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Preface 

This book, a revision of my Ph.D. thesis,l explores the Bayesian approach 
to learning flexible statistical models based on what are known as "neural 
networks". These models are now commonly used for many applications, 
but understanding why they (sometimes) work well, and how they can best 
be employed is still a matter for research. My aim in the work reported here 
is two-fold - to show that a Bayesian approach to learning these models 
can yield theoretical insights, and to show also that it can be useful in 
practice. The strategy for dealing with complexity that I advocate here 
for neural network models can also be applied to other complex Bayesian 
models, as can the computational methods that I employ. 

In Chapter 1, I introduce the Bayesian framework for learning, the neu
ral network models that will be examined, and the Markov chain Monte 
Carlo methods on which the implementation is based. This presentation 
presupposes only that the reader possesses a basic statistical background. 

Chapter 1 also introduces the major themes of this book, which involve 
two fundamental characteristics of Bayesian learning. First, Bayesian learn
ing starts with a prior probability distribution for model parameters, which 
is supposed to capture our beliefs about the problem derived from back
ground knowledge. Second, Bayesian predictions are not based on a single 
estimate for the model parameters, but rather are found by integrating the 

1 Bayesian Learning for Neural Networks, Department of Computer Science, Univer
sity of Toronto, 1995. 
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model's predictions with respect to the posterior parameter distribution 
that we obtain when we update the prior to take account of the data. For 
neural network models, both these aspects present difficulties - the prior 
over network parameters has no obvious relation to any prior knowledge 
we are likely to have, and integration over the posterior distribution is 
computationally very demanding. 

I address the first of these problems in Chapter 2, by defining classes 
of prior distributions for network parameters that reach sensible limits as 
the size of the network goes to infinity. In this limit, the properties of 
these priors can be elucidated. Some priors converge to Gaussian processes, 
in which functions computed by the network may be smooth, Brownian, 
or fractionally Brownian. Other priors converge to non-Gaussian stable 
processes. Interesting effects are obtained by combining priors of both sorts 
in networks with more than one hidden layer. This work shows that within 
the Bayesian framework there is no theoretical need to limit the complexity 
of neural network models. Indeed, limiting complexity is likely to conflict 
with our prior beliefs, and can therefore be justified only to the extent that 
it is necessary for computational reasons. 

The computational problem of integrating over the posterior distribu
tion is addressed in Chapter 3, using Markov chain Monte Carlo methods. 
I demonstrate that the hybrid Monte Carlo algorithm, originally developed 
for applications in quantum chromodynamics, is superior to the methods 
based on simple random walks that are widely used in statistical applica
tions at present. The hybrid Monte Carlo method makes the use of complex 
Bayesian network models possible in practice, though the computation time 
required can still be substantial. 

In Chapter 4, I use a hybrid Monte Carlo implementation to test the 
performance of Bayesian neural network models on several synthetic and 
real data sets. Good results are obtained on small data sets when large 
networks are used in conjunction with priors designed to reach limits as 
network size increases, confirming that with Bayesian learning one need 
not restrict the complexity of the network based on the size of the data 
set. A Bayesian approach is also found to be effective in automatically 
determining the relevance of inputs. 

Finally, in Chapter 5, I draw some conclusions from this work, and 
briefly discuss related work by myself and others since the completion of 
the original thesis. 

Readers interested in pursuing research in this area may obtain free soft
ware implementing the methods, as described in Appendix B. One should 
note, however, that this software is not intended for use in routine data 
analysis. The software is also designed only for use on Unix systems. 
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Chapter 1 

Introduction 

This book develops the Bayesian approach to learning for neural networks 
by examining the meaning of the prior distributions that are the starting 
point for Bayesian learning, by showing how the computations required by 
the Bayesian approach can be performed using Markov chain Monte Carlo 
methods, and by evaluating the effectiveness of Bayesian methods on sev
eral real and synthetic data sets. This work has practical significance for 
modeling data with neural networks. From a broader perspective, it shows 
how the Bayesian approach can be successfully applied to complex models, 
and in particular, challenges the common notion that one must limit the 
complexity of the model used when the amount of training data is small. I 
begin here by introducing the Bayesian framework, discussing past work on 
applying it to neural networks, and reviewing the basic concepts of Markov 
chain Monte Carlo implementation. 

Our ability to learn from observation is our primary source of knowledge 
about the world. We learn to classify objects - to tell cats from dogs, or 
an 'A' from a 'B' - on the basis of instances presented to us, not by being 
given a set of classification rules. Experience also teaches us how to predict 
events - such as a rainstorm, or a family quarrel - and to estimate unseen 
quantities - such as when we judge the likely weight of an object from its 
size and appearance. Without this ability to learn from empirical data, we 
would be unable to function in daily life. 

Theories and methodologies of learning are interesting from a number 
of perspectives. Psychologists try to model the learning abilities of humans 
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and other animals, and to formulate high-level theories of how learning op
erates, while neurobiologists try to understand the biological mechanisms of 
learning at a lower level. Workers in artificial intelligence would like to un
derstand in a more general way how learning is possible in a computational 
system, and engineers try to apply such insights to produce useful devices. 
Statisticians develop methods of inference from data that for certain tasks 
are more reliable and more sensitive than unaided common sense. Philoso
phers would like to understand the fundamental nature and justification of 
inductive learning. 

The work I report in this book is aimed primarily at engineering ap
plications. The "neural network" models used are designed for predicting 
an unknown category or quantity on the basis of known attributes. Such 
models have been applied to a wide variety of tasks, such as recognizing 
hand-written digits (Le Cun, et al 1990), determining the fat content of 
meat (Thodberg 1996), and predicting energy usage in buildings (MacKay 
1993). Some of the methods I develop here may also have uses in statisti
cal inference for scientific applications, where the objective is not only to 
predict well, but also to obtain insight into the nature of the process be
ing modeled. Although neural networks were originally intended as abstract 
models of the brain, I do not investigate whether the models and algorithms 
I develop here might have a role in neural or psychological models. 

The work I describe does have wider implications for the philosophy 
of induction, and its applications to artificial intelligence and statistics. 
The Bayesian framework for learning, on which this work is based, has 
been the subject of controversy for several hundred years. It is clear that 
the merits of Bayesian and competing approaches will not be settled by 
philosophical disputation, but only by demonstrations of effectiveness in 
practical contexts. I hope that the work I report here will contribute in 
this respect. In another direction, the infinite network models I discuss 
challenge common notions regarding the need to limit the complexity of 
models, and raise questions about the meaning and utility of "Occam's 
Razor" within the Bayesian framework. 

The next section introduces the Bayesian view of learning in a general 
context. I then describe past work on applying the Bayesian framework to 
learning for neural networks, and indicate how this work will contribute 
to this approach in two respects - first, by examining the meaning for 
neural network models of the prior distribution that is the starting point for 
Bayesian learning, and second, by showing how the posterior distribution 
needed for making predictions in the Bayesian framework can be obtained 
using Markov chain Monte Carlo methods. To provide a foundation for the 
latter work, I also briefly review the basics of the Markov chain Monte 
Carlo method. 
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1.1 Bayesian and frequentist views of learning 

The statistical methodology of Bayesian learning is distinguished by its 
use of probability to express all forms of uncertainty. Learning and other 
forms of inference can then be performed by what are in theory simple 
applications of the rules of probability. The results of Bayesian learning are 
expressed in terms of a probability distribution over all unknown quantities. 
In general, these probabilities can be interpreted only as expressions of our 
degree of belief in the various possibilities. 

In contrast, the conventional frequentist approach to statistics uses prob
abilities only to represent the long-run frequencies of the outcomes of re
peatable experiments. A frequentist strategy for learning takes the form of 
an estimator for unknown quantities, which one tries to show will usually 
produce good results. 

To illustrate the difference between Bayesian and frequentist learning, 
consider tossing a coin of unknown properties. There is an irreducible uncer
tainty regarding the outcome of each toss, which can be expressed by saying 
that the coin has a certain probability of landing heads rather than tails. 
Since the properties of the coin are uncertain, however, we do not know 
what this probability of heads is (it might not be one-half). A Bayesian will 
express this uncertainty using a probability distribution over possible val
ues for the unknown probability of the coin landing heads, and will update 
this distribution using the rules of probability theory as the outcome of 
each toss becomes known. To a frequentist, such a probability distribution 
makes no sense, since there is only one coin in question, and its properties 
are in fact fixed. The frequentist will instead choose some estimator for the 
unknown probability of heads, such as the frequency of heads in past tosses, 
and try to show that this estimator is good according to some criterion. 

Introductions to Bayesian statistics are provided by Press (1989), Robert 
(1995), and Schmitt (1969); Berger (1985), Bernardo and Smith (1994), Box 
and Tiao (1973), DeGroot (1970), and Gelman, Carlin, Stern, and Rubin 
(1995) offer more advanced treatments. Barnett (1982) presents a compar
ative view of different approaches to statistical inference. Unfortunately, 
these books do not deal much with complex models of the sort that are the 
subject of this book. 

1.1.1 Models and likelihood 

Consider a series of quantities, x(1), x(2), ... , generated by some process in 
which each xli) is independently subject to random variation. We can define 
a probabilistic model for this random process, in which a set of unknown 
model parameters, e, determine the probability distributions of the xU). 
Such probabilities, or probability densities, will be written in the form 
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p(X(i) 18). In the coin tossing example, the x(i) are the results ofthe tosses 
(heads or tails), and 0 is the unknown probability of the coin landing heads; 
we then have P(x(i) 18) = [8 if x(i) = heads; 1-0 if x(i) = tails]. Another 
simple situation is when the xU) are real-valued quantities assumed to 
have a Gaussian distribution, with mean and standard deviation given by 
0= {p, u}. In this case, P(x(i) I p, u) = exp( _(x(i) - p)2 / 2(2) / y'2;u. 

Learning about 0 is possible if we have observed the values of some 
of the x(i), say x(1), ... , x(n). For Bayesian as well as many frequentist 
approaches, the impact of these observations is captured by the likelihood 
function, L( 0) = L( 8 I x(1), ... , x(n»), which gives the probability of the 
observed data as a function of the unknown model parameters: 

L(O) = L(O I x(1!, . .. , x(n») 
n 

II p(x(i) I B) (1.1 ) 
;=1 

This definition is written as a proportionality because all that matters is 
the relative values of L(8) for different values of O. 

In the method of maximum likelihood, the unknown parameters are esti
mated by the value, 0, that maximizes the likelihood, L(O I x(1), .. . , x(n»). 
In the coin tossing problem, the maximum likelihood estimate for 0 turns 
out to be the frequency of heads among x(1), ... ,x(n). For many models, use 
of the maximum likelihood estimate can be justified in frequentist terms on 
the basis that it has certain desirable properties, such as convergence to the 
true value as the amount of observational data increases. The maximum 
likelihood method does not always work well, however. When it doesn't, 
the method of maximum penalized likelihood estimation is sometimes bet
ter. This procedure estimates 0 by the value that maximizes the product 
of the likelihood and a penalty function, which may be designed to "reg
ularize" the estimate, perhaps by favouring values that are in some sense 
less "extreme". 

In engineering applications, we are usually not interested in the value 
of 0 itself, but rather in the value of some quantity that may be observed 
in the future, say x(n+1). In a frequentist context, the most obvious way of 
predicting such quantities is to use the estimated value for 0, basing our 
prediction on p(x(n+1) I 0). More sophisticated methods that take account 
of the remaining uncertainty in 0 are also possible. 

1.1.2 Bayesian learning and prediction 

The result of Bayesian learning is a probability distribution over model 
parameters that expresses our beliefs regarding how likely the different pa
rameter values are. To start the process of Bayesian learning, we must de
fine a prior distribution, P( 0), for the parameters, that expresses our initial 



1.1 Bayesian and frequentist views of learning 5 

beliefs about their values, before any data has arrived. When we observe 
x(1) , ... , x(n), we update this prior distribution to a posterior distribution, 
using Bayes' Rule: 

P(X(l), . .. , x(n) I 9) P(9) 
P(x(1), ... , x(n») 

(1.2) 

ex: L(9 I x(I), ... , x(n») P(9) (1.3) 

The posterior distribution combines the likelihood function, which contains 
the information about 9 derived from observation, with the prior, which 
contains the information about 9 derived from our background knowledge. 
The introduction of a prior is a crucial step that allows us to go from a 
likelihood function to a probability distribution, and thereby allows learn
ing to be performed using the apparatus of probability theory. The prior is 
also a common focus for criticism of the Bayesian approach, as some people 
view the choice of a prior as being arbitrary. 

In the coin tossing example, we might start with a uniform prior for (), 
the probability of heads. As we see the results of more and more tosses, the 
posterior distribution obtained by combining this prior with the likelihood 
function will become more and more concentrated in the vicinity of the 
value corresponding to the observed frequency of heads. 

To predict the value of an unknown quantity, x(n+I), a Bayesian inte
grates the predictions of the model with respect to the posterior distribution 
of the parameters, giving 

This predictive distribution for x(n+l) given x(1), ... , x(n) is the complete 
Bayesian inference regarding x(n+I), which can be used for many purposes, 
depending on the needs of the user. The ability to produce such a distri
bution is one advantage of the Bayesian approach. 

In some circumstances we may need to make a single-valued guess at 
the value of x(n+I). The best way to do this depends on our loss junction, 
f(x, x), which expresses our judgement of how bad it is to guess x when the 
real value is x. For squared error/oss, f(x, x) = (x - X)2, guessing the mean 
of the predictive distribution minimizes the expected loss. For absolute 
error loss, f(x, x) = Ix - xl, the best strategy is to guess the median of the 
predictive distribution. For discrete-valued x, we might choose to use 0-1 
loss, which is zero if we guess correctly, and one if we guess incorrectly. The 
optimal strategy is then to guess the mode of the predictive distribution. 

In the coin tossing example, if we use a uniform prior for the probability 
of heads, the Bayesian prediction for the result of toss n + 1 given the 
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results of the first n tosses turns out to be p(x(n+1) I x(1), ... , x(n)) = 
[(h+l)/(n+2) if x(n+1) = heads; (t+1}/(n+2) if x(n+1) = tails], where h 
and t are the numbers of heads and tails amongst x(1), ... , x(n). If we have 
a 0-1 loss function, we should guess that x(n+1) will be a head if h > t, 
but guess tails if t > h (if h = t, both guesses are equally good); This is of 
course just what we would expect, and is also what we would be led to do 
using the maximum likelihood estimate of B = hln. 

However, even in this simple problem we can see the effect of prediction 
by integration rather than maximization if we consider more complicated 
actions. We might, for example, have the option of not guessing at all, 
and may wish to make a guess only if we are nearly certain that we will 
be right. If we have tossed the coin twice, and each time it landed heads, 
naive application of maximum likelihood will lead us to conclude that the 
coin is certain to land heads on the next toss, since B = 1. The Bayesian 
prediction with a uniform prior is a more reasonable probability of 3/4 
for heads, which might not be high enough to prompt us to guess. The 
Bayesian procedure avoids jumping to conclusions by considering not just 
the value of 0 that explains the data best, but also other values of 0 that 
explain the data reasonably well, and hence also contribute to the integral 
of equation (1.4). 

The formation of a predictive distribution by the integration of equa
tion (1.4) is at the heart of Bayesian inference. Unfortunately, it is often 
the source of considerable computational difficulties as well. Finding the 
single value of 0 with maximum posterior probability density is usually 
much easier. Use of this maximum a posteriori probability (MAP) estimate 
is sometimes described as a Bayesian method, but this characterization is 
inaccurate except when one can argue that the result of using this single 
value approximates the integral of equation (1.4). In general, this is not 
true - indeed, the MAP estimate can be shifted almost anywhere simply 
by switching to a new parameterization of the model that is equivalent to 
the old, but related to it by a nonlinear transformation. MAP estimation is 
better characterized as a form of maximum penalized likelihood estimation, 
with the penalty being the prior density of the parameter values in some 
preferred parameterization. 

1.1.3 Hierarchical models 

In the previous section, a common parameter, 0, was used to model the 
distribution of many observable quantities, xU). In the same way, when 
the parameter has many components, 0 = {0 1 ,"" Op}, it may be useful 
to specify their joint prior distribution using a common hyperparameter, 
say /, which is given its Qwn prior. Schemes such as this are known as 
hierarchical models, and may be carried to any number of levels. 
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If the (}k are independent given 'Y, we will have 

J Ph)" IT P((}k I 'Y) d'Y 
k:l 

(1.5) 

Mathematically, we could have dispensed with 'Y and simply written a direct 
prior for () corresponding to the result of this integration. (In general the 
ek will not be independent in this direct prior.) The formulation using 
a hyperparameter may be much more intelligible, however. The situation 
is the same at the lower level - we could integrate over e to produce 
a specification of the model in terms of a direct prior for the observable 
variables x(1), x(2), ... , but most models lose their intuitive meaning when 
expressed in this form. 

To give a simple example, suppose the observable variables are the 
weights of various dogs, each classified according to breed, and that (h 
is the mean weight for breed k, used to specify a Gaussian distribution for 
weights of dogs of that breed. Rather than using the same prior for each (}k, 

independently, we could instead give each a Gaussian prior with a mean of 
'Y, and then give 'Y itself a prior as well. The effect of this hierarchical struc
ture can be seen by imagining that we have observed dogs of several breeds 
and found them all to be heavier than expected. Rather than stubbornly 
persisting with our underestimates for every new breed we encounter, we 
will instead adjust our idea of how heavy dogs are in general by changing 
our view of the likely value of the hyperparameter 'Y. We will then start to 
expect even dogs of breeds that we have never seen before to be heavier 
than we would have expected at the beginning. 

One way of avoiding needless intellectual effort when defining a hier
archical model is to give the top-level hyperparameters prior distributions 
that are very vague, or even improper (i.e. have density functions whose 
integrals diverge). Often, the data is sufficiently informative that the pos
terior distributions of such hyperparameters become narrow despite the 
vagueness of the prior. Moreover, the posterior would often change very 
little even if we were to expend the effort needed to define a more specific 
prior for the hyperparameters that expressed our exact beliefs. One should 
not use vague or improper priors recklessly, however, as they are not always 
mnocuous. 

1.1.4 Learning complex models 

"Occam's Razor" - the principle that we should prefer simple to complex 
models when the latter are not necessary to explain the data - is often 
held to be an essential component of inductive inference. In scientific con
texts, its merits seem clear. In the messy contexts typical of engineering 
applications, its meaning and utility are less· obvious. For example, we do 
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not expect that there is any simple procedure for recognizing handwriting. 
The shapes of letters are arbitrary; they are written in many styles, whose 
characteristics are more a matter of fashion than of theory; stains and dirt 
may appear, and must somehow be recognized as not being part of the 
letters. Indeed, there is no reason to suppose that there is any limit to the 
complications involved in this task. It will always be possible to improve 
performance at least a bit by taking account of further rare writing styles, 
by modeling the shapes of the less common forms of ink blots, or by em
ploying a deeper analysis of English prose style in order to make better 
guesses for smudged letters. 

It is a common belief, however, that restricting the complexity of the 
models used for such tasks is a good thing, not just because of the obvious 
computational savings from using a simple model, but also because it is 
felt that too complex a model will over fit the training data, and perform 
poorly when applied to new cases. This belief is certainly justified if the 
model parameters are estimated by maximum likelihood. I will argue here 
that concern about overfitting is not a good reason to limit complexity in 
a Bayesian context. 

One way of viewing the overfitting problem from a frequentist perspec
ti ve is as a trade-off between the bias and the variance of an estimator, both 
of which contribute to the expected squared error when using the estimate 
to predict an observable quantity (Geman, Bienenstock, and Doursat 1992). 
These quantities may depend on the true underlying process, and reflect 
expectations with respect to the random generation of training data from 
this process. The bias of an estimator measures any systematic tendency 
for it to deliver the wrong answer; the variance measures the degree to 
which the estimate is sensitive to the randomness of the training examples. 

One strategy for designing a learning procedure is to try to minimize 
the sum of the (squared) bias and the variance (note, however, that the 
procedure that minimizes this sum depends on the unknown true process). 
Since reducing bias often increases variance, and vice versa, minimizing 
their sum will generally require a trade-off. Controlling the complexity of 
the model is one way to perform this trade-off. A complex model that is 
flexible enough to represent the true process can have low bias, but may 
suffer from high variance, since its flexibility also lets it fit the random 
variation in the training data. A simple model will have high bias, unless 
the true process is really that simple, but will have lower variance. There 
are also other ways to trade off bias and variance, such as by use of a 
penalty function, but adjusting the model complexity is perhaps the most 
common method. 

This strategy leads to a choice of model that varies with the amount of 
training data available - the more data, the more complex the model used. 
In this way, one can sometimes guarantee that the performance achieved 
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will approach the optimum as the size of the training set goes to infinity, as 
the bias will go down with increasing model complexity, while the variance 
will also go down due to the increasing amounts of data (provided the 
accompanying increase in model complexity is sufficiently slow). Rules of 
thumb are sometimes used to decide how complex a model should be used 
with a given size training set (e.g. limit. the number of parameters to some 
fraction of the number of data points). More formal approaches of this 
sort include the "method of sieves" (Grenander 1981) and "structural risk 
minimization" (Vapnik 1982). 

From a Bayesian perspective, adjusting the complexity of the model 
based on the amount of training data makes no sense. A Bayesian defines 
a model, selects a prior, collects data, computes the posterior, and then 
makes predictions. There is no provision in the Bayesian framework for 
changing the model or the prior depending on how much data was collected. 
If the model and prior are correct for a thousand observations, they are 
correct for ten observations as well (though the impact of using an incorrect 
prior might be more serious with fewer observations). In practice, we might 
sometimes switch to a simpler model if it turns out that we have little data, 
and we feel that we will consequently derive little benefit from using a 
complex, computationally expensive model, but this would be a concession 
to practicality, rather than a theoretically desirable procedure. 

For problems where we do not expect a simple solution, the proper 
Bayesian approach is therefore to use a model of a suitable type that is 
as complex as we can afford computationally, regardless of the size of the 
training set. Young (1977), for example, uses polynomial models of indefi
nitely high order. I have applied mixture models with infinite numbers of 
components to small data sets (Neal 1992a); the infinite model can in this 
case be implemented with finite resources. Nevertheless, this approach to 
complexity has not been widely appreciated - at times, not even in the 
Bayesian literature. 

I hope that the work described in this book will help increase aware
ness of this view of complexity. In addition to the philosophical interest of 
the idea, avoiding restrictions on the complexity of the model should have 
practical benefits in allowing the maximum information to be extracted 
from the data, and in producing a full indication of the uncertainty in the 
predictions. 

In light of this discussion, we might ask whether Occam's Razor is of any 
use to Bayesians. Perhaps. In some scientific applications, simple explana
tions may be quite plausible. Jeffreys and Berger (1992) give an example of 
this sort, illustrating that Bayesian inference embodies an automatic pref
erence for such simple hypotheses. The same point is discussed by MacKay 
(1992a) in the context of more complex models, where "simplicity" cannot 
necessarily be determined by merely counting parameters. Viewed in one 
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way, these results explain Occam's Razor, and point to the appropriate def
inition of simplicity. Viewed another way, however, they say that Bayesians 
needn't concern themselves with Occam's Razor, since to the extent that 
it is valid, it will be applied automatically anyway. 

1.2 Bayesian neural networks 

Workers in the field of "neural networks" have diverse backgrounds and 
motivations, some of which can be seen in the collection of Rumelhart and 
McClelland (1986b) and the books by Hertz, Krogh, and Palmer (1991), 
Bishop (1995), and Ripley (1996). In this book, I focus on the potential for 
neural networks to learn models for complex relationships that are inter
esting from the viewpoint of artificial intelligence or useful in engineering 
applications. 

In statistical terms, neural networks are "non parametric" models - a 
term meant to contrast them with simpler "parametric" models in which 
the relationship is characterized in terms of a few parameters, which often 
have meaningful interpretations. (The term "non parametric" is somewhat 
of a misnomer in this context, however. These models do have parameters; 
they are just more numerous, and less interpretable, than those of "para
metric" models.) Neural networks are not the only nonparametric models 
that can be applied to complex problems, of course, though they are among 
the more widely used such. I hope that the work on Bayesian learning for 
neural networks described in this book will ultimately be of help in devising 
and implementing other non parametric Bayesian methods as well. 

1.2.1 Multilayer perceptron networks 

The neural networks most commonly used in engineering applications, and 
the only sort discussed in this book, are the multilayer perceptron networks 
(Rumelhart, Hinton, and Williams 1986a, 1986b), also known as "back
propagation" or "feedforward" networks. These networks take in a set of 
real inputs, Xi, and from them compute one or more output values, fk(X), 

perhaps using some number of layers of hidden units. In a typical network 
with one hidden layer, such as is illustrated in Figure 1.1, the outputs might 
be computed as follows: 

fk(X) bk + L vjkhj(x) 
j 

tanh (aj + L UijXi) 

i 

(1.6) 

(1.7) 

Here, Uij is the weight on the connection from input unit i to hidden unit j; 
similarly, Vjk is the weight on the connection from hidden unit j to output 
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Output Units 

Hidden Units 

Input Units 

FIGURE 1.1. A multilayer perceptron wit.h four input units, one layer of five 
hidden units, and two output units. The input units at the bottom are fixed 
to their values for a particular case. The values of the hidden units are then 
computed, followed by the values of the output units. The value for a hidden or 
output unit is a function of the weighted sum of values it receives from the units 
that are connected to it via the arrows. 

unit k. The aj and bk are the biases of the hidden and output units. These 
weights and biases are the parameters of the network. 

Each output value, !k(X), is just a weighted sum of hidden unit values, 
plus a bias. Each hidden unit computes a similar weighted sum of input 
values, and then passes it through a nonlinear activation function. The 
activation function chosen here is the hyperbolic tangent (tanh), an anti
symmetric function of sigmoidal shape, whose value is close to -1 for large 
negative arguments, zero for a zero argument, and close to +1 for large 
positive arguments. A nonlinear activation function allows the hidden units 
to represent "hidden features" of the input that are useful in computing the 
appropriate outputs. If a linear activation function were used, the hidden 
layer could be eliminated, since equivalent results could be obtained using 
direct connections from the inputs to the outputs. 

Several people (Cybenko 1989, Funahashi 1989, Hornik, Stinchcombe, 
and White 1989) have shown that a multilayer percept ron network with one 
hidden layer can approximate any function defined on a compact domain 
arbitrarily closely, if sufficient numbers of hidden units are used. Never
theless, more elaborate network architectures may have advantages, and 
are commonly used. Possibilities include using more layers of hidden units, 
providing direct connections from inputs to outputs, and using different ac
tivation functions. However, in "feed forward" networks such as I consider 
here, the connections never form cycles, in order that the values of the 
outputs can be computed in a single forward pass, in time proportional to 
the number of network parameters. 
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Multilayer percept ron networks can be used to define probabilistic mod
els for regression and classification tasks by using the network outputs to 
define the conditional distribution for One or more targets, Yk, given the 
various possible values of an input vector, x. The distribution of x itself is 
not modeled; it may not even be meaningful, since the input values might 
simply be chosen by the user. Models based on multilayer perceptrons have 
been applied to a great variety of problems. One typical class of applica
tions are those that take as input sensory information of some type and 
from that predict some characteristic of what is sensed. Thodberg (1996), 
for example, predicts the fat content of meat from spectral information. 

For a regression model with real-valued targets, the conditional distribu
tion for the targets, Yk, given the input, x, might be defined to be Gaussian, 
with Yk having a mean of fk{X) and a standard deviation of Uk. The differ
ent outputs are usually taken to be independent, given the input. We will 
then have 

P{y I x) II ~ exp( - (fk{X) - Yk)2 /2uD 
k y 27rUk 

(1.8) 

The "noise levels", Uk, might be fixed, or might be regarded as hyper
parameters (which stretches the previously-given definition of this term, 
but corresponds to how these quantities are often treated). 

For a classification task, where the target, y, is a single discrete value 
indicating one of J{ possible classes, the softmax model (Bridle 1989) can 
be used to define the conditional probabilities of the various classes using 
a network with J{ output units, as follows: 

P{y=k I x) exp{!k{x)) / L exp{fk/{X)) (1.9) 
k' 

This method of defining class probabilities is also used in generalized linear 
models in statistics (McCullagh and NeIder, 1983, Section 5.1.3). 

The weights and biases in neural networks are learned based on a set of 
training cases, (x(l), y(1)), ... , (x(n), y(n)), giving examples of inputs, x(i), 

and associated targets, y(i) (both of which may have several components). 
Standard neural network training procedures adjust the weights and biases 
in the network so as to minimize a measure of "error" on the training 
cases, most commonly, the sum of the squared differences between the 
network outputs and the targets. Minimization of this error measure is 
equivalent to maximum likelihood estimation for the Gaussian noise model 
of equation (1.8), since minus the log of the likelihood with this model is 
proportional to the sum of the squared errors. 

Finding the weights and_biases that minimize the chosen error function 
is commonly done using some gradient-based optimization method, using 
derivatives of the error with respect to the weights and biases that are 
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calculated by backpropagation (Rumelhart, Hinton, and Williams 1986a, 
1986b). There are typically many local minima, but good solutions are 
often found despite this. 

To reduce overfitting, a penalty term proportional to the sum of the 
squares of the weights and biases is often added to the error function, 
resulting in a maximum penalized likelihood estimation procedure. This 
modification is known as weight decay, because its effect is to bias the 
procedure in favour of small weights. Determining the proper magnitude of 
the weight penalty is difficult - with too little weight decay, the network 
may "overfit" , but with too much weight decay, the network will "underfit" , 
ignoring the data. 

The method of cross validation (Stone 1974) is sometimes used to find 
an appropriate weight penalty. In the simplest form of cross validation, the 
amount of weight decay is chosen to optimize performance on a validation 
set separate from the cases used to estimate the network parameters. This 
method does not make efficient use of the available training data, however. 
In n-way cross validation, the training set is partitioned into n subsets, 
each of which is used as the validation set for a network trained on the 
other n-l subsets. Total error on all these validation sets is used to pick a 
good amount of weight decay, which is then used in training a final network 
on all the data. This procedure is computationally expensive, however, and 
could run into problems if the n networks find dissimilar local minima, for 
which different weight penalties are appropriate. 

In the Bayesian approach to neural network learning, the objective is 
to find the predictive distribution for the target values in a new "test" 
case, given the inputs for that case, and the inputs and targets in the 
training cases. Since the distribution of the inputs is not being modeled, 
the predictive distribution of equation (1.4) is modified as follows: 

p(y(n+l) I x(n+1), (x(1), y(1)), ... , (x(n), yen))) 

= J p(y(n+l) I x(n+1), e) p(e I (x(1), y(1)), ... , (x(n), yen))) de (1.10) 

Here, () represents the network parameters (weights and biases). The poste
rior density for these parameters is proportional to the product of whatever 
prior is being used and the likelihood function, as in equation (1.3). The 
likelihood is slightly modified because the distribution of the inputs is not 
being modeled: 

n 

II P(y(i) I x(i), (}) (1.11) 
i=1 

The distribution for the target values, y(i), given the corresponding inputs, 
x(i), and the parameters of the network is defined by the type of model with 
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which the network is being used; for regression and softmax classification 
models it is given by equations (1.8) and (1.9). 

If we wish to guess a component of y(n+1), with squared error loss, 
the best strategy is to guess the mean of its predictive distribution. For a 
regression model, this reduces to the following guess: 

Here the network output functions, /k, are written with the dependence on 
the network parameters, (), being shown explicitly. 

1.2.2 Selecting a network model and prior 

At first sight, the Bayesian framework may not appear suitable for use 
with neural networks. Bayesian inference starts with a prior for the model 
parameters, which is supposed to embody our prior beliefs about the prob
lem. In a multilayer percept ron network, the parameters are the connection 
weights and unit biases, whose relationship to anything that we might know 
about the problem seems obscure. The Bayesian engine thus threatens to 
stall at the outset for lack of a suitable prior. 

However, to hesitate because of such qualms would be contrary to the 
spirit ofthe neural network field. MacKay (1991, 1992b) has tried the most 
obvious possibility of giving the weights and biases Gaussian prior distribu
tions. This turns out to produce results that are at least reasonable. In his 
work, MacKay emphasizes the advantages of hierarchical models. He gives 
results of Bayesian learning for a network with one hidden layer, applied 
to a regression problem, in which he lets the variance of the Gaussian prior 
for the weights and biases be a hyperparameter. This allows the model to 
adapt to whatever degree of smoothness is indicated by the data. Indeed, 
MacKay discovers that the results are improved by using several variance 
hyperparameters, one for each type of parameter (weights out of input 
units, biases of hidden units, and weights and biases of output units). He 
notes that this makes sense in terms of prior beliefs if the inputs and out
puts of the network are quantities of different sorts, measured on different 
scales, since in this case the effect of using a single variance hyperparameter 
would depend on the arbitrary choice of measurement units. 

In a Bayesian model of this type, the role of the hyperparameters con
trolling the priors for weights is roughly analogous to the role of a weight 
decay constant in conventional training. With Bayesian training, values 
for these hyperparameters (more precisely, a distribution of values) can be 
found without the need for_ a validation set. 

Buntine and Weigend (1991) discuss several possible schemes for prior 
distributions, such as priors that favour networks that produce high or 
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low entropy predictions, or that compute smooth functions. The degree of 
preference imposed can be controlled by a hyperparameter. Their treatment 
of smoothness priors applies only to simple networks, however. This work 
links the choice of prior for weights to the actual effects of these weights 
on the function computed by the network, which is clearly necessary if we 
are to choose a prior that represents our beliefs about this function. 

This past work shows that useful criteria for selecting a suitable prior 
can sometimes be found even without a full understanding of what the 
priors over weights and biases mean in terms of the functions computed by 
the network. Still, the selection of a pa.rticular network architecture and 
associated prior remains ad hoc. Bayesian neural network users may have 
difficulty claiming with a straight face that their models and priors are 
selected because they are just what is needed to capture their prior beliefs 
about the problem. 

The work I describe in Chapter 2 addresses this problem. Applying 
the philosophy of Bayesian learning for complex problems outlined in Sec
tion 1.1.4, I focus on priors for networks with an infinite number of hidden 
units. (In practice, such networks would be approximated by large finite 
networks.) Use of an infinite network is in accord with prior beliefs, since 
seldom will we believe that the true function we are learning can be ex
actly represented by any finite network. In addition, the characteristics of 
priors for infinite networks can often be found analytically. Further insight 
into the nature of these priors can be obtained by randomly generating 
networks from the prior and visually examining the functions that these 
networks compute. In Chapter 4, I report the results of applying networks 
with relatively large numbers of hidden units to actual data sets. 

