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Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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SR IEIRIG!
g ||l
| E[E || &l @ o

Scenes, concepts and control.

[Eslami et al., 2016, Lake et al. 2015]



Population analysis of 2 billion genetic measurements

[Gopalan, Hao, Blei, Storey, Nature Genetics (in press) ]



Neuroscience analysis of 220 million fMRI measurements

[Manning et al., PLOS ONE 2014]
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Compression and content generation.

[Van den Oord et al., 2016, Gregor et al., 2016]



Lavadores

Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir et al., 2016]



The probabilistic pipeline

KNOWLEDGE &
QUESTION

3
l l

Make assumptions Discover patterns Predict & Explore

O-0-0 ulll

A\

= Customized data analysis is important to many fields.
= Pipeline separates assumptions, computation, application

= Eases collaborative solutions to statistics problems
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= Inference is the key algorithmic problem.

= Answers the question: What does this model say about this data?

= Our goal: General and scalable approaches to inference
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Revise

Criticize model

[Box, 1980; Rubin, 1984; Gelman et al., 1996; Blei, 2014]




PART I

Main ideas and historical context



Probabilistic Machine Learning

= A probabilistic model is a joint distribution of hidden variables z and
observed variables x,

p(z,x).

= Inference about the unknowns is through the posterior, the conditional
distribution of the hidden variables given the observations

= For most interesting models, the denominator is not tractable. We appeal
to approximate posterior inference.



Variational Inference

= VI turns inference into optimization.

= Posit a variational family of distributions over the latent variables,
q(z; )

= Fit the variational parameters v to be close (in KL) to the exact posterior.
(There are alternative divergences, which connect to algorithms like EB BB and others.)



Example: Mixture of Gaussians
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[Peterson and Anderson 1987] [Jordan et al. 1999] [Hinton and van Camp 1993]

= Variational inference adapts ideas from statistical physics to probabilistic
inference. Arguably, it began in the late eighties with Peterson and
Anderson (1987), who used mean-field methods to fit a neural network.

= This idea was picked up by Jordan’s lab in the early 1990s—Tommi
Jaakkola, Lawrence Saul, Zoubin Gharamani—who generalized it to
many probabilistic models. (A review paper is Jordan et al., 1999.)

= In parallel, Hinton and Van Camp (1993) also developed mean-field for
neural networks. Neal and Hinton (1993) connected this idea to the EM
algorithm, which lead to further variational methods for mixtures of
experts (Waterhouse et al., 1996) and HMMs (MacKay, 1997).



Today
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[Kingma and Welling 2013] [Rezende et al. 2014] [Kucukelbir et al. 2015]

= There is now a flurry of new work on variational inference, making it
scalable, easier to derive, faster, more accurate, and applying it to more
complicated models and applications.

= Modern VI touches many important areas: probabilistic programming,
reinforcement learning, neural networks, convex optimization, Bayesian
statistics, and myriad applications.

= Our goal today is to teach you the basics, explain some of the newer ideas,
and to suggest open areas of new research.



Variational Inference:
Foundations and Modern Methods

Part II: Mean-field VI and stochastic VI

Jordan+, Introduction to Variational Methods for Graphical Models, 1999
Ghahramani and Beal, Propagation Algorithms for Variational Bayesian Learning, 2001
Hoffman+, Stochastic Variational Inference, 2013

Part III: Stochastic gradients of the ELBO

Kingma and Welling, Auto-Encoding Variational Bayes, 2014
Ranganath+, Black Box Variational Inference, 2014
Rezende+, Stochastic Backpropagation and Approximate Inference in Deep Generative Models, 2014

Part IV: Beyond the mean field

Agakov and Barber, An Auxiliary Variational Method, 2004

Gregor+, DRAW: A recurrent neural network for image generation, 2015
Rezende+, Variational Inference with Normalizing Flows, 2015
Ranganath+, Hierarchical Variational Models, 2015

Maalge+, Auxiliary Deep Generative Models, 2016



Variational Inference:
Foundations and Modern Methods

p(z]x)

7 KL(g(z:v*) || p(z| %)

VI approximates difficult quantities from complex models.
With stochastic optimization we can

= scale up VI to massive data

= enable VI on a wide class of difficult models

= enable VI with elaborate and flexible families of approximations



PART II

Mean-field variational inference
and stochastic variational inference



Motivation: Topic Modeling

Topic models use posterior inference to discover the hidden thematic
structure in a large collection of documents.



Example: Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities
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Documents exhibit multiple topics.

ADAPTED FROM NCBI



Example: Latent Dirichlet Allocation (LDA)

Topics
gene 0.04
dna 0.02

genetic ©.01

—

life 0.02
evolve 0.01
organism .01

data 0.02
number  ©.02

Documents

Topic proportions and
assignments

Seeking Life’s Bare (Genetic) Necessities
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= Each topic is a distribution over words

= Each document is a mixture of corpus-wide topics

= Each word is drawn from one of those topics




Example: Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents X
assignments

Seeklng Life’s Bare (Genetic) Necessmes

ing, Cold Spring Harbor, New York. ping down. Computer analysis Jieids an esti-
May 810 12. of the minimum moder and ancient genomes,

SCIENCE » VOL. 27

\/

= But we only observe the documents; everything else is hidden.

