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Probabilistic Topic Modeling
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Input: An unorganized collection of documents
Output: An organized collection, and a description of how
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This talk

© The origins of probabilistic topic modeling
@ The basics of latent Dirichlet allocation
® A couple ideas that we are exicted about in my group

@ Open questions, challenges, and discussion



Latent Semantic Analysis (LSA)
(Deerwester et al., 1990)
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This is the seminal work that launched topic modeling.

Treat a collection as a document by term matrix of TFIDF scores.

Choose a number of topics, and run SVD on the matrix.

This results in

e a matrix of per-document topic weights
e a matrix of per-topic term weights



Probabilistic Latent Semantic Analysis (pLSA)
(Hofmann, 1999)
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A probabilistic model based on the main ideas of LSA

Define a topic as a distribution over terms.

e Describe each document as a distribution over topics.

Learn these two sets of parameters with EM.

Note: This model was also defined in Papadimitriou et al., 1998



Latent Dirichlet Allocation (LDA)
(Blei et al., 2001; Blei et al., 2003)
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Why does LDA “work”?
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e LDA trades off two goals

© In each document, allocate its words to few topics.
@ In each topic, assign high probability to few terms.

e We see this from the joint

logp(-) = ...+ Y.y 2,109 P(Zan | 04) + log p(Wan | Bz,,) + - -

e Sparse proportions come from the 1st term.
Sparse topics come from the 2nd term.



Why does LDA “work”?
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e LDA trades off two goals

© In each document, allocate its words to few topics.
@ In each topic, assign high probability to few terms.

e These goals are at odds.

e Putting a document in a single topic makes #2 hard.
o Putting very few words in each topic makes #1 hard.

e Trading off these goals finds groups of tightly co-occurring words.



Summary and other perspectives
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Disovers topics through posterior inference

Can be seen as multinomial PCA (Buntine and Jakulin, 2004)

Is a type of mixed-membership model (Erosheva, 2004)
Independently invented in population genetics (Pritchard et al., 2000)
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e LDA is a simple building block that enables many applications.

e Organizing and finding patterns in data has become important in the
sciences, humanties, industry, and culture.

e Algorithmic improvements let us fit models to massive data.



Build model Infer hidden Predict & Explore

variables

—

e Case study in text analysis with probability models
e Topic modeling research

e develops new models.
e develops new inference algorithms.
e develops new applications, visualizations, tools.



Some ideas we are excited about in my research group



Idea #1: User behavior data

Charles Darwin’s library Reading on the New York subway

e People use documents.
e This information can be used to

e Help people find documents that they are interested in
e Learn about how the documents are implicitly organized
e Learn about the people reading the documents



Idea #1: User behavior data

Charles Darwin’s library Reading on the New York subway

e Collaborative topic models analyze text and user data.
e They can be used to

e recommend articles to readers: old and new
e describe users in terms of their preferences
e identify impactful, interdisciplinary articles



e Consider EM (Dempster et al., 1977). We infer topics from its text:

Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. Deseste, N. M. Latp and D. B. Rupi
Harcard University and Educational Testng Sereice

[Read tefore the RovaL S
‘Secmon on Wednesday,

Vision Statistics
e Suppose there are two types of scientists

STATISTICIAN VISION RESEARCHER

Vision —e

Statistics —@

e We first recommend the EM paper to statisticians.



e With user data, we can adjust the topics to account for who liked it:

Papers

(]

Users

N\,

Vision Statistics
e Consider again the scientists

STATISTICIAN VISION RESEARCHER

Vision —e

Statistics —@

e We now recommend the EM paper to vision researchers.



Maximum Likelihood from Incomplete Data via the EM Algorithm

Vision Statistics

Papers

(]

Users

Vision Statistics

1. Without text, we cannot initially recommend to anyone.
2. Without user data, we cannot recommend to vision researchers.
3. We learned about the special interdiscplinary status of the EM paper.




The collaborative topic model

Topic proportions

Correction

Ratings
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(Wang and Blei, 2011)
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e Trades off matrix factorization and content recommendation
e The dimensions of user preferences also explain the text.

e Thus, they are interpretable.



Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DEMPSTER, N. M. LAIRD and D. B. RuBIN
Harvard University and Educational Testing Service

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SeEcTION on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]

SUMMARY

A broadly applicable algorithm for computing maximum likelihood estimates from
incomplete data is presented at various levels of generality. Theory showing the
monotone behaviour of the likelihood and convergence of the algorithm is derived.
Many examples are sketched, including missing value situations, applications to
grouped, censored or truncated data, finite mixture models, variance component
estimation, hyperparameter estimation, iteratively reweighted least squares and
factor analysis.
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Maximum Likelihood Estimation
{Estimates, Likelihood, Maximum, Parameters, Method}

Widely read
Maximum Likelihood Estimation of Population Parameters
Bootstrap Methods: Another Look at the Jackknife
R. A. Fisher and the Making of Maximum Likelihood

Interdisciplinary MLE articles
Maximum Likelihood from Incomplete Data with the EM Algorithm
Bootstrap Methods: Another Look at the Jackknife
Tutorial on Maximum Likelihood Estimation

Outside influences

Random Forests
Identification of Causal Effects Using Instrumental Variables

Matrix Computations



Idea #1: User behavior data

Charles Darwin’s library Reading on the New York subway

Collaborative topic models give good recommendations.

User behavior data give us a new window into the collection.

Q: What if the users are in a network?

Q: What if the users write reviews?



Idea #2: Poisson factorization
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1. For each term v and topic k: draw 4, ~ Gamma(a, b)
2. For each document d:

a. For each topic k: draw 04 ~ Gamma(c, d).

b. For each term v: draw ng, ~ Poisson(GJﬂv).




Idea #2: Poisson factorization
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e Shows better perplexity than LDA. (Canny, 2004)
e Easy to fit with auxiliary variables
e Easy to extend the Poisson additive model on word counts

e Equivalent to LDA when we condition on document length
(It is multinomial PCA.)

e s a Bayesian form of NMF with “KL loss” (Lee and Seung, 2000)



Idea #2: Poisson factorization
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e Works well in other settings

e networks (Ball et al., 2012) ; recommendation (Gopalan et al., 2013)

e We can build Bayesian nonparametric versions (Gopalan et al., yesterday)

e Why is it better than LDA?

o Explicitly models document length?

¢ Avoids pesky normalizations?




Idea #3: Stochastic Variational Inference

Massive document collection

INFER
SUBSAMPLE LOCAL UPDATE
DOCUMENTS HIDDEN TOPICS
VARIABLES

(Hoffman et al., 2010, 2013)



Challenges to topic modeling



Build model Infer hidden Predict & Explore

variables

—

e Topic modeling research

e develops new models.
e develops new inference algorithms.
e develops new applications, visualizations, tools.

e Workshops are also for half-baked ideas and difficult-to-articulate problems.



How do we explore?

Topic models are used to explore collections.
e How can we build and evaluate models with this goal?

Brings to focus thorny issues

e Visualization, Interpretability
e Interactivity, Never-ending collections

Theory of exploration (Tukey, 1962; Good, 1983; Diaconis, 1985)



How do we select and revise?

e Which model should | choose for my problem?
e Where does my model go right? Where does it go wrong?
e More thorny issues

¢ Model evaluation
o Posterior predictive checks (Box, 1980; Rubin, 1984; Gelman et al., 1996)



How do we apply?

damsel perfume _ inspection
elbowfluttering braids dressmg room

looking-gias
calico  bomnets M9 EE "Bl

MACROANALYSIS TR Iy s i s
poiniace 2 1l Eare
R ring irls dressing gty gumag,-ép‘gesmapenesgossamv
DGV'GC“D" drawing-room fiN€ry complexion fMISmantilla
SIPer o imen CoNartolet roAGE omaments 9rapegngs
appare® ‘“” SV 9ONNS il neck  APRETANCE  gheskShoddice
attire,

mwllmevy”"‘g‘e‘s gﬁg" Sh'?wﬁk’ it bt

adommeptreain o5k verdobenetappes

% costume | ‘Contras

o maiSRat SHiKriobon cenvesl’ Tefsies

diamonds petiicoat bouquet
shoes ‘matenal purple
nadpsul, Shoes e gferial wrists

e scail kerenlet ﬁ
r rsgarmen
g3 bs"cj::sma\d ACe folds muslin cgous o=
08 pe nbbonsgown dresses mmmer ust
W"“E"Essrm ors clothes skirt fiill robefront st ngs matron
feruffles wa\sul‘,o\cur fashioniagies sippers ards
parSianborder loves toitte style skits cults mitens
rain handkercmei ice
st oy, e B sl
i 7
eueleny orooch dany vuesﬁ\sngamgm\e fop g clegance
dressing-gout Giments omoradery P
rolusion toxyre Srately inian
MATTHEW L. JOCKERS e wiapper jewels 21O, T
cunams Bdament o Sier

e Topic modeling moves in useful directions when we solve real problems.
e Collaborate with scientists/scholars that want to analyze texts

e E.g., History, Comparative Literature, Political Science The Law,
Cognitive Science, Sociology, Media Theory, Linguistics, Biology

e Create usable open-source tools for topic modeling.
e Success story: MALLET and the digital humanities.
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Box’s loop
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