1.2.3 A utomatic Relevance Determination (ARD) models 

Another dimension of complexity in neural network models is the num
ber of input variables used in modeling the distribution of the targets. In 
many problems, there will be a large number of potentially measurable 
attributes which could be included as inputs if we thought this would im
prove predictive performance. Unlike the situation with respect to hidden 
units, however, including more and more inputs (all on an equal footing) 
must ultimately lead to poor performance, since with enough inputs, it is 
inevitable that an input which is in fact irrelevant will by chance appear in 
a finite training set to be more closely associated with the targets than are 
the truly relevant inputs. Predictive performance on test cases will then be 
poor. 

Accordingly, we must limit the number of input variables we use, based 
on our assessment of which attributes are most likely to be relevant. (Al
ternatively, if we do include a huge number of inputs that we think are 
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probably irrelevant, we must use an asymmetrical prior that expresses our 
belief that some inputs are less likely to be relevant than others.) However, 
in problems where the underlying mechanisms are not well understood, we 
will not be confident as to which are the relevant attributes. The inputs we 
choose to include will be those that we believe may possibly be relevant, 
but we will also believe that some of these inputs may turn out to have 
little or no relevance. We would therefore like to use models that can auto
matically determine the degree to which such inputs of unknown relevance 
are in fact relevant. 

Models of this sort have been developed by David MacKay and my
self, and used by MacKay in a model of energy usage in buildings (Mackay 
1994a). In such an Automatic Relevance Determination (ARD) model, each 
input variable has associated with it a hyperparameter that controls the 
magnitudes of the weights on connections out of that input unit. These 
hyperparameters are given some prior distribution, and conditional on the 
values of these hyperparameters, the weights out of each input have inde
pendent Gaussian prior distributions with standard deviation given by the 
corresponding hyperparameter. If the hyperparameter associated with an 
input specifies a small standard deviation for weights out of that input, 
these weights will likely all be small, and the input will have little effect on 
the output; if the hyperparameter specifies a large standard deviation, the 
effect of the input will likely be significant. The posterior distributions of 
these hyperparameters will reflect which of these situations is more proba
ble, in light of the training data. 

ARD models are intended for use with a complex network in which 
each input is associated with many weights, with the role of the ARD 
hyperparameters being to introduce dependencies between these weights. 
In such a situation, if the weight on one connection out of an input becomes 
large, indicating that the input has some relevance, this will influence the 
distribution of the associated hyperparameter, which in turn will make it 
more likely that other weights out of the same input will also be large. 

Formally, one could define an ARD model for a network with a single 
target and no hidden units, in which each input unit connects only to the 
target (a network equivalent to a simple linear regression model). However, 
each ARD hyperparameter in this simple network would control the dis
tribution of only a single weight, eliminating its role in introducing depen
dencies. By integrating over the ARD hyperparameters, we could produce 
a direct specification for the prior over weights in which each weight would 
be independent of the others, but would now have some prior distribution 
other than a Gaussian. This might or might not be a good model, but in 
either case, it seems likely that its properties could be more easily under
stood in this direct formulation, with the hyperparameters eliminated. On 
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the other hand, this method of obtaining a non-Gaussian prior might have 
computational advantages in some contexts. 

Although use of ARD models may seem to be straightforward exten
sion of MacKay's previous use of several hyperparameters to control the 
distribution of different classes of weights (see Section 1.2.2), these models 
in fact raise several subtle issues. Just what do we mean by a "large" or 
"small" value of the standard deviation for the prior over weights associ
ated with a particular input? The answer must depend somehow on the 
measurement units used for this input. 'What prior should we use for the 
ARD hyperparameters? It would be convenient if we could use a vague 
prior, but it is not clear that this will give the best results. These issues 
are discussed further in Chapter 4, where ARD models are evaluated on 
several data sets. 

1.2.4 An illustration of Bayesian learning for a neural net 

An example will illustrate the general concept of Bayesian learning, its 
application to neural networks, and the infeasibility of brute force methods 
of Bayesian computation for problems of significant size. 

Figure 1.2 shows Bayesian learning in action for a regression model based 
on a neural network with one input, one output, and 16 hidden units. The 
operation of the network is described by equations (1.6) and (1.7). The 
condi tional distri bu tion for the target is given by equation (1. 8), with the 
noise level set to rr = 0.1. 

On the left of the figure are the functions computed by ten such networks 
w~ose weights and biases were drawn from independent Gaussian prior 
distributions, each with mean zero and standard deviation one, except for 
the output weights, which had standard deviation 1/JI6. As explained 
in Chapter 2, setting the standard deviation of the output weights to be 
inversely proportional to the square root of the number of hidden units 
ensures that the prior over functions computed by the network reaches a 
sensible limit as the number of hidden units goes to infinity. 

On the right of Figure 1.2 are ten functions drawn from the posterior 
distribution that results when this prior is combined with the likelihood 
due to the six data points shown (see equations (1.3) and (1.11)). As one 
would hope, the posterior distribution is concentrated on functions that 
pass near the data points. 

The best way to guess the targets associated with various input values, 
assuming we wish to minimize the expected squared error in the guesses, is 
to use the average of the network functions over the posterior distribution 
of network parameters (as in equation (1.12)). We can make a Monte Carlo 
estimate of this average across the posterior by averaging the ten functions 
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FIGURE 1.2. An illustration of Bayesian inference for a neural network. On the 
left are the functions computed by ten networks whose weights and biases were 
drawn at random from Gaussian prior distributions. On the right are six data 
points and the functions computed by ten networks drawn from the posterior 
distribution derived from the prior and the likelihood due to these data points. 
The heavy dotted line is the average of the ten functions drawn from the posterior, 
which is an approximation to the function that should be guessed in order to 
minimize expected squared error loss. 

shown that were drawn from the posterior. This averaged function is shown 
in the figure by a heavy dotted line. Bayesian inference provides more than 
just a single-valued guess, however. By examining the sample of functions 
from the posterior, we can also see how uncertain these guesses are. We can, 
for example, see that the uncertainty increases rapidly beyond the region 
where the training points are located. 

Figure 1.2 was produced using a simple algorithm that is of interest 
both because it illuminates the nature of Bayesian learning, and because 
it illustrates that direct approaches to performing Bayesian inference can 
rapidly become infeasible as the problem becomes bigger. 

The left half of the figure was easy to produce, since generating values for 
the network weights and biases from independent Gaussian distributions 
can be done quickly using standard methods (Devroye 1986). It is, in fact, 
very often the case that sampling from the prior is simple and fast, even 
for complex models. 

The right half of the figure was produced by generating many networks 
from the prior, computing the likelihood for each based on the six training 
points, and then accepting each network with a probability proportional 
to its likelihood, with the constant of proportionality chosen to make the 
maximum probability of acceptance be one. Networks that were not ac-
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cepted were discarded, with the process continuing until ten networks had 
been accepted; these ten are shown in the figure. 

This algorithm - a form of rejection sampling (Devroye 1986) - di
rectly embodies the definition of the posterior given by equation (1.3). The 
prior contributes to the result by controlling the generation of candidate 
networks; the likelihood contributes by controlling which of these candi
dates are accepted. The algorithm is not very efficient, however. As can 
be seen by looking at the right of Figure 1.2, the functions computed by 
most networks drawn from the prior do not pass near the training points 
(within a few standard deviations, with (7' = 0.1) - in fact, none of the 
ten functions shown there are close to all the data points. The number of 
functions that will have to be drawn from the prior before one is accepted 
will therefore be high. Generating the sample of ten functions from the 
posterior shown in the figure turned out to require generating 2.6 million 
networks from the prior. 

As the number of data points in the training set increases, the time 
required by this method grows exponentially. More efficient methods are 
clearly needed in practice. 

1.2.5 Implementations based on Gaussian approximations 

The posterior distribution for the parameters (weights and biases) of a 
multilayer percept ron network is typically very complex, with many modes. 
Finding the predictive distribution for a test case by evaluating the integral 
of equation (1.10) is therefore a difficult task. In Chapter 3, I address this 
problem using Markov chain Monte Carlo methods. Here, I will discuss 
implementations based on Gaussian approximations to modes, which have 
been described by Buntine and Weigend (1991), MacKay (1991, 1992b, 
1992c), and Thodberg (1996). Hinton and van Camp (1993) use a Gaussian 
approximation of a different sort. 

Schemes based on Gaussian approximations to modes operate as follows: 

1) Find one or more modes of the posterior parameter distri
bution. 

2) Approximate the posterior distribution in the vicinity of 
each such mode by a Gaussian whose inverse covariance ma
trix matches the second derivatives of the log posterior at 
the mode. 

3) If more than one mode is being used, decide how much 
weight to give to each. 

4) Approximate the predictive distribution of equation (1.10) 
by the corresponding integral with respect to the Gaus-
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sian approximation to the mode, or the weighted mixture 
of Gaussians approximating the several modes. 

Step (4) is easy for models that are linear in the vicinity of a mode. Simple 
approximations may suffice in other cases (MacKay 1992c). At worst, it can 
be done fairly efficiently by simple Monte Carlo methods (Ripley 1994a). 

I have not mentioned above how to handle hyperparameters, such as the 
prior variances for groups of weights, and the noise level for a regression 
problem. This is a matter about which there has been some controversy. 

Buntine and Weigend (1991) analytically integrate over the hyperparam
eters, and then look for modes of the resulting marginal posterior distri
bution for the parameters. Eliminating the hyperparameters in this way 
may appear to be an obviously beneficial simplification of the problem, but 
this is not the case - as MacKay (1994b) explains, integrating out such 
hyperparameters can sometimes produce a marginal posterior parameter 
distribution in which the1mode is entirely unrepresentative of the distribu
tion as a whole. Basing ain approximation on the location of the mode will 
then give drastically incorrect results. 

In MacKay's implementation (1991, 1992b, 1992c), he assumes only that 
the Gaussian approximation can be used to represent the posterior distribu
tion of the parameters for given values of the hyperparameters. He fixes the 
hyperparameters to the values that maximize the probability of the data 
(what he calls the "evidence" for these values of the hyperparameters). 
In finding these values, he makes use of the Gaussian approximation to 
integrate over the network parameters. 

MacKay's "evidence" approach to handling the hyper parameters is com
putationally equivalent to the "ML-II" method of prior selection (Berger 
1982, Section 3.5.4). From a fully Bayesian viewpoint, it is only an approxi
mation to the true answer, which would be obtained by integrating over the 
hyperparameters as well as the parameters, but experience has shown that 
it is often a good approximation. Wolpert (1993) criticizes the use of this 
procedure for neural networks on the grounds that by analytically integrat
ing over the hyperparameters, in the manner of Buntine and Weigend, one 
can obtain the relative posterior probability densities for different values of 
the network parameters exactly, without the need for any approximation. 
This criticism is based on a failure to appreciate the nature of the task. 
The posterior probability densities for different parameter values are, in 
themselves, of no interest - all that matters is how well the predictive dis
tribution is approximated. MacKay (1994b) shows that in approximating 
this predictive distribution, it is more important to integrate over the large 
number of parameters in the network than over the typically small number 
of hyperparameters. 
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This controversy has perhaps distracted attention from other problems 
with Gaussian approximation methods that I believe are more significant. 

First, how should one handle the presence of multiple modes? One ap
proach is to ignore the problem, simply assuming that all the modes are 
about equally good. The general success of neural network learning pro
cedures despite the presence of local minima suggests that this approach 
may not be as ridiculous as it might sound. Nevertheless, one would like 
to do better, finding several modes, and making predictions based on a 
weighted average of the predictions from each mode. One possibility is to 
weight each mode by an estimate of the total probability mass in its vicin
ity, obtained from the relative probability density at the mode and the 
determinant of the covariance matrix of the Gaussian used to approximate 
the mode (Buntine and Weigend 1991, Ripley 1994a). This is not a fully 
correct procedure, however - the weight a mode receives ought really to be 
adjusted according to the probability of t.he mode being found by the op
timization procedure, with the easily found modes being given less weight 
than they would otherwise have had, since they occur more often. For large 
problems this will not be possible, however, since each mode will typically 
be seen only once, making the probabilities of finding the modes impossible 
to determine. Another problem is that if the Gaussian approximation is not 
very accurate, one mode may receive most of the weight simply because 
it happened to be favoured by approximation error. Such problems lead 
Thodberg (1996) to use the estimated probability mass only to select a 
"committee" based on the better modes (perhaps from different models), 
to each of which he assigns equal weight. 

A second, potentially more serious, question is whether the Gaussian ap
proximation for the distribution in the vicinity of a mode is reasonably good 
(even for fixed values of the hyperparameters). One reason for optimism 
in this regard is that the posterior distribution for many models becomes 
increasingly Gaussian as the amount of training data increases (DeGroot 
1970, Chapter 10). However, if we subscribe to the view of complexity pre
sented in Section 1.1.4, we should not confine ourselves to simple models, 
for which this asymptotic result may be relevant, but should instead use 
as complex a model as we can handle computationally, in order to extract 
the maximum information from the data,. and obtain a full indication of 
the remaining uncertainty. I believe that the Gaussian approximation will 
seldom be good for such complex models. 

Looking at neural network models in particular, the following argument 
suggests that the Gaussian approximation may be bad when the amount of 
data is insufficient to determine the values of the weights out of the hidden 
units, to within a fairly small fraction of their values. In a multivariate 
Gaussian, the conditional distribution of one variable given values forthe 
other variables has a variance that is independent of the particular values 



22 Chapter 1. Introduction 

the other variables take (these affect only the conditional mean). Accord
ingly, for the Gaussian approximation to the posterior distribution of the 
weights in a network to be good, the conditional distribution for a weight 
into a hidden unit must have a variance almost independent of the values 
of the weights out of that hidden unit. Since the weights out of a hidden 
unit have a multiplicative effect on the hidden unit's influence, this can be 
true only if the posterior variation in these weights is small compared to 
their magnitude. 

As will be seen in Chapter 2, when reasonable priors are used, all or most 
of the weights out of the hidden units in a large network will be small, and, 
individually, each such hidden unit will have only a small influence on the 
network output. In the posterior distribution, the variation in the weights 
out of these hidden units will thus be large compared to their magnitudes, 
and we should not expect the Gaussian approximation to work well. 

Finally, Hinton and van Camp (1993) take a rather different approach to 
approximating the posterior weight distribution by a Gaussian. They em
ploy an elaboration of the Minimum Description Length framework (Rissa
nen 1986) that is equivalent to Bayesian inference using an approximation 
to the posterior distribution chosen so as to minimize the Kullback-Leibler 
divergence with the true posterior. Hinton and van Camp choose to approx
imate the posterior by a Gaussian with a diagonal covariance matrix. Note 
that the Gaussian of this class that minimizes the Kullback-Leibler diver
gence with the true posterior will not necessarily be positioned at a mode 
(though one might expect it to be close). For the reasons just outlined, we 
may expect that Gaussian approximations of this sort will also fail to be 
good for large networks in which the weights are not well determined. 

1.3 Markov chain Monte Carlo methods 

In Chapter 3, I will present an implementation of Bayesian learning for neu
ral networks in which the difficult integrations required to make predictions 
are performed using Markov chain Monte Carlo methods. These methods 
have been used for many years to solve problems in statistical physics, and 
have recently been widely applied to Bayesian models in statistics. Markov 
chain Monte Carlo methods make no assumptions concerning the form of 
the distribution, such as whether it can be approximated by a Gaussian. In 
theory at least, they take proper account of multiple modes, as well as the 
possibility that the dominant contribution to the integral may come from 
areas not in the vicinity of any mode. The main disadvantage of Markov 
chain methods is that they may in some circumstances require a very long 
time to converge to the desired distribution. 
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The implementation in Chapter 3 is based on the "hybrid Monte Carlo" 
algorithm, which was developed for applications in quantum chromody
namics, and has not previously been applied in a'statistical context. In this 
section, I describe the basic concept of Markov chain Monte Carlo, and 
review two better-known methods on which the hybrid Monte Carlo algo
rithm is based; I leave the exposition of the hybrid Monte Carlo algorithm 
itself to Chapter 3. I have reviewed these methods in more detail elsewhere 
(Neal 1993b). Tierney (1994) and Smith and Roberts (1993) also review 
recent work on Markov chain Monte Carlo methods and their applications 
in statistics. 

1. 3.1 Monte Carlo integration using Markov chains 

The objective of Bayesian learning is to produce predictions for test cases. 
This may take the form of finding predictive probabilities, as in equa
tion (1.10), or of making single-valued guesses, as in equation (1.12). Both 
tasks require that we evaluate the expectation of a function with respect 
to the posterior distribution for model parameters. Writing the posterior 
probability density for the parameters as Q(B), the expectation of a(B) is 

E[a] J a(B) Q(B) dB (1.13) 

For example, by letting a(O) = fk(x(n+ll., B), we get the integral of equa
tion (1.12), used to find the best guess for y1n +1) under squared error loss. 

Such expectations can be estimated by the Monte Carlo method, using 
a sample of values from Q: 

E[a] ~ (1.14) 

where B(1), ... , B(N) are generated by a process that results in each of them 
having the distribution defined by Q. In simple Monte Carlo methods, the 
B(t) 'are independent. When Q is a complicated distribution, generating such 
independent values is often infeasible, but it may nevertheless be possible to 
generate a series of dependent values. The Monte Carlo integration formula 
of equation (1.14) still gives an unbiased estimate of E[a] even when the 
O(t) are dependent, and as long as the dependence is not too great, the 
estimate will still converge to the true value as N increases. 

Such a series of dependent values may be generated using a Markov 
chain that has Q as its stationary distribution. The chain is defined by 
giving an initial distribution for the first state of the chain, 0(1), and a 
set of transition probabilities (or densities) for a new state, 0(t+1), to follow 
the current state, O(t). The probability densities for these transitions will be 
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written as T(B(t+1) I B(t»). An invariant (or stationary) distribution, Q, is 
one that persists once it is established - that is, if B(t) has the distribution 
given by Q, then O(t/) will have the same distribution for all t' > t. This 
invariance condition can be written as follows: 

Q(B') J T((J' I B)Q((J)d(J (1.15 ) 

Invariance with respect to Q is implied by the stronger condition of detailed 
balance - that for all 0 and (j': 

T((J' I B) Q(B) T(B I B') Q(B') (1.16) 

A chain satisfying detailed balance is said to be reversible. 

A Markov chain that is ergodic has a unique invariant distribution, its 
equilibrium distribution, to which it converges from any initial state. If we 
can find an ergodic Markov chain that has Q as its equilibrium distribu
tion, we can estimate expectations with respect to Q using equation (1.14), 
with (j(1), ... , ()(N) being the states of the chain, perhaps with some early 
states discarded, since they may not be representative of the equilibrium 
distribution. Because of the dependencies between the (j(t), the number of 
values for 0 needed for the Monte Carlo estimate to reach a certain level of 
accuracy may be larger than would be required if the O(t) were independent, 
sometimes much larger. The chain may also require a long time to reach a 
point where the distribution of the current state is a good approximation 
to the equilibrium distribution. 

The effect of dependencies on the accuracy of a Monte Carlo estimate 
can be quantified in terms of the autocorrelations between the values of 
a(O(t») once equilibrium has been reached (see, for example, (Ripley 1987, 
Neal 1993b)). If a has finite variance, the variance of the estimate of E[a] 
given by equation 1.14 will be Var[aJl N if the O(t) are independent. When 
the (J(t) are dependent, and N is large, the variance of the estimate is 
Var[a] I (NIT), where 

T ( 1.17) 
.=1 

is a measure of the inefficiency due to the presence of dependencies. Here, 
p(s) is the autocorrelation of a at lag s, defined by 

p(s) = E[(a(()(t») - E[a]) (a(O(t-s») - E[a])] 
Yarra] 

(1.18) 

Since we assume that equilibrium has been reached, the value used for 
t does not affect the above definition. For Markov chains used to sample 
complex distributions, these autocorrelations are typically positive, leading 
to a value for T greater than one. (It is possible for T to be less than one, 
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however, in which case the dependencies actually increase the accuracy of 
the estimate.) 

To use the Markov chain Monte Carlo method to estimate an expecta
tion with respect to some distribution, Q, we need to construct a Markov 
chain which is ergodic, which has Q as its equilibrium distribution, which 
converges to this distribution as rapidly as possible, and in which the states 
visited once the equilibrium distribution is reached are not highly depen
dent. To construct such a chain for a complex problem, we can combine the 
transitions for simpler chains, since as long t~s each such transition leaves 
Q invariant, the result of applying these transitions in sequence will also 
leave Q invariant. In the remainder of this section, I will review two simple 
methods for constructing Markov chains that will form the basis for the 
implementation described in Chapter 3. 

1.3.2 Gibbs sampling 

Gibbs sampling, known in the physics literature as the heatbath method, 
is perhaps the simplest Markov chain Monte Carlo method. It is used in 
the "Boltzmann machine" neural network of Ackley, Hinton, and Sejnowski 
(1985) to sample from distributions over stochastic hidden units, and has 
become widely used for statistical problems, following its exposition by 
Geman and Geman (1984) and by Gelfand and Smith (1990). 

Gibbs sampling is applicable when we wish to sample from a distribution 
over a multi-dimensional parameter, () = {()1, ... , ()p}. Presumably, directly 
sampling from the distribution given by Q(()) is infeasible, but we assume 
that we can generate a value from the conditional distribution (under Q) 
for one component of () given values for all the other components of (). This 
allows us to simulate a Markov chain in which ()(t+1) is generated from ()(t) 

as follows: 

P· k ()(t+l) f h d' 'b' f () . ()(t) ()(t) (}(t) IC 1 rom t e Istn utIOn 0 1 gIven 2 , 3 , ... , up 

P· k ()(t+1) f h d' 'b t' f () . ()(t+1) ()(t) ()(t) IC 2 rom t e Istn u IOn 0 2 given 1 , 3 , ... , p 

. (t+l) . .. . (t+l) (t+1) ()(t) fl(t) PIck OJ from the dIstnbutlOn of ()j gIven 01 , ... , 0j_1 , j+l"'" up 

. (t+1) . .. . (t+l) (t+1) (t+1) Pick Op from the dIstnbutlOn of ()p gIVen ()l , ()2 , ... , ()p-l 

Note that the new value for OJ is used immediately when picking a new 
value for ()j+1' 

Such transitions will leave the desired distribution, Q, invariant if all the 
steps making up each transition leave Q invariant. Since step j leaves Ok for 
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k ::/= j unchanged, the desired marginal distribution for these components is 
certainly invariant. Furthermore, the conditional distribution for OJ in the 
new state given the other components is defined to be that which is desired. 
Together, these ensure that if we started from the desired distribution, the 
joint distribution for all the OJ after all the above steps must also be the 
desired distribution. These transitions do not necessarily lead to an ergodic 
Markov chain, however; this must be established in each application. 

Whether Gibbs sampling is useful for Bayesian inference depends on 
whether the posterior distribution of one' parameter conditional on given 
values for the other parameters can easily be sampled from. For many 
statistical problems, these conditional distributions are of standard forms 
for which efficient generation procedures are known. For neural networks, 
however, the posterior conditional distribution for one weight in the net
work given values for the other weights can be extremely messy, with many 
modes. There appears to be no reasonable way of applying Gibbs sampling 
in this case. However, Gibbs sampling is one component of the hybrid Monte 
Carlo algorithm, which can be used for neural networks. In the implemen
tation of Chapter 3, it will also be used to update hyperparameters. 

1.3.3 The Metropolis algorithm 

The Metropolis algorithm was introduced in the classic paper of Metropo
lis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), and has since seen 
extensive use in statistical physics. It is also the basis for the widely-used 
optimization method of "simulated annealing" (Kirkpatrick, Gelatt, and 
Vecchi 1983). 

In the Markov chain defined by the Metropolis algorithm, a new state, 
O(t+l) , is generated from the previous state, O(t), by first generating a candi
date state using a specified proposal distribution, and then deciding whether 
or not to accept the candidate state, based on its probability density rel
ative to that of the old state, with respect to the desired invariant distri
bution, Q. If the candidate state is accepted, it becomes the next state of 
the Markov chain; if the candidate state is instead rejected, the new state 
is the same as the old state, and is included again in any averages used to 
estimate expectations. 

In detail, the transition from O(t) to O(t+l) is defined as follows: 

1) Generate a candidate state, 0* , from a proposal distribution 
that may depend on the current state, with density given 
by S(O* IO(t)). 

2) If Q(O*) 2:: Q((}(t)), accept the candidate state; otherwise, 
accept the candidate state with probability Q((}*)/Q((}(t)). 
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3) If the candidate state is accepted, let O(t+l) = 0*; if the 
candidate state is rejected, let O(t+1) = O(t). 

The proposal distribution must be symmetrical, satisfying the condition 
S(O' I 0) = S(O I 0'). In some contexts, Q(O) is defined in terms of an 
"energy" function, E(O), with Q(O) ex exp(-E(e)). In step (2), one then 
always accepts candidate states with lower energy, and accepts states of 
higher energy with probability exp(-(E(O*) - E(e(t))). 

To show that these transitions leave Q invariant, we first need to write 
down the transition probability density function. This density function is 
singular, however, since there is a non-zero probability that the new state 
will be exactly the same as the old state. Fortunately, in verifying the 
detailed balance condition (equation (1.16)), we need pay attention only to 
transitions that change the state. For 0' t e, the procedure above leads to 
the following transition densities: 

T(e' 10) = S(e' I B) min (1, Q(O')/Q(e)) 

Detailed balance can thus be verified as follows: 

T(B' 10) Q(O) s(e' I e) min (1, Q(e')/Q(e)) Q(B) 

S(B' I B) min (Q(B), Q(B')) 

= S(B I 0') min (Q(B'), Q(O)) 

S(B I 0') min (1, Q(B)/Q(O')) Q(B') 

= T(B I 0') Q(O') 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24 ) 

The Metropolis updates therefore leave Q invariant. Note, however, that 
they do not always produce an ergodic Markov chain; this depends on 
details of Q, and on the proposal distribution used. 

Many choices are possible for the proposal distribution of the Metropolis 
algorithm. One simple choice is a Gaussian distribution centred on O(t), with 
standard deviation chosen so that the probability of the candidate state 
being accepted is reasonably high. (A very low acceptance rate is usually 
bad, since successive states are then highly dependent.) When sampling 
from a complex, high-dimensional distribution, the standard deviation of 
such a proposal distribution will often have to be small, compared to the 
extent of Q, since large changes will almost certainly lead to a region of 
low probability. This will result in a high degree of dependence between 
successive states, since many steps will be needed to move to a distant 
point in the distribution. This problem is exacerbated by the fact that 
these movements take the form of a random walk, rather than a systematic 
traversal. 

Due to this problem, simple forms of the Metropolis algorithm can be 
very slow when applied to problems such as Bayesian learning for neural 
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networks. As will be seen in Chapter 3, however, this problem can be allevi
ated by using the hybrid Monte Carlo algorithm, in which candidate states 
are generated by a dynamical method that largely avoids the random walk 
aspect of the exploration. 

1.4 Outline of the remainder of the book 

The main part of this book deals with three issues concerning Bayesian 
learning for neural networks. 

In Chapter 2, I examine the properties of prior distributions for neural 
networks, focusing on the limit as the number of hidden units in the network 
goes to infinity. My aim is to show that reasonable priors for such infinite 
networks can be defined, and to develop an understanding of the properties 
of such priors, so that we can select an appropriate prior for a particular 
problem. 

In Chapter 3, I address the computational problem of producing pre
dictions based on Bayesian neural network models. Such predictions in
volve integrations over the posterior distribution of network parameters 
(see equation (1.10)), which I estimate using a Markov chain Monte Carlo 
method based on the hybrid Monte Carlo algorithm. The aim of this work 
is to produce the predictions mathematically implied by the model and 
prior being used, using a feasible amount of computation time. 

In Chapter 4, I evaluate how good the predictions of Bayesian neural 
network models are, using the implementation of Chapter 3. One of my aims 
is to further demonstrate that Bayesian inference does not require limiting 
the complexity of the model based on the amount of training data, as was 
already shown in Chapter 2. I also evaluate the effectiveness of hierarchi
cal models, in particular the Automatic Relevance Determination model. 
The tests on real data sets demonstrate that the Bayesian approach, imple
mented using hybrid Monte Carlo, can be effectively applied to problems 
of moderate size. 

Finally, in Chapter 5, I summarize the contributions of this work, and 
describe further work done by myself and others since the completion of 
the original thesis on which this book is based. I also indicate possible 
directions for future research. 
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Priors for Infinite Networks 

In this chapter, I show that priors over network parameters can be defined 
in such a way that the corresponding priors over functions computed by 
the network reach reasonable limits as the number of hidden units goes to 
infinity. When using such priors, there is thus no need to limit the size 
of the network in order to avoid "overfitting". The infinite network limit 
also provides insight into the properties of different priors. A Gaussian 
prior for hidden-to-output weights results in a Gaussian process prior for 
functions, which may be smooth, Brownian, or fractional Brownian. Quite 
different effects can be obtained using prior's based on non-Gaussian stable 
distributions. In networks with more than one hidden layer, a combination 
of Gaussian and non-Gaussian priors appears most interesting. 

The starting point for Bayesian inference is a prior distribution over the 
model parameters, which for a multilayer percept ron ("backprop") network 
are the connection weights and unit biases. This prior distribution is meant 
to capture our prior beliefs about the relationship we are modeling. When 
training data is obtained, the prior is updated to a posterior parameter 
distribution, which is then used to make predictions for test cases. 

A problem with this approach is that the meaning of the weights and 
biases in a neural network is obscure, making it hard to design a prior 
distribution that expresses our beliefs. Furthermore, a network with a small 
number of hidden units can represent only a limited set of functions, which 
will generally not include the true function. Hence our actual prior belief 
will usually be that the model is simply wrong. 
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I propose to address these problems by focusing on the limit as the 
number of hidden units in the network approaches infinity. Several people 
(Cybenko 1989, Funahashi 1989, Hornik, Stinchcombe, and White 1989) 
have shown that in this limit a multilayer perceptron network with one 
layer of hidden units can approximate any continuous function defined on 
a compact domain arbitrarily closely. An infinite network will thus be a rea
sonable "nonparametric" model for many problems. Furthermore, it turns 
out that in the infinite network limit we can easily analyse the nature of 
the priors over functions that result when we use certain priors for the net
work parameters. This allows us to select an appropriate prior based on our 
knowledge of the characteristics of the problem, or to set up a hierarchical 
model in which these characteristics can be inferred from the data. 

In practice, of course, we will have to use networks with only a finite 
number of hidden units. The hope is that our computational resources will 
allow us to train a network of sufficient size that its characteristics are close 
to those of an infinite network. 

Note that in this approach one does not restrict the size of the network 
based on the size of the training set - rather, the only limiting factors 
are the size of the computer used and the time available for training. Ex
perience training networks by methods such as maximum likelihood might 
lead one to expect a large network to "overfit" a small training set, and 
perform poorly on later test cases. This does not occur with Bayesian learn
ing, provided the width of the prior used for hidden-to-output weights is 
scaled down in a simple fashion as the number of hidden units increases, 
as required for the prior to reach a limit. 

These statements presume that the implementation of Bayesian infer
ence used produces the mathematically correct result. Achieving this is 
not trivial. Methods based on making a Gaussian approximation to the 
posterior (MacKay 1991, 1992b; Buntine and Weigend 1991) may break 
down as the number of hidden units becomes large. Markov chain Monte 
Carlo methods (Neal 1992b, 1993a, 1993b, and Chapter 3 of this book) 
produce the correct answer eventually, but may sometimes fail to reach the 
true posterior distribution in a reasonable length of time. In this chapter, 
I do not discuss such computational issues; my aim instead is to gain in
sight through theoretical analysis, done with varying degrees of rigour, and 
by sampling from the prior, which is much easier than sampling from the 
posterior. 

For most of this chapter, I consider only multilayer percept ron networks 
that take I real-valued inputs, Xi, and produce 0 real-valued outputs given 
by functions fk(X), all of which are computed using a common layer of H 
hidden units, whose values hj (x), are produced with the tanh activation 
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function. In detail: 

H 

fk{X) bk + L Vjkhj(X) (2.1) 
j=1 

I 

hj(x) tanh (aj + L UjjXj) (2.2) 
;=1 

At times, I will consider networks in which the tanh activation function is 
replaced by a step function that takes the value -1 for negative arguments 
and +1 for positive arguments. (Learning: for networks with step-function 
hidden units is computationally difficult, but these networks are some
times simpler to analyse.) Networks with more than one hidden layer are 
discussed in Section 2.3. 

When neural networks are used as regression and classification models, 
the outputs of the network are used to define the conditional distribution for 
the targets given the inputs. What is of interest then is the prior over these 
conditional distributions that results from the prior over output functions. 
For regression models, the relationship of the target distribution to the 
network outputs is generally simple - the outputs give the mean of a 
Gaussian distribution for the targets. For classification models such as the 
"softmax" model of Bridle (1989), the relationship is less straightforward. 
This matter is not examined in detail in this chapter; I look only at the 
properties of the prior over output functions, which provides the basis for 
understanding the prior over conditional distributions. 

2.1 Priors converging to Gaussian processes 

Most past work on Bayesian inference for neural networks (eg, MacKay 
1992b) has used independent Gaussian distributions as the priors for net
work weights and biases. In this section, I investigate the properties of pri
ors in which the hidden-to-output weights, Vjk, and output biases, bk, have 
zero-mean Gaussian distributions with standard deviations of (Tv and (Tb. It 
will turn out that as the number of hidden units increases, the prior over 
functions implied by such priors converges to a Gaussian process. These 
priors can have smooth, Brownian, or fradional Brownian properties, as 
determined by the covariance function of the Gaussian process. 

For the priors that I consider in detail, the input-to-hidden weights, 
Ujj, and the hidden unit biases, aj, also have Gaussian distributions, with 
standard deviations (T u and (T a, though for the fractional Brownian priors, 
(Tu and O"a are not fixed, but depend on the value of common parameters 
associated with each hidden unit. 
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2.1.1 Limits for Gaussian and other priors with finite 
varzance 

To determine what prior over functions is implied by a Gaussian prior for 
network parameters, let us look first at the prior distribution of the value 
of output unit k when the network inputs are set to some particular values, 
xU) - that is we look at the prior distribution of !k(x(1») that is implied 
by the prior distributions for the weights and biases. 

