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Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times

[Hoffman, Blei, Wang, Paisley, JMLR 2013]



Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Figure 12. 3D scenes details: Left: Ground-truth object and camera positions with inferred positions overlayed in red (note that inferred
cup is closely aligned with ground-truth, thus not clearly visible). We demonstrate fast inference of all relevant scene elements using the
AIR framework. Middle: AIR achieves significantly lower reconstruction error than a naive supervised implementation, and achieves
much higher count inference accuracy. Right: Heatmap of locations on the table in which objects are detected at each time-step (top).
The learned policy appears to be more dependent on identity (bottom).

ness and accuracy with that of a fully supervised network
in Fig. 12. We consider two scenarios: one where each ob-
ject type only appears exactly once, and one where objects
can repeat in the scene. A naive supervised setup struggles
greatly with object repetitions or when an arbitrary order-
ing of the objects is imposed by the labels, however training
is more straightforward when there are no repetitions. AIR
achieves equivalent error and competitive count accuracy
despite the added difficulty of object repetitions.

4. Related Work
Deep neural networks have had great success in learning to
predict various quantities from images, e.g., object classes
(Krizhevsky et al., 2012), camera positions (Kendall et al.,
2015) and actions (Mnih et al., 2015). These methods work
best when large labeled datasets are available for training.

At the other end of the spectrum, e.g., in ‘vision as inverse
graphics’, only a generative model is specified in advance
and prediction is treated as an inference problem, which
is then solved using MCMC or message passing at test-
time. These models range from highly specified (Milch
et al., 2005; Mansinghka et al., 2013), to partially specified
(Zhu & Mumford, 2006; Roux et al., 2011; Heess et al.,
2011; Eslami & Williams, 2014; Tang et al., 2013; 2014),
to largely unspecified (Hinton, 2002; Salakhutdinov & Hin-
ton, 2009; Eslami et al., 2012). Inference is very challeng-
ing and almost always the bottle-neck in model design.

Hinton et al. (1995); Tu & Zhu (2002); Kulkarni et al.
(2015a); Jampani et al. (2015); Wu et al. (2015) exploit
data-driven predictions to empower the ‘vision as inverse
graphics’ paradigm. For instance, in PICTURE, Kulkarni
et al. (2015a) use a deep network to distill the results of
slow MCMC, speeding up predictions at test-time.

Variational auto-encoders (Rezende et al., 2014; Kingma &
Ba, 2014) and their discrete counterparts (Mnih & Gregor,
2014) made the important contribution of showing how the
gradient computations for learning of amortized inference

and generative models could be interleaved, allowing both
to be learned simultaneously in an end-to-end fashion (see
also Schulman et al. 2015). Works like that of Hinton et al.
(2011); Kulkarni et al. (2015b) aim to learn disentangled
representations in an auto-encoding framework using spe-
cial network structures and / or careful training schemes.

It is also worth noting that attention mechanisms in neural
networks have been studied in discriminative and genera-
tive settings, e.g. by Mnih et al. (2014); Ba et al. (2015);
Jaderberg et al. (2015) and Gregor et al. (2015).

AIR draws upon, extends and links these ideas. Similar to
our work is also Huang & Murphy (2015), however they
assume a fixed number of objects. By its nature AIR is also
related to the following problems: counting (Lempitsky &
Zisserman, 2010; Zhang et al., 2015), trans-dimensionality
(Graves, 2016), sparsity (Bengio et al., 2009) and gradient
estimation through renderers (Loper & Black, 2014). It is
the combination of these elements that unlocks the full ca-
pabilities of the proposed approach.

5. Discussion
We presented several principled models that not only learn
to count, locate, classify and reconstruct the elements of a
scene, but do so in a fraction of a second at test-time. The
main ingredients are (a) building in meaning using appro-
priately structured models, (b) amortized inference that is
attentive, iterative and variable-length, and (c) end-to-end
learning. Learning is most successful when the variance
of the gradients is low and the likelihood is well suited
to the data. It will be of interest to examine the scaling
of variance with the number of objects and more sophis-
ticated likelihoods (e.g., occlusion). It is straightforward
to extend the framework to semi- or fully-supervised set-
tings. Furthermore, the framework admits a plug-and-play
approach where existing state-of-the-art detectors, classi-
fiers and renderers are used as sub-components of an AIR
inference network. We plan to investigate these lines of
research in future work.

Scenes, concepts and control.

[Eslami et al., 2016, Lake et al. 2015]
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Population analysis of 2 billion genetic measurements

[Gopalan, Hao, Blei, Storey, Nature Genetics (in press)]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]
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Compression and content generation.

[Van den Oord et al., 2016, Gregor et al., 2016]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir et al., 2016]
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.

28

� Customized data analysis is important to many fields.

� Pipeline separates assumptions, computation, application

� Eases collaborative solutions to statistics problems
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� Inference is the key algorithmic problem.

� Answers the question: What does this model say about this data?

� Our goal: General and scalable approaches to inference
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Criticize model

Revise

[Box, 1980; Rubin, 1984; Gelman et al., 1996; Blei, 2014]



PART I

Main ideas and historical context



Probabilistic Machine Learning

� A probabilistic model is a joint distribution of hidden variables z and
observed variables x,

p(z,x).

� Inference about the unknowns is through the posterior, the conditional
distribution of the hidden variables given the observations

p(z |x) = p(z,x)
p(x)

.

� For most interesting models, the denominator is not tractable. We appeal
to approximate posterior inference.



Variational Inference

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� VI turns inference into optimization.

� Posit a variational family of distributions over the latent variables,

q(z;ν)

� Fit the variational parameters ν to be close (in KL) to the exact posterior.
(There are alternative divergences, which connect to algorithms like EP, BP, and others.)



Example: Mixture of Gaussians
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[images by Alp Kucukelbir]
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[Peterson and Anderson 1987] (a) (b)

Si iµ

Sj jµ

Figure 22: (a) A node Si in a sigmoid belief network machine with its Markov blanket. (b)
The mean field equations yield a deterministic relationship, represented in the figure with
the dotted lines, between the variational parameters µi and µj for nodes j in the Markov
blanket of node i.

a tractable lower bound on the log likelihood and the variational parameter ξi can be
optimized along with the other variational parameters.

Saul and Jordan (1998) show that in the limiting case of networks in which each hidden
node has a large number of parents, so that a central limit theorem can be invoked, the
parameter ξi has a probabilistic interpretation as the approximate expectation of σ(zi),
where σ(·) is again the logistic function.