= So we want to calculate the posterior
p(topics, proportions, assignments | documents)

(Note: millions of documents; billions of latent variables)



LDA as a Graphical Model

Proportions topi Per—vyord "
parameter opic assignmen Topic
parameter
Per-document Observed )
topic proportions word Topics
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= Encodes assumptions about data with a factorization of the joint
= Connects assumptions to algorithms for computing with data

= Defines the posterior (through the joint)



Posterior Inference
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= The posterior of the latent variables given the documents is

p(p,0,z|w) =

p(B,0,z,w)

fﬁ fo >.p(B,0,z,w)

= We can’t compute the denominator, the marginal p(w).

= We use approximate inference.
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Topics found in 1.8M articles from the New York Times



Mean-field VI and Stochastic VI

Subsample Infer local Update global
data structure structure

Road map:

= Define the generic class of conditionally conjugate models
= Derive classical mean-field VI

= Derive stochastic VI, which scales to massive data



A Generic Class of Models

Global variables R 'B

¥ 1
Local variables Zi < ) . Xi
n

p(B.zx) =p(B)| [pGixIP)
i=1

= The observations are x = xy.,,.

The local variables are z = z;.,,.

= The global variables are f3.

The ith data point x; only depends on z; and f.

Compute p(f3,z|x).



A Generic Class of Models

Global variables R 'B

X
Local variables . l

p(B.zx) =p(B)| [pGixIP)
i=1

= A complete conditional is the conditional of a latent variable given the
observations and other latent variables.
= Assume each complete conditional is in the exponential family,
p(z:1 B,x;) = h(z) exp{n,(B,x;) "z —a(n,(B,x))}
p(B12,%) = h(B) exp{ny(z,x)" B —a(ny(z,x))}.



A Generic Class of Models

Global variables R 'B

¥ 1
Local variables Zi < ) . Xi
n

p(B.zx) =p(B)| [pGixIP)
i=1

= A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

= The global parameter comes from conjugacy [Bernardo and Smith, 1994]
n
ng(zﬂ X) =a+ Zi:] t(zi’xi)’

where a is a hyperparameter and t(-) are sufficient statistics for [z;,x;].



A Generic Class of Models

Global variables R 'B

X
Local variables . l

p(B.zx) =p(B)| [pGixIP)
i=1

= Bayesian mixture models = Dirichlet process mixtures, HDPs
= Time series models = Multilevel regression
(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)



Variational Inference

Minimize KL between q(f3, z; ) and the posterior p(f, z | x).



The Evidence Lower Bound

"("p(v) = ]Eq [logp(ﬂ: Z, X)] - ]Eq [logq(ﬂ: Z; V)]

= KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

o It is a lower bound on log p(x).
o Maximizing the ELBO is equivalent to minimizing the KL.

= The ELBO trades off two terms.

o The first term prefers g(-) to place its mass on the MAP estimate.
o The second term encourages q(-) to be diffuse.

= Caveat: The ELBO is not convex.



Mean-field Variational Inference

Qﬂ A=) B

ELBO
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= We need to specify the form of q(f3, z).
= The mean-field family is fully factorized,
aB,z; 2, ¢)=q(Bs M [, alz; d0).-

= Each factor is the same family as the model’s complete conditional,

p(ﬁ | Z, X) = h(ﬂ)exp{")g(Z, X)Tﬁ _a(ng(Z’ X))}
q(B;2) = h(B)exp{AT f —a(1)}.



Mean-field Variational Inference

Qﬂ A=) B

ELBO
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= Optimize the ELBO,
Z(A,¢)=E,[logp(B,z,x)] —E,[logq(B,2z)].
= Traditional VI uses coordinate ascent [Ghahramani and Beal, 2001]
A =By [1y(2,%)]; ¢ =Ex [10(B,x)]

= [teratively update each parameter, holding others fixed.
o Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990] .
o Caveat: The ELBO is not convex.



Mean-field Variational Inference for LDA
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= The local variables are the per-document variables 6, and z,.
= The global variables are the topics 4, ..., fk-

= The variational distribution is

K D N
0(8.0.2) =] JaB 2 [ Ja0ssvd | Jatzans a)
k=1 d=1 n=1



Mean-field Variational Inference for LDA
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Mean-field Variational Inference for LDA

human evolution disease computer
genome evolutionary host models
dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
tuberculosis simulations

sequences common



Classical Variational Inference

Input: data x, model p(f3, z, x).

Initialize A randomly.

repeat
for each data point i do
| Setlocal parameter ¢; — E, [1,(f,x;)].

end
Set global parameter

A—a+ By [6(Z,x)].

until the ELBO has converged




A Generic Class of Models

Global variables R '3

X
Local variables . l

p(B.2.%) =p(B)] [pCz.x18)
i=1

= Bayesian mixture models = Dirichlet process mixtures, HDPs
= Time series models = Multilevel regression
(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)



Stochastic Variational Inference
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= Classical VI is inefficient:

o Do some local computation for each data point.
Aggregate these computations to re-estimate global structure.
o Repeat.