From equation (2.1), we see that h(x(1») is the sum of a bias and the 
weighted contributions of the H hidden units. Under the prior, each term 
in this sum is independent, and the contributions of the hidden units all 
have identical distributions. The expected value of each hidden unit's con
tribution is zero: E[Vjkhj(x(1»)] = E[Vjk]E[hj (x(1»)) = 0, since Vjk is inde
pendent of aj and the Uij (which determine hj (x(1»)), and E[Vjk] is zero by 
hypothesis. The variance of the contribution of each hidden unit is finite: 
E[(Vjkhj(X(1»)2] = E[v]klE[hj (x(1»)2] = u;E[hj (x(1»)2], which must be fi-
nite since hj(x(l») is bounded. Defining V(x(1») = E[hj (x(1»)2], which is 
the same for all j, we can conclude by the Central Limit Theorem that for 
large H the total contribution of the hidden units to the value of h(x{l») 
becomes approximately Gaussian, with variance H u;V(x(1»). The bias, bk, 
is also Gaussian, with variance u~, so for large H the prior distribution of 
h (x(I») is also approximately Gaussian, with variance u~ + H u;V(x(1»). 

Accordingly, to obtain a well-defined limit for the prior distribution of 
the value ofthe function at any particular point, we need only scale the prior 
variance of the hidden-to-output weights according to the number of hidden 
units, setting Uv = wv H-1/2 , for some fixed wv . The prior for !k(x(1») then 
converges to a Gaussian of mean zero and variance u~ + w;V(x(1») as H 
goes to infinity. 

Adopting this scaling for U'IJ' we can investigate the prior joint distri
bution of the values of output k for several values of the inputs - that 
. th .. t d' t 'b t' f I ( (1») I (n») h (1) (n) IS, e JOIn IS n u IOn 0 Jk X , ••• , Jk X , were x , ... , x are 
the particular input values we choose to look at. An argument paralleling 
that above shows that as H goes to infinity this prior joint distribution 
converges to a multivariate Gaussian, with means of zero, and covariances 

u~ + Lu;E[hj(x(p»)hj(x(q»)] 
j 

u~ + w;C(x(p), x(q») 

(2.3) 

(2.4) 

where C(x(p), x(q») = E[hj(x(p»)hj(x(q»)), which is the same for all j: Dis
tributions over functions of this sort, in which the joint distribution of 
the values of the function at any finite number of points is multivariate 
Gaussian, are known as Gaussian processes; they arise in many contexts, 
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FIGURE 2.1. Convergence of network priors to a Gaussian process. Each of the 
plots is based on lODD networks with one input unit, one output unit, and a single 
layer of 1,3, or 10 tanh hidden units. The network weights were randomly drawn 
from prior distributions with 0'" = 5, O'a = 15, O'b = 0.1, and O'v = H- 1/ 2 , where 
H is the number of hidden units. Each network is represented by a point whose 
horizontal coordinate is the output of the network when the input is -0.2, and 
whose vertical coordinate is the output of the network when the input is +0.4. 

including spatial statistics (Ripley 1981), splines (Wahba 1990), computer 
vision (Szeliski 1989), and computer graphics (Peitgen and Saupe 1988). 

The prior covariances between the values of output k for different values 
of the inputs are in general not zero, which is what allows learning to 
occur. Given values for Ik(x(1)), ... , !k(x(n-l)), we could explicitly find the 
infinite network's predictive distribution for the value of output k for case n 
by conditioning on these known values to produce a Gaussian distribution 
for !k(x(n)). This procedure may indeed be of practical interest, though 
it does require evaluation of C(x(p), x(q)) for all x(p) in the training set 
and x(q) in the training and test sets, which would likely have to be done 
by numerical integration. In this book, predictive distributions for models 
based on finite networks will be found by other means (see Chapter 3), but 
insight into Bayesian learning for large networks with Gaussian priors can 
be gained by considering this picture of how a predictive distribution is 
formed by conditioning on the training data. 

Figure 2.1 illustrates the convergence of network priors to a Gaussian 
process. The joint distribution of the network output for two particular 
input values is very non-Gaussian for a network with a single hidden unit 
(H = 1, on the left), but approaches a bivariate Gaussian distribution 
as the number of hidden units increases to H = 3 (middle) and H = 10 
(on the right). Note that in the limiting prior distribution, the outputs of 
the network for these two inputs are correlated, so knowing the value of 
the output for one of these input values (a "training case") will help in 
predicting the output for the other input value (a "test case"). 

The joint distribution for the values of all the outputs of the network for 
some selection of values for inputs will also become a multivariate Gaussian 



34 Chapter 2. Priors for'Infinite Networks 

in the limit as the number of hidden units goes to infinity. It is easy to see, 
however, that the covariance between fkl (x(p)) and f k2(X(q)) is zero when
ever kl i k2' since the weights into different output units are independent 
under the prior. Since zero covariance implies independence for Gaussian 
distributions, knowing the values of one output for various inputs does not 
tell us anything about the values of other outputs, at these or any other 
input points. When the number of hidden units is infinite, it makes no dif
ference whether we train one network to produce two outputs, or instead 
use the same data to train two networks, each with one output. (I assume 
here that these outputs are not linked in some other fashion, such as by the 
assumption that their values are observed with a common, but unknown, 
level of noise.) 

This independence of different outputs is perhaps surprising, since the 
outputs are computed using shared hidden units. However, with the Gaus
sian prior used here, the values of the hidden-to-output weights all go to 
zero as the number of hidden units goes to infinity. The output functions 
are built up from a large number of contributions from hidden units, with 
each contribution being of negligible significance by itself. Hidden units 
computing common features of the input that would be capable of linking 
the outputs are therefore not present. Dependencies between outputs could 
be introduced by making the weights to various outputs from one hidden 
unit be dependent, but if these weights have Gaussian priors, they can be 
dependent only if they are correlated. Accordingly, it is not possible to 
define a Gaussian-based prior expressing the idea that two outputs might 
show a large change in the same input region, the location of this region 
being unknown a priori, without also fixing whether the changes in the two 
outputs have the same or opposite sign. 

The results in this section in fact hold more generally for any hidden unit 
activation function that is bounded, and for any prior on input-to-hidden 
weights and hidden unit biases (the Uij and aj) in which the weights and 
biases for different hidden units are independent and identically distributed. 
The results also apply when the prior for hidden-to-output weights is not 
Gaussian, as long as the prior has zero mean and finite variance. 

2.1.2 Priors that lead to smooth and Brownian functions 

I will start the detailed examination of Gaussian process priors by consid
ering those that result when the input-to-hidden weights and hidden biases 
have Gaussian distributions. These turn out to give locally Brownian priors 
if step-function hidden units are used, and priors over smooth functions if 
tanh hidden units are used. For simplicity, I at first discuss only networks 
having a single input, but Section 2.1.5 will show that the results apply 
with little change to networks with any number of inputs. 
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FIGURE 2.2. Functions drawn from Gaussian priors for networks with step-
function hidden units. The two functions shown on the left are from a network 
with 300 hidden units, the two on the right from a network with 10 000 hidden 
units. In both cases, (J'a = (J'" = (J'b = Wv = 1. The upper plots show the overall 
shape of each function; the lower plots show IGhe central area in more detail. 

To begin, consider a network with one input in which the hidden units 
compute a step function changing from -1 to +1 at zero. In this context, 
the values of the input weight, Ulj, and bias, aj, for hidden unit j are 
significant only in that they determine the point in the input space where 
that hidden unit's step occurs, namely -aj / ulj. When the weight and bias 
have independent Gaussian prior distributions with standard deviations UIJ 

and (J'a, the prior distribution of this step-point is Cauchy, with a width 
parameter of (J" a / (J" IJ • 

Figure 2.2 shows functions drawn from the prior distributions for two 
such networks, one network with 300 hidden units and one with 10 000 
hidden units. Note that the general nature of the functions is the same 
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for the two network sizes, but the functions from the larger network have 
more fine detail. This illustrates that the prior over functions is reaching a 
limiting distribution as H increases. 

(In this and subsequent figures, the functions shown are not necessarily 
the first that were generated. Some selection was done in order to ensure 
that typical features are displayed, and to find pairs of functions that fit 
together nicely on a graph, without overlapping too much. In all cases, the 
functions shown were selected from a sample of no more than ten functions 
drawn from the prior.) 

The variation in the functions shown in Figure 2.2 is concentrated in the 
region around x = 0, with a width of roughly U a/ Uti. Within this region, the 
function is locally Brownian in character, as a consequence of being built up 
from the many small, independent steps contributed by the hidden units. 
Far from x = 0, the functions become almost constant, since few hidden 
units have their steps that far out. For the remainder ofthis chapter, I will 
confine my attention to the properties of functions in their central regions, 
where all points have approximately equal potential for being influenced 
by the hidden units. 

When tanh hidden units are used instead of step-function units, the 
functions generated are smooth. This can be seen by noting that all the 
derivatives (to any order) of the value of a tanh hidden unit with respect 
to the inputs are polynomials in the hidden unit value and the input
to-hidden weights. These derivatives therefore have finite expectation and 
finite variance, since the hidden unit values are bounded, and the weights 
are from Gaussian distributions, for which moments of all orders exist. At 
scales greater than about 1 / Uti, however, the functions exhibit the same 
Brownian character that was seen with step-function hidden units. 

The size of the central region where the properties of these functions 
are approximately uniform is roughly (J" a + 1) / Uti. To see this, note that 
when the input weight is u, the distribution of the point where the hidden 
unit value crosses zero is Gaussian with standard deviation ua/lul. The 
influence of a hidden unit with this input weight extends a distance of 
about l/lul, however, so points within about (ua + l)/lul of the origin 
are potentially influenced by hidden units with input weights of this size. 
Since the probability of obtaining a weight of size lu I declines exponentially 
beyond lui = Uti, the functions will have similar properties at all points 
within a distance of about (ua + 1)/O"tI of the origin. 

Functions drawn from priors for networks with tanh hidden units are 
shown in Figure 2.3. 
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FIGURE 2.3. Functions drawn from Gaussian priors for a network with 10 000 
tanh hidden units. Two functions drawn from a prior with (Tu = 5 are shown on 
the left, two from a prior with (Tu = 20 on the right. In both cases, (Tu/(Tu = 1 
and (Tb = Wv = 1. The functions with different au were generated using the same 
random number seed, the same as that used to generate the functions in the 
lower-right of Figure 2.2. This allows a direct evaluation of the effect of changing 
au. (Note that use of step function hidden units is equivalent to letting au go to 
infinity, while keeping aa/au fixed.) 

2.1.3 Covariance functions of Gaussian priors 

A Gaussian process can be completely characterized by the mean values of 
the function at each point, always zero for the network priors discussed here, 
along with the covariance of the function value at any two points, given by 
equation (2.4). The difference between priors that lead to locally smooth 
functions and those that lead to locally Brownian functions is reflected in 
the local behaviour of their covariance functions. From equation (2.4), we 
see that this is directly related to the covariance of the values of a hidden 
unit at nearby input points, C(x(p), x(q»), which can be written as 

C(x(p),x(q)) = ~ (V(x(p)) + V(x(q)) - E[(h(x(p») - h(X(q»))2]) (2.5) 

V - ~ D(x(p), x(q») (2.6) 

where V(x(p») ~ V ~ V(x(q»), for nearby x(p) and x(q), and D(x(p),x(q») 
is the expected squared difference between the values of a hidden unit at 
x(p) and x(q). 

For step-function hidden units, (h(x(p») - h(X(q»))2 will be either 0 or 
4, depending on whether the values of the hidden unit's bias and incom
ing weight result in the step being located between x(p) and x(q). Since 
the location of this step will be approximately uniform in the local vicin
ity, the probability of the step occurring between x(p) and x(q) will rise 
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proportionally with the separation of the points, giving 

Ix(p) - x(q) I (2.7) 

where'" indicates proportionality for nearby points. This behaviour is char
acteristic of Brownian motion. 

For networks with tanh hidden units, with Gaussian priors for the bias 
and incoming weight, we have seen that the functions are smooth. Accord
ingly, for nearby x(p) and x(q) we will have 

(2.8) 

We can get a rough idea of the behaviour of D(x(p), x(q») for all points 
within the central region as follows. First, fix the input-to-hidden weight, 
u, and consider the expectation of (h(x-s/2) - h(x+s/2))2 with respect 
to the prior distribution of the bias, a, which is Gaussian with standard 
deviation (J' a' With u fixed, the point where the hidden unit's total input 
crosses zero will have a prior distribution that is Gaussian with standard 
deviation (J'a/lul, giving a probability density for the zero crossing to occur 
at any point in the central region of around lul/O'a. We can now distinguish 
two cases. When lui ~ 1/ s, the transition region over which the hidden 
unit's output changes from -1 to +1, whose size is about l/lul, will be 
small compared to s, and we can consider that (h(x-s/2) - h(x+s/2))2 
will either be 0 or 4, depending on whether the total input to the hidden 
unit crosses zero between x-s/2 and x+s/2, which occurs with probability 

around (Iul/O'a)s. When lul.$ l/s, (h(x-s/2) - h(x+s/2))2 will be about 
(luls)2 if the interval [x-s/2, x+s/2] is within the transition region, while 
otherwise it will be nearly zero. The probability of [x-s/2, x+s/2] lying in 
the transition region will be about (lul/O'a){l/lul) = l/O'a. Putting all this 
together, we get 

where C1, C2, •.. are constants of order one. Taking the expectation with 
respect to a symmetrical prior for u, with density p( u), we get 

Ea ,u[(h(x-s/2) - h(x+s/2))2] 

C1S 100 C s211/. ~ 2 - up(u) du + 2 _2_ u2 p(u) du 
(J'a 1/_ O'a 0 

(2.10) 

Finally, if we crudely approximate the Gaussian prior for u by a uniform 
distribution over [-0' u, +0' ... ], with density p( u) = 1/20' u, we get 

D(x-s/2, x+s/2) Ea,u[(h(x-s/2) - h(x+s/2))2] 
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if s ;S l/(J'u 

if s ~ l/(J'u 
(2.11) 

Thus these functions are smooth on a small scale, but when viewed on scales 
significantly larger than 1/(J'u, they have a Brownian nature characterized 
by D(x-s/2, x+s/2) being proportional to s. 

2.1.4 Fractional Brownian priors 

It is natural to wonder whether a prior on the weights and biases going into 
hidden units can be found for which the resulting prior over functions has 
fractional Brownian properties (Falconer 1990, Section 16.2), for which 

D(x(p), x(q)) Ix(p) - x(q) 1'1 (2.12) 

As above, values of 1] = 2 and 'f} = 1 correspond to smooth and Brownian 
functions, respectively. Functions with intermediate properties are obtained 
when 1 < 'f} < 2; functions "rougher" than Brownian functions are obtained 
when 0 < 'f} < 1. 

One way to achieve these effects would be to change the hidden unit 
activation function from tanh(z) to sign(z)\zl('1- 1)/2 (Peitgen and Saupe 
1988, Sections 1.4.1 and 1.6.11). However, the unbounded derivatives of 
this activation function would pose problems for gradient-based learning 
methods. I will describe a method of obtaining fractional Brownian func
tions with 1 < 1] < 2 from networks with tanh hidden units by altering the 
priors for the hidden unit biases and input weights. 

To construct this fractional Brownian prior, we associate with hidden 
unit j an "adjustment" value, Aj , that controls the magnitude of that 
hidden unit's incoming weights and bias. Given A j , we let the incoming 
weights, Uij, have independent Gaussian distributions with standard devia
tion (J'u = Ajwu, and we let the bias, aj, have a Gaussian distribution with 
standard deviation (J'a = Ajwa. We give the Aj themselves independent 
prior distributions with probability density p(A) ex: A -7) exp (- (7]-1) / 2A 2), 
where T'f> 1, which corresponds to a Gamma distribution for l/AJ. Note 
that if we integrate over Aj to obtain a direct prior for the weights and 
biases, we find that the weights and biases are no longer independent, and 
no longer have Gaussian distributions. 

To picture why this setup should result in a fractional Brownian prior 
for the functions computed by the network, consider that when Aj is large, 
hj (x) is likely to be almost a step function, since (J'u will be large. (Aj does 
not affect the distribution of the point where the step occurs, however, 
since this depends only on (J'a/(J'u.) Such near-step-functions produced by 
hidden units with Aj greater than some limit will contribute in a Brownian 
fashion to D(x(p), x(q)), with the contribution rising in direct proportion 
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to the separation of x(p) and x(q). However, as this separation increases, 
the value of Aj that is sufficient for the hidden unit to behave as a step 
function in this context falls, and the number of hidden units that effectively 
behave as step functions rises. The contribution of such hidden units to 
D(x(p), x(q)) will therefore increase faster than for a Brownian function. 
The other hidden units with small Aj will also contribute to D(x(p), x(q)), 
quadratically with separation, but for nearby points their contribution will 
be dominated by that of the units with large Aj , if that contribution is 
sub-quadratic. 

We can see this in somewhat more detail by substituting C1' u = Ajwu 
and C1'a = Ajwa in equation (2.11), obtaining 

Ea,u [(h(x-s/2) - h(x+s/2))2] 

1 { C3 AjW~S2 if Aj ;5 1/ SWu 

Wa C4WuS+C5/A;wus ifAj~l/swu 
(2.13) 

Integrating with respect to the prior for Aj, we get 

D(x-s/2, x+s/2) ~ C3 WuS Ap(A) dA + 
2 211/WUS 

Wa 0 

C4 WuS jOO p(A)dA 
Wa l/w u s 

+ ~ JOO A-2p(A) dA (2.14) 
WaWu S l/w u s 

The mode of p(A) is at ((7]_1)/7])1/2. Before this point p(A) drops rapidly, 
and can be approximated as being zero; after this point, it drops as A -'1. 

The integrals above can thus be approximated as follows, for 7] ::j 2: 

D(x-s/2, x+s/2) 

1 { C6W~S'1 + C7W~s2 if s;5 (7]/(TJ-l))1/2jwu 
~ (2.15) 

Wa CSWuS + C9/WuS if s ~ (7]/(7]-1))1/2/ Wu 

When 1 < "1 < 2, the s'1 term will dominate for small s, and the function 
will have fractional Brownian properties; when 7] > 2, the s2 term will 
dominate, producing a smooth function; "1 = 2 is a special case, for which 
D(x-s/2, x+s/2) '" s2Iog(I/8). 

Fractional Brownian functions drawn from these priors are shown in 
Figure 2.4. Figure 2.5 shows the behaviour of D(x - 8/2, x + 8/2) for the 
same priors, as well as for the priors used in Figures 2.2 and 2.3. 

2.1.5 Networks with more than one input 

The priors discussed here have analogous properties when used for networks 
with several inputs. In particular, the value of the network function along 
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FIGURE 2.4. Functions drawn from fractional Brownian priors for a network 
with 10 000 tanh hidden units. Two functions drawn from a prior with '1 = 1.3 
are shown on the left, two from a prior with '1 = 1.7 on the right. In both cases, 
Wa = W" = (Tb = Wv = 1. 
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FIGURE 2.5. Behaviour of D(x-s/2, x+s/2) as s varies for Brownian, smooth, 
and fractional Brownian functions. The plots on the left are for the Brownian 
prior used in Figure 2.2, and the smooth priors used in Figure 2.3; those on the 
right are for the fractional Brownian priors used in Figure 2.4, as well as for a 
similar prior on the Aj with '1 = 3, which lea.ds to a smooth function. All values 
are for x = 0.2. They were computed by Monte Carlo integration using a sample 
of 100000 values drawn from the prior for the bias and weight into a hidden unit; 
the values are hence subject to a small amount of noise. Note that both scales 
are logarithmic, so that a function proportional to s'1 should appear as a straight 
line of slope '1. Straight lines of the expected slopes are shown beside the curves 
to demonstrate their convergence for small s. 
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FIGURE 2.6. Functions of two inputs drawn from Gaussian priors. The function 
in the upper left is from a network with 10000 step-function hidden units, that 
in the upper right from the corresponding network with tanh hidden units, using 
the same random number seed. In both cases, (Ta = (Tu = 10. The two lower 
functions are from networks with tanh hidden units, using fractional Brownian 
priors. The function in the lower left has '7 = 1.3, that in the lower right '7 = 1.7. 
In both cases, Wa = Wu = 1. The plots show the input region from -1 to +1. 

any line in input space has the same properties as those described above for 
a network with a single input. Since all the priors discussed are invariant 
with respect to rotations of the input space, we may confine our attention 
to lines obtained by varying only one of the inputs, say the first. Rewriting 
equation (2.2) as 

I 

tanh (UljXl + aj + L UijXi) 
i=2 

(2.16) 

we see that when X2,.'" XI are fixed, they act simply to increase the 
variance of the effective bias. This merely spreads the variation in the 
function over a larger range of values for Xl. 

Figure 2.6 shows functions of two inputs drawn from Brownian, smooth, 
and fractional Brownian priors. 
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2.2 Priors converging to non-Gaussian stable 
processes 

Although we have seen that a variety of interesting priors over functions 
can be produced using Gaussian priors for hidden-to-output weights and 
output biases, these priors are in some respects disappointing. 

One reason for this is that it may be possible to implement Bayesian 
inference for these priors, or for other Gaussian process priors with similar 
properties, using standard methods based directly on the covariance func
tion, without any need for an actual network. We may thus need to look 
at different priors if Bayesian neural networks are to significantly extend 
the range of models available. (On the other hand, it is possible that the 
particular covariance function created by the network might be of special 
interest, or that control of the covariance function via hyperparameters 
might most conveniently be done in a network formulation.) 

Furthermore, as mentioned earlier, with Gaussian priors the contribu
tions of individual hidden units are all negligible, and consequently, these 
units do not represent "hidden features" that capture important aspects of 
the data. If we wish the network to do this, we need instead a prior with the 
property that even in the limit of infinitely many hidden units, there are 
some individual units that have non-negligible output weights. Such non
Gaussian priors can indeed be constructed, using prior distributions for the 
weights from hidden to output units that do not have finite variance. 

2.2.1 Limits for priors with infinite variance 

The theory of stable distributions (Feller 1966, Section VI.l, Samorodnitsky 
and Taqqu 1994) provides the basis for analysing the convergence of priors 
in which hidden-to-output weights have infinite variance. If random vari
ables Zl, ... ,Zn are independent, and all the Zi have the same symmetric 
stable distribution of index 0:, then (Zl + ... + Zn)/n1/ a has the same dis
tribution as the Zi. Such symmetric stable distributions exist for 0 < 0: S 2, 
and for each index they form a single fa.mily, varying only in width. The 
symmetric stable distributions of index Q' = 2 are the Gaussians of varying 
standard deviations; those of index 0: = 1 are the Cauchy distributions of 
varying widths; the densities for the symmetric stable distributions with 
most other indexes have no convenient forms. 

If independent variables Zl,"" Zn each have the same distribution, 
one that is in the normal domain of attrflction of the family of symmetric 
stable distributions of index 0:, then the distribution of (Zl + ... + Zn)/n 1/ a 
approaches such a stable distribution as n goes to infinity. All distributions 
with finite variance are in the normal domain of attraction of the Gaussian. 
Distributions with tails that (roughly speaking) have densities that decline 
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as z-(a+1), with 0 < 0' < 2 are in the normal domain of attraction of the 
symmetric stable distributions of index 0' (Feller, 1966, Sections IX.8 and 
XVII.5). 

We can define a prior on network weights in such a fashion that the 
resulting prior on the value of a network output for a particular input 
converges to a non-Gaussian symmetric stable distribution as the number 
of hidden units, H, goes to infinity. This is done by using independent, 
identical priors for the hidden-to-output weights, Vjk, with a density whose 
tails go as vjk(a+1), with 0' < 2. For all the examples in this book, I use 

a t-distribution with density proportional to (1 + v]kl 0'(T;)-(a+1)/2. The 
prior distribution of the contribution of a hidden unit to the output will 
have similar tail behaviour, since the hidden unit values are bounded. Ac
cordingly, if we scale the width parameter of the prior for hidden-to-output 
weights as (Tv = wvH- 1/ a , the prior for the total contribution of all hidden 
units to the output value for a particular input will converge to a symmet
ric stable distribution of index 0'. If the prior for the output bias is a stable 
distribution of this same index, the value of the output unit for that input, 
which is the sum of the bias and the hidden unit contributions, will have 
a prior distribution in this same stable family. (In practice, it may not be 
convenient for the bias to have such a stable distribution as its prior, but 
using a different prior for the bias will have only a minor effect.) 

To rigorously show that these priors converge, we would need to show 
not only that the prior distribution for the value of the function at any 
single point converges (as shown above), but that the joint distribution 
of the value of the function at any number of points converges as well -
i.e. that the dependencies between points converge. I do not attempt this 
here, but the plots below (e.g. Figure 2.7) lend empirical support to this 
proposi tion. 

To gain insight into the nature of priors based on non-Gaussian stable 
distributions, we can look at the expected number of hidden-to-output 
weights lying in some small interval, [w, w + f], in the limit as H goes to 
infinity. For a given H, the number of weights in this interval using the prior 
that is scaled down by H-1/a will be the same as the number that would 
be in the interval [wH 1/ a , wH1/a+fH1/ a ] if the unscaled prior were used. 
As H increases, this interval moves further and further into the tail of the 
unsealed prior distribution, where, by construction, the density goes down 
as v-(a+l). The probability that a particular weight will lie in this small 
interval is thus proportional to fHl/0I(wH1/a)-(a+l) = fW-(a+1) H-l. The 
expected total number of weights from all H hidden units that lie in the 
interval [w, w + f] is therefore proportional to fW-(a+1), in the limit as H 

goes to infinity. 
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Thus, whereas for Gaussian priors, all the hidden-to-output weights go 
to zero as H goes to infinity, for priors based on symmetric stable distri
butions of index 0' < 2, some of the hidden units in an infinite network 
have output weights of significant size, allowing them to represent "hidden 
features" . As an aside, the fact that the number of weights of each size has 
non-zero expectation means that the prior can be given an alternative for
mulation in terms of a Poisson process for hidden-to-output weights. (Note 
that though such a process could be defined for any 0', it gives rise to a 
well-defined prior over functions only if 0 < 0' < 2.) 

The above priors based on non-Gaussian stable distributions lead to 
prior distributions over functions in which the functions computed by dif
ferent output units are independent, in the limit as H goes to infinity, just 
as was the case for Gaussian priors. This comes about because the weights 
to the various output units from a single hidden unit are independent. As 
H goes to infinity, the fraction of weights that are of significant size goes 
to zero, even while the actual number of such weights remains non-zero. 
There is thus a vanishingly small chance that a single hidden unit will have 
a significant effect on two different outputs, which is what would be needed 
to make the two outputs dependent. 

However, with non-Gaussian priors, we can introduce dependence be
tween outputs without also introducing correlation. One way to do this 
is use i-distributions that are expressed as mixtures of Gaussian distribu
tions of varying scale. With each hidden unit, j, we associate an output 
weight variance hyperparameter, 1T~,j' As a prior, we give l/IT~,j a Gamma 
distribution with shape parameter 0'/2 and mean lTv. Given a value for 
this common hyperparameter, the weights out of a hidden unit, Vjk, have 
independent Gaussian distributions of variance 1T~ ,j' By integrating over 
the hyperparameter, one can see that each hidden-to-output weight has 
a i-distribution with index 0', as was the case above. Now, however, the 
weights out of a single hidden unit are dependent - they are all likely to 
have similar magnitudes, since they depend on the common value of lTv. 

This prior thus allows single hidden units to compute common features 
that affect many outputs, without fixinl~ whether these effects are in the 
same or different directions. 

2.2.2 Properties of non-Gaussian stable priors 

In contrast to the situation for Gaussian process priors, whose properties 
are captured by their covariance functions, I know of no simple way to 
characterize the distributions over functions produced by the priors based 
on non-Gaussian stable distributions. I will therefore confine myself in this 
section to illustrating the nature of these priors by displaying functions 
sampled from them. 
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FIGURE 2.7. Functions drawn from Cauchy priors for networks with step
function hidden units. Functions shown on the left are from a network with 150 
hidden units, those on the right from a network with 10000 hidden units. In both 
cases, lJ"a = lJ"u = IJ"b = Wv = 1. 

As before, we can begin by considering a network with a single real input 
and a single real output, with step-function hidden units. Figure 2.7 shows 
two functions drawn from priors for such networks in which the weights and 
biases into the hidden units have independent Gaussian distributions and 
the weights and bias for the output have Cauchy distributions (the stable 
distribution with a = 1). Networks with 150 hidden units and with 10 000 
hidden units are shown, for which the width parameter of the Cauchy 
distribution was scaled as Uv = wvH- 1 . As is the case for the Gaussian 
priors illustrated in Figure 2.2, the general nature of the functions is the 
same for the small networks and the large networks, with the latter simply 
having more fine detail. The functions are clearly very different from those 
drawn from the Gaussian prior that are shown in Figure 2.2. The functions 
from the Cauchy prior have large jumps due to single hidden units that 
have output weights of significant size. 

When the prior on hidden-to-output weights has a form that converges 
to a stable distribution with 0 < a < 1, the dominance of small numbers 
of hidden units becomes even more pronounced than for the Cauchy prior. 
For stable priors with 1 < a < 2, effects intermediate between the Cauchy 
and the Gaussian priors are obtained. These priors may of course be used 
in conjunction with tanh hidden units. Figure 2.8 illustrates some of these 
possibilities for functions of two inputs. 

An infinite network whose prior is based on a stable distribution with a 
small a can be used to express whatever valid intuitions we may sometimes 
have that might otherwise lead us to use a network with a small number 
of hidden units. With a small a, the contributions of a small subset of the 
hidden units will dominate, which will be good if we in fact have reason to 
believe that the true function is close to one that can be represented by a 
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FIGURE 2.8. Functions of two inputs drawn from priors that converge to 
non-Gaussian stable distributions. Functions on the left are from networks with 
step-function hidden units; those on the right are the corresponding functions 
from networks with tanh hidden units, with 0'" = 20. For the functions at the 
top, the prior on hidden-to-output weights was a t-distribution with C\' = 0.5; in 
the middle, the prior was Cauchy (a t-distribution with C\' = 1); on the bottom 
the prior was a t-distribution with C\' = 1.5. All the networks had 1000 hidden 
units. In all cases, priors with O'a/O'u := 1 were used; the plots extend from -1 to 
+ 1 for both inputs, within the corresponding central region. 
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small network. The remaining hidden units will still be present, however, 
and able to make any small corrections that are needed to represent the 
function exactly. 

2.3 Priors for nets with more than one hidden layer 

In this section, I take a preliminary look at priors for multilayer perceptron 
networks with more than one layer of hidden units, starting with networks 
in which the outputs are connected only to the last hidden layer, each hid
den layer after the first has incoming connections only from the preceding 
hidden layer, and the first hidden layer has incoming connections only from 
the inputs. 

Consider such a network with several layers of step-function hidden 
units, with all the weights and biases having Gaussian prior distributions. 
Assume that the standard deviation of the weights on the connections out 
of a hidden layer with H units is scaled down by H-l/ 2 , as before. We are 
again interested in the limiting distribution over functions as the number 
of hidden units in each layer goes to infinity. 

Figure 2.9 shows functions of one input drawn from this prior for net
works with one, two, and three hidden layers. The function value is shown 
by a dot at each of 500 grid points in the central region of the input space. 
(This presentation shows the differences better than a line plot does.) With 
one hidden layer, the function is Brownian, as was already seen in Fig
ure 2.2. With two hidden layers, the covariance between nearby points falls 
off much more rapidly with their separation, and with three hidden layers, 
this appears to be even more pronounced. 

This is confirmed by numerical investigation, which shows that the net
works with two and three hidden layers satisfy equation (2.12) with T} ~ 1/2 
and T} ~ 1/4, respectively. For networks where only the first hidden layer 
is connected to the inputs, it should be true in general that adding an 
additional hidden layer with step-function units after what was previously 
the last hidden layer results in a reduction of T} by a factor of two. To 
see this, note first that the total input to one of the hidden units in this 
new layer will have the same distribution as the output of the old net
work. For a unit in the new hidden layer, (h(x(p)) - h(x(q)))2 will be 0 or 
4 depending on whether the unit's total input changes sign between x(p) 

and x(q). The probability of this occurring will be directly proportional 
to the difference in value between the total input to the unit at x(p) and 
the total input at x(q). By hypothesis, this difference is Gaussian with a 
variance proportional to Ix(p) - x(q) 1'1, giving an expected absolute magni
tude for the difference that is proportional to Ix(p) - x(q) 1'1/2. From this it 
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FIGURE 2.9. Functions computed by networks with one (top), two (middle), 
and three (bottom) layers of step-function hidden units, with Gaussian priors. 
All networks had 2000 units in each hidden layer. The value of each function is 
shown at 500 grid points along the horizontal axis. 

follows that D(x(p),x(q)) = E[(h(x{p)) - h(X{q)))2] is also proportional to 
Ix(p) - x(q)I,,/2. 

Though it is interesting that fractional Brownian priors with T/ < 1 can 
be obtained in this manner, I suspect that such priors will have few applica
tions. For small values of T/, the covariances between the function values at 
different points drop off rapidly with distance, introducing unavoidable un
certainty in predictions for test points that are even slightly different from 
training points. This situation is difficult to distinguish from that where 
the observed function values are subject to independent Gaussian noise, 
unless the training set contains multiple observations for exactly the same 
input values. Modeling independent noise is much easier than modeling 
fractional Brownian functions, and hence is to be preferred on pragmatic 
grounds when both models would give similar results. 

More interesting effects can be obtained using a combination of Gaus
sian and non-Gaussian priors in a network with two hidden layers of the 
following structure. The first hidden layer contains Hl tanh or step-function 
units, with priors for the biases and the weights on the input connections 
that are Gaussian, or of the fractional Brownian type described in Sec
tion 2.1.4. The second hidden layer contains H2 tanh or step-function units, 
with Gaussian priors for the biases and for the weights on the connections 



50 Chapter 2. Priors for Infinite Networks 

Fl GURE 2.10. Two functions drawn from a combined Gaussian and non-Gaussian 
prior for a network with two layers of tanh hidden units. The first hidden layer 
contained HI = 500 units; the second contained H2 = 300 units. The priors 
for weights and biases into the first hidden layer were Gaussian with standard 
deviation 10. The priors for weights and biases into the second hidden layer were 
also Gaussian, with the biases having standard deviation 20 and the weights from 
the first hidden layer having standard deviation 20H;I/2. The weights from the 
second hidden layer to the output were drawn from a t-distribution with (l' = 0.6 
and a width parameter of H:;1/0.6, which converges to the corresponding stable 
distribution. The central regions of the functions are shown, where the inputs 
vary from -1 to + 1. 

from the first hidden layer (with the standard deviation for these weights 
scaled as H-;1/2). There are no direct connections from the inputs to the 
second hidden layer. Finally, the outputs are connected only to the last 
hidden layer, with a prior for the hidden-to-output weights that converges 
to a non-Gaussian stable distribution of index a (for which the width of 
the prior will scale as H:;l/O:). 