For fixed values of the parameters ξi, by differentiating the KL divergence with respect
to the variational parameters µi, we obtain the following consistency equations:

µi = σ

⎛
⎝∑

j

θijµj + θi0 +
∑

j

θji(µj − ξj) +
∑

j

Kji

⎞
⎠ (67)

where Kji is the derivative of − ln
〈
e−ξjzj + e(1−ξj)zj

〉
with respect to µi. As Saul, et al.

show, this term depends on node i, its child j, and the other parents (the “co-parents”) of
node j. Given that the first term is a sum over contributions from the parents of node i,
and the second term is a sum over contributions from the children of node i, we see that the
consistency equation for a given node again involves contributions from the Markov blanket
of the node (see Fig. 22). Thus, as in the case of the Boltzmann machine, we find that the
variational parameters are linked via their Markov blankets and the consistency equation
(Eq. (67)) can be interpreted as a local message-passing algorithm.

Saul, Jaakkola, and Jordan (1996) and Saul and Jordan (1998) also show how to update
the variational parameters ξi. The two papers utilize these parameters in slightly different
ways and obtain different update equations. (Yet another related variational approximation
for the sigmoid belief network, including both upper and lower bounds, is presented in
Jaakkola and Jordan, 1996).

Finally, we can compute the gradient with respect to the parameters θij for fixed vari-
ational parameters µ and ξ. The result obtained by Saul and Jordan (1998) takes the

39

[Jordan et al. 1999]

Figure 2: The final weights of the network. Each
large block represents one hidden unit. The small
black or white rectangles represent negative or
positive weights with the area of a rectangle rep
resenting the magnitude of the weight. The bot-
tom 12 rows in each block represent the incoming
weights of the hidden unit. The central weight at
the top of each block is the weight from the hidden
unit to the linear output unit. The weight at the
top-right of a block is the bias of the hidden unit.

‘~
-2 2

Figure 3: The final probability distribution that
is used for coding the weights. This distribution
is implemented by adapting the means, variances
and mixing proportions of five gauasians.

is clear that the weights form three fairly sharp clus-
ters. Figure 3 shows that the mixture of 5 Gaussians
has adapted to implement the appropriate coding-prior
for this weight distribution.

The performance of the network can be measured by
comparing the squared error it achievea on the test data
with the error that would be achieved by simply guess-
ing the mean of the correct answera for the test data:

Relative Error =
~c(dc - y.)’
~c(dc - ~)2

(27)

We ran the optimization five times using different ran-
domly chosen valuea for the initial means of the noisy
weights. For the network that achieved the lowest value
of the overall cost function, the relative error was 0.286.
This compares with a relative error of 0.967 for the same
network when we used noise-free weights and did not
penalize their information content. The best relative
error obtained using simple weight-decay with four non-
linear hidden units was .317. This required a carefully
chosen penalty coefficient for the squared weights that
corresponds to uf/a~ in equation 4. To set this weight-
decay coefficient appropriately it was necessary to try
many different values on a portion of the training set
and to use the remainder of the training set to decide
which coefficient gave the best generalization. Once the
beat coefficient had been determined the whole of the
training set was used with this coefficient. A lower er-
ror of 0.291 can be achieved using weight-decay if we
gradually increase the weight-decay coefficient and pick
the value that gives optimal performance on the test
data. But this is cheating. Linear regression gave a
huge relative error of 35.6 (gross overfitting) but this
fell to 0.291 when we penalized the sum of the squarea
of the regression coefficients by an amount that was ch~
sen to optimize performance on the test data. This is
almost identical to the performance with 4 hidden units
and optimal weight-decay probably because, with small
weights, the hidden units operate in their central linear
range, so the whole network is effectively linear.

11

[Hinton and van Camp 1993]

� Variational inference adapts ideas from statistical physics to probabilistic
inference. Arguably, it began in the late eighties with Peterson and
Anderson (1987), who used mean-field methods to fit a neural network.

� This idea was picked up by Jordan’s lab in the early 1990s—Tommi
Jaakkola, Lawrence Saul, Zoubin Gharamani—who generalized it to
many probabilistic models. (A review paper is Jordan et al., 1999.)

� In parallel, Hinton and Van Camp (1993) also developed mean-field for
neural networks. Neal and Hinton (1993) connected this idea to the EM
algorithm, which lead to further variational methods for mixtures of
experts (Waterhouse et al., 1996) and HMMs (MacKay, 1997).
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z; µ,�2) log N (z;0, I) dz

= �J

2
log(2⇡)� 1

2

JX

j=1

(µ2
j + �2

j )

10

Stochastic Back-propagation in DLGMs

(a) NORB (b) CIFAR (c) Frey

Figure 4. a) Performance on the NORB dataset. Left: Samples from the training data. Right: sampled pixel means from
the model. b) Performance on CIFAR10 patches. Left: Samples from the training data. Right: Sampled pixel means
from the model. c) Frey faces data. Left: data samples. Right: model samples.

Figure 5. Imputation results on MNIST digits. The first
column shows the true data. Column 2 shows pixel loca-
tions set as missing in grey. The remaining columns show
imputations and denoising of the images for 15 iterations,
starting left to right. Top: 60% missingness. Middle: 80%
missingness. Bottom: 5x5 patch missing.

matics and experimental design. We show the ability
of the model to impute missing data using the MNIST
data set in figure 5. We test the imputation ability
under two di↵erent missingness types (Little & Rubin,
1987): Missing-at-random (MAR), where we consider
60% and 80% of the pixels to be missing randomly, and
Not Missing-at-random (NMAR), where we consider a
square region of the image to be missing. The model
produces very good completions in both test cases.
There is uncertainty in the identity of the image. This
is expected and reflected in the errors in these comple-
tions as the resampling procedure is run, and further
demonstrates the ability of the model to capture the
diversity of the underlying data. We do not integrate
over the missing values in our imputation procedure,
but use a procedure that simulates a Markov chain
that we show converges to the true marginal distribu-
tion. The procedure to sample from the missing pixels
given the observed pixels is explained in appendix E.

Figure 6. Two dimensional embedding of the MNIST data
set. Each colour corresponds to one of the digit classes.

6.5. Data Visualisation

Latent variable models such as DLGMs are often used
for visualisation of high-dimensional data sets. We
project the MNIST data set to a 2-dimensional latent
space and use this 2-D embedding as a visualisation of
the data. A 2-dimensional embedding of the MNIST
data set is shown in figure 6. The classes separate
into di↵erent regions indicating that such a tool can
be useful in gaining insight into the structure of high-
dimensional data sets.

7. Discussion

Our algorithm generalises to a large class of models
with continuous latent variables, which include Gaus-
sian, non-negative or sparsity-promoting latent vari-
ables. For models with discrete latent variables (e.g.,
sigmoid belief networks), policy-gradient approaches
that improve upon the REINFORCE approach remain
the most general, but intelligent design is needed to
control the gradient-variance in high dimensional set-
tings.

