10 word

	E.3 Changed Modules
	E.3.1 array
	E.3.2 fmt
	E.3.3 lex
	E.3.4 net
	E.3.5 os
	E.3.6 process
	E.3.7 sys
	E.3.8 text
	E.3.9 thread

	E.4 Unchanged Modules
	E.4.1 bool
	E.4.2 char
	E.4.3 color
	E.4.4 form
	E.4.5 int
	E.4.6 math
	E.4.7 online
	E.4.8 pickle
	E.4.9 rd
	E.4.10 real
	E.4.11 vbt
	E.4.12 wr

	APPENDIX F Another Replicated Mutex
	F.1 mutex.obl

	APPENDIX G Additional Enhancements To Repo-3D
	APPENDIX H Repo-3D Modules
	H.1 Graphics Objects
	H.1.1 GO
	H.1.2 GOCB
	H.1.3 AmbientLightGO
	H.1.4 BoxGO
	H.1.5 CameraGO
	H.1.6 ChoiceGroupGO
	H.1.7 ConeGO
	H.1.8 CylinderGO
	H.1.9 DiskGO
	H.1.10 GroupGO
	H.1.11 IndexedLineSetGO
	H.1.12 IndexedPolygonSetGO
	H.1.13 LightGO
	H.1.14 LineGO
	H.1.15 MarkerGO
	H.1.16 OrthoCameraGO
	H.1.17 PerspCameraGO
	H.1.18 PointLightGO
	H.1.19 PolygonGO
	H.1.20 QuadMeshGO
	H.1.21 RootGO
	H.1.22 SphereGO
	H.1.23 SpotLightGO
	H.1.24 SurfaceGO
	H.1.25 Text2DGO
	H.1.26 TextGO
	H.1.27 TorusGO
	H.1.28 VectorLightGO

	H.2 Properties
	H.2.1 Prop
	H.2.2 PropCB
	H.2.3 BooleanProp
	H.2.4 ColorProp
	H.2.5 FontStyleProp
	H.2.6 IntProp
	H.2.7 LineTypeProp
	H.2.8 MarkerTypeProp
	H.2.9 Point2Prop
	H.2.10 PointProp
	H.2.11 RasterModeProp
	H.2.12 RealProp
	H.2.13 ShadingProp
	H.2.14 StringProp
	H.2.15 TexImageProp
	H.2.16 TexModelProp
	H.2.17 TextAlignProp
	H.2.18 TransformProp
	H.2.19 TransmissionPatternProp

	H.3 Animation Handles
	H.3.1 AnimHandle
	H.3.2 AnimHandleCB

	H.4 Interaction Callbacks
	H.4.1 KeyCB
	H.4.2 MouseCB
	H.4.3 PositionCB

	H.5 Location Callbacks
	H.5.1 ProjectionCB
	H.5.2 TransformCB

	H.6 Graphics Bases
	H.6.1 GraphicsBase
	H.6.2 Win_OpenGL_Base
	H.6.3 Win_RW_Base
	H.6.4 X_OpenGL_Base

	H.7 Miscellaneous
	H.7.1 Anim3D
	H.7.2 AnimHook
	H.7.3 ProxiedObj
	H.7.4 TessSphere
	H.7.5 TexImage

	APPENDIX I The Animation Time Module