With this setup, the function giving the total input into a unit in the 
second hidden layer has the same prior distribution as the output function 
for a network of one hidden layer with Gaussian priors, which may, for 
example, have the forms seen in Figures 2.2, 2.3, 2.4, or 2.6. The step
function or tanh hidden units will convert such a function into one bounded 
between -1 and + 1. Such a hidden unit may be seen as a "feature detector" 
that indicates whether the network inputs lie in one of the regions where 
the hidden unit's total input is significantly greater than zero. The use of 
non-Gaussian priors for the weights from these hidden units to the outputs 
allows individual features to have a significant effect on the output. 

Functions drawn from such a prior are illustrated in Figure 2.10. Such 
functions have low probability under the priors for networks with one hid
den layer that have been discussed, suggesting that two-layer networks will 
be advantageous in some applications. 

Finally, we can consider the limiting behaviour of the prior over functions 
as the number of hidden layers increases. If the priors on hidden-to-hidden 
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weights, hidden unit biases, and input-to-hidden weights (if present) are 
the same for all hidden layers, the prior over the functions q>mputed by 
the units in the hidden layers of such a network will have the form of a 
homogeneous Markov chain - that is, under the prior, the distribution 
of functions computed by hidden units in layer f + 1 is influenced by the 
functions computed by earlier layers only through the functions computed 
by layer f, and furthermore, the conditional distribution of functions com
puted by layer f + 1 given those computed by layer C is the same for all 
f. We can now ask whether this Markov chain converges to some invari
ant distribution as the number of layers goes to infinity, given the starting 
point established by the prior on weights into the first hidden layer. If the 
chain does converge, then the prior over functions computed by the output 
units should also converge, since the outputs are computed solely from the 
hidden units in the last layer. 

This question of convergence appears difficult to answer. Indeed, when 
each hidden layer contains an infinite number of hidden units, it is not even 
obvious how convergence should be defined. Nevertheless, from the discus
sion above, it is clear that a Gaussian-based prior for a network with many 
layers of step-function hidden units, with no direct connections from inputs 
to hidden layers after the first, either does not converge as the number of 
layers goes to infinity, or if it can be regarded as converging, it is to an un
interesting distribution concentrated on completely unlearnable functions. 
However, if direct connections from the inputs to all the hidden layers are 
included, it appears that convergence to a sensible distribution may occur, 
and of course there are also many possibilities involving non-Gaussian sta
ble priors and hidden units that compute a smooth function such as tanh 
rather than a step function. 

Finding a prior with sensible properties for a network with an infinite 
number of hidden layers, each with an infinite number of units, would 
perhaps be the ultimate demonstration that Bayesian inference does not 
require limiting the complexity of the model. Whether such a result would 
be of any practical significance would of course depend on whether such 
networks have any significant advantage over networks with one or two lay
ers, and on whether a prior close to the limit is obtained with a manageable 
number of layers (say less than ten) and a manageable number of hidden 
units per layer (at most in the hundreds). 

2.4 Hierarchical models 

Often, our prior knowledge will be too unspecific to fix values for (Tb, wv , (T a 

(or W a ), and (Tu (or wu ), even if we have complete insight into their effects 
on the prior. We may then wish to treat these values as unknown hyper-
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parameters, giving them higher-level prior distributions that are rather 
broad. Insight into the nature of the prior distributions produced for given 
values of the hyperparameters is still useful even when we plan to use such 
a hierarchical model, rather than fixing the hyperparameters to particular 
values, since this insight allows us to better understand the nature of the 
model, and to judge whether the range of possibilities it offers is adequate 
for our problem. 

One benefit of a hierarchical model is that the degree of "regularization" 
that is appropriate for the task can be determined automatically from the 
data (MacKay 1991, 1992b). The results in this chapter clarify the meaning 
of this procedure - by allowing (T" to be set by the data, we let the data 
determine the scale above which the function takes on a Brownian character 
(see equation (2.11)). The results concerning fractional Brownian priors 
suggest that it might be useful to make TJ a hyperparameter as well, to 
allow the fractional Brownian character of the function to be determined 
by the data. Similarly, when using a t-distribution as a prior for weights, 
it might be useful to make the shape parameter, a, be a hyperparameter, 
and thereby allow the index of the stable distribution to which the prior 
converges to vary. 

Consideration of the results in the chapter also reveals a potential prob
lem when these hierarchical models are used with networks having large 
numbers of hidden units. The extent of the central region over which the 
characteristics of functions drawn from the prior are approximately uniform 
is determined by the ratio (Ta/(T". When these quantities are hyperparam
eters, the size of this region can vary independently of the smoothness 
characteristics of the function, which depend only on (T". Typically, the 
size of this region will not be fixed by the data - if the data indicate that 
the properties of the actual function are uniform over the region for which 
training data is available, then any values of the hyperparameters that lead 
to a central region at least this large will be compatible with the data. If 
the number of hidden units is small, the central region will presumably be 
forced to have approximately the same extent as the training data, in order 
that all the hidden units can be exploited. When there are many hidden 
units, however, the pressure for them to all be used to explain the training 
data will be much less, and the size of the central region will be only loosely 
constrained. 

This phenomenon will not necessarily lead to bad predictive perfor
mance - indeed, if extrapolation outside the region of the training data 
is to be done, it is desirable for the central region to extend beyond the 
training data, to include the region where predictions are to be made. If 
we are interested only in the training region, however, using a model whose 
central region is much larger then the training region may lead to substan
tial wasted computation, as many hidden units in the network will have 
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no influence on the area of interest. Some reformulation of the model that 
allowed the user to exercise greater control over the central region would 
be of interest. 



Chapter 3 

Monte Carlo Implementation 

This chapter presents a Markov chain Monte Carlo implementation of 
Bayesian learning for neural networks in which network parameters are 
updated using the hybrid Monte Carlo algorithm, a form of the Metropo
lis algorithm in which candidate states Q7'e found by means of dynamical 
simulation. Hyperparameters are updated separately using Gibbs sampling, 
allowing their values to be used in chasing good stepsizes for the discretized 
dynamics. I show that hybrid Monte Cado performs better than simple 
Metropolis, due to its avoidance of random walk behaviour. I also discuss 
variants of hybrid Monte Carlo in which dynamical computations are done 
using "partial gradients", in which acceptance is based on a "window" of 
states, and in which momentum updates incorporate ''persistence''. 

The implementation of Bayesian learning for multilayer perceptron net
works due to MacKay (1991, 1992b) uses a Gaussian approximation for the 
posterior distribution of the network parameters (weights and biases), and 
single-valued estimates for the hyperparameters (prior variances for the 
parameters, and the noise variance). Such approximate Bayesian methods 
have proven useful in some practical applications (MacKay 1994a, Thod
berg 1996). However, as discussed in Chapter 1, there are reasons to believe 
that these methods will not always produce good approximations to the 
true result implied by the model, especially if complex models are used in 
order to take full advantage of the available data. 

There is thus a need for an implementation of Bayesian learning that 
does not rely on any assumptions concerning the form of the posterior 
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distribution. At a minimum, such an implementation would be useful in 
assessing the accuracy of methods based on Gaussian approximations. If 
Gaussian approximation methods are often inadequate, as I expect, an 
implementation that avoids such assumptions will be necessary in order 
to assess the true merits of Bayesian neural network models, and to apply 
them with confidence in practical situations. 

Bayesian learning for neural networks is a difficult problem, due to 
the typically complex nature of the posterior distribution. At present, it 
appears that only Markov chain Monte Carlo methods (reviewed in Sec
tion 1.3.1) offer any hope of producing in a feasible amount of time results 
whose accuracy is reasonably assured, without the need for any question
able assumptions. As will be seen, however, the Markov chain Monte Carlo 
methods commonly used for statistical applications are either not applica
ble to this problem or are very slow. Better results can be obtained using 
the hybrid Monte Carlo algorithm, due to its avoidance of random wall< be
haviour. Hybrid Monte Carlo was originally developed for use in quantum 
chromodynamics, and is not widely known outside the lattice field theory 
community. I believe this algorithm is of general interest, however, and will 
prove useful in many statistical applications. 

I begin this chapter by reviewing the hybrid Monte Carlo algorithm, 
after which I describe an implementation of Bayesian learning for multilayer 
percept ron networks based on it. The range of network models handled by 
this implementation and the details of the computational methods used are 
described in Appendix A. I demonstrate the use of this implementation on 
the "robot arm" problem of MacKay (1991, 1992b). I then compare the 
performance of hybrid Monte Carlo with other methods, such as simple 
forms ofthe Metropolis algorithm. I conclude by examining several variants 
of the basic hybrid Monte Carlo method, which can sometime improve 
performance. 

Note that throughout this chapter the objective is to develop a compu
tationally feasible procedure for producing the Bayesian predictions that 
are mathematically implied by the model being employed. Whether such 
predictions are good, in the sense of being close to the true values, is an
other matter, consideration of which is for the most part deferred to Chap
ter 4. The use of this implementation in Chapter 4 will also further test its 
computational performance, for a variety of networks architectures, data 
models, and priors. 

3.1 The hybrid Monte Carlo algorithm 

The hybrid Monte Carlo algorithm of Duane, Kennedy, Pendleton, and 
Roweth (1987) merges the Metropolis algorithm with sampling techniques 
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based on dynamical simulation. The output of the algorithm is a sample of 
points drawn from some specified distribution, which can then be used to 
form Monte Carlo estimates for the expectations of various functions with 
respect to this distribution (see equation (1.14)). For Bayesian learning, we 
wish to sample from the posterior distribution given the training data, and 
are interested in estimating the expectations needed to make predictions 
for test cases, such as in equation (1.12). 

One way of viewing the hybrid Monte Carlo algorithm is as a com
bination of Gibbs sampling and a particularly elaborate version of the 
Metropolis algorithm. I assume here that the reader is familiar with these 
two methods, which were reviewed in Section 1.3.1. The hybrid Monte 
Carlo algorithm itself, and methods related to it, have been reviewed by 
Toussaint (1989), Kennedy (1990), and myself (Neal 1993b). 

3.1.1 Formulating the problem in terms of energy 

The hybrid Monte Carlo algorithm is expressed in terms of sampling from 
the canonical (or Boltzmann) distribution for the state of a physical system, 
which is defined in terms of an energy function. However, the algorithm can 
be used to sample from any distribution for a set of real-valued variables 
for which the derivatives of the probability density can be computed. It is 
convenient to retain the physical terminology even in non-physical contexts, 
by formulating the problem in terms of an energy function for a fictitious 
physical system. 

Accordingly, suppose we wish to sample from some distribution for a 
"position" variable, q, which has n real-valued components, qj. In a real 
physical system, q would consist of the coordinates of all the particles; in 
our application, q will be the set of network parameters. The probability 
density for this variable under the canonical distribution is defined by 

P(q) ex exp(-E(q)) (3.1) 

where E( q) is the "potential energy" function. (The "temperature" param
eter of the canonical distribution is here set to one, as it plays no role in 
the present application.) Any probability density that is nowhere zero can 
be put in this form, by simply defining E(q) = -logP(q)-logZ, for any 
convenient Z. 

To allow the use of dynamical methods, we introduce a "momentum" 
variable, p, which has n real-valued components, Pi, in one-to-one corre
spondence with the components of q. The canonical distribution over the 
"phase space" of q and P together is defined to be 

P(q, p) ex exp( -H(q, p)) (3.2) 

where H(q,p) = E(q) + K(p) is the "Hamiltonian" function, which gives 
the total energy. K(p) is the "kinetic energy" due to the momentum, for 
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which the usual choice is 

K(p) (3.3) 

The mi are the "masses" associated with each component. Adjustment of 
these mass values can improve efficiency, but for the moment they may be 
taken to all be one. 

In the distribution of equation (3.2), q and P are independent, and the 
marginal distribution of q is the same as that of equation (3.1), from which 
we wish to sample. We can therefore proceed by defining a Markov chain 
that converges to the canonical distribution for q and p, and then simply 
ignore the P values when estimating expectations of functions of q. This 
manoeuver may appear pointless at present, but will eventually be shown 
to yield substantial benefits through its suppression of random walk be
haviour. 

3.1.2 The stochastic dynamics method 

Hybrid Monte Carlo can be viewed as an elaboration of the stochastic 
dynamics method (Andersen 1980), in which the task of sampling from the 
canonical distribution for q and P given by equation (3.2) is split into two 
sub-tasks - sampling uniformly from values of q and P with a fixed total 
energy, H(q,p), and sampling states with different values of H. 

Sampling at a fixed total energy is done by simulating the Hamiltonian 
dynamics of the system, in which the state evolves in fictitious time, r, 
according to the following equations: 

dqi oH Pi (3.4) +-dr OPi mi 

dPi oH oE 
(3.5) 

dr Oqi Oqi 

To do this, we must be able to compute the partial derivatives of E with 
respect to the qi. 

Three properties of Hamiltonian dynamics are crucial to its use in sam
pling. First, H stays constant as q and p vary according to this dynamics, 
as can be seen as follows: 

dH 
dr 

L [OH dqi + oH dPi ] 
. oqj dr BPi dr , 

[8H BH 8H 8H] 
~ Oqi OPi - BPi 8qi 

(3.6) 

o (3.7) 
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Second, Hamiltonian dynamics preserves the volumes of regions of phase 
space - i.e. if we follow how the points in some region of volume V move 
according to the dynamical equations, we find that the region where these 
points end up after some given period of time also has volume V. We can 
see this by looking at the divergence of the motion in phase space: 

[ 8 (dqi ) a (dPi )] ~ 8qi dr + 8Pi dr , 
[ 8H 8H] 

= ~ 8qi 8pi - OPi 8qi , 
= 0 (3.8) 

Finally, the dynamics is reversible. After following the dynamics forward 
in time for some period, we can recover the original state by following the 
dynamics backward in time for an equal period. We cann also return to the 
initial state by negating the momentum variables, following the dynamics 
for the same period, and then negating the momentum variables again. 

Together, these properties imply that the canonical distribution for q 
and P is invariant with respect to transitions that consist of following a tra
jectory for some pre-specified period of time using Hamiltonian dynamics. 
The probability that we will end in some small region after the transition 
will be the same as the probability that we started in the corresponding 
region (of equal volume) found by reversing the dynamics. If this proba
bility is given by the canonical distribution, the probability of being in the 
final region will also be in accord with the canonical distribution, since the 
probabilities under the canonical distribution depend only on H, which is 
the same at the start and end of the trajectory. 

In many cases, transitions based on Hamiltonian dynamics will eventu
ally explore the whole region of phase space with a given value of H. Such 
transitions are clearly not sufficient to produce an ergodic Markov chain, 
however, since regions with different values of H are never visited. 

In the stochastic dynamics method, an ergodic Markov chain is obtained 
by alternately performing deterministic dynamical transitions and stochas
tic Gibbs sampling ("heatbath") updates of the momentum. Since q and 
P are independent, P may be updated without reference to q by drawing 
a new value with probability density proportional to exp(-K(p)). For the 
kinetic energy function of equation (3.3), this is easily done, since the Pi 
have independent Gaussian distributions. These updates of P can change 
H, allowing the entire phase space to be explored. 

The length in fictitious time of the trajectories is an adjustable param
eter of the stochastic dynamics method. It is best to use trajectories that 
result in large changes to q. This avoids the random walk effects that would 
result from randomizing the momentum after every short trajectory. (This 
point is discussed further below, in connection with hybrid Monte Carlo.) 

In practice, Hamiltonian dynamics cannot be simulated exactly, but can 
only be approximated by some discretization using finite time steps. In the 
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leapfrog discretization, a single step finds approximations to the position 
and momentum, (j and p, at time r + ( from (j and p at time r as follows: 

Pier + ~) Pier) - .: oE ((j(r)) 
2 oqi 

(3.9) 

Qi(r+f) ~( ) + p;(r+~) qi r ( 
mi 

(3.10) 

Pier + () Pi(r+~) - .:oE(q(r+()) 
2 2 Oqi (3.11) 

Such a leapfrog step consists of a half-step for the Pi, a full step for the 
qi, and another half-step for the Pi. (One can instead do a half-step for 
the qi, a full step for the Pi, and another half-step for the qi, but this is 
usually slightly less convenient.) To follow the dynamics for some period of 
time, 6.r, a value is chosen for the stepsize, f, that is thought to be small 
enough to give acceptable error, and equations (3.9)-(3.11) are applied for 
L = 6. r / ( steps in order to reach the target time. When this is done, the 
last half-step for Pi in one leapfrog step will be immediately followed by 
the first half-step for Pi in the next leapfrog step. All but the very first and 
very last such half-steps can therefore be merged into full steps starting at 
times r + h + (/2, which "leapfrog" over the steps for the qi that start at 
times r + h. 

In the leapfrog discretization, phase space volume is still preserved (a 
consequence of the fact that each of the changes to a component of q or 
P in a leapfrog step depends only on the current values of the other com
ponents). The dynamics can also still be reversed (by simply applying the 
same number of leapfrog steps with ( negated). However, the value of H 
no longer stays exactly constant. Because of this, Monte Carlo estimates 
found using the stochastic dynamics method will suffer from some system
atic error, which will go to zero only as the stepsize, f, is reduced to zero 
(with the number of steps needed to compute each trajectory then going 
to infinity). 

3.1.3 Hybrid Monte Carlo 

In the hybrid Monte Carlo algorithm of Duane, et al (1987), the systematic 
error of the stochastic dynamics method is eliminated by merging it with 
the Metropolis algorithm. 

Like the uncorrected stochastic dynamics method, the hybrid Monte 
Carlo algorithm samples points in phase space by means of a Markov chain 
in which stochastic and dynamical transitions alternate. In the stochastic 
transitions, the momentum is replaced using Gibbs sampling, as described 
in the previous section. The dynamical transitions in the hybrid Monte 
Carlo method are also similar to those in the stochastic dynamics method, 
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but with two changes - first, the momentum is negated after the trajectory 
is computed; second, the point reached by following the dynamics is only 
a candidate for the new state, to be accepted or rejected based on the 
change in total energy, as in the Metropolis algorithm. If the dynamics were 
simulated exactly, the change in H would always be zero, and the new point 
would always be accepted. When the dynamics is simulated using some 
approximate discretization, H may change, and moves will occasionally 
be rejected. These rejections exactly eliminate the bias introduced by the 
inexact simulation. 

In detail, given values for the leapfrog stepsize, E, and the number of 
leapfrog steps, L, a dynamical transition is performed as follows: 

1) Starting from the current state, (q, p) = ((j(O) , p(O)), perform 
L leapfrog steps with a stepsize of E, resulting in the state 
((j(EL), p(EL)). 

2) Negate the momentum variables, thereby producing the state 
(q*,p*) = (q-(fL), -p(fL)). 

3) Regard (q*, p*) as a candidate for the next state, as in the 
Metropolis algorithm, accepting it with probability 

min (1, exp (- (H(q*,p*) - H(q,p)))), 
and otherwise letting the new state be the same as the old. 

The negation of the momentum in step (2), together with the reversibility 
of the leapfrog dynamics, ensures that if we were to perform a dynami
cal transition starting with the candidate state above, (q*, p*), the state 
proposed would be the initial state above, (q, p). Furthermore, since the 
leapfrog steps preserve phase space volume, points in phase space are not 
squeezed together or spread apart by the mapping from current to pro
posed state. The proposal of a candidate state above therefore has the 
symmetry required for a Metropolis update to leave the desired distribu
tion invariant (see Section 1.3.3). The negation ofthe momentum variables 
in step (2) is in fact unnecessary if the momentum will be replaced in a 
Gibbs sampling step before the next dynamical transition anyway, but it is 
necessary if the dynamical transitions are employed in some other context, 
as in Section 3.5.3. 

The values for f and for L used above may be chosen at random from 
some fixed distribution. This may be useful when the best values are not 
known, or vary from place to place. Some random variation may also be 
needed to avoid periodicities that could interfere with ergodicity (Macken
zie 1989), though this is not expected to be a problem for an irregular 
distribution such as a neural network posterior. 

The name Langevin Monte Carlo is given to hybrid Monte Carlo with 
L = 1, that is, in which candidate states are generated using only a sin-
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gle leapfrog step. The "smart Monte Carlo" method of Rossky, Doll, and 
Friedman (1978) is equivalent to this. 

Only when L is reasonably large, however, does one obtain the principal 
benefit of hybrid Monte Carlo - the avoidance of random walks. One might 
think that a large error in H would develop over a long trajectory, leading 
to a very low acceptance rate. For sufficiently small stepsizes, this usually 
does not occur. Instead, the value of H oscillates along the trajectory, and 
the acceptance rate is almost independent of trajectory length. For step
sizes above a certain limit, however, the 'leapfrog discretization becbmes 
unstable, and the acceptance rate is very low. The optimal strategy is usu
ally to select a stepsize just a bit below this point of instability. Trajectories 
should be made long enough that they typically lead to states distant from 
their starting point, but no longer. Shorter trajectories would result in the 
distribution being explored via a random walk; longer trajectories would 
wastefully traverse the whole distribution several times, ending finally at a 
point similar to one that might have been reached by a shorter trajectory. 

Figure 3.1 illustrates the advantage of using long trajectories in hybrid 
Monte Carlo. Here, the distribution for q = (ql, q2) that we wish to sample 
from is a bivariate Gaussian with high correlation, defined by the potential 
energy function 

E(q) (qUui + qUu~ - 2pqlq2/U1U2) /2(1-p2) (3.12) 

We could of course transform to a different coordinate system in which the 
two components are independent, at which point sampling would become 
easy. In more complex problems this will be difficult, however, so we assume 
that we cannot do this. If the masses, ml and m2, associated with the two 
components are set to one, the leapfrog method is stable for this problem 
as long as the stepsize used is less than twice the standard deviation in 
the most confined direction; to keep the rejection rate low, we will have to 
limit ourselves to a stepsize a bit less than this. Many leapfrog steps will 
therefore be needed to explore in the less confined direction. 

The left of Figure 3.1 shows the progress oftwenty Langevin Monte Carlo 
iterations. In each iteration, the momentum is replaced from its canonical 
distribution, and a single leapfrog step is then performed (with the result 
sometimes being rejected). Due to the randomization of the direction each 
iteration, the progress takes the form of a random walk. If each iteration 
moves a distance of about f, then k iterations will typically move a distance 
of only about tv'k. 

The right the Figure 3.1 shows a single hybrid Monte Carlo trajectory 
consisting of twenty leapfrog steps, with the momentum being randomized 
only at the start. Such trajectories move consistently in one direction, until 
they are "reflected" upon reaching a region of low probability. Accordingly, 
in k steps that each move a distance of about f, the hybrid Monte Carlo 
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FIGURE 3.1. Sampling using the Langevin and hybrid Monte Carlo methods. The 
distribution sampled from is a bivariate Gaussian with (Tl = (T2 = 1, and p = 0.99, 
represented above by its one standard deviation contour. Sampling by Langevin 
Monte Carlo is illustrated on the left, which shows twenty single-step trajectories 
(except some rejected trajectories are not shown). Sampling by hybrid Monte 
Carlo is illustrated on the right, which shows a single twenty-step trajectory. In 
both cases, the leapfrog method was used with a stepsize of 0.15. Only the course 
of the position variables is depicted; the momentum variables are not shown. 

can move a distance of up to fk, permitting much more efficient exploration 
than is obtained with a random walk. 

The Langevin Monte Carlo method does permit use of a somewhat 
larger leapfrog stepsize while maintaining a good acceptance rate, but 
for distributions with high correlations this advantage is more than off
set by the penalty from performing a random walk. Gibbs sampling for 
such distributions also produces a random walk, with similar size changes. 
In a simple version of the Metropolis algorithm, in which candidate states 
are drawn from a symmetric Gaussian distribution centred at the current 
point, maintaining a high acceptance rate requires limiting the size of the 
changes to about the same amount as are produced with Langevin Monte 
Carlo or Gibbs sampling, again resulting in a random walk. (For this two
dimensional problem, simple Metropolis in fact performs best when quite 
large changes are proposed, even though the acceptance rate is then very 
low, but this strategy ceases to work in higher-dimensional problems.) 

3.2 An implementation of Bayesian neural network 
learning 

Bayesian learning and its application to multilayer perceptron networks 
were discussed in Chapter 1. I will recap the notation here. The network is 
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parameterized by weights and biases, collectively denoted by B, that define 
what function from inputs to outputs is computed by the network. This 
function is written as f(x, B). A prior for the network parameters is de
fined, which may depend on the values of some hyperparameters, "(. The 
prior density for the parameters is written as P(B I "(), the prior density for 
the hyperparameters themselves as P("(). We have a set of training cases, 
(x(1), y(1)), ... , (x(n), y(n)), consisting of independent pairs of input values, 
x(i), and target values, y(i). We aim to model the conditional distribution 
for the target values given the input values, which we specify in terms of 
f( x, 0), perhaps also using the hyperparameters, "f. These conditional prob
abilities or probability densities for the target are written as P(y I x, 0, ')'). 

Our ultimate objective is to predict the target value for a new test case, 
y(n+l), given the corresponding inputs, x(n+l), using the information in 
the training set. This prediction is based on the posterior distribution for 0 
and ,,(, which is proportional to the product of the prior and the likelihood 
due to the training cases: 

n 

ex P("() P(O I "() II P(y(c) I x(c), B, "() (3.13) 
c=l 

Predictions are made by integration with respect to this posterior distri
bution. The full predictive distribution is 

p(y(n+l) I x(n+1) , (x(l), y(1)), ... , (x(n), y(n))) (3.14) 

= J p(y(n+1) I x(n+l), 0, "() P(O, ')' I (x(l), y(1)), . .. , (x(n), y(n))) dO d"( 

For a regression model, the single-valued prediction that minimizes ex
pected squared-error loss is the mean of the predictive distribution. If the 
conditional distribution for the targets is defined to have a mean given by 
the corresponding network outputs, this optimal prediction is 

In the Markov chain Monte Carlo approach, these integrals, which take the 
form of expectations offunctions with respect to the posterior distribution, 
are approximated by the average value of the function over a sample of 
values from the posterior. 

I believe that hybrid Monte Carlo is the most promising Markov chain 
method for sampling from the posterior distribution of a neural network 
model. One cannot even attempt to use ordinary Gibbs sampling for this 
problem, since sampling from the conditional distributions is infeasible. 



3.2 An implementation of Bayesian neural network learning 65 

Simple forms of the Metropolis algorithm are possible, but will suffer from 
random walks. Uncorrected stochastic dynamics (see Section 3.1.2) can also 
be applied to this problem (Neal 1993a), but as this raises the possibility 
of unrecognized systematic error, the hybrid Monte Carlo method appears 
to be the safer choice. These other methods will be compared to hybrid 
Monte Carlo in Section 3.4. 

There are many possible ways of using hybrid Monte Carlo to sample 
from the posterior distribution for a neural network model. In my earliest 
work on this problem (Neal 1992b), I felt that use of "simulated annealing" 
(Kirkpatrick, Gelatt, and Vecchi 1983) was desirable, in order to overcome 
the potential problem that the simulation could be trapped for a long time 
in a local minimum of the energy. I therefore chose a parameterization of 
the model in which the prior was uniform, since this allows annealing to 
be done without affecting the prior. In the simulation results I reported, 
annealing was indeed found to be beneficial. However, later work revealed 
that the primary benefit of annealing was in overcoming the bad effects of 
the parameterization used - which had been chosen only because it made 
annealing more convenient! 

In later work, I therefore abandoned use of annealing (though it remains 
possible that it might be beneficial in some form). Many other implemen
tation decisions remain, however. 

Hyperparameters can be handled in several ways. In previous implemen
tations (Neal 1992a, 1993a), I replaced them with equivalent scale factors. 
Rather than letting the standard deviation of a group of weights, Wi, be 
controlled by a hyperparameter, (1", I instead expressed these weights in 
terms of a scale factor, s, and a set of unscaled weights, Ui, with Wi = SUi. 

The prior distribution for the Uj was fixed, with a standard deviation of 
one, while S was given its own prior. Hybrid Monte Carlo was then applied 
to update both S and the Uj. While this method worked reasonably well, 
it had the undesirable effect that the optimal stepsize for use with the Ui 

would vary with the current value of s. 

The choices made in the implementation described in this chapter are 
based in part on this previous experience. I cannot claim that my latest 
choices are optimal, however. Many possibilities remain to be evaluated, 
and I expect that the performance reported here may ultimately be im
proved upon significantly. 

I aim in this implementation to handle a wide range of network ar
chitectures and associated data models. Both regression and classification 
models are implemented, networks with any number of hidden layers are 
allowed, and prior distributions that include all those discussed in Chap
ter 2 are supported (except for those based on step-function hidden units, 
which are not suitable for implementation using backpropagation). Not all 
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aspects of these models are discussed in detail here, but they are described 
in Appendix A. Many useful extensions have not yet been implemented, but 
could be within the general framework of this implementation. Such possi
ble extensions include those mentioned in Section 2.4 in which 17 (control
ling the fractional Brownian character of the function) and a (controlling 
the index of the stable distribution) are treated as hyperparameters, and 
regression models in which the noise level varies depending on the inputs 
("heteroscedasticity", in statistical parlance). 

Another objective of this implementation is to minimize the amount of 
"tuning" that is needed to obtain good performance. Gibbs sampling is very 
nice in this respect, as it has no tunable parameters. In simple forms of the 
Metropolis algorithm, one must decide on the magnitude of the changes 
proposed, and in hybrid Monte Carlo one must select both the stepsize, 
f, and the number of leapfrog steps, L. I attempt in this implementation 
to derive the stepsizes automatically, though the user must still adjust 
these stepsizes by a small amount to get good performance. Specifying the 
number of leapfrog steps in a trajectory is still left to the user. 

The scheme used for setting stepsizes relies on a separation of the up
dates for the hyperparameters from the updates for the network parameters 
(weights and biases). The hyperparameters are updated by Gibbs sampling. 
The network parameters are updated by hybrid Monte Carlo, using step
sizes that depend on the current values of the hyperparameters. These two 
aspects of the implementation will now be described in turn. 

3.2.1 Gibbs sampling for hyperparameters 

Two types of hyperparameters are present in neural network models -
those in terms of which the prior distribution of the parameters is expressed, 
and those that specify the noise levels in regression models. One might not 
regard quantities of the latter type as "hyperparameters" , since they do not 
control the distribution of lower-level "parameters", but I use the same term 
here because in this implementation quantities of both types are handled 
similarly, via Gibbs sampling. These quantities also handled similarly in 
the implementation of MacKay (1991, 1992b) and in the work of Buntine 
and Weigend (1991). 

In the simplest cases, a hyperparameter of the first type controls the 
standard deviation for all parameters in a certain group. Such a group 
might consist of the biases for all units of one type, or the weights on all 
connections from units of one type to those of another type, or the weights 
on all connections from a particular unit to units of some type. The manner 
in which parameters are grouped is a modeling choice that is made on the 
basis of prior knowledge. -
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In detail, let the parameters in a particular group be Ul, ... ,Uk (in the 
notation given previously, these are components of 8). Conditional on the 
value ofthe controlling hyperparameter, let the parameters in this group be 
independent, and have Gaussian distributions with mean zero and standard 
deviation Uu' It is convenient to represent this standard deviation in terms 
of the corresponding "precision", defined to be Tu = u;;2. The distribution 
for the parameters in the group is then given by 

(27l')-k/2 T:/ 2 exp ( - Tu L: ur / 2) (3.16) 
i 

The precision is given a Gamma distribution with some mean, W u , and 
shape parameter specified by au, with density 

P(TU) (au /2wu)Ou/2 r ou / 2 - 1 exp (- r, a /2w ) 
r(a tl /2) u u tl u 

(3.17) 

In the previous notation, Tu is a component of J. The values of Wu and au 
may for the moment be considered fixed. 

The prior for Tu is "conjugate" to its use in defining the distribution 
for the Ui. The conditional distribution for T" given values for the Ui is 
therefore also of the Gamma form: 

P(Ttl I Ul, ... ,Uk) 

ex T~u/2-1exp(-Tuau/2wu)' T:/2exp(-TuL:ur/2) (3.18) 
i 

ex T~ou+k)/2-1 exp ( - Tu(Ciu/'o,)u + L: un /2) 
i 

(3.19) 

From the above expression, one can see that the prior for Tu can be inter
preted as specifying au imaginary parameter values, whose average squared 
magnitude is l/wu . Small values of Ciu produce vague priors for Ttl. 

The conditional distribution of equation (3.19) is what is needed for a 
Gibbs sampling update, since given Ul, ... ,Uk, the value of Tu is indepen
dent of the other parameters, hyperparameters, and target values. Efficient 
methods of generating Gamma-distributed random variates are known (De
vroye 1986). 

The implementation described in Appendix A allows for more complex 
situations, in which the priors for the precisions may be specified using 
higher-level hyperparameters. For example, each hidden unit might have 
an associated hyperparameter giving the precision for weights out of that 
unit, with the mean for these precisions (w in equation (3.17)) being a 
common higher-level hyperparameter, shared by all units of one type. Gibbs 
sampling for the lower-level hyperparameters remains as above, but more 
complex methods are needed to implement Gibbs sampling for the higher
level hyperparameter. The distribution given to a single parameter may 
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also be a t-distribution, rather than a Gaussian. Since t-distributions can be 
represented as mixtures of Gaussian distributions with precisions given by 
Gamma distributions, this can be implemented by extending the hierarchy 
downward, to include implicit precision variables associated with individual 
parameters. 