These models are typically used with a large number

[Kingma and Welling 2013] [Rezende et al. 2014]

xn

✓

˛ D 1:5; � D 1

N

data {
i n t N; // number o f ob s e rva t i on s
i n t x [N ] ; // d i s c r e t e - valued obs e rva t i on s

}
parameters {

// l a t e n t va r i ab l e , must be p o s i t i v e
r ea l < lower=0> theta ;

}
model {

// non - conjugate p r i o r f o r l a t e n t v a r i a b l e
theta ~ we ibu l l ( 1 . 5 , 1) ;

// l i k e l i h o o d
f o r (n in 1 :N)

x [ n ] ~ po i s son ( theta ) ;
}

Figure 2: Specifying a simple nonconjugate probability model in Stan.

analysis posits a prior density p.✓/ on the latent variables. Combining the likelihood with the prior
gives the joint density p.X;✓/ D p.X j ✓/ p.✓/.
We focus on approximate inference for di�erentiable probability models. These models have contin-
uous latent variables ✓ . They also have a gradient of the log-joint with respect to the latent variables
r✓ logp.X;✓/. The gradient is valid within the support of the prior supp.p.✓// D ˚

✓ j ✓ 2
RK and p.✓/ > 0

 ✓ RK , where K is the dimension of the latent variable space. This support set
is important: it determines the support of the posterior density and plays a key role later in the paper.
We make no assumptions about conjugacy, either full or conditional.2

For example, consider a model that contains a Poisson likelihood with unknown rate, p.x j ✓/. The
observed variable x is discrete; the latent rate ✓ is continuous and positive. Place a Weibull prior
on ✓ , defined over the positive real numbers. The resulting joint density describes a nonconjugate
di�erentiable probability model. (See Figure 2.) Its partial derivative @=@✓ p.x; ✓/ is valid within the
support of the Weibull distribution, supp.p.✓// D RC ⇢ R. Because this model is nonconjugate, the
posterior is not a Weibull distribution. This presents a challenge for classical variational inference.
In Section 2.3, we will see how ���� handles this model.

Many machine learning models are di�erentiable. For example: linear and logistic regression, matrix
factorization with continuous or discrete measurements, linear dynamical systems, and Gaussian pro-
cesses. Mixture models, hidden Markov models, and topic models have discrete random variables.
Marginalizing out these discrete variables renders these models di�erentiable. (We show an example
in Section 3.3.) However, marginalization is not tractable for all models, such as the Ising model,
sigmoid belief networks, and (untruncated) Bayesian nonparametric models.

2.2 Variational Inference

Bayesian inference requires the posterior density p.✓ j X/, which describes how the latent variables
vary when conditioned on a set of observations X. Many posterior densities are intractable because
their normalization constants lack closed forms. Thus, we seek to approximate the posterior.

Consider an approximating density q.✓ I �/ parameterized by �. We make no assumptions about its
shape or support. We want to find the parameters of q.✓ I �/ to best match the posterior according to
some loss function. Variational inference (��) minimizes the Kullback-Leibler (��) divergence from
the approximation to the posterior [2],

�⇤ D arg min
�

KL.q.✓ I �/ k p.✓ j X//: (1)

Typically the �� divergence also lacks a closed form. Instead we maximize the evidence lower bound
(����), a proxy to the �� divergence,

L.�/ D Eq.✓/
⇥

logp.X;✓/
⇤ � Eq.✓/

⇥
log q.✓ I �/

⇤
:

The first term is an expectation of the joint density under the approximation, and the second is the
entropy of the variational density. Maximizing the ���� minimizes the �� divergence [1, 16].

2The posterior of a fully conjugate model is in the same family as the prior; a conditionally conjugate model
has this property within the complete conditionals of the model [3].

3

[Kucukelbir et al. 2015]

� There is now a flurry of new work on variational inference, making it
scalable, easier to derive, faster, more accurate, and applying it to more
complicated models and applications.

� Modern VI touches many important areas: probabilistic programming,
reinforcement learning, neural networks, convex optimization, Bayesian
statistics, and myriad applications.

� Our goal today is to teach you the basics, explain some of the newer ideas,
and to suggest open areas of new research.
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Variational Inference:
Foundations and Modern Methods

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

VI approximates difficult quantities from complex models.

With stochastic optimization we can

� scale up VI to massive data

� enable VI on a wide class of difficult models

� enable VI with elaborate and flexible families of approximations



PART II

Mean-field variational inference
and stochastic variational inference



Motivation: Topic Modeling

Topic models use posterior inference to discover the hidden thematic
structure in a large collection of documents.



Example: Latent Dirichlet Allocation (LDA)

Documents exhibit multiple topics.



Example: Latent Dirichlet Allocation (LDA)

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

� Each topic is a distribution over words

� Each document is a mixture of corpus-wide topics

� Each word is drawn from one of those topics



Example: Latent Dirichlet Allocation (LDA)

Topics Documents Topic proportions and
assignments

� But we only observe the documents; everything else is hidden.

� So we want to calculate the posterior

p(topics, proportions, assignments |documents)

(Note: millions of documents; billions of latent variables)



LDA as a Graphical Model

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

� Encodes assumptions about data with a factorization of the joint

� Connects assumptions to algorithms for computing with data

� Defines the posterior (through the joint)



Posterior Inference

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

� The posterior of the latent variables given the documents is

p(β ,θ ,z |w) = p(β ,θ ,z,w)∫
β

∫
θ

∑
z p(β ,θ ,z,w)

.

� We can’t compute the denominator, the marginal p(w).

� We use approximate inference.
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times



Mean-field VI and Stochastic VI

Subsample
data

Infer local 
structure

Update global 
structure

Road map:

� Define the generic class of conditionally conjugate models

� Derive classical mean-field VI

� Derive stochastic VI, which scales to massive data



A Generic Class of Models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n∏

i=1

p(zi, xi |β)

� The observations are x= x1:n.

� The local variables are z= z1:n.

� The global variables are β .

� The ith data point xi only depends on zi and β .

Compute p(β ,z |x).



A Generic Class of Models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n∏

i=1

p(zi, xi |β)

� A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

� Assume each complete conditional is in the exponential family,

p(zi |β , xi) = h(zi)exp{η`(β , xi)
>zi − a(η`(β , xi))}

p(β |z,x) = h(β)exp{ηg(z,x)>β − a(ηg(z,x))}.



A Generic Class of Models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n∏

i=1

p(zi, xi |β)

� A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

� The global parameter comes from conjugacy [Bernardo and Smith, 1994]

ηg(z,x) = α+
∑n

i=1 t(zi, xi),

where α is a hyperparameter and t(·) are sufficient statistics for [zi, xi].



A Generic Class of Models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n∏

i=1

p(zi, xi |β)

� Bayesian mixture models

� Time series models
(HMMs, linear dynamic systems)

� Factorial models

� Matrix factorization
(factor analysis, PCA, CCA)

� Dirichlet process mixtures, HDPs

� Multilevel regression
(linear, probit, Poisson)

� Stochastic block models

� Mixed-membership models
(LDA and some variants)



Variational Inference

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

Minimize KL between q(β ,z;ν) and the posterior p(β ,z |x).



