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Probabilistic topic models

As more information becomes
available, it becomes more difficult
to find and discover what we need.

We need new tools to help us
organize, search, and understand
these vast amounts of information.




Probabilistic topic models

Topic modeling provides methods for automatically organizing, understanding,
searching, and summarizing large electronic archives.

© Discover the hidden themes that pervade the collection.
@ Annotate the documents according to those themes.

@ Use annotations to organize, summarize, and search the texts.
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Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo
Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics
Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo
Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation
Diagnosing convergence of Markov chain Monte Carlo algorithms

(°t) WIa

Exact Bound for the Convergence of Metropolis Chains
Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo
Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables
A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC
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Probabilistic topic models

e What are topic models?

e What kinds of things can they do?

e How do | compute with a topic model?

e How do | evaluate and check a topic model?

e What are some unsanswered questions in this field?

e How can | learn more?



Probabilistic topic models

Topic modeling is a case study in probabilistic modeling. It touches on

e Directed graphical models

e Conjugate priors and nonconjugate priors

e Time series modeling

e Modeling with graphs

e Hierarchical Bayesian methods

e Approximate posterior inference (MCMC, variational methods)
e Exploratory and descriptive data analysis

e Model selection and Bayesian nonparametric methods

e Mixed membership models

e Prediction from sparse and noisy inputs



If you remember one picture...

Make assumptions
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Organization

Introduction to topic modeling: Latent Dirichlet allocation

Beyond latent Dirichlet allocation

e Posterior computation with scalable variational inference

Model diagnostics with posterior predictive checks

Discussion, open questions, and resources



Some caveats

e This is a curated view of the field—we skip a lot of important ideas.
o Gibbs sampling
e Bayesian nonparametrics

e We focus on examples from our research group.

e To declutter, most references appear at the end. (Except, not yet.)



Introduction to Topic Modeling



Latent Dirichlet allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forlife:
One research team, using computer analy

ses to compare known genomes, concluded
that today’'sjorganisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The e
other researcher mapped genes /
in a simple parasite and esti-  /
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don't
match precisely, those predictions

>~

Haemophilus
genome

1703 genes

Hycoplasma

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE ¢ VOL * 24 MAY 1996

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
80C number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
Information (NCBI)

<]
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\ Z2genes oo
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Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Simple intuition: Documents exhibit multiple topics.



Latent Dirichlet allocation (LDA)
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e Each topic is a distribution over words
e Each document is a mixture of corpus-wide topics

e Each word is drawn from one of those topics



Latent Dirichlet allocation (LDA)
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e In reality, we only observe the documents

e The other structure are hidden variables



Latent Dirichlet allocation (LDA)

. Topic proportions and
Topics Documents pic prop
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e QOur goal is to infer the hidden variables
l.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)



LDA as a graphical model

Per-word

Proportions . .
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter

L
OO0~ @00

o Zd,n Wd,n N ﬁk 77

D K

e Encodes assumptions
e Defines a factorization of the joint distribution

e Connects to algorithms for computing with data



LDA as a graphical model

Per-word

Proportions . .
topic assignment
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e Nodes are random variables; edges indicate dependence.
e Shaded nodes are observed.

e Plates indicate replicated variables.



LDA as a graphical model
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LDA as a graphical model
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e This joint defines a posterior.

e From a collection of documents, infer
o Per-word topic assignment z4,,
e Per-document topic proportions 64
o Per-corpus topic distributions By

e Then use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, exploration, ...



LDA as a graphical model
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Approximate posterior inference algorithms

e Mean field variational methods (Blei et al., 2001, 2003)
Expectation propagation (Minka and Lafferty, 2002)
Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
Collapsed variational inference (Teh et al., 2006)
Online variational inference (Hoffman et al., 2010)

Also see Mukherjee and Blei (2009) and Asuncion et al. (2009).