The treatment of hyperparameters specifying the amount of noise in 
regression models is similar. Again, it is convenient for the hyperparameters 
to be precision values, Tk = (1;;2, where (1k is here the standard deviation of 
the noise associated with the kth target value. Given the inputs, network 
parameters, and the noise standard deviations, the various target values in 
the training set are independent, giving: 

P{ (1) (n) I (1) (n) 0 ) Yk , ... , Yk X, ••• , x , ,TIc 

= (211") -n/2 r;/2 exp ( - rk E (Yke ) - fk (X (c) ,0)) 2 / 2) (3.20) 
e 

As before, we give Tk a Gamma prior: 

(o/2w)a/2 a/2-1 ( 
P{Tk) = r(o/2) rk exp -Tko/2w) (3.21) 

and obtain a Gamma distribution for Tk given everything else: 

P(Tk I (x(1), y(1»), ... , (x(n), y(n»), 0) 

ex r~a+n)/2-1 exp ( - Tk (o/w + E (yle) - fk (x (c) ,0))2/2) (3.22) 
c 

Variations on this scheme described in Appendix A include models with 
higher-level hyperparameters linking the TIc, or alternatively that use a 
single r for all targets, and models in which the noise follows at-distribution 
rather than a Gaussian. 

3.2.2 Hybrid Monte Carlo for network parameters 

A Markov chain that explores the entire posterior distribution can be ob
tained by alternating Gibbs sampling updates for the hyperparameters, as 
described in the previous section, with hybrid Monte Carlo updates for the 
network parameters. 

To apply the hybrid Monte Carlo method, we must formulate the desired 
distribution in terms of a potential energy function. Since we wish to sample 
from the posterior distribution for network parameters (the weights and 
biases), the energy will be ~ function of these parameters, previously called 
0, which now play the role of the "position" variables, q, of an imaginary 
physical system. {From here on, 0 and q will be used interchangeably, as 
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:1ppropriate in context). The hyperparameters will remain fixed throughout 
:me hybrid Monte Carlo update, so we can omit from the energy any terms 
that depend only on the hyperparameters. For -the generic case described 
by equation (3.13), the potential energy is derived from the log of the prior 
and the log of the likelihood due to the training cases, as follows: 

n 

E(8) F(-y) - logP(81 ,) - L 10gP(y(c) I x(c), B, ,) (3.23) 
c:=1 

where F(-y) is any function of of the hyperparameters that we find conve
nient. The canonical distribution for this energy function, which is propor
tional to exp( - E( B)), will then produce the posterior probability density 
for B given ,. Note that the energy function will change whenever the 
hyperparameters change, which will normally be between successive hy
brid Monte Carlo updates, when new values for the hyperparameters are 
chosen using Gibbs sampling. 

The detailed form of the energy function will vary with the network 
architecture, the prior, and the data model used. As a specific example, 
suppose that the network parameters form two groups, u and v, so that 
B = {Ul, ... , Uk, VI, ... , Vh}; let the prior standard deviations for these two 
groups be (Tu and (Tv. Suppose also that the target is a single real value, 
modeled with a Gaussian noise distribution of standard deviation (T. The 
hyperparameters are then, = {Tu, Tv, T}, where Tu = (T;;2, Tv = (T;;2, and 
T = (T-2. The priors for the two groups of weights conditional on the hyper
parameters are ofthe form given by equation (3.16), and the likelihood due 
to the training cases is given by equation (3.20). The resulting potential 
energy function is 

k h n 

E(B) = Tu L uri 2 + Tv L vJ/2 + T L (y(C) - f(x(C), 0))2/ 2 (3.24) 
;=1 j=1 c=1 

It is helpful to impose a very large upper limit (e.g. 1030) on the value of 
E above. This avoids problems with floating-point overflow during compu
tation of trajectories that turn out to be unstable, since the derivatives of 
E at points where the limit is exceeded are zero, preventing the instability 
from going further. 

This energy function is similar to the error function (with weight decay 
penalty) that is minimized in conventional neural network training. Recall, 
however, that the objective in a Monte Carlo implementation of Bayesian 
learning is not to find the minimum of the energy, but rather to sample 
from the corresponding canonical distribut;ion. 

To sample from this canonical distribution using the hybrid Monte Carlo 
method, we introduce momentum variables, Pi, in one-to-one correspon
dence with the position variables, qi, which are here identified with the 



70 Chapter 3. Monte Carlo Implementation 

parameters, O. With each momentum variable, we also associate a positive 
"mass", mi. These masses are used in defining the kinetic energy, K(p), 
associated with the momentum (equation (3.3)), with the result that the 
canonical distributions for the Pi are Gaussian with means of zero and vari
ances mi (independently of each other and of the position). As described 
in Section 3.1.3, a single hybrid Monte Carlo update starts by generating 
new values for all the momentum variables from their canonical distribu
tion. A candidate state is then found by following a trajectory computed 
using the leapfrog discretization of Hamiltonian dynamics (equations (3.9)
(3.11))' applied for some number of steps, L, using some stepsize, f. Finally 
this candidate is accepted or rejected based on the change in total energy, 
H(q,p) = E(q) + K(p). Calculation of the derivatives of E with respect to 
the qi is required in order to perform the leapfrog steps; these derivatives 
can be found by the usual "backpropagation" method (Rumelhart, Hinton, 
and Williams 1986a, 1986b). 

We would like to set the masses, mi, the stepsize, [, and the number of 
leapfrog steps in a trajectory, L, to values that will produce a Markov chain 
that converges rapidly to the posterior distribution, and then rapidly moves 
about the posterior. Rapid movement will keep the dependence between 
states in the Markov chain low, which typically increases the accuracy 
of Monte Carlo estimates based on a given number of such states (see 
Section 1.3.1). In this implementation, the number of leapfrog steps must 
be set by the user. (Ways of making this choice are discussed in connection 
with the demonstration of Section 3.3.) I attempt to set the masses and the 
stepsize automatically, but the user may still need to adjust these quantities 
based on the observed rejection rate. 

It is convenient to recast the choice of masses, mi, and stepsize, [, as 
a choice of individual stepsizes, fi, that are applied when updating each 
component of the position and momentum. The leapfrog method of equa
tions (3.9)-(3.11) can be rewritten as follows: 

Pi(r + ~) Pi ( r) [ / vm; 0 E c( )) (3.25) vm; --- -qr vm; 2 Oqi 

lfi(r+f) ~ Pi(r + ~) 
qi(r) + ([ /..;m;) vm; (3.26) 

Pi(r+f) Pi(r +~) f/vm;aE C( )) (3.27) vm; vm; - -qr+f 
2 oqj 

Rather than applying the leapfrog equations to update Pi and qi, we can 
therefore store the values Pi / vm; instead of the Pi, and update these values 
(along with the qi) using leapfrog steps in which different components have 
different stepsizes, given by fi = [/ vm;. 
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This re-expression of the leapfrog method reduces slightly the amount of 
computation required, and has the additional advantage that the canonical 
distribution of Pi / vrn; is independent of mi. Accordingly, after a change in 
the mj, the Pi / vrn; values will be distributed according to the new canon
ical distribution as long as they were previously distributed according to 
the old canonical distribution. In this implementation, the mj (equivalently, 
the fj) are set based on the values of the hyperparameters, and therefore 
change whenever the hyperparameters are updated using Gibbs sampling, 
normally before each hybrid Monte Carlo update. In the standard hybrid 
Monte Carlo method, these updates begin with the complete replacement 
of the momentum variables, so the invariance of the distribution of Pi / vrn; 
is of no significance. However, this is not the case for the variant of hybrid 
Monte Carlo with "persistence" discussed in Section 3.5.3. 

A basis for choosing good stepsizes can be found by examining the be
haviour of the leapfrog method applied to a simple system with a single 
position component (and hence a single momentum component) with the 
Hamiltonian H(q, p) = q2/2a2 + p2/2. A leapfrog step for this system is 

p(r + !) p(r) ~. q(r)/a2 (3.28) 

q(r + f) q(r) + fp(r+~) (3.29) 

p(r + f) p(r + ~)- ~ q(r + f)/a2 (3.30) 

This defines a linear mapping from (q( r), p( r)) to (q( r + f), p( r + f)). By 
examining the properties of this mapping, it is straightforward to show that 
H (q, p) diverges if this leapfrog step is repeatedly applied with f > 2u, but 
that H remains bounded when it is applied with f < 2a. Setting f. somewhat 
below 2u will therefore keep the error in H small, and the rejection rate 
low, regardless of how long the trajectory is. 

This simple system serves as an approximate model for the behaviour of 
the leapfrog method when applied to a more complex system whose poten
tial energy function can locally be approximated by a quadratic function of 
q. ,By a suitable translation and rotation of coordinates, such a quadratic 
energy function can be put in the form 

E(q) L q'f /2u'f (3.31) 

In this form, the components are independent under the canonical distribu
tion, and do not affect one another in the leapfrog steps - the behaviour 
of each pair, (qj,Pi), is as for the simple system considered above. How
ever, the final decision to either accept or reject the result of following 
a trajectory is based on the total change in H, to which all components 
contribute. 
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If we use the same stepsize for all components in this system, then to 
keep the rejection rate low, we will have to use a stepsize less than 2u min, 

where O"min is the smallest of the Uj, as otherwise the error in H due to one 
or more components will diverge as the trajectory length increases. If other 
of the O"j are much larger than O"rnin, then with this small stepsize a large 
number of leapfrog steps will be required before these other components 
change significantly. 

This inefficiency can be avoided by using a different stepsize for each 
component (equivalently, a different mass). For the ith component, we can 
set the stepsize, ti, to a value a bit less than 20"j, with the result that even 
short trajectories traverse the full range of all components. 

In practice, this result is too much to hope for, both because the poten
tial energy is at best only approximately quadratic, and because we do not 
know how to translate and rotate the coordinate system so as to remove 
the interactions between components of q. Nevertheless, using a different 
stepsize for each component will generally be advantageous. 

In this implementation, I use a heuristic approach in which the stepsizes 
are set as follows: 

[
82 E] -1/2 

tj ~ TJ 8qr (3.32) 

where 7J is a stepsize adjustment factor, chosen by the user. If the energy 
really were as in equation (3.31), the heuristic would give tj ~ TJO"i, which 
is close to optimal when 7J ~ 1. When the different components interact, 
however, these stepsizes may be too large, and the user may need to use a 
smaller value for TJ in order to produce an acceptable rejection rate. 

Unfortunately, we cannot set the stepsizes based on the actual values of 
82 E / 8qr at the starting point of the trajectory. Doing this would render 
the method invalid, as the trajectory would cease to be reversible - when 
starting at the other end, different stepsizes would be chosen, leading to a 
different trajectory. We are allowed to use the current values of the hyper
parameters, which are fixed during the hybrid Monte Carlo update, as well 
as the values of the inputs and targets in the training cases, but we must 
not use quantities that depend on the network parameters. 

Details of the heuristic procedure for setting the tj using permissible 
information are given in Appendix A (Section A.4). The difficult part is 
the estimation of _82 L / 8w'fj, where L is the log likelihood due to a training 
case, and Wij is a weight in the network. Such estimates are obtained by 
first estimating -{j2 L / 8v;, where Vj is the value of a unit in the network. 
These estimates are found by a form of backpropagation, which need be 
done only once, not for every training case, since we are not permitted to 
use the actual values of Vj for a particular case anyway. Several heuristic 
approximations are made during this procedure: when a value depends on 
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Vj, the maximum is sometimes used; when the sign of a term depending 
on Vj may be either positive or negative, it is replaced by zero, on the 
assumption that these terms will ultimately cancel when we sum the results 
over the training set; and when a value depends on the magnitude of a 
weight, the magnitude corresponding to the associated hyperparameter is 
used. To find _82 L / 8wlj based on _82 L /8vJ, we need the value of vl. 
When Vi is an input unit, this value is available (since the inputs are fixed); 
when Vi is a hidden unit, the maximum possible value of V[ = 1 is used. 

3.2.3 Verifying correctness 

The Markov chain Monte Carlo implementation described above is fairly 
complex, raising the question of how one can verify that the software im
plementing the method is correct. 

One common type of implementation error results in answers that are 
correct, but require more computation time to obtain than they should 
have. In this respect, note that the validity of the hybrid Monte Carlo 
method requires only that the dynamics be reversible and preserve volume 
in phase space, and that the end-point of the trajectory be accepted or 
rejected based on a correct computation of the change in total energy. 
Errors computing the derivatives of E used in the leapfrog method do 
not invalidate the results, but will usually result in a large error in the 
trajectory and a consequent high rejection rate. (For severe errors, of course, 
the resulting inefficiencies may be so great that the Markov chain does 
not converge in any reasonable amount of time, and so no answers are 
obtained.) 

Once a feel for correct behaviour is obtained, such errors can often be 
recognized by the anomalously high rejection rate, which can be reduced 
only by using a very small stepsize adjustment factor, or by using very 
short trajectories. The correctness of the derivative computation can then 
be tested by comparison with the results obtained using finite differences (a 
check commonly done by users of other neural network procedures as well). 
One can also look at the effect of reducing the stepsize while increasing the 
number of leapfrog steps to compensate; with a correct implementation the 
computed trajectory should reach a limit as the stepsize is reduced. This 
latter check may also reveal errors in the trajectory computation itself. 

Incorrect answers may be produced as a result of errors in other compo
nents of the implementation, such as in the computation of the total energy 
used in deciding whether to reject, or in the Gibbs sampling updates for 
the hyperparameters. Such answers may sometimes be obviously ridicu
lous, but other times they may appear reasonable. To detect such errors, 
we need to compare with the answers produced using a method that is as 
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far as possible independent of that being tested, and which preferably is 
simpler, and hence less likely to be erroneously implemented. 

I have used the method of rejection sampling from the prior for this 
purpose. (This method was also used to produce the illustration in Sec
tion 1.2.4. Rejection sampling in general is discussed by Devroye (1986).) 
This method produces a sample of independent values from the poste
rior given the training data, from which Monte Carlo estimates can be 
computed, and compared with those obtained using the dependent values 
produced by a Markov chain method. These independent values frou{ the 
posterior are obtained by generating independent values from the prior and 
then rejecting some of these with probability proportional to the likelihood 
due to the training data, with the scaling factor for the likelihood chosen so 
that the maximum possible rejection probability is one. (When a regression 
model is used in which the noise level is a hyperparameter, the likelihood 
has no upper bound, so the method must be modified slightly, as described 
in Appendix A, Section A.5.) 

The rejection rate with this method can be extremely high. It can be 
feasibly applied only to very small training sets, with priors carefully chosen 
to give a high probability to parameter values that are well-matched to the 
data. For the test to be sensitive, large samples from the posterior must be 
obtained using both the rejection sampling method and the Markov chain 
Monte Carlo method being tested. I have performed these tests only for 
some simple network models with one hidden layer, which do not exercise 
all features of the implementation. Nevertheless, I expect that with a fair 
amount of effort it will usually be possible to use rejection sampling to test 
the correctness of the implementation when applied to a specific network 
model of interest for some application. Of course, subtle errors whose effects 
are fairly small may remain undetected, but these tests can provide some 
confidence that the results are not grossly in error. 

3.3 A demonstration of the hybrid Monte Carlo 
implementation 

To illustrate the use of the implementation based on hybrid Monte Carlo, 
and provide an idea of its performance, I will show here how it can be 
applied to learning a neural network model for the "robot arm" problem 
used by Mackay (1991, 1992b) to illustrate his implementation of Bayesian 
inference based on Gaussian approximations. This problem was also used 
in my tests of earlier hybrid Monte Carlo implementations (Neal 1992b, 
1993a). 

All timing figures given in this section are for an implementation written 
in C and run on an SGI Challenge D machine, with a MIPS R4400 CPU and 
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R4010 FPU, running at 150 MHz. The code was written with reasonable 
attention to efficiency, but was not fanatically tuned. Evaluation of the tanh 
activation function for hidden units was done using the standard library 
routine; use of fast approximations based on table lookup can lead to a 
build-up of error over long trajectories. 

3.3.1 The robot arm problem 

The task in the robot arm problem is to learn the mapping from joint 
angles to position for an imaginary "robot arm". There are two real input 
variables, Xl and X2, representing joint angles, and two real target values, Y1 

and Y2, representing the resulting arm position in rectangular coordinates. 
The actual relationship between inputs and targets is as follows: 

Y1 = 2.0 cos(xt} + 1.3 COS(X1 + X2) + e1 

Y2 2.0 sin(xt) + 1.3 sin(xl + X2) + e2 

(3.33) 

(3.34) 

where el and e2 are independent Gaussian noise variables of standard de
viation 0.05. 

David MacKay kindly provided me with the training and test sets he 
used in his evaluations. Both these data sets contain 200 input-target pairs, 
which were randomly generated by picking Xl uniformly from the ranges 
[-1.932, -0.453] and [+0.453, +1.932], and X2 uniformly from the range 
[0.534,3.142]. 

The robot arm data is modeled using a network with one layer of tanh 
hidden units. The inputs connect to the hidden units, and the hidden 
units to the outputs; there are no direct connections from inputs to out
puts. MacKay divides the parameters for this network into three classes -
input-to-hidden weights, hidden unit biases, and hidden-to-output weights 
together with output unit biases - and uses three hyperparameters to con
trol the standard deviations of Gaussian priors for parameters in each of 
these three classes. I used three analogous hyperparameters, but did not 
group the output unit biases with the hidden-to-output weights. Instead, 
I simply gave the output biases fixed Gaussian distributions with a stan
dard deviation of one. This change in the model is motivated by the scaling 
properties discussed in Chapter 2, which show that while the magnitude of 
the hidden-output weights should go down as the number of hidden units 
increases, there is no reason for any corresponding change in the magnitude 
of the output biases. 

In his work, MacKay gives the hyperparameters improper uniform dis
tributions. This is not safe with a Markov chain Monte Carlo implementa
tion, however, because the resulting posterior is also technically improper 
(though only because of its behaviour far from the region of high proba
bility density). This is not a problem in MacKay's implementation, which 
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sets the hyperparameters to single values, but would eventually result in 
divergent behaviour of a Markov chain sampling from the posterior. 

Accordingly, I gave proper Gamma priors to the hyperparameters, rep
resented by precision values, as in equation (3.17). In all three cases, the 
shape parameter used was a = 0.2, which gives a fairly broad distribution, 
approximating the improper prior used by MacKay. The mean was w = 1 
for the precision of input-to-hidden weights and hidden unit biases. For 
the precision of the hidden-to-output weights, I set w to the number of 
hidden units, which is in accord with the scaling relationships discussed in 
Chapter 2. 

I let the precision value for the noise (assumed the same for both targets) 
be a hyperparameter as well, with a Gamma prior as in equation (3.21), 
with a = 0.2 and w = 100 (corresponding to (J = 0.1). MacKay fixes the 
noise level to the true value of (J = 0.05, but it seems more realistic to let 
the noise level be determined from the data. 

3.3.2 Sampling using the hybrid Monte Carlo method 

In this demonstration, Markov chain sampling from the posterior distri
bution was done using two phases, the first designed to reach a rough 
approximation to equilibrium quickly, the second to sample efficiently from 
that point. This is generally a good strategy, though the details of the two 
phases described below are not necessarily optimal for all problems. 

In the initial phase, we start from some initial state, and simulate a 
Markov chain for as long as is needed for it to reach a rough approximation 
to the posterior distribution. In the sampling phase, we continue from the 
state reached at the end of the initial phase, generally using a different 
Markov chain, proceeding for long enough that a close approximation to 
the equilibrium distribution has been reached, and enough subsequent data 
has been collected to produce Monte Carlo estimates of adequate accuracy. 
Several runs of this two-phase procedure may be done, using different ran
dom number seeds; this provides a further check on whether equilibrium 
has actually been reached, as well as more data on which to base estimates. 

In this section, I will demonstrate how these phases can be carried out 
for a network with 16 hidden units, applied to the robot arm problem with 
200 training cases. The ultimate aim was to use the sample of networks 
obtained to make predictions for the targets in 200 test cases. 

For both the initial phase and sampling phases, the Markov chain used 
was built by alternating Gibbs sampling updates for the hyperparameters 
(see Section 3.2.1) with hybrid Monte Carlo updates for the parameters 
(see Section 3.2.2). For the -hybrid Monte Carlo updates, we must specify 
the number of leapfrog steps in a trajectory, L, and an adjustment factor, 
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1], for the heuristically chosen stepsizes. Typically, the best value for L is 
different for the initial phase and the sampling phase, which is one reason 
for having two phases. 

Most of the computation time in this implementation goes to perform
ing the leapfrog steps, since to evaluate the derivatives of E needed in 
each such step one must apply the network to all the training cases. Gibbs 
sampling for the hyperparameters and for the momentum variables takes 
comparatively little time. To facilitate comparison of runs in which the 
hybrid Monte Carlo trajectories consist of different numbers of leapfrog 
steps, I will present the results in terms of super-transitions, which may 
contain different numbers of hybrid Monte Carlo iterations, with different 
values of L, but which (for each phase) all contain the same number of 
leapfrog steps, and hence take approximately the same amount of compu
tation time. 1 Within a super-transition, each hybrid Monte Carlo update 
is preceded by a Gibbs sampling update for the hyperparameters. 

To investigate behaviour in the initial phase, I ran a series of tests us
ing super-transitions in which a total of 210 = 1024 leapfrog steps were 
performed, in the form of 2k hybrid Monte Carlo updates, each based on 
a trajectory of L = 210 - k leapfrog steps, with 0 ::; k ::; 10. Each run 
started with the network parameters all set to zero; the initial values of the 
hyperparameters are irrelevant, since they are immediately replaced in the 
first Gibbs sampling update. I let each run go for twenty super-transitions, 
which took approximately 5.6 minutes of computation time in total. (Thus 
each leapfrog step took approximately 16 milliseconds.) 

For all runs, the automatically assigned stepsizes were adjusted down
wards by a factor of 1] = 0.3. A good value for 1] must be found by trial 
and error; as a rule of thumb, it should be set so that the rejection rate is 
roughly 20%. Alternatively, one might set 'fJ at random prior to each hybrid 
Monte Carlo update, using some moderately broad distribution. 

Figure 3.2 shows the progress of these runs for k = 0, k = 4, and k = 8, 
which correspond to super-transitions consisting of a single hybrid Monte 
Carlo update with a trajectory of 1024 leapfrog steps, to 16 hybrid Monte 
Carlo updates with trajectories of 64 leapfrog steps, and to 256 hybrid 
Monte Carlo updates with trajectories of 4 leapfrog steps, together, in each 
case, with a like number of Gibbs sampling updates. Progress is shown in 

1 With the present implementation, this is not entirely true when L is very smail, since 
the hyperparameters then change frequently, and whenever they do, the derivatives of E 
must be re-evaluated. This slowdown could be avoided by performing the Gibbs sampling 
updates less frequently, or by saving intermediate results that would allow the derivatives 
to be re-evaluated without re-examining all the l;raining cases. Taking account of this 
slow-down for small L would in any case only strengthen the conclusions reached in this 
evaluation. 
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FIGURE 3.2. Progress of hybrid Monte Carlo runs in the initial phase. The plot 
shows the average squared error on the training set after each super-transition, 
on a log scale. The solid lines show the progress of three runs in which trajectories 
64 leapfrog steps long were used. Dotted lines show the progress of three runs 
with trajectories of 4 leapfrog steps, dashed lines the progress of three runs with 
trajectories of 1024 leapfrog steps. 

the figure in terms of the average squared error on the training set, which is 
closely related to the potential energy. The training set error was initially 
very high, since the network parameters had not adapted to the data. Once 
the training error had largely stabilized at a lower value, I assumed that 
the chain had reached at least a rough approximation to the equilibrium 
distribution, and that the sampling phase could begin. 

As can be seen, convergence to a roughly equilibrium distribution was 
faster using trajectories consisting of 64 leapfrog steps than when using 
trajectories of 4 or 1024 leapfrog steps; trajectories of length 16 and length 
256 were also inferior, though less dramatically so. This optimal trajectory 
length of 64 leapfrog steps is quite short in comparison with what will later 
be seen to be the optimum trajectory length for the sampling phase. This 
is understandable. The initial energy of the system is quite high, and must 
drop significantly for equilibrium to be reached. Energy is dissipated in 
the hybrid Monte Carlo method only when the momentum variables are 
replaced from their canonical distribution, which occurs only at the begin
ning of each hybrid Monte Carlo update, before the trajectory is computed. 
Rapid dissipation of energy therefore requires that many updates be done, 
with correspondingly short trajectories. The increased frequency of Gibbs 
sampling updates when trajectories are short may also contribute to faster 
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convergence. For very short trajectories, however, the slowing effect of the 
resulting random walk dominates. 

Once the initial phase is complete, we can find good values for the step
size adjustment factor, 7], and trajectory length, L, for use in the sampling 
phase. Prior to reaching a rough equilibrium at the end of the initial phase, 
it is possible that the situation will not have stabilized enough for this to 
be done. 

Figure 3.3 shows data on how the error in total energy varies with 7]. 

This data was obtained by continuing the simulation from the state at the 
end of one of the initial phase runs, using values of 7] randomly selected 
from an interval of one order of magnitude around 7] = 0.5. Trajectories of 
length 100 were used here, but the results are similar for all but very short 
trajectories. As can be seen, for 7] greater than about 0.5, the leapfrog 
method becomes unstable, and very large (positive) errors result, which 
would lead to a very high rejection rate if such a value of TJ were used. The 
value TJ = 0.3 used in the initial phase is close to optimal and was therefore 
used for the sampling phase as well. 

In order to minimize the extent to which the Markov chain undertakes a 
random walk, L should be chosen so that relevant functions of state at the 
end-point of a trajectory are almost uncorrelated with the corresponding 
values at the start-point. Trajectories should not be longer than is necessary 
to achieve this, of course. 

Figure 3.4 shows the variation of several quantities along a single tra
jectory 10000 leapfrog steps long, computed with 7] = 0.3, starting from 
the final state of one of the initial phase runs. The quantities directly rel
evant to the prediction task are the outputs of the network for the inputs 
in the test set; one such output is shown on the left of the figure. Though 
some short-range correlations are evident, these appear to die out within 
about 500 leapfrog steps, as is confirmed by numerical estimation, in so far 
as is possible from this small amount of data. A value of L = 500 might 
therefore seem appropriate for use in the sampling phase. 

The right side of Figure 3.4 tells a different story, however. For each 
of the three classes of parameters for this network, it shows the variation 
along the trajectory of the square root of the average squared magnitude 
of parameters in that class. (These quantities determine the distribution 
of the hyperparameters associated with the classes.) Correlations are evi
dent in these quantities over spans of several thousand leapfrog steps. Such 
long-term correlations are also found in the values of individual network 
parameters. These facts suggest that trajectories in the sampling phase 
should be several thousand leapfrog steps long (with TJ = 0.3). 

One might question the need for such long trajectories, since the quan
tities exhibiting these long-range correlations are not of interest in them-
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FIGURE 3.3. Error in energy for trajectories computed with different stepsizes. 
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tal axis (with changes greater than 10 plotted at 10). The starting point for the 
first trajectory was the last state from one of the initial phase runs with L = 64 
shown in Figure 3.2. Starting points for subsequent trajectories were obtained 
by continuing the simulation using hybrid Monte Carlo with these trajectories, 
along with Gibbs sampling updates of the hyperparameters. Values for '1 were 
randomly generated from a log-uniform distribution. 
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FIGURE 3.4. Degree of correlation along a trajectory. The plot on the left shows 
the first output of the network for inputs (-1.47, 0.75), as the network parameters 
vary along a trajectory 10 000 leapfrog steps long (with '1 = 0.3), plotted every 
100 steps. On the right, the variation in the square root of the average squared 
magnitude of parameters in three classes is shown - for input-hidden weights 
(solid), hidden biases (dotted), and hidden-output weights (dashed) - plotted 
on a log scale. The trajectory began with the state at the end of one of the initial 
phase runs with L = 64 shown in Figure 3.2. 
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selves. It is nevertheless prudent to pay attention to these quantities, for 
two reasons. 

First, the initial phase produces a state that is only presumed to be from 
roughly the equilibrium distribution. Further exploration of the state space 
in the sampling phase may reveal that the true equilibrium distribution is 
in fact quite different; alternatively, if this does not happen, our confidence 
that the true equilibrium has been found if! increased. For this purpose, the 
sampling phase should explore regions of state space that are representative 
of the posterior distribution in all relevant respects, which must certainly 
include aspects related to the hyperparameter values. 

Second, even if autocorrelations for the quantities of interest appear 
from a short segment of the chain to go to zero fairly rapidly, as in the 
left of Figure 3.4, it is possible that if the values were examined over a 
longer period, significant long-term correlations would be evident. It is 
difficult to ever be completely sure that this is not the case, but here again 
confidence can be increased by ensuring that the chain explores the full 
range of hyperparameter values. 

Figure 3.5 shows several sampling phase runs, with different trajectory 
lengths, each continuing from the state at the end of one of the initial 
phase runs with L = 64. For these runs, I used super-transitions consisting 
of 32000 leapfrog steps. For the run using trajectories of length L = 125, 
each super-transition therefore consisted of 256 pairs of Gibbs sampling 
and hybrid Monte Carlo updates; for the run with L = 2000, each super
transition consisted of 16 pairs of updates; and for the run with L = 32000, 
each consisted of a single Gibbs sampling update followed by a single hybrid 
Monte Carlo update. The state at the end of each super-transition was 
saved for possible later use in making predictions. The rejection rate for 
hybrid Monte Carlo updates was about 1.3% in all runs. Each run took 
approximately nineteen hours of computation time. 

The results of these runs show that the initial phase had not fully con
verged to the equilibrium distribution. Equilibrium does appear to have 
been reached after about 50 sampling phase super-transitions for the run 
with L = 125, and after about 25 super-transitions for the runs with 
L = 2000 and L = 32000. 

The run with L = 2000 clearly explored the range of these quantities 
more rapidly than did the run with L = 125. The relative merits of L == 
2000 and L = 32 000 are less evident. To get a better idea of the effect of 
varying L, I did three independent sampling runs of 150 super-transitions 
with L set to each of 125, 500, 2000, 8000, and 32000, in each case starting 
from the end states of the three initial phase runs with L = 64 shown 
in Figure 3.2. For each value of L, I used the data from the three runs 
to estimate the autocorrelations in the square root of the average squared 
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FIGURE 3.5. Progress of hybrid Monte Carlo runs in the sampling phase. These 
plots show the variation in the square root of the average squared magnitudes of 
parameters in the three classes during the course of hybrid Monte Carlo sampling 
runs using various trajectory lengths (L). The stepsize adjustment factor was 
,., = 0.3 in all cases. The runs were started with the state at the end of one of the 
initial phase runs with L = 64 shown in Figure 3.2. The horizontal axes show the 
number of super-transitions, each consisting of 32 000 leapfrog steps. The vertical 
axes show the square roots of the average squared magnitudes on a log scale, with 
input-hidden weights shown- with solid lines, hidden biases with dotted lines, and 
hidden·output weights with dashed lines. 
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FIGURE 3.6. Autocorrelations for different trajectory lengths. The plots show 
autocorrelations for the square root of the average squared magnitude of network 
parameters in each of three classes. The horizontal axes give the lags, measured 
in super-transitions consisting of 32 000 leapfrog steps; the vertical axes show 
the estimated autocorreiations at these lags, for sampling runs that have reached 
equilibrium. Results are shown for runs in which the hybrid Monte Carlo updates 
use various trajectory lengths (L), as indicated. 

magnitude of the parameters in different classes. In making these estimates, 
data from the first 50 super-transitions in each run was discarded, as the 
equilibrium distribution may not have been reached by then. 

The results are shown in Figure 3.6. Trajectories of length L = 8000 have 
the smallest autocorrelations, though L = 2000 is not much worse. This is 
as anticipated from the trajectory plot in the right of Figure 3.4, showing 
that a reasonable value for L can be selected before extensive computations 
are done. 

I have done some preliminary experiments to investigate why the auto
correlations for quantities shown in Figure 3.6 are non-zero (for lags greater 
than zero) even for the best sampling runs, with L = 8000. Three runs of 
150 super-transitions with L = 8000 were done in which there was only a 
single Gibbs sampling update for the hyperparameters at the start of each 
super-transition. (Recall that in a normal sampling run with L = 8000, 
a Gibbs sampling update is done before each of the four hybrid Monte 
Carlo updates in a super-transition.) Autocorrelations for the square roots 
of the average squared magnitudes of input-hidden weights and hidden
output weights (but not hidden biases) were significantly greater in these 
runs than in the normal runs. The observed autocorrelations were in fact 
consistent with the hypothesis that these autocorrelations are determined 
entirely by the frequency of Gibbs sampling updates, as autocorrelations at 
lag 4.e in these runs were similar to autocorrelations at lag .e in the normal 
runs. In further sampling runs with a single Gibbs sampling update in e~ch 
super-transition but with twice as many hybrid Monte Carlo updates (tak-
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ing twice as much time), the autocorrelations were reduced only slightly, 
adding further support to the hypothesis that the Gibbs sampling com
ponent of the Markov chain is the primary cause of the autocorrelations 
seen. 

These results suggest that performance might be improved by merging 
the updates of the hyperparameters with the updates of the parameters. 
Such a scheme might be aimed at increasing the frequency of hyperparam
eter updates, or at suppressing the random walk nature of these updates 
by performing them using hybrid Monte Carlo. However, one would like to 
preserve the capability in the present implementation of using the hyper
parameter values to set stepsizes for the parameter updates; this require
ment makes devising such a scheme non-trivial. 

3.3.3 Making predictions 

Once we have one or more realizations of the Markov chain from the sam
pling phase, we can make predictions for test cases by using the states from 
these realizations as the basis for Monte Carlo estimates. States prior to 
when equilibrium was apparently reached should be discarded. Each state 
after equilibrium gives us values for the network parameters and hyper
parameters that come from the posterior distribution given the training 
data (equation 3.13). 

The sample from the posterior can be used directly to obtain a sample 
from the predictive distribution for the targets in a test case (equation 3.14), 
which may be useful in visualizing the predictive distribution, as well as 
being the basis for numerical estimates. The process is illustrated in Fig
ure 3.7. We first compute the outputs of the network with the given test 
inputs for the values of the network parameters taken from the equilibrium 
portion of the sampling phase run (or runs). For the plot on the left of the 
figure, the last 100 states of one run were used, the first 50 being discarded 
in case they were not from the equilibrium distribution. In the model being 
used, the actual targets are obtained from these outputs by adding Gaus
sian noise, with a standard deviation (the same for both outputs) given by 
a hyperparameter that is also being estimated. To each of the 100 output 
values, we therefore add Gaussian noise with standard deviation given by 
the hyperparameter value that is part of the same state, to produce the 
sample from the predictive distribution shown on the right of the figure. 
(The posterior distribution of the noise standard deviation had a mean of 
0.051, with a standard deviation of 0.002; recall that the true value used 
to generate the data was 0.05.) 