The Evidence Lower Bound

L (ν) = Eq [log p(β ,z,x)]−Eq [log q(β ,z;ν)]

� KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

� It is a lower bound on log p(x).
� Maximizing the ELBO is equivalent to minimizing the KL.

� The ELBO trades off two terms.

� The first term prefers q(·) to place its mass on the MAP estimate.
� The second term encourages q(·) to be diffuse.

� Caveat: The ELBO is not convex.



Mean-field Variational Inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

� We need to specify the form of q(β ,z).

� The mean-field family is fully factorized,

q(β ,z;λ,φ) = q(β;λ)
∏n

i=1 q(zi;φi).

� Each factor is the same family as the model’s complete conditional,

p(β |z,x) = h(β)exp{ηg(z,x)>β − a(ηg(z,x))}
q(β;λ) = h(β)exp{λ>β − a(λ)}.



Mean-field Variational Inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

� Optimize the ELBO,

L (λ,φ) = Eq [log p(β ,z,x)]−Eq [log q(β ,z)] .

� Traditional VI uses coordinate ascent [Ghahramani and Beal, 2001]

λ∗ = Eφ
�
ηg(z,x)

�
; φ∗i = Eλ [η`(β , xi)]

� Iteratively update each parameter, holding others fixed.
� Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990] .
� Caveat: The ELBO is not convex.



Mean-field Variational Inference for LDA

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

� The local variables are the per-document variables θd and zd.

� The global variables are the topics β1, . . . ,βK.

� The variational distribution is

q(β ,θ ,z) =
K∏

k=1

q(βk;λk)
D∏

d=1

q(θd;γd)
N∏

n=1

q(zd,n;φd,n)



Mean-field Variational Inference for LDA
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Mean-field Variational Inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Classical Variational Inference

Input: data x, model p(β ,z,x).

Initialize λ randomly.

repeat
for each data point i do

Set local parameter φi← Eλ [η`(β , xi)].

end

Set global parameter

λ← α+∑n
i=1Eφi

[t(Zi, xi)] .

until the ELBO has converged



A Generic Class of Models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n∏

i=1

p(zi, xi |β)

� Bayesian mixture models

� Time series models
(HMMs, linear dynamic systems)

� Factorial models

� Matrix factorization
(factor analysis, PCA, CCA)

� Dirichlet process mixtures, HDPs

� Multilevel regression
(linear, probit, Poisson)

� Stochastic block models

� Mixed-membership models
(LDA and some variants)



Stochastic Variational Inference

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

� Classical VI is inefficient:

� Do some local computation for each data point.
� Aggregate these computations to re-estimate global structure.
� Repeat.

� This cannot handle massive data.

� Stochastic variational inference (SVI) scales VI to massive data.



Stochastic Variational Inference

GLOBAL HIDDEN STRUCTURE

Subsample
data

Infer local 
structure

Update global 
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Stochastic Optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

� Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]

� Guaranteed to converge to a local optimum [Bottou, 1996]

� Has enabled modern machine learning



Stochastic Optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

� With noisy gradients, update

νt+1 = νt +ρt∇̂νL (νt)

� Requires unbiased gradients, E
�∇̂νL (ν)

�
=∇νL (ν)

� Requires the step size sequence ρt follows the Robbins-Monro conditions



Stochastic Variational Inference

� The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

∇nat
λ L (λ) =

�
α+

∑n
i=1Eφ∗i [t(Zi, xi)]

�
−λ.

� Construct a noisy natural gradient,

j∼ Uniform(1, . . . , n)

∇̂nat
λ L (λ) = α+ nEφ∗j [t(Zj, xj)]−λ.

� This is a good noisy gradient.

� Its expectation is the exact gradient (unbiased).
� It only depends on optimized parameters of one data point (cheap).



Stochastic Variational Inference

Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

repeat
Sample j∼ Unif(1, . . . , n).

Set local parameter φ← Eλ
�
η`(β , xj)

�
.

Set intermediate global parameter

λ̂= α+ nEφ[t(Zj, xj)].

Set global parameter

λ= (1−ρt)λ+ρtλ̂.

until forever



Stochastic Variational Inference

GLOBAL HIDDEN STRUCTURE
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Stochastic Variational Inference in LDA

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

� Sample a document

� Estimate the local variational parameters using the current topics

� Form intermediate topics from those local parameters

� Update topics as a weighted average of intermediate and current topics



Stochastic Variational Inference in LDA
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics using the HDP, found in 1.8M articles from the New York Times



SVI scales many models

Subsample
data

Infer local 
structure

Update global 
structure

� Bayesian mixture models

� Time series models
(HMMs, linear dynamic systems)

� Factorial models

� Matrix factorization
(factor analysis, PCA, CCA)

� Dirichlet process mixtures, HDPs

� Multilevel regression
(linear, probit, Poisson)

� Stochastic block models

� Mixed-membership models
(LDA and some variants)
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PART III

Stochastic Gradients of the ELBO



Review: The Promise

Make assumptions Discover patterns

DATA

Predict & Explore

KNOWLEDGE &
QUESTION

R A. 7Aty 

This content downloaded from 128.59.38.144 on Thu, 12 Nov 2015 01:49:31 UTC
All use subject to JSTOR Terms and Conditions

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH

pops
1
2
3
4
5
6
7

K=7

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH

pops
1
2
3
4
5
6
7
8

K=8

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH
pops

1
2
3
4
5
6
7
8
9

K=9

Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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� Realized for conditionally conjugate models

� What about the general case?



The Variational Inference Recipe

Start with a model:

p(z,x)



The Variational Inference Recipe

Choose a variational approximation:

q(z;ν)



The Variational Inference Recipe

Write down the ELBO:

L (ν) = Eq(z;ν)[log p(x,z)− log q(z;ν)]



The Variational Inference Recipe

Compute the expectation(integral):

Example: L (ν) = xν2 + logν



The Variational Inference Recipe

Take derivatives:

Example: ∇νL (ν) = 2xν+
1
ν



The Variational Inference Recipe

Optimize:

νt+1 = νt +ρt∇νL



The Variational Inference Recipe

p(x, z)

q(z; ⌫)

Z
(· · · )q(z; ⌫)dz

q.zI ⌫/

r⌫



Example: Bayesian Logistic Regression

� Data pairs yi, xi

� xi are covariates

� yi are label

� z is the regression coefficient

� Generative process

p(z)∼ N(0,1)
p(yi |xi, z)∼ Bernoulli(σ(zxi))



VI for Bayesian Logistic Regression

Assume:

� We have one data point (y, x)

� x is a scalar

� The approximating family q is the normal; ν= (µ,σ2)

The ELBO is

L (µ,σ2) = Eq[log p(z) + log p(y |x, z)− log q(z)]



VI for Bayesian Logistic Regression

L (µ,σ2)
= Eq[log p(z)− log q(z) + log p(y |x, z)]

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



VI for Bayesian Logistic Regression

L (µ,σ2)
= Eq[log p(z)− log q(z) + log p(y |x, z)]

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



VI for Bayesian Logistic Regression

L (µ,σ2)
= Eq[log p(z)− log q(z) + log p(y |x, z)]

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



VI for Bayesian Logistic Regression

L (µ,σ2)
= Eq[log p(z)− log q(z) + log p(y |x, z)]

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



VI for Bayesian Logistic Regression

L (µ,σ2)
= Eq[log p(z)− log q(z) + log p(y |x, z)]

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



Options?