= This cannot handle massive data.

= Stochastic variational inference (SVI) scales VI to massive data.



Stochastic Variational Inference
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Subsample
data

Infer local
structure

Update global
structure



Stochastic Optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MoONRO
University of North Carolina

1. Summary. Let M(z) denote the expected value at level z of the response [
to a certain experiment. M () is assumed to be a monotone function of z but is !
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(x) = a, where o is a given constant. We give a method for making
successive experiments at levels x; , z2 , - - - in such a way that z,, will tend to 6 in
probability.

= Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]
= Guaranteed to converge to a local optimum [Bottou, 1996]

= Has enabled modern machine learning



Stochastic Optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MoONRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M () is assumed to be a monotone function of z but is !
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(x) = a, where o is a given constant. We give a method for making
successive experiments at levels x; , z2 , - - - in such a way that z,, will tend to 6 in
probability.

= With noisy gradients, update
Ver1 = Vet ptﬁvz(vc)
= Requires unbiased gradients, E [@v,&” (v)] =V,%(v)

= Requires the step size sequence p, follows the Robbins-Monro conditions



Stochastic Variational Inference

= The natural gradient of the ELBO [Amari, 1998; Sato, 2001]
Vit () = (a+ 3, By [t(Z,x)]) — A.

= Construct a noisy natural gradient,

j ~ Uniform(1,...,n)
@;atg(l) =a+ nE¢j*[t(Zj,39)] —A.

= This is a good noisy gradient.

o Its expectation is the exact gradient (unbiased).
o It only depends on optimized parameters of one data point (cheap).



Stochastic Variational Inference

Input: data x, model p(f3, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ < E, [m([j,x)].
Set intermediate global parameter

A=a+ nEy[t(Z;,x)].
Set global parameter

A=(1—pIA+pA.

until forever




Stochastic Variational Inference
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Stochastic Variational Inference in LDA
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= Sample a document
= Estimate the local variational parameters using the current topics
= Form intermediate topics from those local parameters

= Update topics as a weighted average of intermediate and current topics



Stochastic Variational Inference in LDA

Online 98K
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>800 - . ‘ Batch 98K
£ Online 3.3M ™ ach 98
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Documents seen (log scale)
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made  communication health companies systems companies companies service
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west care company health market systems management management
language road billion industry billion services public public

[Hoffman et al., 2010]
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Topics using the HDP, found in 1.8M articles from the New York Times



SVI scales many models

Update global
structure

Infer local
structure

Subsample
data

= Bayesian mixture models = Dirichlet process mixtures, HDPs

Multilevel regression

= Time series models

(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)
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PART III

Stochastic Gradients of the ELBO



Review: The Promise
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= Realized for conditionally conjugate models

= What about the general case?




The Variational Inference Recipe

Start with a model:

p(z,x)

0

0
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a4 ¢
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The Variational Inference Recipe

Choose a variational approximation:

q(z; v)

0

8
]
i
a4 ¢
i




The Variational Inference Recipe

Write down the ELBO:

z(")) = Eq(z;v)[logp(x) Z) - log q(z7 'V)]

0

0

8
]
i
[
¥




The Variational Inference Recipe

Compute the expectation(integral):

Example: £(v) =xv* +log v

0

0

8
]
i
[
¥




The Variational Inference Recipe

Take derivatives:

1
Example: V,Z(v) =2xv+ p

0

0

8
]
i
[
¥




The Variational Inference Recipe

Optimize:

Vir1 = Vet oV, L

0

0

8
]
i
[
¥




The Variational Inference Recipe

p(x,2z)__

B [ atzv)ds P

q(z;v)




Example: Bayesian Logistic Regression

= Data pairs y;, x;

= X; are covariates

= y; are label

= zis the regression coefficient
= Generative process

p(z) ~N(0,1)
p;|x;,2) ~ Bernoulli(o(2x;))



VI for Bayesian Logistic Regression

Assume:
= We have one data point (y,x)
= x is a scalar
= The approximating family q is the normal; ¥ = (u, 02)

The ELBO is

£(u,0?) = E,[logp(z) +logp(y | x,z) —log q(z)]



VI for Bayesian Logistic Regression

£(u,0?)
= E,[logp(z) —logq(z) +1logp(y|x,2)]



VI for Bayesian Logistic Regression

= E,[logp(z) —logq(z) +1logp(y|x,2)]

1 o5, 2y, 1 2
= —2(,u +o )+210g0 +E,[logp(y|x,2)]+C



VI for Bayesian Logistic Regression

= E,[logp(z) —logq(z) +1logp(y|x,2)]

1 o5, 2y, 1 2
= —2(,u +o )+210g0 +E,[logp(y|x,2)]+C

1 1
= _E(Mz +0?)+ 5 logo® + E,[yxz —log(1 + exp(xz))]



VI for Bayesian Logistic Regression

= E,[logp(z) —logq(z) +1logp(y|x,2)]

1 1
= —§(u2+02)+Elog02+Eq[10gp(y|x,z)]+C
1 1
= _E(Mz +0?)+ 5 logo® + E,[yxz —log(1 + exp(xz))]

1 1
= _E(MZ +0%)+ > log 0% + yxu — E,[log(1 + exp(xz))]



VI for Bayesian Logistic Regression

= E,[logp(z) —logq(z) +logp(y | x,2)]
1 1

= —§(u2+02)+Elog02+Eq[10gp(y|x,z)]+C
oo, 2y, 1 2

= —E(u +0o )+§logo +Eq[yxz —log(1 + exp(xz))]
1o, 2y, 1 2

= _E(M +0°)+ > log o= + yxu — Eg[log(1 + exp(xz))]

We are stuck.