If we need to make single-valued guesses for the targets in a test case, 
with the aim of minimizing expected squared error, we should guess the 
mean of the predictive distribution, which is the same as the mean value of 
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FIGURE 3.7. Predictive distribution from Monte Carlo data. The plot on the 
left shows the values of the two network outputs when the inputs are set to 
(-1.471,0.752) and the network parameters are taken from the last 100 su
per-transitions of one of the hybrid Monte Carlo sampling runs with L = 8000. 
The plot on the right shows the same 100 values with Gaussian noised added, 
with the standard deviation of the noise being determined in each case by the 
value of the noise-level hyperparameter at that point in the run; this plot repre
sents the predictive distribution for the target values with these inputs. (The true 
relationship of equation (3.34) gives outputs (before noise) of (1.177, -2.847) for 
these inputs.) 

the network outputs. We can estimate this mean by simply averaging the 
network outputs for the values of the parameters taken from the sampling 
phase runs. The accuracy of such a Monte Carlo estimate is determined by 
the variance of the quantity whose mean is being estimated, the number 
of points in the sample, and the autocorrelations between these points, 
as is discussed in Section 1.3.1. In the example here, the autocorrelations 
of networks outputs for test cases from one super-transition to another in 
the sampling phase turn out to be quite small (assuming, as always, that 
there are no undetected long-range correlations). Accordingly, the variance 
of the estimate is just the variance of the output divided by the number 
of sample points, 100 here. For the test case illustrated in Figure 3.7, the 
estimated predictive means, with standard errors, are 1.1446 ± 0.0015 and 
-2.845 ± 0.0015. (Note that the accuracy of the Monte Carlo estimate of 
the predictive mean does not tell us what the likely error is when using this 
mean as a guess for the actual target values, The latter might be estimated 
by the standard deviation of the predictive distribution, but this estimate 
may be bad if the model is bad.) 

The relationship between the predictions of the model and the actual 
targets in test cases is the subject of Chapter 4, but it is of interest here 
to compare the test error for the robot arm problem using the hybrid 
Monte Carlo implementation with the test error found by MacKay (1991, 
1992b) using his implementation based on Gaussian approximations. (But 
note that the model I used is slightly different than that MacKay uses, as 
explained in Section 3.3.1.) Figure 3.8 shows the test error for the different 
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Gaussian approximation method of MacKay 
Solution with highest evidence 
Solution with lowest test error 

Hybrid Monte Carlo, with 150 super-transitions 
Last 100 points from individual runs 
Last 100 points from all three runs 

Hybrid Monte Carlo, with 30 super-transitions 
Last 15 points from individual runs 
Last 15 points from all three runs 

A verage squared test error 

0.00573 
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FIGURE 3.8. Average test error on the robot arm problem with different im
plementations. The hybrid Monte Carlo sampling runs used super-transitions of 
32000 leapfrog steps each, with L = 8000 and '1 = 0.3. 

implementations, measured as the average over the 200 test cases of the 
total squared error in guessing the two targets. The expected test error for 
guesses based on knowledge of the true distribution is 0.00500. 

The test errors for MacKay's Gaussian approximation method are taken 
from a figure in his paper.2 MacKay trains networks from many random 
starting points, finding many local minima, and evaluates the quality of 
each run by an "evidence" measure. In the top section of Figure 3.8, I give 
the test error both for the network of MacKay's with the largest evidence, 
and for the network with the smallest test error (but slightly lower evi
dence). The network with smallest test error cannot be identified from the 
training data, of course, but it is possible that a similarly small test error 
could be obtained by averaging the outputs of several of the networks with 
large evidence. 

The middle section of Figure 3.8 shows results based on networks from 
the last 100 super-transitions of the hybrid Monte Carlo sampling runs 
described previously, with L = 8000. Results were very similar using the 
other runs with 500 ~ L ~ 32000, but slightly worse for L = 125. The 
first results shown are for guesses found by averaging the outputs of the 
100 networks in each run separately. There is little variation over the three 
runs, an indication that these runs had all reached a good approximation 
to the true equilibrium distribution and had sampled from its entirety. 
Since the guesses made here are based on Monte Carlo estimates of the 
predictive means, rather than the exact values implied by the model, the 

2See Figure 11 of (MacKay 1992b). MacKay reports test performance in terms of the 
total squared error on the test set, scaled 50 that the expected total error based on the 
true relationship is equal to the total number of test targets. To convert his figures to 
average squared error, divide by 400 and multiply by 0.0050. 
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average squared error will be larger than that which would be obtained 
using an exact implementation - specifically, the expected squared error 
on a single test case will be inflated by the variance of the Monte Carlo 
estimate for the predictive mean for that case. The test error that results 
when the networks from all three runs are combined is shown in the figure 
as well; it differs little from the results of the separate runs. This provides 
additional evidence that equilibrium had been reached. It also shows that 
the inflation of the squared error due to the variance of the estimates is 
negligible in this example. 

As can be seen, the test error using the hybrid Monte Carlo implemen
tation is a bit better than for the network of MacKay's with the largest 
evidence (though no better than the network of MacKay's with lowest 
test error). It is tempting to regard this as an indication that the guesses 
found using hybrid Monte Carlo are closer to the true Bayesian predictions, 
though there is no theoretical guarantee that the true Bayesian predictions 
will have lower test error. The difference is rather small, however, so it 
appears that MacKay's Gaussian approximation was indeed adequate for 
the robot arm problem. 

3.3.4 Computation time required 

Solving the robot arm problem using one of these hybrid Monte Carlo runs 
requires nearly twenty hours of computation time - nineteen hours for 
the 150 super-transitions in the sampling phase, plus a bit for the initial 
phase and for chosing good values of Land 1] to use in the sampling phase. 
One may wonder whether this much computation time is really necessary 
to solve the problem using hybrid Monte Carlo. The bottom section of 
Figure 3.8 shows the test error obtained using the first 30 super-transitions 
of the sampling runs, with only the last 15 states of each run used in 
the estimates, earlier states being discarded in case they are not from the 
equilibrium distribution. As can be seen, the results from these shorter runs, 
each requiring about four hours of computation time, are not appreciably 
different from those based on the longer runs. 

Unfortunately, it is only in retrospect that we can be sure that these 
short runs give good results. The first 30 super-transitions of the runs 
provide no clear evidence that equilibrium had been reached, though from 
the longer runs it appears that it had. Nevertheless, it may be necessary 
to use such short runs if more time is not available. Indeed, much more 
drastic abbreviations of the procedure can be contemplated. For example, 
averaging the outputs of the final five networks from all three initial phase 
runs with L = 64 shown in Figure 3.2 gives a test error of 0.00597. In 
some circumstances, this might be considered an acceptable result, obtained 
using about seventeen minutes of computation time. 
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It would be interesting to know how the computation time for Bayesian 
learning using hybrid Monte Carlo compares with that using the Gaussian 
approximation method. David MacKay (personal communication, 1994) 
has informed me that finding a solution for the robot arm problem using his 
program for Bayesian neural network learning requires about six minutes of 
computation time on a machine (a SPARC 10) of power roughly comparable 
to that of the machine used for my tests. Perhaps ten such runs would 
be needed to have some confidence that a good local minimum has been 
found, for a total computation time of about one hour. David MacKay feels 
that improvements to the program might significantly reduce this time. 
The hybrid Monte Carlo method may thus be somewhat slower than the 
Gaussian approximation method on the robot arm problem. These timing 
figures should not be taken too seriously, however, since they are heavily 
influenced by the details of the machines and programs used, and by the 
effort expended to ensure that the answer arrived at is as good as is possible. 

3.4 Comparison of hybrid Monte Carlo with other 
methods 

I claimed earlier that the hybrid Monte Carlo method is superior to simple 
forms of the Metropolis algorithm and to the Langevin method, due to its 
avoidance ofrandom walk behaviour. In this section I will substantiate this 
claim with regard to the robot arm problem. I will also investigate whether 
uncorrected dynamical methods offer any advantage for this problem. 

Comparisons of performance are easiest during the sampling phase, once 
the situation has stabilized. I will first look at how well various methods 
sample the square root of the average squared magnitude of the hidden
output weights, which determines the distribution of the associated hyper
parameter. Recall that this was one of the quantities used to assess sampling 
performance in Section 3.3.2. 

Figure 3.9 shows this quantity being sampled first by a simple form of 
the Metropolis algorithm with a Gaussian proposal distribution, second 
by the Langevin method (i.e. hybrid Monte Carlo with L = 1), and third 
by hybrid Monte Carlo with L = 2000 (which was seen in Section 3.3 
to be close to the optimal trajectory length). The heuristic procedure for 
determining stepsizes described in Section 3.2.2 was used for all methods. 
For the simple Metropolis method, the "stepsize" for a parameter was used 
as the standard deviation for its Gaussian proposal distribution (the mean 
being the current value). The proposed changes for different parameters 
were independent. Note that the super-transitions used here consisted of 
only 2000 leapfrog steps or Metropolis updates, compared to 32000 for the 
super-transitions in the sampling phase described in Section 3.3.2. 
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FIGURE 3.9. Progress of simple Metropolis and Langevin methods in the sam
pling phase. These plots show the square root of the average squared magnitude 
of the hidden-output weights for runs started from the equilibrium distribution 
(from the end of one of the sampling phase hybrid Monte Carlo runs). The hori
zontal axis gives the number of super-transitions, each consisting of 2000 simple 
Metropolis or Langevin updates for the parameters, or for the plot on the right, 
of a single hybrid Monte Carlo update using a trajectory 2000 leapfrog steps long. 
(In all cases, each parameter update is preceded by a Gibbs sampling update for 
the hyperparameters). On the left, results are shown for simple Metropolis with 
'1 = 0.1 (solid), '1 = 0.3 (dotted), and '1 = 0.9 (dashed). In the centre, results are 
shown for the Langevin method, with the same values of '1. On the right, these 
results are re-plotted (solid) along with the result using hybrid Monte Carlo with 
'1 = 0.3 and L = 2000 (dotted). Note the chang;e in vertical scale. 

Results for the simple Metropolis method are shown in the left of Fig
ure 3.9, with the stepsize adjustment factor, "I, set to 0.1, 0.3, and 0.9. The 
acceptance rates with these values of "I were 76%, 39%, and 4%, respec
tively. For." = 2.7, the acceptance rate was 0.04%, and performance was 
poorer than for any of the runs shown. 

Results for the Langevin method are shown in the centre of Figure 3.9, 
again for." set to 0.1, 0.3, and 0.9. The acceptance rates were 99%, 81%, 
and 0.8%, respectively. No changes were accepted in a run with." = 2.7. 

The plot on the right of Figure 3.9 shows that all these results are much 
worse than those obtained in a run using hybrid Monte Carlo with." = 0.3 
and L = 2000. We can get a rough idea of how much worse the other 
methods are as follows. The width of the region explored by the simple 
Metropolis and Langevin runs in 200 super-transitions was in no case more 
than about 0.2. The hybrid Monte Carlo run explored a range of about 6, 
not much less than the full range seen in the longer runs of Figure 3.5. Since 
the simple Metropolis and Langevin runs operate via a random walk, for 
them to explore a similar range would likely require about (6/0.2)2 = 900 
times as many super-transitions as required for hybrid Monte Carlo. 
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The difference in how well the methods sample was somewhat less dra
matic for the quantities of direct interest, the outputs of the network for 
test cases, but it was still very substantial. As discussed in Section 1.3.1, 
the efficiency with which the expectation of a quantity can be estimated is 
determined by the sum of the autocorrelations for that quantity at all lags. 
For outputs in test cases, the sum of these auto correlations was found to 
be a factor of ten or more greater for the simple Metropolis and Langevin 
methods than for hybrid Monte Carlo with L = 2000. 

I have also tried using simple Metropolis and the Langevin method in 
the initial phase, with a variety of values for 7]. None of these runs came 
close to the performance of the hybrid Monte Carlo runs with L = 64 
shown in Figure 3.2. 

Might there be some way of getting simple Metropolis to perform better? 

In an optimization context, Szu and Hartley {1987} advocate using a 
multivariate Cauchy rather than a Gaussian as the Metropolis proposal 
distribution. I have tried using a Cauchy proposal distribution for this 
problem and found the results to be little different from those described 
above using the Gaussian proposal distribution. 

For many problems, the Metropolis algorithm can be made more efficient 
by using a proposal distribution in which only a small part of the state is 
altered. This is advantageous if the energy of the slightly altered state can 
be incrementally computed in much less time than would be required to 
find the energy of a completely new state. Such incremental computation 
is possible for neural networks with one output and one hidden layer; if 
appropriate intermediate results are saved, the outputs of such a network 
can be re-computed in constant time after a change in one weight. Opti
mistically, one might hope for an order of magnitude or more improvement 
in efficiency from using this technique in a simple Metropolis method. How
ever, one could also try using this technique to speed up the computation 
of trajectories for hybrid Monte Carlo, so it is not clear that success here 
would change the relative merits of the two algorithms. 

I have also investigated whether uncorrected stochastic dynamics {see 
Section 3.1.2} might have advantages over hybrid Monte Carlo. With hybrid 
Monte Carlo, the stepsize we can use is limited by the resulting rejection 
rate; for uncorrected stochastic dynamics, the stepsize is limited by our 
tolerance for the systematic error that inexact simulation introduces. In 
sufficiently large problems, we might expect that stochastic dynamics will 
have an advantage, since the error in the energy that controls the rejection 
rate will grow with system size, but the systematic error may perhaps not 
(for more on this, see the discussion by Toussaint (1989)). However, for 
the robot arm problem, I- found that no significant benefit was obtainable 
using uncorrected stochastic dynamics, either with long trajectories, or with 
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trajectories one step long (the uncorrected Langevin method). For stepsizes 
much larger than was used for the hybrid Monte Carlo runs, the trajectories 
became unstable, and the systematic error was very large. This is as one 
would expect from the data on the error in energy shown in Figure 3.3. 

Uncorrected stochastic dynamics might still be of interest for reasons 
other than increased speed. Its greater simplicity might make it more at
tractive for hardware implementation, for instance. I have tried using un
corrected stochastic dynamics in a sampling phase run with L = 8000 and 
T/ = 0.3. This run was identical to the corresponding hybrid Monte Carlo 
run except that trajectories were never rejected. The results using uncor
rected stochastic dynamics were essentially indistinguishable from those 
using hybrid Monte Carlo, showing that this is a viable option. I had 
previously obtained similar results with an earlier implementation (Neal 
1993a). Nevertheless, I believe that hybrid Monte Carlo is the more robust 
choice for general use. When too large a stepsize is used with hybrid Monte 
Carlo, the result is the easily diagnosed problem of a high rejection rate; 
with uncorrected stochastic dynamics, the result is systematic error that 
might sometimes be significant, yet go unnoticed. 

3.5 Variants of hybrid Monte Carlo 

A number of variants of the hybrid Monte Carlo algorithm have been pro
posed. Some that might be useful in this application have not yet been 
evaluated, such as the use of discretizations of the dynamics other than the 
leapfrog method (Creutz and Gocksch 1989). I have made preliminary in
vestigations into three variants - in which trajectories are computed using 
"partial gradients", in which a "windowed" acceptance procedure is used, 
and in which random walks are suppressed by using "persistence" rather 
by than by using long trajectories. These variations are not always better 
than the standard procedure, but they do give a significant advantage in 
some circumstances, especially when used together. 

3.5.1 Computation of trajectories using partial gradients 

When minimizing the training error for a neural network using gradient 
descent, many people do not compute the derivatives of the total error at 
each step, but instead look at only one training case, selected at random, or 
in sequence. (This is the method used in the original papers of Rumelhart, 
Hinton, and Williams (1986a, 1986b), for example.) In the limit of small 
stepsizes, this "on-line" learning procedure gives the same result as looking 
at all training cases each time, since at a small enough scale the error 
function will be close to linear, and the average effect of the on-line steps 
will be the same as that of a step based on the full training error. One 
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might expect the on-line procedure to be superior when the training set is 
redundant, having many similar training cases. 

A similar idea can be applied to the computation of trajectories for hy
brid Monte Carlo. Taking a somewhat more general view, let us assume 
that we have J{ approximations to the potential energy function, given 
by Ek (q), for k = 1, ... , J{, and that the average of these approximations 

K 
gives the true energy function, i.e. E(q) = (1/ K) L Ek(q). We can now 

k=l 
consider replacing each of the leapfrog steps based on derivatives of E, done 
with a stepsize of f, by a sequence of J{ leapfrog steps using in sequence 
the derivatives of each of the Ek, what I will call the "partial gradients" , 
each done with a stepsize of f/ J{. I will call such a sequence of leapfrog 
steps based on partial gradients a "multi-leap" with J( steps; a multi-leap 
with one step is just an ordinary leapfrog step. In order to preserve re
versibility, it is necessary to randomly decide for each trajectory whether 
to perform the multi-leaps by using the Ek in ascending order or in de
scending order. Alternatively, one can select a random permutation of the 
Ek for each trajectory, which also insures against the possibility that some 
particular ordering might be especially bad. This is the method I used in 
the experiments described below. (It would also be valid to choose a ran
dom permutation for each multi-leap within a trajectory, but this leads to 
much larger errors.) 

In the limit of small f, the procedure using partial gradients should 
produce the same trajectory as the standard procedure using full gradients. 
Of more interest is what happens for larger f. If the Ek are in fact all 
identical to E, then the new procedure will be stable up to values of f 

that are J( times larger than those under which the standard procedure is 
stable. With a suitable choice of f, each multi-leap will then move J( times 
as far as a single standard leapfrog step could. Presumably the Ek are not 
quite identical to E, but if they are good approximations to it, we may 
expect that we will be able to use a value of f that is at least somewhat 
greater than that usable with the standard procedure. 

Of course, this procedure will be advantageous only if the partial gradi
ents are cheaper to compute than the full gradient. When E represents the 
log of the posterior probability, cheaper approximations can be obtained by 
looking at only part of the training set. We can rewrite the energy function 
of equation (3.23) as follows (setting F(-y) to zero for simplicity): 

n 

E(8) = - log P(8 I 'Y) L log P(y(c) I x(c), 8, 'Y) (3.35) 
c=l 

1 K 
J( L [ - logP(8 I 'Y) - J( L logP(y(c) I x(c), 8, 'Y)] (3.36) 

k=l CEGk 
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where the Gk form a partition of the n-case training set (preferably, as close 
to an equal partition as is possible). We can therefore use approximations 
defined as follows: 

- log P(O I/') - J{ I: log P(y(c) I x(c), 0, /,) (3.37) 
cE(lk 

We choose J{ to be greater than one, but still much less than n. The cost 
of performing a multi-leap in which the derivatives of Ek are computed for 
each k will then be only slightly greater than the cost of a single standard 
leapfrog step in which the derivatives of E are computed once. 

In order for the procedure as a whole to leave the desired distribution 
exactly invariant, the end-point of a hybrid Monte Carlo trajectory com
puted using these approximations must be accepted or rejected based on 
the exact value of E. If the trajectories used are long, as will usually be 
necessary, this full evaluation of E will be a small part of the total cost of 
a hybrid Monte Carlo update. 

I have investigated the effects of using partial gradients for the robot 
arm problem, with 200 training cases, by looking at the error in H over a 
trajectory of 200 multi-leaps for various values of the stepsize adjustment 
factor, TJ. The results are shown in Figure 3.10, for J{ = 1 (the standard 
method), ]{ = 4 (Gk of size 50), and J{ = 16 (Gk of size 12 or 13). As 
can be seen, trajectories computed with K = 4 remain stable up to about 
'fJ = 1.0, twice the limit for stability with the standard method. Little or 
no further improvement is seen with ]{ = 16, however. For small values of 
'fJ, the error in H with ]{ = 4 is larger than for J{ = 1. For values of 'fJ 
between 0.5 and 1.0, the error with K = 4 is smaller, since the standard 
procedure is unstable, but the error is still large enough to produce a rather 
low acceptance rate. 

Because of this, it is difficult to obtain much net benefit from using 
partial gradients for this problem. For example, I tried using 1) = 0.6 and 
L = 4000 with ]{ = 4, which should produce trajectories similar to those 
produced by the standard procedure with '1 = 0.3 and L = 8000, but using 
about half the computation time. Due to the larger error in H, however, 
the acceptance rate for these trajectories was only about 50%, whereas for 
the standard procedure is was about 85%. Considering that there is a bit 
more computational overhead with f{ = 4 than with K = 1, the cost per 
accepted trajectory is about the same. 

More empirical and theoretical work is needed to better understand the 
effect of using partial gradients. It seems possible that significant benefits 
might be obtained when the training set is larger than is the case in the 
robot arm problem, or when the model or prior are different. Fortunately, it 
turns out that a significant benefit can be obtained even for the robot arm 
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FIGURE 3.10. Error in energy for trajectories computed using partial gradients. 
Each plot shows the change in total energy (H) for 100 trajectories consisting of 
200 multi-leaps with l( steps. The plot on the left is for l( = 1, the same as the 
standard method, for which data is also shown in Figure 3.3. The plots for l( = 4 
and l( = 16 show the effect of using partial gradients. The horizontal axes show 
the randomly-selected stepsize adjustment factors (ry) on a log scale; the vertical 
axes show the change in H, with changes greater than 30 plotted at 30. Starting 
points for the trajectories were obtained by using these trajectories in a hybrid 
Monte Carlo simulation, started at equilibrium. 
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FIGURE 3.11. Difference in free energy for windowed trajectories. This figure 
is similar to Figure 3.10, but the trajectories were evaluated in terms of the 
difference in free energy between windows of length 20 at the beginning and end; 
this difference is shown on the vertical axes. 
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problem if the partial gradient method is combined with the "windowed" 
variant of hybrid Monte Carlo, which willi be described next. 

3.5.2 The windowed hybrid Monte Carlo algorithm 

I have developed a variant of hybrid Monte Carlo in which transitions take 
place between "windows" of states at the beginning and end of a trajec
tory, rather than between single states (Neal 1994). Whether a candidate 
transition is accepted or rejected is based on the sum of the probabilities 
of the states in each window. This procedure has the effect of averaging 
over errors in H along the trajectory, increasing the acceptance rate. In 
this section, I will investigate the merits of this variant when applied to the 
robot arm problem, both when trajectories are computed by the standard 
method, and when they are computed using partial gradients. 

In the windowed hybrid Monte Carlo algorithm, a trajectory computed 
by L leapfrog steps (or, if partial gradients are used, by L multi-leaps) is 
regarded as a sequence of L+ 1 states, in which the first W states constitute 
the "reject" window, 'Il, and the last W states the "accept" window, A. The 
free energy of a window W is defined in analogy with statistical physics, 
as follows 

F(W) -log [ L exp ( - H (q s, Ps)) ] (3.38) 
sEW 

The sum of the probabilities of all states in a window is given, up to a 
constant factor, by exp( - F (W)), so the free energy plays the same role for 
windows as the total energy does for states. 

Operation of the windowed algorithm is analogous to that of the stan
dard algorithm - the momentum is randomized, a trajectory is computed, 
and the result of the trajectory is either accepted or rejected. In the win
dowed algorithm, however, the decision to accept or reject is based on the 
difference in free energies between the accept and reject windows. If the 
trajectory is accepted, the next state of the Markov chain is taken from the 
accept window, with a particular state from that window being selected at 
random according to their relative probabilities. Similarly, if the trajectory 
is rejected, the next state is randomly selected from the reject window. 

It turns out that for this procedure to be valid, one further elabora
tion is required - the start state must be randomly positioned within the 
reject window. To accomplish this, we first choose an offset, T, for the 
start state uniformly from {O, ... , W - I}. We then compute the trajectory 
backwards from its normal direction for T leapfrog steps. (If the partial 
gradient method is used, we go backwards for T multi-leaps, during which 
the approximations must be applied in the reverse of their normal order.) 
Finally, after restoring the initial state, we compute the forward part of the 
trajectory, consisting of L - T leapfrog steps (or multi-leaps). 



96 Chapter 3. Monte Carlo Implementation 

The windowed algorithm can be used with a window size, W, up to the 
total number of states in the trajectory, L + 1. However, my tests on the 
robot arm problem were done only with windows much smaller than L; 
specifically, I used W = 20, while as seen in Section 3.3, the appropriate 
value of L is in the thousands. With such small windows, the distance 
moved when a trajectory is accepted is almost the same as for the standard 
algorithm with the same trajectory length. The two methods can therefore 
be compared by looking at their acceptance rates, which are determined 
by the differences in total energy or free energy between the start and end 
of the trajectory. 

Figure 3.11 shows the difference in free energy between the accept and 
reject windows for 100 trajectories of length 200 started from the equilib
rium distribution for the robot arm problem, for trajectories computed with 
full gradients (I< = 1), and with partial gradients (J< = 4 and J< = 16). 
These plots correspond directly to those in Figure 3.10, done with the 
non-windowed algorithm. Comparing the two figures, it is clear that for 
trajectories that remain stable, the free energy differences for the win
dowed algorithm are significantly less than the total energy differences for 
the standard algorithm. As one would expect, there is no difference in the 
point at which the trajectories become unstable. 

Accordingly, we should be able to use a larger value of 'T] with the win
dowed algorithm than with the standard algorithm, while still maintaining 
a low rejection rate. For trajectories computed using the full gradient (on 
the left of the figures), this will give only a modest benefit, since the tra
jectories become unstable at about fJ = 0.5, not too far above the value 
'T] = 0.3 that was used in Section 3.3. (Note that in practice we would want 
to leave some safety margin between the value of fJ used and the point where 
the trajectories becomes unstable, since the point of instability will not be 
measured exactly and might vary during the course of the simulation.) 

The windowed algorithm provides a significant benefit only when there 
is a significant range of stepsizes where the trajectories are not yet unsta
ble, but do have large enough error that the acceptance rate is low. The 
size of this range should generally increase with the number of parameters 
(Neal 1994), so the windowed algorithm might be more useful with larger 
networks. The range of stepsizes giving stable trajectories with large error 
is also bigger when partial gradients are used, as seen in Figure 3.10. The 
centre and right plots of Figure 3.11 show that the windowed algorithm 
does indeed reduce the free energy differences in these cases. 

To confirm that combining partial gradients with the windowed algo
rithm can give a significant benefit, I did three sampling phase runs· with 
J< = 4, L = 4000, W = 20, and fJ = 0.6, using super-transitions of 32000 
leapfrog steps, as in the Section 3.3. Trajectories of 4000 leapfrog steps 
with 1] = 0.6 should be equivalent to trajectories of 8000 leapfrog steps 
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with 'fJ = 0.3, which were found in Section 3.3 to be of approximately 
optimal length. 

Since twice as many trajectories are computed in a super-transition with 
L = 4000 than with L = 8000, we may hope for these runs to progress at 
twice the rate of the L = 8000 runs with the standard algorithm, as long 
as the rejection rate is not higher. The observed rejection rate using partial 
gradients and windows with 'fJ = 0.6 was approximately 15%, which is 
indeed close to the 13% rate seen for the standard algorithm with 'fJ = 
0.3. As we would therefore expect, the runs using partial gradients and 
windows appeared to converge to the equilibrium distribution in about half 
the time (less than 10 super-transitions vs. around 15 or 20). Estimated 
autocorrelations for the quantities shown in Figure 3.6 were also as expected 
for a factor of two speedup. 

3.5.3 Hybrid Monte Carlo with persistent momentum 

I will briefly mention one further variation on hybrid Monte Carlo that I 
have used recently, due to Horowitz (1991), which I will refer to as hybrid 
Monte Carlo with "persistence" for the momentum. 

Recall that the main advantage of hybrid Monte Carlo over other Markov 
chain methods is that random walks can be suppressed by using long trajec
tories, consisting of many leapfrog steps. In standard hybrid Monte Carlo, 
this advantage is lost if short trajectories are used, because the momentum 
variables are replaced in a Gibbs sampling step between each trajectory. 
Horowitz (1991) proposes using trajectories as short as a single leapfrog 
step, but with only partial replacement of the momentum variables be
tween trajectories. Motion will therefore tend to "persist" in largely the 
same direction from one trajectory to the next, suppressing random walk 
behaviour. 

An iteration of hybrid Monte Carlo wit.h persistence operates as follows: 

a) Perform a partial replacement of the momentum variables, 
setting them to new values, p~, as follows: 

where ni is a Gaussian random variate with mean zero and 
variance given by the mass, mi, and A is a parameter of the 
method, with a value between I) and 1. 

b) Perform a dynamical transition, as described by steps (1)
(3) on page 61 - briefly, one finds a candidate state by 
performing L leapfrog steps and then negating the momen
tum, and one then accepts or rejects this candidate state 
based on the change in H. 
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c) Negate the momentum variables, regardless of whether the 
candidate state was accepted in step (b). 

Setting A to zero in step (a) produces the equivalent of standard hybrid 
Monte Carlo. Setting A to a value only slightly less than one produces a 
large degree of persistence, as the momentum variables will then be changed 
only slightly. 

Steps (a) to (c) above will leave the canonical distribution invariant if 
each step does so individually. The dynamical transition of step (b) leaves 
the canonical distribution invariant for the reasons discussed previously. 
That steps (a) and (c) also leave the canonical distribution invariant can 
be seen directly from equation (3.2). 

Step (c) of the procedure is crucial. Without it, the negation in step (b) 
will result in the path of each accepted trajectory being almost retraced 
when the next trajectory is accepted - not at all what we hope for from 
a method that is supposed to move persistently in one direction. The two 
negations cancel when the candidate state in step (b) is accepted. One 
might think that the method could be simplified by removing the negations 
from both step (b) and step (c), but the resulting method would not leave 
the canonical distribution invariant. 

Note, however, that this method will perform well only if the rejection 
rate in step (b) is small, since when a rejection occurs, the state is left un
changed by step (b), but the momentum is still negated in step (c), causing 
an undesirable reversal of direction. Horowitz (1991) uses trajectories con
sisting of a single leapfrog step, which for a given stepsize produce a lower 
rejection rate than longer trajectories. I generally use trajectories of mod
erate length with the "windowed" acceptance procedure of Section 3.5.2; 
this can also produce a very low rejection rate. 

Is there any advantage to be gained by suppressing random walks in this 
way rather than by using long trajectories? In a general context, it is not 
clear that there is any advantage. With this implementation of Bayesian 
neural network learning, however, reducing the length of trajectories allows 
Gibbs sampling updates for the hyperparameters to occur more often. As 
discussed at the end of Section 3.3.2, the frequency of hyperparameter 
updates may well be the limiting factor in this implementation. 

My preliminary experience is that using shorter trajectories with persis
tence can indeed speed up sampling. Rasmussen (1996) has also obtained 
good results with this method. More systematic investigation of the merits 
of this and other variants of hybrid Monte Carlo is required, however. 



Chapter 4 

Evaluation of Neural Network Models 

This chapter reports empirical evaluations of the predictive performance 
of Bayesian neural network models applied to several synthetic and real 
data sets. Good results were obtained when large networks with appropri
ate priors were used on small data sets for a synthetic regression problem, 
confirming expectations based on properties of the associated priors over 
functions. The Automatic Relevance Determination model was effective in 
suppressing irrelevant inputs in tests on synthetic regression and classifi
cation problems. Tests on two real data sets showed that Bayesian neural 
network models, implemented using hybrid Monte Carlo, can produce good 
results when applied to realistic problems of moderate size. 

From a doctrinaire Bayesian viewpoint., a learning procedure is correct 
if it accurately captures our prior beliefs, and then updates these beliefs to 
take proper account of the data. If these prior beliefs are uninformative, 
or are actually wrong, the Bayesian procedure may have poor predictive 
performance, but the fault in such a case lies not with the procedure em
ployed, but with our own ignorance or error. There might therefore seem to 
be no point in empirically testing Bayesian learning procedures; we should 
simply select a procedure that implements a model and prior that accord 
with our beliefs, as determined by careful introspection. 

Whatever its merits in simple situations, this approach is clearly in
adequate when using complex models such as neural networks. Although 
we can gain some insight into the nature of these models by theoretical 
analysis and by sampling from the prior, as was done in Chapter 2, we 



100 Chapter 4. Evaluation of Neural Network Models 

will probably never have a complete, intuitive understanding of their na
ture, and hence will never be entirely confident that our selection of such a 
model truly captures our prior beliefs. Furthermore, even complex models 
are seldom complex enough. We usually try to make do with a model that 
ignores certain aspects of our beliefs that we hope are not crucial for the 
problem at hand. This hope will not always be fulfilled. 

Empirical testing therefore does have a role to play in the development 
of complex Bayesian models. It may reveal characteristics of the models 
that were not apparent to us initially, as well as identifying as crucial 
some aspects of the problem that we had at first hoped we could ignore. 
Testing is also needed in order to judge whether the implementation used 
is adequate. Finally, empirical performance is the only common ground on 
which Bayesian methods can be compared with those having a different 
philosophical basis. 

In this chapter, I first use two synthetic data sets to evaluate a number 
of Bayesian neural networks models, using the Markov chain Monte Carlo 
implementation described in Chapter 3. One objective of these tests is to 
confirm that large networks perform well even with small training sets, as 
expected from the analysis in Chapter 2. Another aim is to investigate the 
performance of hierarchical models, particularly the Automatic Relevance 
Determination (ARD) model. 

I then apply the Bayesian method to two real data sets, using models 
and priors selected in light of the discussions in Chapters 1 and 2, as well as 
the previous experience with synthetic data sets. These real data sets have 
been previously used in evaluations of other learning procedures, allowing 
some comparisons to be made between these procedures and the Bayesian 
models. 

4.1 Network architectures, priors, and training 
procedures 

The tests reported in this chapter used the network architectures and priors 
discussed in Chapters 1 and 2 and the hybrid Monte Carlo implementation 
of Chapter 3. I will briefly review these here. Additional details are also 
found in Appendix A. 

The networks used are multilayer perceptrons with zero or more layers 
of tanh hidden units. The first hidden layer is connected to the inputs; 
subsequent hidden layers are connected to the previous hidden layer, and 
optionally to the inputs as well. The linear output units have connections 
from the last hidden layer (if present), and may also have direct connections 
from the input units. There are also biases for the hidden and output units. 
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The outputs of the network define the conditional distribution of the target 
values associated with the inputs, according to whatever data model is 
being used. 