Example inference

e Data: The OCR’ed collection of Science from 1990-2000

e 17K documents
e 11M words
e 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.
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Example inference
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Aside: The Dirichlet distribution

e The Dirichlet distribution is an exponential family distribution over the
simplex, i.e., positive vectors that sum to one

I (A
p(01d) = —H(Zr(ag [Tor

e |t is conjugate to the multinomial. Given a multinomial observation, the
posterior distribution of @ is a Dirichlet.

e The parameter a controls the mean shape and sparsity of 6.

e The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.



1.0
0.8
0.6
0.4+
0.2+

0.0+

1.0

08
@ 0.6
=]
S04~

02+

0.0+

1.0
0.8+
0.6
0.4+
0.2+

0.0

.ll..h..

]1].]1]]].

IIII..IHI

ll|]].|]l]

.1||I].1].

llu]]lhll

Illl.l...l

..|.]|1]].

1|.|]I|..I

EEEEaEEas

12345678910 12345678910 12345678910 12345678910 123456738910

item



|1nllnllll|nl||11||llnllnllnll.lllll

]1]]1]]]]111]]l]lll]]]]l1]I]II]|II|1|I|]]I||

Tt b i s o v ol e

1.0

0.8

0.6

0.4+

FSIRERR RS

0.2+

1.0
08

@ 0.6

=]

S o04-

vo T 111
00111

02+
1.0
0.8
06-
04+
0.2+

item



1.0

0.8

0.6

0.4+

0.2+

NS R R R R R R RN R RER AR IR RN R R R

1.0

0.8+

@ 0.6

=3
§ 0.4+

0.2+

NSRRI R R RRIRE RN RRERRRR R

1.0

0.8+

0.6

0.4+

0.2+

N R R R AR RN R RN IR R ER R

item



1.0
0.8
0.6
0.4+
0.2+

0.0+

1.0

08
@ 0.6
=]
S04~

02+

0.0+

1.0
0.8+
0.6
0.4+
0.2+

0.0

.ll..h..

]1].]1]]].

IIII..IHI

ll|]].|]l]

.1||I].1].

llu]]lhll

Illl.l...l

..|.]|1]].

1|.|]I|..I

EEEEaEEas

12345678910 12345678910 12345678910 12345678910 123456738910

item



r

BEEEES

ll]”ll

E

0.8

0.6

0.4+

0.2+

004 » o o

1.0
0.8+

24
0.0-* *

@ 0.6
=]
S o04-

1.0

0.8+

0.6

0.4+

0.2+
0.0

item



item

005 o »
04+
0.2+
0.0



4
2
0.0

item



Why does LDA “work”?

e Word probabilities are maximized by dividing the words among the topics.
(More terms means more mass to be spread around.)

e In a mixture, this is enough to find clusters of co-occurring words.

e In LDA, the Dirichlet on the topic proportions can encourage sparsity, i.e., a
document is penalized for using many topics.

e Loosely, this can be thought of as softening the strict definition of
“co-occurrence” in a mixture model.

e This flexibility leads to sets of terms that more tightly co-occur.



LDA summary
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e LDA is a probabilistic model of text. It casts the problem of discovering
themes in large document collections as a posterior inference problem.

e |t lets us visualize the hidden thematic structure in large collections, and
generalize new data to fit into that structure.

o Builds on latent semantic analysis (Deerwester et al., 1990; Hofmann, 1999)
It is mixed membership model (Erosheva, 2004).
It relates to PCA and matrix factorization (Jakulin and Buntine, 2002)
Was independently invented for genetics (Pritchard et al., 2000)



LDA summary
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e Organizing and finding patterns in data has become important in the
sciences, humanties, industry, and culture.

e LDA can be embedded in more complicated models that capture richer
assumptions about the data.

e Algorithmic improvements let us fit models to massive data.



Example: LDAInR (Jonathan Chang)

perspective identifying tumor suppressor genes in human...
letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7

279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2

docs <- read.documents("mult.dat")
K <- 20

alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)
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Beyond Latent Dirichlet Allocation



Extending LDA
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LDA is a simple topic model
Can be used to find topics that describe a corpus
Each document exhibits multiple topics

How can we build on this simple model of text?