1. We cannot analytically take that expectation.

2. The expectation hides the objectives dependence on the variational
parameters. This makes it hard to directly optimize.



Options?

= Derive a model specific bound:
[Jordan and Jaakola; 1996], [Braun and McAuliffe; 2008], others

= More general approximations that require model-specific analysis:
[Wang and Blei; 2013], [Knowles and Minka; 2011]



Nonconjugate Models

= Nonlinear Time series Models = Discrete Choice Models
= Deep Latent Gaussian Models = Bayesian Neural Networks
= Models with Attention = Deep Exponential Families
(such as DRAW) (e.g. Sparse Gamma or Poisson)
= Generalized Linear Models = Correlated Topic Model
(Poisson Regression) (including nonparametric variants)
= Stochastic Volatility Models = Sigmoid Belief Network

We need a solution that does not entail model specific work



Black Box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX p(B.z]x)

VARIATIONAL
INFERENCE



The Problem in the Classical VI Recipe

p(x,2)__

B [tz }

q(z;v)



The New VI Recipe

p(x,z)
e
q(z;v :

Use stochastic optimization!




Computing Gradients of Expectations
= Define
8(z, v) =logp(x,z) —logq(z; )
= Whatis V, &
V,¥ = V,,f q(z; v)g(z, v)dz
= f V,4(z; v)g(z, v) + q(z; v)V,8(z, v)dz
= f q(z; )V, logq(z; v)g(z, v) + q(z; v)V ,8(z, v)dz

= Ey0) [V, 10gq(z; v)g(z, v) + V,g(z, v)]

Vvq
q

Using V ,logq =



Roadmap

= Score Function Gradients
= Pathwise Gradients

= Amortized Inference



Score Function Gradients of the ELBO



Score Function Estimator

Recall
V& =Ey4:»)[V,logq(z; v)g(z, v) + V,g(z, v)]
Simplify:
E,[V,g(z, )] =E,[V,logq(z; )] =0
Gives the gradient:

vv'g = IEq(z;v)[vvlog CI(Z; V)(lng(X, Z) - IOg q(Z; V))]

Sometimes called likelihood ratio or REINFORCE gradients

[Glynn 1990; Williams, 1992; Wingate+ 2013; Ranganath+ 2014; Mnih+ 2014]



Noisy Unbiased Gradients

Gradient: Ey,,,)[V,logq(z; v)(logp(x,z) —logq(z; »))]

Noisy unbiased gradients with Monte Carlo!

S
1
5 2, Vrloga(z: »)logp(x, z,) ~ log(z; »)),
s=1
where z; ~ q(z; v)



Basic BBVI

Algorithm 1: Basic Black Box Variational Inference

Input :Model logp(x,z),
Variational approximation q(z; »)
Output : Variational Parameters: v

while not converged do
z[s] ~ q // Draw S samples from q
p = t-th value of a Robbins Monro sequence
v=v+pt > V,logq(z[s]; v)(logp(x,z[s]) —logq(z[s]; )
t=t+1
end




The requirements for inference

The noisy gradient:

S
1
S Z V, logq(z; v)(logp(x,z,) —logq(zs; »)),

s=1
where z, ~ q(z; v)
To compute the noisy gradient of the ELBO we need
= Sampling from q(z)
= Evaluating V, logq(z; v)
= Evaluating logp(x,z) and logq(z)

There is no model specific work: black box criteria are satisfied



Black Box Variational Inference

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX p(B.z]x)

VARIATIONAL
INFERENCE



Problem: Basic BBVI doesn’t work

Variance of the gradient can be a problem

Varq(z;v) = IEq(z;v)[(vv Iqu(Z; V)(lng(X, Z) - IOg q(z; V)) - sz)z]'

e PDF
15 e Abs Mu Score

0.0
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

Intuition:
Sampling rare values can lead to large scores and thus high variance



Solution: Control Variates
Replace with f with f” where E[f(z)] = E[f(2)]. General such class:

F(2) =f(z) —a(h(2) — E[h(z)])

e PDF
5 — = x X

— / h=gz?

fih=f

-1
=20 -15 -10 -0.5 0.0 0.5 1.0 1.5 2.0

= h is a function of our choice
= @ is chosen to minimize the variance
= Good h have high correlation with the original function f



Solution: Control Variates
Replace with f with f” where E[f(z)] = E[f(2)]. General such class:

F(2) =f(z) —a(h(2) — E[h(z)])

e PDF
5 — = x X

— / h=gz?

fih=f

-1
=20 -15 -10 -0.5 0.0 0.5 1.0 1.5 2.0

= For variational inference we need functions with known q expectation
= Sethas V,logq(z; v)
= Simple as E,[V,logq(z; )] = 0 for any q



Solution: Control Variates
Replace with f with f‘ where E[?(z)] = E[f(2)]. General such class:

F(2) =f(z) —a(h(2) — E[h(z)])

e PDF
5 — = x X

— / h=gz?

fih=f

-1
=20 -15 -10 -0.5 0.0 0.5 1.0 1.5 2.0

Many of the other techniques from Monte Carlo can help:
= Importance Sampling, Quasi Monte Carlo, Rao-Blackwellization
[Ruiz+ 2016; Ranganath+2014; Titsias+2015; Mnih+2016]



Nonconjugate Models

= Nonlinear Time series Models = Discrete Choice Models
= Deep Latent Gaussian Models = Bayesian Neural Networks
= Models with Attention = Deep Exponential Families
(such as DRAW) (e.g. Sparse Gamma or Poisson)
= Generalized Linear Models = Correlated Topic Model
(Poisson Regression) (including nonparametric variants)
= Stochastic Volatility Models = Sigmoid Belief Network

We can design models based on data rather than inference.



More Assumptions?

The current black box criteria
= Sampling from q(z)
= Evaluating V, logq(z; v)
= Evaluating logp(x, z) and logq(z)

Can we make additional assumptions that are not too restrictive?



Pathwise Gradients of the ELBO



Pathwise Estimator

Assume

1. z=t(e, v) for € ~ s(€) implies z ~ q(z; v)
Example:

€ ~ Normal(0, 1)
Z2=€0+Uu

— 2z ~ Normal(u, 02)

2. logp(x,z) and log g(z) are differentiable with respect to z



Pathwise Estimator

Recall

V, % = Eq(z;v)[vvl()gq(z; v)g(z, v) + V,g(z, v)]

Rewrite using using z = t(e, v)

V, & =Ey [V, logs(e)g(t(e, v), v) + V,g(t(e, »), v)]

To differentiate:

VL (v) =Ey)[V,g(t(e, v), ¥)]
=Ey)[V,[logp(x,2) —logq(z; )]V ,t(e, ) — V, logq(z; v)]
= Ey)[V.llogp(x,2) —logq(z; )]V ,t(e, ¥)]
This is also known as the reparameterization gradient.

[Glasserman 1991; Fu 2006; Kingma+ 2014; Rezende+ 2014; Titsias+ 2014]



Variance Comparison

103 _

101 _

10-1 - Pathwise
—— Score Function
10-3 Score Function with

[ [ [ ‘ Control Variate
10 10! 102 103
Number of MC samples

[Kucukelbir+ 2016]



Score Function Estimator vs. Pathwise Estimator

. Pathwise
Score Function . . .
. . . = Differentiates the function
= Differentiates the density : ) ]
V,q(z; v) V.[logp(x, z) —logq(z; v)]

« Works for discrete and = Requires differentiable models

continuous models . .
= Requires variational

approximation to have form

= Works for large class of z=t(e,v)

variational approximations

= Generally better behaved

= Variance can be a big problem .
variance



Amortized Inference



Hierarchical Models

Global variables R 13

Xi
Local variables ‘ !

p(B.z.x)=p(B)| [pz.x1B)
i=1



Mean Field Variational Approximation

Qﬂ A=) B

ELBO

Zj Q—». Xi ¢i D—>© Zi




SVI: Revisited

Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ < E; [m(ﬂ,x)].

Set intermediate global parameter

A

A=a+nEy[t(Z;,x)].

Set global parameter X
A=1=pJA+pA.

until forever



SVI: The problem

Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ < E; [m([i,x-)].

Set intermediate global parameter

A

A =a+nE,[t(Z;,x)].

Set global parameter X
A=1=pIAr+pA.

until forever

= These expectations are no longer tractable
= Inner stochastic optimization needed for each data point.



SVI: The problem

Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ < E; [m([i,x-)].

Set intermediate global parameter

A

A =a+nE,[t(Z;,x)].

Set global parameter X
A=1=pIAr+pA.

until forever

Idea: Learn a mapping f from x; to ¢;



Amortizing Inference

ELBO:

LA, P1..0) =Eq[logp(B,2z,x)] —E, {logq(ﬂ; A)+ Zq(zi; q%)}
i=1
Amortizing the ELBO with inference network f:

2Z(A,0)=E,[logp(B,2,x)] - E, [logq(ﬁ; A)+ Zq(zi x5 @i = fo (Xi)):|
i=1

[Dayan+ 1995; Heess+ 2013; Gershman+ 2014, many others]



Amortized SVI
Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample B ~ q(B;AL).