The priors for the network parameters (the weights and biases) are de
fined hierarchically, using hyperparameters that control the standard de
viations for weights and biases in various groups. In some cases, a single 
hyperparameter controls all the weights on connections from units in one 
layer to units in another layer (e.g. all weights from the input units to units 
in the first hidden layer). In other models, a finer level of control is exer
cised, with a separate hyperparameter being used to control the weights 
out of each unit of some type (e.g. all weights from one input unit to units 
in the first hidden layer). 

In detail, suppose that U1, ••. , Uk are the parameters (weights or biases) 
in one group. The hyperparameter associated with this group gives the 
standard deviation, Uu, of a Gaussian prior for these weights: 

(27r)-k/2 a-;;k exp ( - 2: U[ / 2a-~) 
i 

( 4.1) 

The prior for the hyperparameter itself is expressed in terms of the "pre
cision" , Tu = a-;;2, which is given a prior distribution of the Gamma form, 
with mean Wu: 

(a /2w )0:"/2 
u u 1".O:u/ 2- 1 exp ( _ T: a /2w ) 
r(au /2) u u u u 

(4.2) 

The value of au (which must be positive) controls how broad the prior 
for Tu is, with the prior being broader for values of au close to zero. Note 
that the prior for a-~ = 1/Tu implied by equation (4.2) has a heavier up
ward tail than the prior for Tu itself. Put another way, the prior for log a-u 

has a heavier upward tail than downward tail. This asymmetry is proba
bly undesirable; the Gamma form was chosen despite this because of its 
mathematical convenience. 

Integrating over Tu reveals that the prior for U1 , ... , Uk is in fact a multi
variate t-distribution, with au as its shape parameter. This way of viewing 
the prior is not particular useful when the parameter group consists of 
all the weights between units in two layers, but it can be when the prior 
is for a more specific group of weights. When the weights on the connec
tions out of each hidden unit are treated as a separate group, with each 
hidden unit having an associated precision hyperparameter, the resulting 
t-distributions (with au < 2) produce priors that, when properly scaled, 
converge to non-Gaussian stable distributions, and can thus be used in 
indefinitely large networks, as discussed in Chapter 2, and below in Sec-
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tion 4.2.1 Using separate hyperparameters for the weights out of each input 
unit gives the Automatic Relevance Determination (ARD) prior discussed 
in Section 1.2.3, and below in Section 4.3.2 In these cases, it is often desir
able to add another level to the hierarchy by letting the mean precision for 
the weights (w in equation 4.2) be a hyperparameter as well, common to a 
number of parameter groups of one type. This higher-level hyperparameter 
can then be given a prior of the same Gamma form. 

Gibbs sampling and hybrid Monte Carlo were used to sample from 
the posterior distribution for the network parameters and hyperparam
eters, conditional on the training data, in the manner demonstrated in 
Section 3.3. Each run consisted of a short initial phase, whose purpose was 
to reach a rough approximation of equilibrium, and a much longer sampling 
phase, whose purpose was to reach a close approximation of equilibrium, 
and then to collect a sample of values from the posterior distribution of 
network parameters sufficient for making predictions. The sampling phases 
consisted of some number of "super-transitions", each of which consisted of 
some number of pairs of Gibbs sampling updates for the hyperparameters 
and hybrid Monte Carlo updates for the parameters. Only the states at the 
ends of the super-transitions were saved for possible later use in making 
predictions. The hybrid Monte Carlo trajectory length (L) and stepsize 
adjustment factor (1]) were set differently for the two phases, based on trial 
and error and on tests following the initial phase. The "partial gradient" 
and "windowed" variants of hybrid Monte Carlo (see Section 3.5) were used 
for some problems. When partial gradients are used, I will use the phrase 
"leapfrog step" to refer to what was called a "multi-leap" in Chapter 3 -
that is, a series of leapfrog steps that together look once at each training 
case. 

Timing figures given in this chapter are for the same machine as was 
used for the demonstration in Section 3.3. 

4.2 Tests of the behaviour of large networks 

In Chapters 1 and 2, I argued that when using a properly-specified prior 
there is no need to limit the complexity of neural network models - indeed, 
in most circumstances, only an infinite network is truly capable of capturing 

lThe implementation also supports direct specification of t-distributions for individ
ual parameters, but the indirect form may be preferable because Tu can then be used in 
the heuristic procedure for setting stepsizes (see Section 3.2.2 and Section AA). 

2In an ARD network where inputs connect both to a hidden layer and directly to the 
outputs, each input unit will have two hyperparameters, controlling weights on connec
tions to the two different layers.-It might be desirable to link these two hyperparameters 
in some way, but the implementation does not support this at present. 
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our beliefs about the problem. In particular, I demonstrated in Chapter 2 
that the prior over functions implied by a properly-scaled prior over weights 
will reach a limit as the number of hidden units in the network increases. 

We would like to know more than was established theoretically, however. 
How many hidden units does it take to approach the limiting prior over 
functions? Is the limiting prior better for typical problems than a prior 
obtained using a small network? How well can the Markov chain Monte 
Carlo implementation handle large networks? Empirical testing can help in 
answering these questions. 

4.2.1 Theoretical expectations concerning large networks 

Before pre&enting empirical results using large networks, I will discuss the 
implications and limitations of the theoretical results of Chapter 2, in order 
to clarify what we might expect to see in the empirical tests. 

First, note that though I advocate using networks with large number 
of hidden units (to the extent that this is computationally feasible), the 
arguments I present in Chapter 2 do not guarantee that increasing the 
number of hidden units in a network will always lead to results that are 
better than (or even as good as) those obtained with a small number of 
hidden units. No such guarantee is possible. If the function being learned 
happens to be tanh, for example, a network with one tanh hidden unit will 
perform substantially better than any more complex network. Even if the 
true function can only be exactly represented by an infinite network, it is 
possible that it is very close to a function that can be represented by a 
small network, in which case the small network may give better predictions 
when the training set is small, unless the prior used for the large network 
puts extra weight on those regions of the parameter space that produce 
functions close to those representable by a small network. 

The theoretical arguments do show that large networks should behave 
"reasonably". By this I mean that they will neither grossly "overfit" the 
data - reproducing the targets in the training set very closely but per
forming poorly on test data - nor grossly "underfit" the data - ignoring 
the training set entirely. In empirical tests, we should therefore expect that 
performance using any of the properly-scaled priors discussed in Chapter 2 
will reach a limit as network size increases, and in this limit performance 
will be reasonably good. 

Many models will avoid the extremes of overfitting and underfitting, 
however, of which some will perform better than others. Sometimes a sim
ple model may outperform a more complex model, at least when the train
ing data is limited. Nevertheless, I believe that deliberately limiting the 
complexity of the model is not fruitful when the problem is evidently com
plex. Instead, if a simple model is found that outperforms some particular 
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complex model, the appropriate response is to define a different complex 
model that captures whatever aspect of the problem led to the simple model 
performing well. 

For example, suppose that on some problem a network with a small 
number of hidden units outperforms one with a large number of hidden 
units, using a Gaussian prior for the hidden-to-output weights. As seen in 
Chapter 2, a Gaussian prior for .hidden-to-output weights leads to func
tions that are built up of contributions from many hidden units, with each 
individual hidden unit's contribution being insignificant. If a small network 
performs better than a large network when using this Gaussian prior, one 
may suspect that the prior is not appropriate. One might then hope that 
a large network using a prior based on a non-Gaussian stable distribution 
would better capture the properties of the problem, as it would allow a 
small number hidden units to have a large effect (as in a small network), 
while also allowing small corrections to these main effects to be made using 
additional hidden units. 

4.2.2 Tests of large networks on the robot arm problem 

I have tested the behaviour of Bayesian learning with large networks on the 
robot arm problem of MacKay (1991, 1992b), a regression problem with 
two input variables and two target variables, described in Section 3.3.1. 
For these experiments, I divided the 200-case training set used by MacKay 
into two training sets of 50 cases and one of 100 cases. Using these smaller 
training sets should make it easier to "overfit" the data, if overfitting is in 
fact a problem. 

To evaluate predictive performance, I used a test set of 10 000 cases, 
drawn from the same distribution as the training data. Two performance 
criteria were used. First, following MacKay, I looked at the average over 
the test set of the sum of the squared errors for the two targets, when 
guessing the mean of the predictive distribution. Second, I looked at the 
average sum of the absolute errors for the two targets, when guessing the 
median of the predictive distribution. The second criterion is less sensitive 
to large errors. Since the targets are generated with Gaussian noise of 
standard deviation 0.05, the expected squared error on a single test case 
when using the optimal procedure based on the true relationship is 2 x 
(0.05)2 = 0.0050.3 The expected sum of absolute errors using the optimal 
procedure is 2 x 0.80 x 0.05 = 0.080, where 0.80 is the expected absolute 
value of a variable with a standard Gaussian distribution. 

3MacKay reports test performance in terms of the total squared error on a te~t set 
with 200 cases, scaled so that ~he expected total error based on the true relationship 
is equal to the total number of test targets. To convert his figures to average squared 
error, divide by 400 and multiply by 0.0050. 
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I modeled the robot arm data using networks with 6, 8, 16, and 32 tanh 
hidden units. (Preliminary experiments with networks containing only four 
hidden units showed that their performance was much worse.) Gaussian 
priors were used for the input-to-hidden weights and for the hidden bi
ases; both Gaussian and Cauchy priors were tried for the hidden-to-output 
weights. The width parameters for these priors were controlled by hyper
parameters, so that their values could adapt to the data, as would normally 
be desirable for real problems. The priors for the hyperparameters control
ling the input-to-hidden weights and the hidden biases were the same for 
all networks; the prior for the hyperparameter controlling the hidden-to
output weights was scaled depending on the number of hidden units, in 
accord with the results of Chapter 2. For all three hyperparameters, the 
priors chosen were intended to be "vague". Improper priors were avoided, 
however, since they may lead to posterior distributions that are also im
proper. Very vague proper priors were avoided as well, partly because at 
some extreme a vague proper prior will suffer from the problems of an im
proper prior, and partly because of the possibility that with a very vague 
prior the Markov chain Monte Carlo implementation might become stuck 
for an extended period in some ridiculous region of the parameter space. 

In detail, the precision (inverse variance) for the input-to-hidden weights 
was in all cases given a Gamma prior with mean precision of w = 100 (corre
sponding to a standard deviation of 0.1) and shape parameter 0: = 0.1 (see 
equation 4.2).4 The same prior was given to the precision hyperparameter 
for the hidden biases. The output biases were given a fixed Gaussian prior 
with standard deviation one. The prior for the hidden-to-output weights 
varied. When a Gaussian prior was used for hidden-to-output weights, the 
precision of the Gaussian was given a Gamma prior with 0: = 0.1 and with 
mean w = 100H, where H is the number of hidden units (corresponding 
to scaling the standard deviation by H- 1/ 2 ). To implement a Cauchy prior 
for hidden-to-output weights, a 2-level scheme was used, as described in 
Section 4.1. For the low level, 0: = 1 was used, to give a bivariate Cauchy 
distribution for the two weights out of each hidden unit. 5 For the high-level 
precision, used as the mean for the low-level precisions, a Gamma distri
bution with 0: = 0.1 and with mean w = 100H 2 was used (corresponding 
to scaling the width of the Cauchy distribution by H- 1). 

4 In Chapter 3, I used priors with w = 1 and 0' = 0.2. This turns out to be not as vague 
as is desirable, particularly in the direction of low variance. This is not crucial with 200 
training cases (as in Chapter 3), but has a noticeable effect with only 50 training cases. 

50ne might instead give the two weights out of each hidden unit independent Cauchy 
distributions. In the limit of many hidden units, the two targets would then be modeled 
independently (see Section 2.2.1), except for the interactions introduced by the common 
hyperparameters. This model might well be better for this data, but it was not tried in 
these tests. 
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The noise level was the same for both outputs. It was controlled by a 
precision hyperparameter that was given a Gamma distribution with mean 
w = 100 and shape parameter 0: = 0.1. 

Learning began with a short initial phase, followed by a long sampling 
phase, as discussed in Section 4.1. The sampling-phase super-transitions 
consisted of ten pairs of Gibbs sampling and hybrid Monte Carlo updates. 
I used the partial gradient method (Section 3.5.1) for computing the hybrid 
Monte Carlo trajectories, with a five-way division of the training data, and 
the windowed acceptance procedure (Section 3.5.2), with a window size of 
ten. Stepsize adjustment factors were chosen so as to keep the rejection 
rate low (between 5% and 15%). Trajectory lengths were chosen to match 
the periods over which quantities such as the sum of the squares of the 
weights in various groups appeared to vary, in tests done following a few 
of the initial phase runs. The resulting choices were a stepsize adjustment 
factor of 1] = 0.5 and a trajectory of L = 4000 leapfrog steps for networks 
with 6, 8, and 16 hidden units, and 1] = 0.4 and L = 5000 for networks 
with 32 hidden units. 

The number of sampling phase super-transitions needed to reach a good 
approximation to equilibrium was judged subjectively, largely by looking 
at the behaviour of the hyperparameters and of the squared error on the 
training set. On this basis, equilibrium may well have been reached in most 
cases after about 10 super-transitions, but I conservatively discarded the 
first 100 super-transitions for the networks with 8, and 16 hidden units, and 
the first 200 super-transitions for the networks with 6 and 32 hidden units. 
The smallest networks may require longer to reach equilibrium because the 
roles of the hidden units become constrainted, inhibiting movement about 
the parameter space; the largest networks may require longer because the 
larger number of parameters makes the Gibbs sampling updates of the 
hyperparameters less efficient. 

For each network, I continued the sampling phase for an additional 200 
super-transitions beyond the point where equilibrium was judged to have 
been reached. The 200 networks saved after these super-transitions were 
applied to each of the test cases, and the outputs used to make predictions. 
When guessing so as to minimize expected squared error loss, I averaged 
the outputs of the 200 networks, in order to estimate the mean of the 
predictive distribution for the targets in the test case. When guessing so as 
to minimize expected absolute error loss, I randomly generated five values 
from the target distribution defined by each network (a Gaussian with mean 
given by the network outputs, and standard deviation given by the current 
noise level), and then found the median of the resulting 5 x 200 target 
values, in order to estimate the median of the predictive distribution. 

The accuracy of such estimates for the predictive means and medians 
depends not only on the sample size of 200, but also on the auto correlations 
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Hidden Trajectory Super-tran$itions Time (hours) 
units L Tf discarded total 50 cases 100 cases 

6 4000 0.5 200 400 9 15 
8 4000 0.5 100 300 8 14 

16 4000 0.5 100 300 14 26 
32 5000 0.4 200 400 46 81 

FI GURE 4.1. Computational details for experiments on networks of varying size. 
The trajectory parameters shown are the number of leapfrog steps in a trajec
tory (L) and the stepsize adjustment factor (1]). Also shown are the number of 
super-transitions discarded in order to reach equilibrium and the total number 
of super-transitions. These implementation choices varied with the number of 
hidden units, but not with the prior or with the number of training cases. The 
total computation time for all super-transitions is also shown; it does vary with 
the number of training cases. 

of the network outputs for the test cases (see Section 1.3.1). For all com
binations of network size and prior these autocorrelations were too small 
to reliably distinguish from zero on the basis of the data. Non-zero au
tocorrelations were observed for the hyperparameters, however, especially 
in the largest and smallest networks. For example, in the networks with 
32 hidden units, the hyperparameter controlling the magnitude of input
to-hidden weights had substantial autocorrelations up to a lag of around 
five or ten super-transitions. Individual network parameters had substan
tial autocorrelations for the networks with 6 and 8 hidden units, but not 
for larger networks. These autocorrelations might lead one to suspect that 
there could be undetected autocorrelations for the output values as well, 
but these are presumably rather small. On this assumption, the sample of 
200 networks is large enough that the degradation in performance due to 
the variance in the estimates of the predictive mean and median should be 
negligible; this is confirmed by the fact that the error when using only 100 
of these networks is quite similar. 

The computational details of the Markov chain Monte Carlo runs are 
sUJ;nmarized in Figure 4.1, which also gives the time required for these 
computations. 

The predictive performance of Bayesian learning using the three training 
sets is shown in Figure 4.2, for networks with varying numbers of hidden 
units, using both Gaussian and Cauchy priors for the hidden-to-output 
weights. In all contexts, the networks with only 6 hidden units performed 
worse than the others, but no clear pattern of variation with network size 
can be seen amongst networks with 8 or more hidden units. On training set 
A, the networks with 8 hidden units perform better than those with 16 or 
32 hidden units, but on training set B, of the same size, the reverse is true, 
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showing that these differences are within the variation due to the random 
selection of training cases. 

There is thus no reason to suspect that the larger networks were either 
"overfitting" or "underfitting" the data. Instead, as expected, performance 
with each training set appears to reach a reasonable limiting value as the 
size of the network increases. Lack of overfitting is also indicated by the 
estimates produced for the standard deviation of the noise in the targets. In 
all cases, the noise estimates were close to the true value of 0.05 - slightly 
higher than the true value for the small networks, quite close to the true 
value for the larger networks. If the larger networks were overfitting, one 
would expect their noise estimates to be substantially below the true value. 

These results differ from those reported by MacKay (1991, 1992b), who 
found a slight decline in the "evidence" for larger networks (up to twenty 
hidden units) applied to the robot arm problem with a training set of 200 
cases. (He also found that the evidence was correlated with performance on 
test data.) Although MacKay did not explicitly scale the prior for hidden
to-output weights as required for a limit to be reached as the number of 
hidden units increases, he did treat the variance for these weights as a 
hyperparameter. The variance should therefore have adopted the proper 
scaling automatically, allowing the large networks to perform well. 

There are several possible explanations for this discrepancy. It is possi
ble that the decline seen by MacKay was not indicative of a general and 
continuing trend - it might not have continued for still larger networks, 
and it might not have been seen on another training set. As I have noted, 
there is no guarantee that small networks will always perform worse than 
large networks; the reverse is seen in Figure 4.2 with training set A, though 
not with training set B. It is also possible that the Gaussian approxima
tion method used by MacKay became inaccurate for the larger networks; I 
argued in Section 1.2.5 that this is to be expected. 

Though Figure 4.2 shows no consistent differences in average squared 
error or average absolute error between networks with only 8 hidden units 
and those with 16 or 32 hidden units, a difference was apparent in the 
predictive distributions produced. As illustrated in Figure 4.3, predictions 
for test cases where the inputs were not close to those in any training case 
were consistently more uncertain in the larger networks - that is, the vari
ance of the outputs of the network, plus the noise variance, was larger for 
the larger networks.6 This is not unexpected. Since a small network will be 
able to represent only a limited range offunctions, it will generally produce 

6For test cases near to cases in the training set, the variance of the network outputs 
was also generally larger for the larger networks. However, the output variance is small 
for such cases, and the slightly higher output variance with the larger networks was 
offset by the slightly higher noise variance found with the smaller networks. 
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Average Squared Error 
(guessing mean) 
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FIGURE 4.2. Results on the robot arm problem with networks of varying size. 
Three training sets were used, two with 50 cases, one with 100 cases. For each 
training set, Bayesian learning was done for networks with 6, 8, 16, and 32 hidden 
units, using both Gaussian priors for the hidden-to-output weights (solid lines) 
and Cauchy priors (dotted lines). Performance is shown in terms both of average 
squared error and of average absolute error, in each case when guessing optimally 
for that loss function. Performance was measured on a test set of 10000 cases. 
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FIGURE 4.3. Predictive distributions obtained using networks of varying size. 
The plots show samples of 200 points from the predictive distributions based on 
training set A for the target values associated with inputs (2.0,0.5), a point just 
outside the region of the training data, as defined by network models with 6, 
8, 16, and 32 hidden units, using Gaussian priors. The 200 points were obtained 
using the networks from the last 200 super-transitions of the Markov chain Monte 
Carlo runs. 
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a more restricted range of predictions than would a larger network, espe
cially when extrapolating to regions where the training data is sparse. Since 
we will seldom have reason to believe that the-true function is in the re
stricted class representable by a small network, the greater certainty of the 
predictions produced by the small networks will usually be unwarranted. 

No clear difference in performance on this problem was seen between the 
networks using Gaussian priors for the hidden-to-output weights and those 
using Cauchy priors, though networks with different characteristics were 
found when the two different priors were used (in particular, the largest of 
the hidden-to-output weights tended to be larger in the networks learned 
with the Cauchy prior than in those learned with the Gaussian prior). This 
is disappointing, since as discussed in Section 4.2.1, one might sometimes 
expect to see such differences. The robot arm problem may perhaps be too 
simple to provide insight into this matter. 

The good behaviour observed using Bayesian learning with large net
works contrasts sharply with the behaviour of maximum likelihood train
ing. This is illustrated in Figure 4.4, which shows results of maximum like
lihood learning on training set A (consisting of 50 cases). For these tests, 
I fixed the priors for all the weight classes to be Gaussian with a standard 
deviation of 1000, and then found the maximum a posteriori probability 
(MAP) estimate for the network parameters. This is equivalent to maxi
mum penalized likelihood estimation with a very small penalty; including 
this small penalty avoids the problem that the true maximum likelihood 
estimate could lie at infinity (though it is still possible that the true esti
mate lies sufficiently far out that it will not be found in a run of reasonable 
length). I let the standard deviation of the noise be determined by the data, 
as in the Bayesian runs. This has no significant effect on the location of the 
maximum, but does influence the progress of the maximization procedure. 

Training for these tests was done using a method similar to the standard 
"backprop with momentum" technique (Rumelhart, Hinton, and Williams 
1986b), which I implemented by suppressing the stochastic aspect of the 
dynamical techniques used for the Bayesian learning. (This is not necessar
ily the most efficient method, but it was convenient in this context.) The 
MAP estimate was found by repeatedly updating the network parameters 
and associated momentum variables via "leapfrog" steps (equations (3.9)
(3.11)), with each step being based on the full gradient computed using 
all training cases. The leapfrog stepsize was the same for all parameters, 
and was set manually, as the heuristic stepsize selection procedure relies 
on hyperparameter values that are not present in this context. After each 
leapfrog step, the momentum variables were multiplied by a factor, {, less 
than one. For early iterations, Gaussian noise of variance 1 _{2 was added 
to the momentum after the multiplication by {, which has the effect of 
leading the system to an approximation to the Bayesian posterior distribu-



112 Chapter 4. Evaluation of Neural Network Models 

~

Ie-I-

5-

2-

10·2-

5-

2-

10·3-
I 

500 
I 

1000 

H=6 

~-

Ie-I-

5-

2-

1e-2-

5-

2-

1e-3-
I I 

1500 2000 

l-

Ie-I-

5-

1e-2-

10·3-
I I I I 

500 1000 1500 2000 

H=8 

I I I I I 

0 500 1000 1500 2000 

H=16 

FIGURE 4.4. Results of maximum likelihood learning with networks of varying 
size. Networks with 6, 8, and 16 hidden units were learned using training set A 
(containing 50 cases). The plots show the progress during learning of the average 
squared error on the training set (thick line) and on the test set (thin line). The 
horizontal axes gives the number of training iterations, in thousands, with points 
being plotted every 10 000 iterations. 

tion. For later iterations, this noise was not added, causing the system to 
converge to a local maximum of the (slightly penalized) likelihood? 

The results in Figure 4.4 confirm the standard view that limiting the 
size of the network is necessary when learning is done using maximum 
likelihood. The network with 16 hidden units severely overfit the data -
the squared error on the training set fell to an unrealistically low level, while 
the squared error on the test set became very bad. Indeed, this network 
',ad apparel,ly not fully converged to the maximum likelihood solution; 
)' it had, th'..:re is every reason to think that performance on the test set 
would have been even worse. 

Performance with networks of 6 and 8 hidden units was better, but not 
as good as the performance using Bayesian learning. For the final parameter 
values, which appear as if they may be close to the true MAP estimates, the 
squared error on the test set was 0.00905 for H = 6 and 0.01155 for H = 8; 
for comparison, the worst performance of any of the Bayesian networks 
trained on this data set was 0.00828 (for H = 6, with a Gaussian prior). 

The problem of overfitting can sometimes be alleviated by "early stop
ping" - halting training sometime before the maximum is reached, based 
on performance on a validation set separate from the training set (this 
is discussed, for instance, by Baldi and Chauvin (1991)). For a problem 
with as small a training set as considered here (50 cases), early stopping is 

7In detail, the procedure was as follows: After initialization of the parameters to zero, 
there were 10000 leapfrog steps with e = 0.008 and')' = 0, with noise added, then 100000 
steps with € = 0.006 and 'Y = 0.9, with noise added, then 400000 steps with € = 0.003 
and 'Y = 0.99, with no noise added, then 500000 steps with e = 0.002 and 'Y = 0.999, 
with no noise added, and finally 1000000 steps with f = 0.002 and 'Y = 0.9999, with no 
noise added, for a total of 2000000 leapfrog steps. 
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probably not attractive, since setting aside some of this data for use as a 
validation set would likely degrade performance substantially. In any case, 
as can be seen from Figure 4.4, early stopping would have at best improved 
performance only slightly for the networks with 6 and 8 hidden units. For 
the network with 16 hidden units, early stopping could have been advanta
geous, but performance would still have been worse than with the smaller 
networks. (Note, however, that the effect of early stopping may depend a 
great deal on the particular optimization method used.) 

Overfitting can also be addressed by adding a penalty term to the log 
likelihood, a procedure known as "weight decay" in the neural network 
context. In an earlier comparison (Neal 1993a), I found (in one case, at 
least) that weight decay can give results not much worse than are obtained 
using Bayesian learning, provided the right degree of weight decay is used. 
Determining the right degree of weight decay again requires a validation 
set, however, which will reduce the amount of data in the training set.8 

To summarize, these tests support the conclusion that with Bayesian 
learning one can use a large network even when the training set is small, 
without overfitting. This result is of significant practical importance -
when faced with a learning problem, we can simply use a network that 
is as large as we think may be necessary, subject to computational con
straints, rather trying somehow to determine the "right" size of network. 
By not restricting the size of the network, we avoid the possibility that a 
small network might not produce as good predictions (seen in Figure 4.2 
with respect to the networks with only 6 hidden units), as well as the pos
sibility that a small network may produce overly-confident predictions (as 
illustrated in Figure 4.3). However, as indicated in Figure 4.1, training a 
large network can take a long time. In practice, though, the training time 
for a problem of this sort would usually not be quite this long - I have 
here been rather generous in the length of the runs in order to increase 
confidence that the results are based on the true equilibrium distributions. 

4.3 Tests of Automatic Relevance Determination 

The Automatic Relevance Determination (ARD) model developed by David 
MacKay and myself was described briefly in Section 1.2.3. Its aim is to auto
matically determine which of many inputs to a neural network are relevant 
to prediction of the targets. This is done by making the weights on the 

8 Alternatively, an n-way cross-valida.tion scheme might be used, ba.sed on n divisions 
of the available data into training sets and validation sets. This is computationally 
expensive, however, and for neural networks might not work well in any case, due to the 
possibility that the networks found with different divisions may lie in dissimilar local 
minima. 
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connections out of each input unit have a distribution that is controlled 
by a hyperparameter associated with that input, allowing the relevance of 
each input to be determined automatically as the values of these hyper
parameters adapt to the data. 

I have tested the ARD model on the noisy LED display problem used 
by Breiman, et al (1984), and on a version of the robot arm problem with 
irrelevant inputs. The tests on the noisy LED display problem also allow 
an evaluation of how well a hierarchical model can adapt the architecture 
of a network to the data. 

4-3.1 Procedures for evaluating ARD models 

To evaluate the ARD model, a well-defined alternative is needed for com
parison, for which the obvious choice is a model with a single hyperparam
eter controlling the weights on connections out of all input units. For some 
problems, this alternative will be ill-defined, however, since if the inputs 
have different dimensions, the results will depend on the arbitrary choice of 
measurement units. In such cases, it is necessary to adjust the scales of the 
inputs on the basis of prior knowledge, so as to make a one-unit change in 
one input have the same possible significance as a one-unit change in any 
other input. 

Such prior knowledge may be helpful for the ARD model as well. When 
the ARD model is used in problems with many input variables, it may 
be necessary to use informative priors for the hyperparameters associated 
with the inputs. If vague priors are used for large numbers of hyperparam
eters, the prior probability of their taking on values appropriate for any 
particular problem will be very low, perhaps too low to be overcome by the 
force of the data. The posterior distribution of the hyperparameters may 
then be quite broad, rather than being localized to the appropriate region. 
Note, by the way, that this should not be a problem when single-valued 
estimates for the hyperparameters are used that maximize the probabil
ity of the data (the "evidence"), as is done by MacKay (1991, 1992b). A 
single-valued estimate is of course always localized, and the location of this 
estimate will usually not be affected by a widening in the permitted range 
of the hyperparameters. Consequently, one can avoid the effort of select
ing informative priors when using this technique. Overall, this effect is not 
necessarily desirable, however, since there are presumably times when the 
posterior distribution of the hyperparameters should not be localized, but 
should instead be spread over a region whose extent is comparable to that 
of the correct informative prior. 

Rather than use different informative priors for different input hyper
parameters, we can instead use the same prior for all of them, after rescaling 
the inputs so that a one-unit change has similar significance for each, as 
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described above. Even once this is done, however, there are still several 
app,arently reasonable priors one might use. I consider two possibilities: 

• A 1-level prior, in which the ARD hyperpar'ameters are independently 
given rather vague priors . 

• A 2-level prior, in which a high-level hyperparameter common to all 
inputs is given a very vague prior, while the ARD hyperparameters 
applying to each input are given less vague priors, with prior mean 
determined by the common high-level hyperparameter. 

The second scheme is meant to avoid the possible problems with vague 
priors discussed above, but without fixing the overall degree of significance 
of the inputs, which may not be intuitively clear. 

It is also desirable, with or without ARD, for the values of the inputs to 
be shifted so that the centre of the region of possible significance is zero. 
This is needed for it to be sensible to use a Gaussian of mean zero as the 
prior for the hidden unit biases. 

Unfortunately, shifting and scaling the inputs according to prior knowl
edge as described above is not really possible for the tests done in this 
chapter. For the two synthetic data sets, we know exactly how the data 
was generated, and therefore could in theory figure out exactly how to 
rescale and shift the inputs to achieve optimal performance. This would 
say little about performance on real problems, however. I have therefore 
chosen to use the obvious forms of the inputs for these problems, which 
seem fairly reasonable. 

For the other data sets, we have the problem that although the data is 
real, the context is now artificial. We no longer have access to whatever 
expert knowledge might have been used by the original investigators to 
rescale the inputs to equalize their potential relevance. On the other hand, 
we do know the results of past evaluations of other learning procedures 
applied to this data, which might allow this to be done in an unfair fashion. 

I have handled this problem by "normalizing" the inputs in the real data 
sets - that is, by shifting and rescaling each input so as to make its mean 
be zero and its standard deviation be one across the training set. This is a 
common procedure, used by Quinlan (1993), for example. 

From a Bayesian viewpoint, this normalization of inputs may appear 
to make little sense. In some cases, the values of the input variables are 
simply chosen by the investigator, in which case their distribution would 
seem to have nothing to do with the relationship being modeled. In other 
cases, the inputs have some distribution determined by natural variation, 
but the investigator's decisions heavily influence this distribution. In an 
agricultural field trial, for instance, the amount of fertilizer applied to each 
plot is just whatever the experimenter decides to apply. The distribution of 
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FIGURE 4.5. Digit patterns for the noisy LED display problem. 

these decisions says something about the mental state of the experimenter, 
but it says nothing, one would think, about the effects of fertilizer on crop 
yield. The experimenter might also measure the amount of rainfall on each 
test plot. Though the rainfall is not determined by the experimenter, its 
distribution is heavily influenced by the experimenter's decision on how 
widely to disperse the test plots. Deciding to put some of the test plots in 
the desert, for example, would radically alter this distribution. 

However, normalizing the inputs makes some degree of sense if we are 
willing to assume that the original investigators made sensible decisions. 
If so, they presumably arranged for the distribution of the input values to 
cover the range over which they expected significant effects, but did not 
wastefully gather data far beyond this range. If for some particular input 
they failed to gather data over what they considered an adequate range, 
they presumably omitted that input from the final set used. In the absence 
of any presently available expert opinion, these presumptions may be the 
best guide to the range over which each input might possibly have signifi
cance. Normalizing the inputs will then equalize these ranges, making use 
of a non-ARD procedure sensible, and allowing simple informative priors 
to be used in an ARD model. 

4.3.2 Tests of ARD on the noisy LED display problem 

The noisy LED display problem was used by Breiman, Friedman, 01-
shen, and Stone (1984) to evaluate their Classification and Regression Tree 
(CART) system. The task is to guess the digit indicated on a seven-segment 
LED display in which each segment has a 10% chance of being wrong, inde
pendently of whether any other segments are wrong. The correct patterns 
for the digits are shown in Figure 4.5. The ten digits occur equally often. 
The correct patterns, the frequencies of the digits, and the nature of the 
display's malfunction are assumed not to be known a priori. 

The seven segments to be recognized are presented as seven input vari
ables taking on values of "off" and "on", which I represent numerically as 
-0.5 and +0.5. (A symmetric representation seems appropriate, since the 
problem description contains no information regarding the meaning of "off" 
vs. "on", and since the CART system also treats the two possible values 
symmetrically.) In one version of the problem, only these seven inputs are 
present; in another version, seventeen addition irrelevant input variables 
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are included, each taking the values -0.5 and +0.5 with equal probability, 
independently of any other variable. The latter version will provide a test 
of the ARD model. 

Breiman, et al randomly generated training sets of 200 examples, and 
tested performance of the resulting classifier on a test set of 5000 additional 
examples. They report that in these tests the classification tree produced by 
the CART system mis-classified about 30% of the test examples, regardless 
of whether the seventeen irrelevant attributes were included. The optimal 
classification rule based on knowledge of the true distribution of the data 
has a 26% mis-classification rate. 

In applying a neural network to this ten-way classification problem, it is 
appropriate to use the "softmax" model (Bridle 1989), which corresponds 
to the generalized logistic regression model of statistics (see Section 1. 2.1 
and Section A.1.2). The network will take the values representing the seven 
segments along with any irrelevant attributes as inputs, and produce ten 
outputs, corresponding to the ten possbile digits. The conditional prob
ability of a digit, given the inputs, is defined to be proportional to the 
exponential of the corresponding output. 