� Derive a model specific bound:
[Jordan and Jaakola; 1996], [Braun and McAuliffe; 2008], others

� More general approximations that require model-specific analysis:
[Wang and Blei; 2013], [Knowles and Minka; 2011]



Nonconjugate Models

� Nonlinear Time series Models

� Deep Latent Gaussian Models

� Models with Attention
(such as DRAW)

� Generalized Linear Models
(Poisson Regression)

� Stochastic Volatility Models

� Discrete Choice Models

� Bayesian Neural Networks

� Deep Exponential Families
(e.g. Sparse Gamma or Poisson)

� Correlated Topic Model
(including nonparametric variants)

� Sigmoid Belief Network

We need a solution that does not entail model specific work



Black Box Variational Inference (BBVI)
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES
REUSABLE 

VARIATIONAL 
FAMILIES

MASSIVE
DATA

I Sample from q.�/
I Form noisy gradients without model-specific computation

I Use stochastic optimization



The Problem in the Classical VI Recipe

p(x, z)

q(z; ⌫)

Z
(· · · )q(z; ⌫)dz

q.zI ⌫/

r⌫



The New VI Recipe

p(x, z)

q(z; ⌫)

Z
(· · · )q(z; ⌫)dz

q.zI ⌫/

r⌫

Use stochastic optimization!



Computing Gradients of Expectations

� Define

g(z,ν) = log p(x,z)− log q(z;ν)

� What is ∇νL

∇νL =∇ν
∫

q(z;ν)g(z,ν)dz

=

∫
∇νq(z;ν)g(z,ν) + q(z;ν)∇νg(z,ν)dz

=

∫
q(z;ν)∇ν log q(z;ν)g(z,ν) + q(z;ν)∇νg(z,ν)dz

= Eq(z;ν)[∇ν log q(z;ν)g(z,ν) +∇νg(z,ν)]

Using ∇ν log q= ∇νq
q



Roadmap

� Score Function Gradients

� Pathwise Gradients

� Amortized Inference



Score Function Gradients of the ELBO



Score Function Estimator

Recall

∇νL = Eq(z;ν)[∇ν log q(z;ν)g(z,ν) +∇νg(z,ν)]

Simplify:

Eq[∇νg(z,ν)] = Eq[∇ν log q(z;ν)] = 0

Gives the gradient:

∇νL = Eq(z;ν)[∇ν log q(z;ν)(log p(x,z)− log q(z;ν))]

Sometimes called likelihood ratio or REINFORCE gradients

[Glynn 1990; Williams, 1992; Wingate+ 2013; Ranganath+ 2014; Mnih+ 2014]



Noisy Unbiased Gradients

Gradient: Eq(z;ν)[∇ν log q(z;ν)(log p(x,z)− log q(z;ν))]

Noisy unbiased gradients with Monte Carlo!

1
S

S∑
s=1

∇ν log q(zs;ν)(log p(x,zs)− log q(zs;ν)),

where zs ∼ q(z;ν)



Basic BBVI

Algorithm 1: Basic Black Box Variational Inference
Input : Model log p(x,z),

Variational approximation q(z;ν)
Output : Variational Parameters: ν

while not converged do
z[s]∼ q // Draw S samples from q
ρ = t-th value of a Robbins Monro sequence
ν = ν+ρ 1

S

∑S
s=1∇ν log q(z[s];ν)(log p(x,z[s])− log q(z[s];ν))

t= t+ 1
end



The requirements for inference

The noisy gradient:

1
S

S∑
s=1

∇ν log q(zs;ν)(log p(x,zs)− log q(zs;ν)),

where zs ∼ q(z;ν)

To compute the noisy gradient of the ELBO we need

� Sampling from q(z)

� Evaluating ∇ν log q(z;ν)

� Evaluating log p(x,z) and log q(z)

There is no model specific work: black box criteria are satisfied



Black Box Variational Inference
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES
REUSABLE 

VARIATIONAL 
FAMILIES

MASSIVE
DATA

I Sample from q.�/
I Form noisy gradients without model-specific computation

I Use stochastic optimization



Problem: Basic BBVI doesn’t work

Variance of the gradient can be a problem

Varq(z;ν) = Eq(z;ν)[(∇ν log q(z;ν)(log p(x,z)− log q(z;ν))−∇νL )2].
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PDF
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Intuition:
Sampling rare values can lead to large scores and thus high variance



Solution: Control Variates

Replace with f with f̂ where E[f̂(z)] = E[f(z)]. General such class:

f̂(z)¬ f(z)− a(h(z)−E[h(z)])
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f = x + x2

f̂ ;h = x2

f̂ ;h = f

� h is a function of our choice
� a is chosen to minimize the variance
� Good h have high correlation with the original function f



Solution: Control Variates

Replace with f with f̂ where E[f̂(z)] = E[f(z)]. General such class:

f̂(z)¬ f(z)− a(h(z)−E[h(z)])
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f = x + x2

f̂ ;h = x2

f̂ ;h = f

� For variational inference we need functions with known q expectation
� Set h as ∇ν log q(z;ν)
� Simple as Eq[∇ν log q(z;ν)] = 0 for any q



Solution: Control Variates

Replace with f with f̂ where E[f̂(z)] = E[f(z)]. General such class:

f̂(z)¬ f(z)− a(h(z)−E[h(z)])
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f̂ ;h = x2

f̂ ;h = f

Many of the other techniques from Monte Carlo can help:
� Importance Sampling, Quasi Monte Carlo, Rao-Blackwellization

[Ruiz+ 2016; Ranganath+2014; Titsias+2015; Mnih+2016]



Nonconjugate Models

� Nonlinear Time series Models

� Deep Latent Gaussian Models

� Models with Attention
(such as DRAW)

� Generalized Linear Models
(Poisson Regression)

� Stochastic Volatility Models

� Discrete Choice Models

� Bayesian Neural Networks

� Deep Exponential Families
(e.g. Sparse Gamma or Poisson)

� Correlated Topic Model
(including nonparametric variants)

� Sigmoid Belief Network

We can design models based on data rather than inference.



More Assumptions?

The current black box criteria

� Sampling from q(z)

� Evaluating ∇ν log q(z;ν)

� Evaluating log p(x,z) and log q(z)

Can we make additional assumptions that are not too restrictive?