Sample j ~ Unif(1,...,n).
sample z; ~ q(z 13 o ().
Compute stochastic gradients

V& =V, logq(; A)(logp(B) + nlogp(x;, | f)—logq(B))
V& =nV,logq(z;|x; 0)(logp(x;, 2| B) —log q(z | xi; 6))

Update

A=21+p,V,
9=9+ptVA9

until forever



A computational-statistical tradeoff

= Amortized inference is faster, but admits a smaller class of approximations

= The size of the smaller class depends on the flexibility of f




Example: Variational Autoencoder (VAE)

p(z) = Normal(0, 1)

p(x|z) = Normal(jus(z), o3 (2))

u and o2 are deep networks with parameters /3.

[Kingma+ 2014; Rezende+ 2014]



Example: Variational Autoencoder (VAE)

z

RN

Model
p(xlz)

z~q(zlx)

Inference
Network
q(z Ix)

!

x~p(xlz)
Data x

All functions are deep networks

¢(z[x) = Normal(f4(x), f¢ (x))



Example: Variational Autoencoder (VAE)

g
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Rules of Thumb for a New Model

If logp(x, z) is z differentiable

= Try out an approximation q that is reparameterizable

If log p(x, z) is not z differentiable
= Use score function estimator with control variates

= Add further variance reductions based on experimental evidence



Rules of Thumb for a New Model

If logp(x, z) is z differentiable

= Try out an approximation q that is reparameterizable

If log p(x, z) is not z differentiable
= Use score function estimator with control variates

= Add further variance reductions based on experimental evidence

General Advice:
= Use coordinate specific learning rates (e.g. RMSProp, AdaGrad)
= Annealing + Tempering

= Consider parallelizing across samples from g



Software

Systems with Variational Inference:
= Venture, WebPPL, Edward, Stan, PyMC3, Infer.net, Anglican

Good for trying out lots of models

Differentiation Tools:
= Theano, Torch, Tensorflow, Stan Math, Caffe

Can lead to more scalable implementations of individual models



PART IV

Beyond the Mean Field



Review: Variational Bound and Optimisation

REUSABLE MASSIVE
VARIATIONAL DATA

FAMILIES
ANY MODEL
BLACK BOX
VARIATIONAL
INFERENCE

= Probabilistic modelling and variational inference.

p(B.2]%)

= Scalable inference through stochastic optimisation.

= Black-box variational inference: Non-conjugate models, Monte Carlo
gradient estimators and amortised inference.

These advances empower us with new way to design
more flexible approximate posterior distributions q(z)



Mean-field Approximations

Fully-factorised

relo, ‘
" KL(g(z:v*) || p(z] )

avr(2le) = [ [ a(z)
k

Key part of algorithm is the choice of approximate posterior q(z).

logp(x) =% = IE:q(z|x)[l(-)gp(xz Z)] _Eq(y,\x)[]()g (I(Z\X)]

v
Expected likelihood Entropy




Mean-Field Posterior Approximations

Deep Latent
Gaussian Model

Latent variable
model p(x,z)

p(2)

p(al2)

Mean-field or fully-factorised posterior is usually not sufficient



Real-world Posterior Distributions

Deep Latent
Gaussian Model

Latent variable
model p(x,z)

p(z)

plalz)

.

Complex dependencies - Non-Gaussian distributions - Multiple modes



Families of Approximate Posteriors

Two high-level goals:

= Build richer approximate posterior distributions.

= Maintain computational efficiency and scalability.



Families of Approximate Posteriors

Two high-level goals:

= Build richer approximate posterior distributions.

= Maintain computational efficiency and scalability.

True Posterior Fully-factorised

Most Expressive Least Expresswe

q"(z]x) o< p(x|2)p(2) avr(z]2) = Hq(Zk




Families of Approximate Posteriors

Two high-level goals:

= Build richer approximate posterior distributions.

= Maintain computational efficiency and scalability.

True Posterior Fully-factorised

Most Expressive Least Expresswe

q"(z]x) o< p(x|2)p(2) avr(z]2) = Hq(Zk

Same as the problem of specifying a model of the data itself.



Structured Posterior Approximations

True Posterior Structured Approx. Fully-factorised

Most Expressive | Least Expressive
|
q*(2]z) cc p(z|2)p(2)  a(2) = [[ae(zal{zi}ime)  amr(zle) = [] alzw)
k k

Structured mean field: Introduce any form of dependency to provide a richer
approximating class of distributions.

[Saul and Jordan, 1996.]



Gaussian Approximate Posteriors

Use a correlated Gaussian:

q6(z; V)=A(z|u, X)

Variational parameters v = {u, X} 0 0



Gaussian Approximate Posteriors

Use a correlated Gaussian:

q6(z; V)=A(z|u, X)

Variational parameters v = {u, X} 0 0

Covariance models: Structure of covariance ¥ describes dependency.
Full covariance is richest, but computationally expensive.

diag(ay, ..., ax) diag(ﬂl, . O/K)
Dqu Dq:(:‘ H 5 104
Mean-field Rank-1 ému
RS
diag(au, . .. ’!_HK) uuT g ol
+320; uyuy £
8

Rank1 Diag ~ Wake-Sleep ~ FA

Full



Gaussian Approximate Posteriors

Use a correlated Gaussian:

q6(z; V)=A(z|u, X)

Variational parameters v = {u, X} 0 0

Covariance models: Structure of covariance ¥ describes dependency.
Full covariance is richest, but computationally expensive.

diag(ay, ..., ax) diag((yl, . O/K)

Dqu Dq:(:‘ H < 104

8
Mean-field Rank-1 ému
RS
diag(au, ..., ax) g ol

T S
+ Z]- u;uj E 83

8

Dq:(:‘ H ‘ ‘ H ‘ 84 RankL Diag Wake-Sleep  FA
+ ot
Rank-J Full

Approximate posterior is always Gaussian.