Extending LDA

Make assumptions
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Collect data

Infer the posterior

Predict
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Extending LDA
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e LDA can be embedded in more complicated models, embodying further
intuitions about the structure of the texts.

e E.g., used in models that also account for syntax, authorship, word sense,
dynamics, correlation, hierarchies, ...



Extending LDA
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e The data generating distribution can be changed, allowing us to apply
mixed-membership assumptions to many kinds of data.

e E.g., can be adapted to images, social networks, music, purchase histories,
computer code, genetic data, click-through-data, neural spike trains, ...




Extending LDA

grouped into M
documents

L

@ Parse trees
oo

e The posterior can be used in creative ways.
e E.g., for IR, recommendation, document similarity, visualization, ...

e (For now, we will assume that we can compute the posterior.)



Extending LDA

e These different kinds of extensions can be combined.

e (Really, these ways of extending LDA are a big advantage of using
probabilistic modeling to analyze data.)

e To give a sense of how LDA can be extended, I'll describe several
examples of extensions that my group has worked on.

e |n this section we will discuss

o Correlated topic models

e Dynamic topic models & measuring scholarly impact
e Supervised topic models

Relational topic models

Ideal point topic models



Correlated topic models

e The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
e |t assumes that components are nearly independent.

* Inreal data, an article about fossil fuels is more likely to also be about
geology than about genetics.



Correlated topic models

e The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

e The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ~ JVK_1([,L,Z)
0 o« expi{x}.



Correlated topic models
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Noconjugate prior
on topic proportions

e Draw topic proportions from a logistic normal

This allows topic occurrences to exhibit correlation.

Provides a “map” of topics and how they are related

Provides a better fit to text data, but is more complex to compute with
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Dynamic topic models

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

e LDA assumes that the order of documents does not matter.
e Not appropriate for corpora that span hundreds of years

e We may want to track how language changes over time.



Dynamic topic models
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Dynamic topic models
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e Use a logistic normal distribution to model topics evolving over time.

e Embed it in a state-space model on the log of the topic distribution

Bkl Bi—1x ~ N (Bi—1x lo?)
p(w|Bik) o exp{Bik}

e As for CTMs, this makes computation more complex. But it lets us make
inferences about sequences of documents.
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Dynamic topic models

Original article Most likely words from top topics
..................... ® sequence devices data
Sequencing the Genome, Fast genome device information

genes materials network
sequences current web
human high computer
gene gate language
dna light networks
sequencing silicon time
chromosome  material software
regions technology  system
analysis electrical words
data fiber algorithm
genomic power number

number based internet



Dynamic topic models

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam — electrical —¥{ engineering —| room —»| water —#| mercury —| laboratory
two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratory gas mercury
wire engine feet tube mercury small g,as
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber | heat | temperature | system || applications || gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology




Dynamic topic models

"Theoretical Physics™

"Neuroscience"

1880 1900 1920 1940 1960 1980 2000

OXYGEN
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Dynamic topic models

e Time-corrected similarity shows a new way of using the posterior.

e Consider the expected Hellinger distance between the topic proportions of
two documents,

K

o= | > (/B VT
k=1

e Uses the latent structure to define similarity

e Time has been factored out because the topics associated to the
components are different from year to year.

e Similarity based only on topic proportions
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Dynamic topic models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976)




Measuring scholarly impact

Einstein's
Theory of Relativity
g Relativity paper #1
S, Relativity paper #3
,g Relativity paper #2
Relativity paper #4
My crackpot theory

History of Science

We built on the DTM to measure scholarly impact with sequences of text.

Influential articles reflect future changes in language use.

The “influence” of an article is a latent variable.

Influential articles affect the drift of the topics that they discuss.

The posterior gives a retrospective estimate of influential articles.



Measuring scholarly impact
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Measuring scholarly impact

’ ?
ZMQ e Each document has an inf