Pathwise Gradients of the ELBO



Pathwise Estimator

Assume

1. z= t(ε,ν) for ε∼ s(ε) implies z∼ q(z;ν)
Example:

ε∼ Normal(0, 1)
z= εσ+µ

→ z∼ Normal(µ,σ2)

2. log p(x,z) and log q(z) are differentiable with respect to z



Pathwise Estimator

Recall

∇νL = Eq(z;ν)[∇ν log q(z;ν)g(z,ν) +∇νg(z,ν)]

Rewrite using using z= t(ε,ν)

∇νL = Es(ε)[∇ν log s(ε)g(t(ε,ν),ν) +∇νg(t(ε,ν),ν)]

To differentiate:

∇L (ν) = Es(ε)[∇νg(t(ε,ν),ν)]
= Es(ε)[∇z[log p(x,z)− log q(z;ν)]∇νt(ε,ν)−∇ν log q(z;ν)]
= Es(ε)[∇z[log p(x,z)− log q(z;ν)]∇νt(ε,ν)]

This is also known as the reparameterization gradient.

[Glasserman 1991; Fu 2006; Kingma+ 2014; Rezende+ 2014; Titsias+ 2014]



Variance Comparison

K���������, T���, R��������, G����� ��� B���

���� is not the only way to compute Monte Carlo approximations of the gradient of the ����.
Black box variational inference (����) takes a di�erent approach (Ranganath et al., 2014). The ����
gradient estimator uses the gradient of the variational approximation and avoids using the gradient of
the model. For example, the following ���� estimator

r����
� L D Eq.⇣ I�/

⇥r� log q.⇣ I �/
˚
logp

�
x; T �1.⇣/

�C log
ˇ̌
det JT�1.⇣/

ˇ̌ � log q.⇣ I �/
 ⇤

and the ���� gradient estimator in Equation (7) both lead to unbiased estimates of the exact gradient.
While ���� is more general—it does not require the gradient of the model and thus applies to more
settings—its gradients can su�er from high variance.
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(a) Univariate Model
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Figure 8: Comparison of gradient estimator variances. The ���� gradient estimator exhibits lower
variance than the ���� estimator. Moreover, it does not require control variate variance reduction,
which is not available in univariate situations.

Figure 8 empirically compares the variance of both estimators for two models. Figure 8a shows
the variance of both gradient estimators for a simple univariate model, where the posterior is a
Gamma.10; 10/. We estimate the variance using ten thousand re-calculations of the gradient r�L,
across an increasing number of �� samples M . The ���� gradient has lower variance; in practice, a
single sample su�ces. (See the experiments in Section 4.)

Figure 8b shows the same calculation for a 100-dimensional nonlinear regression model with
likelihood N .y j tanh.x>ˇ/; I/ and a Gaussian prior on the regression coe�cients ˇ. Because
this is a multivariate example, we also show the ���� gradient with a variance reduction scheme
using control variates described in Ranganath et al. (2014). In both cases, the ���� gradients is
computationally more e�cient.

3.3 Sensitivity to Transformations
���� uses a transformation T from the unconstrained space to the constrained space. We now study
how the choice of this transformation a�ects the non-Gaussian posterior approximation in the original
latent variable space.

Consider a posterior density in the Gamma family, with support over R>0. Figure 9 shows three
configurations of the Gamma, ranging from Gamma.1; 2/, which places most of its mass close to
✓ D 0, to Gamma.10; 10/, which is centered at ✓ D 1. Consider two transformations T1 and T2

T1 W ✓ 7! log.✓/ and T2 W ✓ 7! log.exp.✓/ � 1/;
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[Kucukelbir+ 2016]



Score Function Estimator vs. Pathwise Estimator

Score Function
� Differentiates the density
∇νq(z;ν)

� Works for discrete and
continuous models

� Works for large class of
variational approximations

� Variance can be a big problem

Pathwise
� Differentiates the function
∇z[log p(x,z)− log q(z;ν)]

� Requires differentiable models

� Requires variational
approximation to have form
z= t(ε,ν)

� Generally better behaved
variance



Amortized Inference



Hierarchical Models

A generic class of models

Global variables

Local variables

ˇ

xizi
n

p(� ,z,x) = p(�)
nY

i=1

p(zi, xi |�)

Ñ Bayesian mixture models

Ñ Time series models
(variants of HMMs, Kalman filters)

Ñ Factorial models

Ñ Matrix factorization
(e.g., factor analysis, PCA, CCA)

Ñ Dirichlet process mixtures, HDPs

Ñ Multilevel regression
(linear, probit, Poisson)

Ñ Stochastic blockmodels

Ñ Mixed-membership models
(LDA and some variants)



Mean Field Variational Approximation

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i



SVI: Revisited

Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

repeat
Sample j∼ Unif(1, . . . , n).

Set local parameter φ← Eλ
�
η`(β , xj)

�
.

Set intermediate global parameter

λ̂= α+ nEφ[t(Zj, xj)].

Set global parameter
λ= (1−ρt)λ+ρtλ̂.

until forever



SVI: The problem

Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

repeat
Sample j∼ Unif(1, . . . , n).

Set local parameter φ← Eλ
�
η`(β , xj)

�
.

Set intermediate global parameter

λ̂= α+ nEφ[t(Zj, xj)].

Set global parameter
λ= (1−ρt)λ+ρtλ̂.

until forever

� These expectations are no longer tractable
� Inner stochastic optimization needed for each data point.



SVI: The problem

Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

repeat
Sample j∼ Unif(1, . . . , n).

Set local parameter φ← Eλ
�
η`(β , xj)

�
.

Set intermediate global parameter

λ̂= α+ nEφ[t(Zj, xj)].

Set global parameter
λ= (1−ρt)λ+ρtλ̂.

until forever

Idea: Learn a mapping f from xi to φi



Amortizing Inference

ELBO:

L (λ,φ1...n) = Eq [log p(β ,z,x)]−Eq

�
log q(β;λ) +

n∑
i=1

q(zi;φi)

�

Amortizing the ELBO with inference network f :

L (λ,θ ) = Eq [log p(β ,z,x)]−Eq

�
log q(β;λ) +

n∑
i=1

q(zi |xi;φi = fθ (xi))

�

[Dayan+ 1995; Heess+ 2013; Gershman+ 2014, many others]



Amortized SVI
Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

repeat
Sample β ∼ q(β;λ).

Sample j∼ Unif(1, . . . , n).

Sample zj ∼ q(zj |xj;φθ (xj).

Compute stochastic gradients

∇̂λL =∇λ log q(β;λ)(log p(β) + n log p(xj, zj |β)− log q(β))

∇̂θL = n∇θ log q(zj |xj;θ )(log p(xj, zj |β)− log q(zj |xk;θ ))

Update

λ= λ+ρt∇̂λ
θ = θ +ρt∇̂θ .

until forever



A computational-statistical tradeoff

� Amortized inference is faster, but admits a smaller class of approximations

� The size of the smaller class depends on the flexibility of f

nY

i=1

q(zi;�i) nY

i=1

q(zi|xi; f✓(xi))



Example: Variational Autoencoder (VAE)

z

x p(x|z) = Normal(µ�(z),�2
�(z))

p(z) = Normal(0, 1)

µ and σ2 are deep networks with parameters β .