Beyond Gaussian Approximations

Autoregressive distributions: Impose
an ordering and non-linear dependency
on all preceding variables.

qar(z; v) = I_IQk(Zk|Z<k; k) “
k



Beyond Gaussian Approximations

Autoregressive distributions: Impose
an ordering and non-linear dependency
on all preceding variables.

qar(z; v) = l_[‘Ik(Zk|Z<k; k) .*
k

Compare DLGMs: Using Gaussian mean field (VAE) vs. auto-regressive
posterior (DRAW) in fully-connected DLGMs on CIFAR10.

A B
R O s

[Gregor et al., 2015]




Beyond Gaussian Approximations

Autoregressive distributions: Impose
an ordering and non-linear dependency
on all preceding variables.

qar(z; v) = l_[‘Ik(Zk|Z<k; k) .*
k

Compare DLGMs: Using Gaussian mean field (VAE) vs. auto-regressive
posterior (DRAW) in fully-connected DLGMs on CIFAR10.

A B
R O s

[Gregor et al., 2015]

Joint-distribution non-Gaussian, although conditionals are.



More Structured Posteriors

Mixture model Linking functions

Gmm (2; V) Zprqr 7

Qm (25 V) (HQk 2klVk) ) Zi Vi)

[Saul and Jordan, 1996, Tran et al., 2016]



More Structured Posteriors

Mixture model Linking functions

Gmm (2; V) Zprqr 7

Qm (25 V) (HQk 2klVk) > Zi Vi)
[Saul and Jordan, 1996, Tran et al., 2016]
Suggests a general way to improve posterior approximations:

Introduce additional variables that induce dependencies,
but that remain tractable and efficient.



Designing Richer Posteriors

1. Introduce new variables w that help to form a
richer approximate posterior distribution.

q(z; v) = f q(z, w; v)dw



Designing Richer Posteriors

1. Introduce new variables w that help to form a
richer approximate posterior distribution.

q(z; v) = f q(z, w; v)dw

2. Adapt bound to compute entropy or a bound.

logp(x) =% = II':‘:q(zlx)[Ing(X: Z)]

Expected likelihood Entropy



Designing Richer Posteriors

1.

Introduce new variables w that help to form a
richer approximate posterior distribution.

q(z; v) = f q(z, w; v)dw

. Adapt bound to compute entropy or a bound.

logP(X) =% = Eq(zlx)[Ing(X Z)] q(/ X) [ 0g (l(Z|X):|

Expected likelihood Entropy

. Maintain computational efficiency: linear in

number of latent variables.

0000



Designing Richer Posteriors

1. Introduce new variables w that help to form a
richer approximate posterior distribution.

q(z; v) = f q(z, w; v)dw

2. Adapt bound to compute entropy or a bound.

Ing(X) =% = Il:-‘:q(zlx)[logp(x; Z)]

Expected likelihood Entropy

0000

3. Maintain computational efficiency: linear in
number of latent variables.

Look at two different approaches

= Change-of-variables: Normalising flows and invertible transforms.

= Auxiliary variables: Entropy bounds, Monte Carlo sampling.




Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution gq(z,|x).
= Apply a sequence of K invertible functions f;.

©O-@-5-m-8



Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution gq(z,|x).
= Apply a sequence of K invertible functions f;.

Sampling and Entropy

[l

=

:
Zx = fKoO.. °f2°f1(20) {f f \ j

log g (zx ) = log qo(20) Z log det

e
S

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]



Normalising Flows

Planar
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Normalising Flows
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Choice of Transformation Function

£ =Eq (z)[l0gp(x, 2 )]—E, () [l0g qo(z0)] — qU(z)lzlogdet

|



Choice of Transformation Function

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

£ =Eq (z)[l0gp(x, 2 )]—E, () [l0g qo(z0)] — qo(z)[zlogdet



Choice of Transformation Function

K
5}
< :qu(zo)[logp(X: ZK)]_EqO(ZO)[IOg QO(ZO)] - qu(zo) |:Z log det ai

k=1

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

Zy

Planar Flow Real NVP Inverse AR Flow

()
Bl
nk

o

ojo

BRo

®

_ k-1 — pk(2eks @)

2 =

2% = 21 + uh(w zp_1 +b) Yar1:0 = t(2k-1,1:a) + Za+1:0 © exp(s(2k—1,1.4)) o (z<ks )

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]



Choice of Transformation Function

K
5}
< :qu(zo)[logp(X: ZK)]_EqO(ZO)[IOg qO(ZO)] - qu(zo) |:Z log det ai

k=1

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

Zy

Planar Flow Real NVP Inverse AR Flow

()
Bl
nk

o

ojo

BRo

®

_ k-1 — pk(2eks @)

2 =

2% = 21 + uh(w zp_1 +b) Yar1:0 = t(2k-1,1:a) + Za+1:0 © exp(s(2k—1,1.4)) o (z<ks )

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.



