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Description

This course explores the challenges of extracting inferences about cause and effect in policy-relevant
domains. Specifically, we will study modern field experiments and how machine learning methods
can help design and analyze them. Focusing on real-world designs and real-world data, we will
evaluate the strengths and weaknesses of modeling choices and methods, and we will study how to
use ML-based insights to suggest more informative design choices.

Prerequisites and workload

The course is designed for doctoral students in social science, computer science, and statistics. It is
also open to masters students and undergraduates with sufficient preparation.

We expect students to have basic knowledge of probability and statistics, and to be comfortable with
computer programming for data analysis.

Workload: a small mid-semester project; short weekly reading responses; a final paper.

Syllabus (tentative)

1. What are field experiments? What is machine learning? (Green and Blei)
Gerber et al. (2004); Blei (2014)

2. Causality : Potential outcomes (Green)
Imbens and Rubin (2015), Chapter 1; Ding (2023)

3. Causality : Graphical models (Blei)
Pearl et al. (2016); Freedman (2004)

4. Covariate section (Green)
Bloniarz et al. (2016); Lin (2013); Lu et al. (2023); Su et al. (2023)

5. Synthetic controls (Blei)
Abadie et al. (2010); Abadie (2021); Athey et al. (2021); Ben-Michael et al. (2021); Bottmer
et al. (2023); Shi et al. (2022)

6. Benchmarking (Green)
Arceneaux et al. (2006); DellaVigna and Pope (2018); Gentzel et al. (2021); Gordon et al. (2019);
Keith et al. (2023)

7. Causality and text data (Blei)
Egami et al. (2022); Fong and Grimmer (2023); Sridhar and Blei (2022); Veitch et al. (2020)

8. Heterogenous treatment effects (Green)
Chernozhukov et al. (2018); Ding et al. (2016)
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9. Bayesian optimization and sequential experimental design (Blei)
Garnett (2023)

10. Factorial design (Green)
Egami and Imai (2018); Goplerud et al. (2022); Zhao and Ding (2022)

11. Multiple environments and invariance (Blei)
Peters et al. (2016); Arjovsky et al. (2019)

12. Multiple outcomes (Green)
Arnold and Ercumen (2016); Shi et al. (2020); Vickerstaff et al. (2021)

13. Instrumental variables (Green)
Danieli et al. (2022); Hartford et al. (2017)
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