[Kingma+ 2014; Rezende+ 2014]



Example: Variational Autoencoder (VAE)

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z

q(z|x) = Normal(fµ
✓ (x), f�2

✓ (x))

All functions are deep networks



Example: Variational Autoencoder (VAE)

Analogy-making
Analogies



Rules of Thumb for a New Model

If log p(x,z) is z differentiable

� Try out an approximation q that is reparameterizable

If log p(x,z) is not z differentiable

� Use score function estimator with control variates

� Add further variance reductions based on experimental evidence

General Advice:

� Use coordinate specific learning rates (e.g. RMSProp, AdaGrad)

� Annealing + Tempering

� Consider parallelizing across samples from q
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Software

Systems with Variational Inference:

� Venture, WebPPL, Edward, Stan, PyMC3, Infer.net, Anglican

Good for trying out lots of models

Differentiation Tools:

� Theano, Torch, Tensorflow, Stan Math, Caffe

Can lead to more scalable implementations of individual models



PART IV

Beyond the Mean Field



Review: Variational Bound and OptimisationBlack box variational inference

REUSABLE 
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REUSABLE 
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VARIATIONAL 
FAMILIES

MASSIVE
DATA

I Sample from q.�/
I Form noisy gradients without model-specific computation

I Use stochastic optimization

� Probabilistic modelling and variational inference.

� Scalable inference through stochastic optimisation.

� Black-box variational inference: Non-conjugate models, Monte Carlo
gradient estimators and amortised inference.

These advances empower us with new way to design
more flexible approximate posterior distributions q(z)



Mean-field Approximations

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/
z2

z3z1

qMF (z|x) =
Y

k

q(zk)

Fully-factorised

Key part of algorithm is the choice of approximate posterior q(z).

log p(x)≥L = Eq(z|x)[log p(x,z)]︸ ︷︷ ︸
Expected likelihood

−Eq(z|x)[log q(z|x)]︸ ︷︷ ︸
Entropy



Mean-Field Posterior Approximations

Deep Latent
Gaussian Model

z

x
p(x|z)

p(z)

Latent variable 
model p(x,z)

Mean-field or fully-factorised posterior is usually not sufficient



Real-world Posterior Distributions

Deep Latent
Gaussian Model

z

x
p(x|z)

p(z)

Latent variable 
model p(x,z)

Complex dependencies · Non-Gaussian distributions · Multiple modes



Families of Approximate Posteriors

Two high-level goals:

� Build richer approximate posterior distributions.

� Maintain computational efficiency and scalability.

z2

z3z1

z2

z3z1

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

True Posterior Fully-factorised

Most Expressive Least Expressive

Same as the problem of specifying a model of the data itself.
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Structured Posterior Approximations

z2

z3z1

z2

z3z1

True Posterior Fully-factorisedStructured Approx.

z2

z3z1

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

Most Expressive Least Expressive

q(z) =
Y

k

qk(zk|{zj}j 6=k)

Structured mean field: Introduce any form of dependency to provide a richer
approximating class of distributions.

[Saul and Jordan, 1996.]



Gaussian Approximate Posteriors
Use a correlated Gaussian:

qG(z;ν)=N (z|µ,Σ)

Variational parameters ν= {µ,Σ}

Covariance models: Structure of covariance Σ describes dependency.
Full covariance is richest, but computationally expensive.
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Approximate posterior is always Gaussian.
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Beyond Gaussian Approximations
Autoregressive distributions: Impose
an ordering and non-linear dependency
on all preceding variables.

qAR(z;ν) =
∏

k

qk(zk|z<k;νk)
z2 z3z1 z4 …

Compare DLGMs: Using Gaussian mean field (VAE) vs. auto-regressive
posterior (DRAW) in fully-connected DLGMs on CIFAR10.

≤86.6 ≤ 80.9

VAE DRAW

[Gregor et al., 2015]

Joint-distribution non-Gaussian, although conditionals are.
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More Structured Posteriors

y

z3z1 z2

Mixture model

qmm(z;⌫) =
X

r

⇢rqr(zr|⌫r)

z3z1 z2

C(z)

Linking functions

qlm(z;⌫) =

 Y

k

qk(zk|⌫k)

!
C(z;⌫k+1)

[Saul and Jordan, 1996, Tran et al., 2016]

Suggests a general way to improve posterior approximations:

Introduce additional variables that induce dependencies,
but that remain tractable and efficient.
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Designing Richer Posteriors

1. Introduce new variables ω that help to form a
richer approximate posterior distribution.

q(z;ν) =

∫
q(z,ω;ν)dω

2. Adapt bound to compute entropy or a bound.

log p(x)≥L = Eq(z|x)[log p(x,z)]︸ ︷︷ ︸
Expected likelihood

−Eq(z|x)[log q(z|x)]︸ ︷︷ ︸
Entropy

3. Maintain computational efficiency: linear in
number of latent variables.

z0

x

z1

…

zK

!

z

Look at two different approaches

� Change-of-variables: Normalising flows and invertible transforms.
� Auxiliary variables: Entropy bounds, Monte Carlo sampling.
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Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

� Begin with an initial distribution q0(z0|x).
� Apply a sequence of K invertible functions fk.

z0

x

z1

…

zK

t = 0 t = 1 … t = T

q(z0) = q(z)

����det
@f

@z

����
�1

log qK(zK) = log q0(z0) �
KX

k=1

log det

����
@fk

@zk

����

zK = fK � . . . � f2 � f1(z0)
Sampling and Entropy

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]
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Normalising Flows
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Normalising Flows



Choice of Transformation Function

L =Eq0(z0)[log p(x,zK)]−Eq0(z0)[log q0(z0)]−Eq0(z0)

�
K∑

k=1

logdet

����
∂ fk
∂ zk

����
�

� Begin with a fully-factorised Gaussian and improve by change of variables.
� Triangular Jacobians allow for computational efficiency.
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Planar Flow
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y1:d = zk�1,1:d

yd+1:D = t(zk�1,1:d) + zd+1:D � exp(s(zk�1,1:d))

Real NVP

zk z<k

har

μ σ

- ÷

zk+1

zk =
zk�1 � µk(z<k, x)

�k(z<k, x)

Inverse AR Flow

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.
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Modelling Improvements

VAE-type algorithms on the MNIST benchmark

≤86.6 ≤ 80.9

VAE DRAW IAF

⋍79.1

Samples generated from model on CIFAR10 images

Figure 4: Random samples from generative ResNet trained on the CIFAR-10 dataset of natural image
patches.

Table 2: Our results with ResNet VAEs on CIFAR-10 images, compared to earlier results, in average
number of bits per data dimension on the test set. The number for convolutional DRAW is an upper
bound, while the ResNet VAE log-likelihood was estimated using importance sampling.