Modelling Improvements

VAE-type algorithms on the MNIST benchmark

VAE DRAW IAF



Modelling Improvements

VAE-type algorithms on the MNIST benchmark

S 80-9 -

VAE DRAW IAF

Samples generated from model on CIFAR10 images

3 B




Hierarchical Approximate Posteriors

We can use ‘latent variables’ w to enrich the approximate
posterior distribution, like we do for our density models.

q(zlx) = f q(z|w, x)q(w[x)dw



Hierarchical Approximate Posteriors

We can use ‘latent variables’ w to enrich the approximate
posterior distribution, like we do for our density models.

q(zlx) = f q(z|w, x)q(w[x)dw

= Use a hierarchical model for the approximate posterior.

= Stochastic variables w rather than deterministic in the
change-of-variables approach.

= Both continuous and discrete latent variables can be
modelled.

0000

[Ranganath et al., 2016]



Auxiliary-variable Methods

Modify the model to include w = (z,...,Zx_;)-

Latent variable Auxiliary latent
model p(x,2) variable model p(x,z,®)
p(2) p(2)

p(z|z) p(x]z) r(wlz, z)



Auxiliary-variable Methods

Modify the model to include w = (z,...,Zx_;)-

= Auxiliary variables leave the original model unchanged.

= They capture structure of correlated variables because they
turn the posterior into a mixture of distributions q(z|x, w).

Latent variable Aucxiliary latent . <
model p(x,2) variable model p(x,z,®)
p(2) p(2)
N
‘ (D
p(z]z) p(2]2) r(wlz, 2) i

[Agakov and Barber, 2004; Maalge et al., 2016]



Auxiliary Variational Lower Bounds
Standard bound: logp(x) = £ = E,[logp(x,2)] —E, ., [logg(zx)]

Expected likelihood Entropy
Aucxiliary latent Inference
variable model p(x,z,®) model q(z,®)
p(2) q(zlz,w)

p(xl2) r(wlz,2) q(wlz)



Auxiliary Variational Lower Bounds
Standard bound: logp(x) = £ = E,[logp(x,2)] —E, ., [logg(zx)]

Expected likelihood Entropy
Aucxiliary latent Inference
variable model p(x,z,®) model q(z,®)
p(2) q(zlz,w)
p(x|2) r(wlz, 2) q(wlz)

Auxiliary variational bound: Bound the entropy for tractability.

logp(x) = ]Eq(w,z|x)[logp(x’ Z) + log r(wlz’ X)]_Eq(w.z\x)[log Cl(Zﬁ (1)|X):|
2 L — By [KL[q(w]2,X)|Ir(w]2,X)]

[Salimans et al., 2015; Ranganath et al., 2016; Maalge et al., 2016]



Auxiliary Variational Methods

Choose an auxiliary prior r(w|z,x) and auxiliary posterior g(w|x, z)



Auxiliary Variational Methods

Choose an auxiliary prior r(w|z,x) and auxiliary posterior g(w|x, z)

Auxiliary latent
variable model p(x,z,®)

o) = Hamiltonian flow: r(w)=4(w|0,M)
= Input-dependent Gaussian: r(w|x, z)

= Auto-regressive: r(w|x,z) = [ [, r(@|fs(w, X))

= g(w|x,2) can be a mixture model, normalising flow,
— 7 Gaussian process.
plalz (e, 2
Inference
model q(z,0)
q(z]z,w)

o)



Auxiliary Variational Methods

Choose an auxiliary prior r(w|z,x) and auxiliary posterior g(w|x, z)

Auxiliary latent
variable model p(x,z,®)

o) = Hamiltonian flow: r(w)=4(w|0,M)
Input-dependent Gaussian: r(w|x, z)
= Auto-regressive: r(w|x,z) = [ [, r(@|fs(w, X))

g(w|x,z) can be a mixture model, normalising flow,
Gaussian process.

VAE DRAW IAF DRAW-VGP

p(a]2) r(wlr. 2)
Inference
model q(z,®)
a(zlz,w)

a(wle)

[Tran et al., 2016]

Easy sampling, evaluation of bound and gradients.



Summary

True Posterior Families of Posterior Approximations Fully-factorised
Normalising Structured mean-field Covariance models
g0
+|
Auxtlzary variables Mixtures

r(w\ )

O-O-BBE:

Most Expressive Least Expressive

q*(2|z) o p(z|z)p(z) gur(zlz) = [ a(z)
k
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p(z]x)

7 KL(g(z:v*) || p(z| %)

VI approximates difficult quantities from complex models.
With stochastic optimization we can

= scale up VI to massive data

= enable VI on a wide class of difficult models

= enable VI with elaborate and flexible families of approximations
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