Method bits/dim

Results with tractable likelihood models:
Uniform distribution (van den Oord et al., 2016b) 8.00
Multivariate Gaussian (van den Oord et al., 2016b) 4.70
NICE (Dinh et al., 2014) 4.48
Deep GMMs (van den Oord and Schrauwen, 2014) 4.00
Real NVP (Dinh et al., 2016) 3.49
PixelRNN (van den Oord et al., 2016b) 3.00
Gated PixelCNN (van den Oord et al., 2016c) 3.03

Results with variationally trained latent-variable models:
Deep Diffusion (Sohl-Dickstein et al., 2015) 5.4
Convolutional DRAW (Gregor et al., 2016) 3.58 (Var. Bound)
Ours (ResNet VAE with IAF) 3.11

We empirically demonstrated the usefulness of inverse autoregressive flow for variational inference by
training a novel deep architecture of variational auto-encoders. In experiments we demonstrated that
autoregressive flow leads to significant performance gains compared to similar models with factorized
Gaussian approximate posteriors, and we report the best results on CIFAR-10 for latent-variable
models so far.
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Hierarchical Approximate Posteriors

We can use ‘latent variables’ ω to enrich the approximate
posterior distribution, like we do for our density models.

q(z|x) =
∫

q(z|ω,x)q(ω|x)dω

� Use a hierarchical model for the approximate posterior.

� Stochastic variables ω rather than deterministic in the
change-of-variables approach.

� Both continuous and discrete latent variables can be
modelled.

z0

x

z1

…

zK

!

z

[Ranganath et al., 2016]



Hierarchical Approximate Posteriors

We can use ‘latent variables’ ω to enrich the approximate
posterior distribution, like we do for our density models.

q(z|x) =
∫

q(z|ω,x)q(ω|x)dω

� Use a hierarchical model for the approximate posterior.

� Stochastic variables ω rather than deterministic in the
change-of-variables approach.

� Both continuous and discrete latent variables can be
modelled.

z0

x

z1

…

zK

!

z

[Ranganath et al., 2016]



Auxiliary-variable Methods

Modify the model to include ω= (z0, . . . ,zK−1).

z

x
p(x|z)

p(z)

Latent variable 
model p(x,z)

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

Auxiliary latent
variable model p(x,z,!)

� Auxiliary variables leave the original model unchanged.

� They capture structure of correlated variables because they
turn the posterior into a mixture of distributions q(z|x,ω).

z0

x

z1

…

zK

!

z

[Agakov and Barber, 2004; Maaløe et al., 2016]
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Auxiliary Variational Lower Bounds
Standard bound: log p(x)≥L = Eq(z|x)[log p(x,z)]︸ ︷︷ ︸

Expected likelihood

−Eq(z|x)[log q(z|x)]︸ ︷︷ ︸
Entropy

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

Auxiliary latent
variable model p(x,z,!)

z

x ⍵
q(!|x)

q(z|x,!)

Inference 
model q(z,!)

Auxiliary variational bound: Bound the entropy for tractability.

log p(x)≥ Eq(ω,z|x)[log p(x,z) + log r(ω|z,x)]−Eq(ω,z|x)[log q(z,ω|x)]
≥L −Eq(z|x)[KL[q(ω|z,x)‖r(ω|z,x)]

[Salimans et al., 2015; Ranganath et al., 2016; Maaløe et al., 2016]
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Auxiliary Variational Methods

Choose an auxiliary prior r(ω|z,x) and auxiliary posterior q(ω|x,z)

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

Auxiliary latent
variable model p(x,z,!)

z

x ⍵
q(!|x)

q(z|x,!)

Inference 
model q(z,!)

� Hamiltonian flow: r(ω)=N (ω|0,M)
� Input-dependent Gaussian: r(ω|x,z)
� Auto-regressive: r(ω|x,z) =

∏
t r(ωt|fθ (ω<t,x))

� q(ω|x,z) can be a mixture model, normalising flow,
Gaussian process.

≤86.6 ≤ 80.9

VAE DRAW

≤79.8

IAF

⋍79.1

DRAW-VGP

[Tran et al., 2016]

Easy sampling, evaluation of bound and gradients.



Auxiliary Variational Methods

Choose an auxiliary prior r(ω|z,x) and auxiliary posterior q(ω|x,z)

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

Auxiliary latent
variable model p(x,z,!)

z

x ⍵
q(!|x)

q(z|x,!)

Inference 
model q(z,!)

� Hamiltonian flow: r(ω)=N (ω|0,M)
� Input-dependent Gaussian: r(ω|x,z)
� Auto-regressive: r(ω|x,z) =

∏
t r(ωt|fθ (ω<t,x))

� q(ω|x,z) can be a mixture model, normalising flow,
Gaussian process.

≤86.6 ≤ 80.9

VAE DRAW

≤79.8

IAF

⋍79.1

DRAW-VGP

[Tran et al., 2016]

Easy sampling, evaluation of bound and gradients.



Auxiliary Variational Methods

Choose an auxiliary prior r(ω|z,x) and auxiliary posterior q(ω|x,z)

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

Auxiliary latent
variable model p(x,z,!)

z

x ⍵
q(!|x)

q(z|x,!)

Inference 
model q(z,!)

� Hamiltonian flow: r(ω)=N (ω|0,M)
� Input-dependent Gaussian: r(ω|x,z)
� Auto-regressive: r(ω|x,z) =

∏
t r(ωt|fθ (ω<t,x))

� q(ω|x,z) can be a mixture model, normalising flow,
Gaussian process.

≤86.6 ≤ 80.9

VAE DRAW

≤79.8

IAF

⋍79.1

DRAW-VGP

[Tran et al., 2016]

Easy sampling, evaluation of bound and gradients.



Summary

z2

z3z1

z2

z3z1

True Posterior Fully-factorisedFamilies of Posterior Approximations

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

Most Expressive Least Expressive

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

+

y

z3z1 z2

MixturesAuxiliary variables

z0

x

z1

…

zK

Normalising 
flows

z2 z3z1 z4 …

Structured mean-field Covariance models



Choosing your Approximation

Make assumptions Discover patterns

DATA

Predict & Explore

KNOWLEDGE &
QUESTION

R A. 7Aty 

This content downloaded from 128.59.38.144 on Thu, 12 Nov 2015 01:49:31 UTC
All use subject to JSTOR Terms and Conditions

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH

pops
1
2
3
4
5
6
7

K=7

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH

pops
1
2
3
4
5
6
7
8

K=8

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH
pops

1
2
3
4
5
6
7
8
9

K=9

Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Variational Inference:
Foundations and Modern Methods
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VI approximates difficult quantities from complex models.

With stochastic optimization we can

� scale up VI to massive data

� enable VI on a wide class of difficult models

� enable VI with elaborate and flexible families of approximations
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