This problem can be solved optimally by a network without any hidden 
units (only direct connections from input units to output units). There 
appears to be nothing in the problem description to indicate that a linear 
network would be adequate, however, so it might be regarded as unfair to 
take advantage of this fact. I therefore used networks containing a layer of 
eight hidden units, fully connected to the input units and to the output 
units. I did provide direct connections from inputs to outputs as well, so 
that a perfect solution was possible. I also t,rained networks without hidden 
units, to see whether such a restricted model actually did perform better. 

The seven segments are equally relevant in this classification problem, in 
the sense that in a network implementing an optimal solution the weights 
from these seven inputs will all be of equal magnitude. The problem descrip
tion does not indicate that these inputs are equally relevant, however, so 
again it might seem unfair to assume this when solving the version without 
irrelevant attributes. I therefore used an ARD model, with separate hyper
parameters controlling the weights out of each input. When no irrelevant 
inputs are present, ARD might be detrimental, whereas when irrelevant 
attributes are present, ARD is expected to improve performance. For com
parison, a model with a single hyperparameter controlling the weights from 
all inputs was tested on both version of the problem as well. 

In all, four network architectures were tested - a network with no hid
den units without ARD, a network with no hidden units with ARD, a 
network with a hidden layer without ARD, and a network with a hidden 
layer with ARD. The last of these is the architecture whose use is in ac-
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cord with the prior knowledge presumed to be available for this artificial 
problem. 

Hierarchical priors were set up as follows. In all architectures, the biases 
for the output units were considered one parameter group, as were the 
biases for the hidden units, and the weights from hidden units to output 
units, if hidden units were present. For the non-ARD models, the weights 
from the inputs to the outputs formed a single parameter group, as did 
the weights from the inputs to the hidden units, if present. For the ARD 
models, the weights from each input to the outputs formed separate groups, 
as did the weights from each input to the hidden units, if present. For all 
groups, the associated precision was given a prior as in equation (4.2), 
with w = 1 and a = 0.2, except for the hidden-to-output weights, for 
which w was set equal to the number of hidden units (eight), in accord 
with the scaling properties discussed in Chapter 2. (Subsequent experience 
on other data sets indicates that priors with a = 0.2 may be less vague 
than is desirable, but I did not realize this when these tests were done. As 
discussed in Section 4.3.1, it may be best to use a 2-level prior for ARD 
hyperparameters, but this also was not tried in these tests.) 

All four architectures were applied both to the version of the problem 
with only the seven relevant inputs, and to the version with 17 additional 
irrelevant inputs. For each of these eight combinations, three runs were 
done, using three different randomly generated training sets of 200 cases. 
The same three training sets were used for each network architecture; train
ing sets with irrelevant attributes were obtained by adding irrelevant at
tributes to the three training sets with only relevant attributes. The same 
test set of 5000 cases was used to evaluate performance for all combina
tions. These commonalities permit more precise assessment of the effects 
of the variations. 

The initial phase of each run consisted of 200 pairs of Gibbs sampling 
updates for hyperparameters and hybrid Monte Carlo updates for param
eters. The trajectories used consisted of L = 50 leapfrog steps, done with 
a stepsize adjustment factor of 1] = 0.4; . The windowed variant of hybrid 
Monte Carlo was used, with accept and reject windows of W = 5 states. 
Partial gradients were not used for this problem, as they appeared to give 
only a small benefit. The computation time required for the initial phase 
varied from three to nine minutes, depending on the network architecture 
and on whether irrelevant inputs were included. 

For the sampling phase, the hybrid Monte Carlo updates were done with 
1] = 0.4, L = 500, and W = 10. Each sampling phase consisted of 150 super
transitions, with each consisting of ten pairs of Gibbs sampling and hybrid 
Monte Carlo updates. Computation time for the sampling phase varied with 
the network architecture and with whether irrelevant inputs were included, 
but did not vary substantially with whether ARD was used. The time 
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required was 2.8 hours without hidden units and without irrelevant inputs, 
6.0 hours with hidden units and without irrelevant inputs, 5.1 hours without 
hidden units and with irrelevant inputs, and 9.4 hours with hidden units 
and with irrelevant inputs. 

For all runs, the sampling phase appeared to have converged within 80 
super-transitions. The states saved at the end of each of the last 70 super
transitions were therefore used to make predictions. Convergence was faster 
and dependencies smaller for networks without hidden units; for these, an 
adequate sample could in fact have been obtained using substantially fewer 
super-transitions than were actually performed. 

Figure 4.6 shows the performance of these models in terms of percent 
mis-classification, as measured on a test set of 5000 cases, for a standard 
error of ±0.65%.9 Comparisons of the results using neural network models 
with those using the CART classification tree procedure, measured on a 
different test set, are therefore significant (at the 5% level) only if the 
difference in performance is greater than about 2%. Since the same test 
set was used for all the neural network iigures, comparisons of different 
neural network models may be significant with differences less than this 
(as discussed by Ripley (1994a)). Recall also that the same three training 
sets are used for all the neural network models. 

The results when no irrelevant inputs are included are uniformly good. 
One would expect a penalty from using ARD when all inputs are of equal 
relevance, and from using a model with hidden units when the problem 
can be optimally solved without them, but clearly any such penalty is 
undetectably small in this context. Though the results for neural network 
models seem slightly better than those Breiman, et al (1984) found for 
CART, this difference is not statistically significant. 

The results when irrelevant inputs are included are more interesting. 
CART's cross-validation-based tree pruning procedure manages to prevent 
these irrelevant inputs from being used, so that performance is unaffected 
by their presence. In contrast, the neural network models that did not 
use ARD performed poorly in the presence of irrelevant attributes. ARD 
was successful at largely suppressing the bad effects of including irrelevant 
inputs, though there appears to still be a small penalty, as one would expect. 
The differences seen between CART and the neural network models using 
ARD are again not statistically significant" 

The effects of using a separate hyper parameter to control the standard 
deviations of weights out of each input in the ARD models are evident in 

9If P is the true probability of mis-classification, the variance of the total number of 

errors on K test cases is K p( 1 - p), giving a standard error of J p(l - p) / K, which for 
K = 5000, p ~ 0.3 is about 0.0065. 
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Type of model Relevant attributes only Plus 17 irrelevant attributes 

No hidden layer 
Without ARD 28.2% 29.1% 28.7% 37.8% 38.2% 37.2% 
With ARD 28.9% 29.0% 28.5% 29.8% 31.2% 31.0% 

Eight hidden units 
Without ARD 28.3% 29.1% 29.1% 37.8% 37.6% 33.1% 
With ARD 28.4% 29.6% 29.5% 30.4% 31.7% 33.0% 

Classification tree 30% 30% 31% 30% 30% 31% 

FIGURE 4.6. Results on the noisy LED display problem. The figures for neural 
networks show percent mis-classification on a 5000 item test set for three runs 
with different training sets. Results are shown for four network models, applied 
both to data sets with only the seven relevant attributes, and to data sets with 
these plus 17 irrelevant attributes. Results for classification trees produced by 
the CART system are also shown, from the tests by Breiman, et al (1984, Sec
tion 3.5.1). One CART run is shown for the problem with no irrelevant attributes; , 
five done with different training sets are shown for the problem with irrelevant 
attributes. The training and test sets used for the CART tests are not the same 
as those used for the neural network tests. 

Figure 4.7, which shows the average squared magnitudes of weights out 
of each input, for networks with no hidden units, with and without ARD. 
(Recall that for the softmax model used here, each input is connected to 
the ten outputs associated with the ten classes.) When ARD is used, the 
magnitudes of weights on connections out of the relevant inputs are bigger, 
and the magnitudes of weights on connections out of the irrelevant inputs 
are smaller, than when ARD is not used. 

One of the training sets with irrelevant inputs (the third) produced 
slightly puzzling results - with hidden units in the network, the mis
classification rate was about 33% regardless of whether or not ARD was 
used, better than performance ofnon-ARD networks on the other two train
ing sets, but worse than performance of ARD networks on the other two 
training sets. The near-identical performance appears to be a coincidence, 
since the hyperparameter values for the two networks indicate that they 
are not at all similar. However, it may be that by chance the irrelevant 
inputs in this training set contained some pattern that induced unusual 
behaviour both with and without ARD. One would expect this to happen 
occasionally with small training sets. 

For the models with hidden units, the standard deviation of the hidden
to-output weights (a hyperparameter) took on fairly small values between 
about 0.1 and 1.0, except for two of the networks not using ARD with 
irrelevant inputs present, and the one network using ARD discussed in the 
previous paragraph. This may have helped prevent the presence of hidden 
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FIGURE 4.7. Relevant and irrelevant input weight magnitudes for the LED dis
play problem. The plots show (on a log scale) the posterior distributions of the 
square roots of the average squared magnitudes of weights on connections out 
of each of the twenty-four inputs units, for the networks without hidden units, 
applied to the first training set. The first seven of these twenty-four inputs are 
relevant; the remaining seventeen are irrelevant. The plot on the left shows the 
magnitudes when ARD is not used (only one hyperparameter); that on the right 
shows the magnitudes when ARD is used (one hyperparameter for each input 
unit). The points in the plots were computed from the states saved after the last 
80 super-transitions of the sampling phase. 
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units from having a damaging effect. One might actually have expected 
the standard deviation for these weights to take on even smaller values, 
effectively eliminating the hidden layer. That this did not happen may be 
due to the prior for the associated hyperparameter not being vague enough. 
Alternatively, the good test performance seen (with the ARD models) may 
indicate that these weights were sufficiently small as is. 

4.3.3 Tests of ARD on the robot arm problem 

I have also tested the Automatic Relevance Determination model on a 
variation of the robot arm problem. In this variation, six input variables, 
Xl, ... , x~, were present, related to the inputs of the original problem, Xl 
and X2, as follows: 

Xl = Xl, 

X~ = X2, 

Xl + 0.02 n3, 

X2 + 0.02 n4, 
(4.3) 

where n3, n4, n5, and n6 are independent Gaussian noise variables of mean 
zero and standard deviation one. As in the original version, the targets were 
functions of Xl and X2 (equivalently, of xl and x~), plus noise of standard 
deviation 0.05 (see equation (3.34)). Clearly, x~ and x~ are irrelevant to 
predicting the targets. In isolation, x~ and x~ would convey some informa
tion about the targets, but in the presence of xl and x~, which contain the 
same information in noise-free form, they are useless, and should also be 
ignored. 

We would like to see whether the ARD model can successfully focus on 
only Xl and x~, and, if so, whether this does indeed improve predictive 
performance. To test this, I generated new versions of the training set of 
200 cases used before by MacKay (1991, 1992b) and for the demonstration 
in Section 3.3, and of the test set of 10000 cases used in Section 4.2.2. The 
input variables in these data sets were derived from the corresponding in
puts in the original data sets in accord with equation (4.3); the targets were 
the same as before. A model that completely ignored the irrelevant inputs 
would therefore be able to achieve the same performance when trained 
on this data as would a model trained on the original data without the 
irrelevant inputs. 

For these tests, I used a network with a single hidden layer of H = 
16 tanh units. For all models, the hidden-to-output weights were given 
Gaussian priors, whose precision was a common hyperparameter, to which 
I gave a vague Gamma prior (equation 4.2)) with w = 100H and O! = 0.1. 
The hidden unit biases were also given Gaussian priors, with their precision 
being a hyperparameter t.hat was given a Gamma prior with w = 100 and 
O! = 0.1. The output unit biases were given a Gaussian prior with a fixed 
standard deviation of one. 



4.3 Tests of Automatic Relevance Determination 123 

Gaussian priors were also used for the input-to-hidden weights, but the 
precisions for these Gaussian priors were specified in three different ways, to 
produce a non-ARD model, a 1-level ARD model, and a 2-level ARD model. 
In the non-ARD model, all the input-to-hidden weights had prior precisions 
given by a single hyperparameter, to which I gave a vague Gamma prior 
with w = 100 and a = 0.1. For the I-level ARD model, each input had an 
associated hyperparameter that controlled the prior precision of weights out 
of that input, with these hyperparameters being given independent Gamma 
priors with w = 100 and a = 0.1. For the 2-level ARD model, each input 
again had its own hyperparameter, but these low-level hyperparameters 
were given somewhat less vague Gamma priors, with a = 0.5, and with 
the mean w being a common high-level hyperparameter. This high-level 
hyperparameter was given a very vague prior with w = 100 and a = 0.001. 10 

For all three models, learning began with a short initial phase, and 
continued with a long sampling phase, consisting of 200 super-transitions. 
Each super-transition consisted of ten pairs of Gibbs sampling updates 
for hyperparameters and hybrid Monte Carlo updates for parameters. The 
hybrid Monte Carlo trajectories were L == 4000 leapfrog steps long, and 
were computed using partial gradients, based on a four-way division of the 
training set, with a stepsize adjustment factor of'f} = 0.6. The windowed 
acceptance procedure was used, with windows of ten states. Each of these 
runs required 42 hours of computation time. 

Figure 4.8 shows how the magnitudes of weights on connections out of 
the different inputs varied in the course of the simulations for the three 
models. With both ARD models, the weights on connections out of the 
four irrelevant inputs quickly became a factor of ten or more smaller in 
magnitude than the weights on connections out of the two relevant inputs. 
The differences in average weight magnitudes for the model without ARD 
were considerably smaller (less than a factor of two). 

It is interesting to compare the results seen with the I-level ARD model 
to those seen with the 2-level ARD model. Although the Gamma prior used 
for the hyperparameters in the I-level model was rather vague, it seems 
that it was not so vague as to have no influence on the results - the prior 
seems to have prevented the weight magnitudes for the irrelevant inputs 
from becoming much smaller than 0.01. The magnitudes for the weights 
from relevant input in the I-level model are somewhat larger than in the 
2-level model, perhaps due to residual pressure to increase the disparity 
with the weights from the irrelevant input.s. Since the prior for the low-

lOThis prior is perhaps vaguer than is necessary, but using a very low value for a has 
the advantage that it increases the acceptance rate of the rejection sampling scheme 
used to implement Gibbs Sampling for the high-level hyperparameter (see Appendix A, 
Section A.5). 
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FIGURE 4.8. Input weight magnitudes for the robot arm problem with and with
out ARD. These plots show the square roots of the average squared magnitudes 
of weights on connections from the six inputs, with the magnitudes for the two 
inputs carrying noise-free information given by solid lines, the magnitudes for the 
two inputs carrying noisy information by the dotted lines, and the magnitudes 
for the completely irrelevant noise inputs by dashed lines (all on a log scale). The 
horizontal axis gives the number of super-transitions. 
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level hyperparameters in the 2-level model is less vague than that in the 
1-level model, one might wonder why the weight magnitudes influenced 
by these hyperparameters were able to become more widely spread in the 
2-level model. This is due to the asymmetry of the Gamma prior used, 
under which the upper tail for log (T is heavier than the lower tail. In the 
2-level model, the mean for the low-level hyperparameters is a high-level 
hyperparameter with a very vague prior that allows it to adopt a value 
that positions the low-level prior where the heavy upward tail covers the 
appropriate range. 

The difference seen between the I-level and 2-level models is thus in part 
due to the particular form I have used for the priors. I expect that a 2-level 
model will have more general advantages, however. It may be dangerous to 
give very vague priors to many hyperparameters, since the prior probability 
of their taking on values matching the data will then be very small. In the 2-
level model, only one high-level hyperparameter is given a very vague prior; 
the others have less vague priors that should nevertheless be adequate to 
permit the desired variation in weight magnitudes, once these priors are 
properly positioned by the adaptation of the high-level hyperparameter. 

Since the ARD models succeeded in suppressing the weights on con
nections to irrelevant" inputs, whereas the non-ARD model did not, one 
would expect that the predictive performance of the ARD models would 
be better than that of the non-ARD model. This was indeed the case. 
On the test set of 10000 cases, the average squared error when guessing 
the average outputs of the networks from the last 150 super-transitions 
was 0.00597, 0.00563, and 0.00549 for the non-ARD model, 1-level ARD 
model, and 2-level ARD model, respectively.ll The error using the 2-1evel 
ARD model was almost identical to the error of 0.00547 measured on this 
test set using the networks from the last 100 super-transitions of the first 
run with L = 8000 described in Section 3.3, which was trained on the 
same set of cases, but without the irrelevant inputs. It turns out that very 
similar predictive performance can be obtained from shorter runs - using 
only the last 50 of the first 75 super-transitions in these runs, the average 
squared error was 0.00589, 0.00564, and 0.00552 for the non-ARD, 1-level 
ARD, and 2-level ARD models. Runs of this length would take 16 hours of 
computation time. 

11 The standard errors for these figures are approximately ±O.00006, so the advantage 
seen for ARD is statistically significant with respect to the variation due to the random 
choice of test set. Since only a single training set was used, the random variation due to 
this factor cannot be quantified. 
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4.4 Tests of Bayesian models on real data sets 

The tests on synthetic data sets described in the previous sections have 
helped clarify the properties of the network models and priors tested. This 
knowledge should be of use when appling Bayesian learning to real prob
lems. In this section, I test the Bayesian network models and the Markov 
chain Monte Carlo implementation on two real data sets, one for a regres
sion problem and one for a classification problem; 

4.4.1 Methodology for comparing learning procedures 

In comparing learning procedures, we may be interested in how they dif
fer in many respects, including the accuracy of the predictions made, the 
amount of computation required to produce these predictions, the ease 
with which the problem can be formulated in an appropriate form, and 
the extent to which the construction of a predictive model increases our 
understanding of the nature of the problem. Only in the context of a real 
application will we be able to judge the relative importance of these aspects, 
and only in such a context will some of them be testable. Traditionally, neu
ral networks and other machine learning procedures have been compared 
primarily on the basis of their predictive performance, with some attention 
also paid to their computational requirements, and these aspects have been 
tested using data which may be real, but for which the original context is 
no longer available. Despite its limitations, this is the approach I will take 
here. 

Learning procedures cannot be compared in a complete absence of con
text, however. We must postulate some loss function in terms of which the 
quality of the predictions can be judged. Furthermore, for the results of a 
comparison to be meaningful, we must somehow distinguish between pro
cedures which just happen to do well on a particular problem, and those 
which not only do well, but also might have been chosen prior to our see
ing the test results for the various procedures. Which procedures might 
reasonably have been chosen will depend on what background knowledge 
is assumed to be available. For these sorts of tests, there is an implicit 
assumption that the background knowledge is very vague (but this is not 
quite the same as a complete absence of background knowledge). 

For example, suppose we are comparing neural networks with other 
methods on two problems. On problem A, a neural network with one hidden 
layer does better than any other method. On problem B, a neural network 
with two hidden layers performs best. It would not be valid to claim that 
these results demonstrate the superiority of neural networks unless there 
was some way that the user could have decided on the basis of background 
knowledge and the training data alone that a network with a single hidden 
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layer was appropriate for problem A, but one with two hidden layers was 
appropriate for problem B. 

To lessen the potential for criticism on this basis, I have used hierarchi
cal models that are capable of reducing to simpler models depending on 
the settings of hyperparameters. In networks with two hidden layers, for 
example, I include direct connections from the inputs to the second hidden 
layer, and use a hyperparameter that controls the magnitude of the weights 
from the first to the second hidden layer. If this hyperparameter takes on a 
very small value, the network will effective have only a single hidden layer. 
This idea was used earlier in the tests on the noisy LED display problem 
(Section 4.3.2); the ARD model can also be seen as an instance of this 
approach. An alternative is to somehow choose between discrete model al
ternatives on the basis of the training data. Bayesian methods for this are 
emphasized by MacKay (1992a), but the required computations are diffi
cult in a Monte Carlo implementation (Neal 1993b, Sections 2.3 and 6.2). 
It is also possible to choose between models by other means, such as cross 
validation. Any of these methods may allow the effective model used to be 
determined to a large degree by the data. If the chosen model performs 
well, one can then argue that such good performance could indeed have 
been achieved in a real application of a similar nature. 

4.4.2 Tests on the Boston housing data 

The Boston housing data originates with Harrison and Rubinfeld (1978), 
who were interested in the effect of air pollution on housing prices.12 The 
data set was used to test a method for combining instance-based and model
baSed learning procedures by Quinlan (1993). Although the original objec
tive of Harrison and Rubinfeld was to obtain insight into factors affecting 
price, rather than to make accurate predictions, my goal here (and that of 
Quinlan) is to predict housing prices based on the attributes given, with 
performance measured by either squared error loss or absolute error loss. 

The data concerns the median price in 1970 of owner-occupied houses in 
506 census tracts within the Boston metropolitan area. Thirteen attributes 
pertaining to each census tract are available for use in predicting the median 
price, as shown in Figure 4.9. The data is messy in several respects. Some 
of the attributes are not actually measured on a per-tract basis, but only 
for larger regions. The median prices for the highest-priced tracts appear 
to be censored.13 

12The original data is in StatLib, available via the World Wide Web, at URL 
http://lib . stat. emu. edu/, under "datasets" . 

13 Censoring is suggested by the fact that the highest median price of exactly $50,000 is 
reported for sixteen of the tracts, while fifteen tracts are reported to have median prices 
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FIGURE 4.9. Descriptions of inputs for the Boston housing problem. 

Considering these potential problems, it seems unreasonable to expect 
that the distribution of the target variable (median price), given the in
put variables, will be nicely Gaussian. Instead, one would expect the error 
(noise) distribution to be heavy-tailed, with a few errors being much greater 
than the typical error. To model this, I have used a t-distribution as the 
error distribution, as described in Appendix A, Section A.1.2. This is a 
common approach, used by Liu (1994), for example. I rather arbitrarily 
fixed the degrees of freedom for the t-distribution to the value 4. Ideally, 
one would let the degrees of freedom be a hyperparameter, but this is not 
supported by the present implementation. 

Harrison and Rubinfeld (1978) consider various nonlinear transforma
tions (e.g. logarithmic) of the target and input variables as the basis for 
their linear model. However, Quinlan (1993) uses only a linear transfor
mation of the variables. Since I would like to compare with the results 
Quinlan gives, I did the same. A neural network should be able to imple
ment whatever nonlinear transformation may be required, given enough 
data to go on, so modeling the untransformed data is a reasonable demon
stration task. However, it seems likely that leaving the target (the median 
price) in its original form will result in the noise variance varying with the 
target value (heteroscedasticity). The procedures used by Quinlan appar
ently did nothing to adjust for this; neither do the neural network models 
I used, though it should be possible to extend them to do so. I expect that 
ignoring heteroscedasticity will degrade performance somewhat, but will 
not cause serious problems. 

I did linearly transform the input variables and targets to normalize 
them to have mean zero and standard deviation one, as did Quinlan (1993). 

above $40,000 and below $50,000, with prices rounded only to the nearest hundred. 
Harrison and Rubinfeld (1978) do not mention any censoring. 
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As discussed in Section 4.3.1, I view this procedure as a substitute for us
ing expert knowledge to shift and rescale the input variables in order to 
equalize their potential relevance. For this data set, one way in which the 
prior knowledge of the original investigators may appear in the distribu
tion of the input variables is through their selection of the study area -
presumably Harrison and Rubinfeld believed that the range of variation 
in input variables seen over the Boston area was similar to the range over 
which these variables might be relevant, as otherwise they might have cho
sen to study housing prices in all of Massachusetts, or in just the suburb 
of Newton. 

Quinlan (1993) assesses the performance of various learning procedures 
on this problem using ten-way cross validat.ion. In this assessment method, 
each learning procedure is applied ten times, each time with nine-tenths 
of the data used for training and one-tenth used for testing, and the test 
errors for these ten runs are then averaged. Quinlan has kindly provided 
me with the ten-way division of the data that he used for his assessments. 14 

Since these cross validation assessments are computationally expensive, 
before undertaking any of them, I first evaluated a number of Bayesian 
neural network models using half the data (randomly selected) as a training 
set and the other half as a test set. These training and test sets both 
consisted of 253 cases. 1S 

For the first of these preliminary tests, I trained a network with no hid
den units, corresponding to a linear regression model. Since there is only one 
connection for each input in this model, ARD was not used - the input-to
output weights were simply given Gaussian distributions, with the precision 
for these Gaussian distributions being a common hyperparameter, which 
was given a Gamma prior with w = 100 and a = 0.1 (see equation 4.2). The 
output bias was given a fixed Gaussian prior with standard deviation one. 
The noise distribution was a t-distribution with four degrees of freedom 
(see equation (A.6) in Appendix A), with the associated precision, (j-2, 

having a Gamma prior with w = 100 and a = O.l. 

This simple network was trained for 100 super-transitions, each con
sisting of ten pairs of Gibbs sampling and hybrid Monte Carlo updates. 
Trajectories were 100 leapfrog steps long, with a stepsize adjustment fac
tor of l.0. Total training time was seven minutes. 

The states saved after the last 50 of these super-transitions were used 
for prediction. The resulting performance is reported in Figure 4.10, along 

14This division of the data is stratified by target value, as described by Breiman, et 
al (1984, Section 8.7.2). 

15In these tests, I used a slightly incorrect normalization procedure, which has the 
effect of adding a small amount of random noise to the inputs. This was fixed for the 
later cross-validation assessments, and turns out to ha~e had little effect in any case. 
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Average Average Average 
Model or procedure used squared error absolute error neg log prob 

Guessing mean of training set 83.4 6.70 -

Guessing median of training set 82.4 6.40 -

Network with no hidden units 28.9 3.36 2.888 

Network with 8 hidden units 
With Gaussian prior 13.7 2.32 2.428 
With Cauchy prior 13.1 2.26 2.391 

Network with 14 hidden units 
With Cauchy prior 13.5 2.29 2.407 

Network with two hidden layers 12.4 2.15 2.303 

FIGURE 4.10. Results of preliminary tests on the Boston housing data. The 
predictions for each network model were based on the posterior distribution given 
the training set of 253 cases, as sampled by the Markov chain simulations. The 
figures are averages over the 253-case test set of the squared error when guessing 
the predictive mean, the absolute error when guessing the predictive median, and 
the negative log probability density of the true target value. 

with that of the other networks trained in the preliminary tests, to be dis
cussed shortly. Three performance criteria are used here - average squared 
error on the test set, when guessing the mean of the predictive distribution; 
average absolute error, when guessing the median of the predictive distri
bution; and average negative log probability density of the actual target 
value under the predictive distribution. Squared error can be very sensi
tive to a small number of large errors; absolute error is less so; negative 
log probability density is perhaps the best indicator of overall performance 
when there are occasional large errors. 

Next, I trained networks with a layer of eight hidden units, using both 
Gaussian and Cauchy priors for the hidden-to-output weights. For these 
networks, I used a 2-level ARD prior for the input-to-hidden weights, with 
w = 100, a = 0.001 for the high-level Gamma prior (for the common hyper
parameter), and a = 0.5 for the low-level Gamma prior (for the hyper
parameters associated with particular inputs). The prior for hidden biases 
was Gaussian, with the precision having a Gamma prior with w = 100 and 
a = 0.1. In the Gaussian network, the prior for hidden-to-output weights 
was Gaussian with a precision that I gave a Gamma prior with w = 100H 
and a = 0.1. Here H is the number of hidden units, here eight; this give 
proper scaling with network size, as discussed in Chapter 2. In the Cauchy 
network, a Cauchy prior for the hidden-to-output weights was implemented 
using a 2-level Gaussian prior, with w = 100H2 , a = 0.1 for the high-level 
Gamma prior (for the common hyperparameter), and a = 1 for the low-
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level Gamma prior (for the hyperparameters associated with particular 
hidden units). 

I included direct connections from the inputs to the outputs in these 
networks. The weights on these direct connections, the bias for the output 
unit, and the level of the noise were all given the same priors as for the 
network with no hidden units. 

Following a relatively short initial phase, these networks were trained for 
250 super-transitions, each super-transition consisting of ten pairs of Gibbs 
sampling and hybrid Monte Carlo updates. The states at the ends of each of 
the last 150 super-transitions were used to make predictions. Trajectories 
were 1500 leapfrog steps long, with a stepsize adjustment factor of 0.6. 
They were computed using partial gradients, with a five-way division of 
the training data. The windowed acceptance procedure was used, with a 
window size of ten. Total training time was 21 hours for each network. 

As can be seen in Figure 4.10, the networks with eight hidden units 
performed much better than the network with no hidden units. The results 
observed using the Cauchy prior were slightly better than those observed 
using the Gaussian prior, but the difference should probably not be re
garded as significant. 

Finally, I trained two more complex networks: one with a single hid
den layer of fourteen hidden units, another with two hidden layers, each 
of six hidden units. In both networks, the hidden and output layers had 
direct connections to the inputs. These networks both had 224 parameters 
(weights and biases). 

The priors used for the network with a single layer of fourteen hidden 
units were the same as for the network with eight hidden units, using the 
Cauchy prior (except for difference due to the scaling with H). The network 
was also trained in the same way as were those with eight hidden units, 
except that a longer initial phase was used, and the sampling phase was 
continued for 300 super-transitions, with the states saved from the last 200 
being used for predictions. Total training time was 46 hours. 

For the network with two hidden layers, I used a Gaussian prior for 
weights from the first hidden layer to the second hidden layer, and a 
Cauchy prior for weights from the second hidden layer to the outputs. 
This choice was inspired by Figure 2.10, which shows interesting two
dimensional functions produced from a similar model that combines Gaus
sian and non-Gaussian priors. (However, one may doubt whether six is 
really close enough to infinity for this picture to be relevant. Such priors 
may also behave differently with thirteen inputs than with two.) 

In detail, the network model with two hidden layers used the following 
priors. For the weights on connections from the inputs to the first hidden 
layer, a 2-level ARD prior was used with w = 100, a == 0.1 for the high-level 
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Gamma prior, and a = 3 for the low-level Gamma prior. An ARD prior of 
the same form was used for the weights on connections from the inputs to 
the second hidden layer. The choice of a = 3 for the low-level Gamma prior 
produces a distribution that is not too broad; I chose this somewhat narrow 
prior primarily to avoid any possible problem with the simulation becoming 
lost for an extended period in some strange region of the hyperparameter 
space. The weights on connections from the first hidden layer to the second 
hidden layer were given Gaussian priors, with precisions given by a Gamma 
prior with w = 100Hl and Q' :::::: 0.1, where Hl = 6 is the number of units 
in the first hidden layer. For the weights on connections from the second 
hidden layer to the outputs, I implemented a Cauchy prior using a 2-level 
Gaussian prior with w = 100H~, a = 0.1 for the high-level Gamma prior, 
and a = 1 for the low-level Gamma prior, where H2 = 6 is the number 
of units in the second hidden layer. The priors on the biases for the two 
hidden layers were both Gausian, with precisions given by Gamma priors 
with w = 100 and a = 0.1. The priors for the input-to-output weights, the 
output biases, and the noise level were the same as for the other networks. 

Training for the network with two hidden layers began with a short 
initial phase, which was followed by 100 super-transitions using the same 
learning parameters as were used for the networks with one hidden layer. In 
the last twenty of these super-transitions, the rejection rate climbed to over 
50%. I therefore reduced the stepsize adjustment factor from 0.6 to 0.45, 
and increased the trajectory length from 1500 to 2000 to compensate. With 
these parameters, I let the run continue for another 200 super-transitions. 
The states from these 200 super-transitions were the ones used for predic
tions. Total training time was 54 hours. 

As can be seen in Figure 4.10, the performance of the network with a 
single layer of fourteen hidden units differed little from that of the networks 
with only eight hidden units. However, performance of the network with 
two hidden layers did appear to be better than that of the networks with 
only one hidden layer. 

Following these preliminary runs, I decided to do a cross-validation as
sessment ofthe network with two hidden layers (each with six hidden units), 
in order to compare with the results reported by Quinlan (1993). Techni
cally speaking, this is cheating - this network architecture was chosen with 
knowledge of results involving all the data, whereas training for each com
ponent of the cross-validation assessment is supposed to be based solely on 
the nine-tenths of the data allocated to training for that component. There 
are two reasons why this does not invalidate the results. First, one could 
apply the same methodology of selecting an architecture (using prelimi
nary runs trained with a subset of the data) within each component of the 
cross-validation assessment. Since the training and test sets for these runs 
would be only slightly smaller than for the preliminary runs done here, the 
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results would likely be similar. (This was not done because it would have 
required considerably more computation time.) Second, the network archi
tecture selected is that which is the most complex, the one that would be 
selected a priori under the philosophy of modeling that I am advocating. 
The preliminary runs simply confirm that, as expected, using a simpler 
architecture is not advantageous. 

The objective of the assessments that Quinlan (1993) reports was to 
evaluate whether his scheme for combining "instance-based" and "model
based" learning was beneficial. Instance-based methods (such as k-nearest 
neighbor) make predictions based on similarities with "prototype" patterns. 
Model-based methods (such as neural networks) may use more general rep
resentations of regularities. Quinlan proposes a combined scheme in which 
a prediction for a particular test case is obtained by applying the instance
based method after adjusting the values associated with each prototype by 
the amount that the model-based method predicts the prototype's value 
will differ from that of the test case. 

For my purposes, Quinlan's results simply indicate the performance 
achievable by reasonably sophisticated applications of existing techniques, 
thereby providing a standard against which I can compare the performance 
obtained with a Bayesian neural network model. The neural network com
ponent of Quinlan's assessment was done by Geoffrey Hinton. The network 
he used had a single hidden layer, and was t.rained to minimize squared er
ror on the training set plus a weight decay penalty. The number of hidden 
units and the amount of weight decay were chosen by cross validation. In 
principle, this choice would be made ten times, once for each component of 
the main cross-validation assessment, but to save time a single choice was 
made. The network chosen in this way had fourteen hidden units (Geoffrey 
Hinton, personal communication). 

I estimated that a ten-way cross-validation assessment of the Bayesian 
network model with two hidden layers that used the same training pro
cedure as in the preliminary runs would required a total of 41 days of 
computation time. Wishing to reduce this, I performed a number of tests 
usin-g states from the preliminary run. In particular, I looked at the cor
relations of various quantities along trajectories, in order to select a good 
trajectory length, and at the change in free energy from start to end of 
a trajectory when using various stepsize adjustment factors, window sizes, 
and partial gradient divisions, in order to select trajectory computation 
parameters that would give a good acceptance rate at minimal cost. 

Based on these tests, I chose the following three-phase training proce
dure for use in the cross-validation assessment. Starting with weights and 
biases set to zero, I first trained the network for 1500 pairs of Gibbs sam
pling and hybrid Monte Carlo updates, using trajectories 100 leapfrog steps 
long (with a window of 10 states), with a stepsize adjustment factor of 0.5. 
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Model or procedure used Ave sqr error Ave abs error 

Guessing overall mean 84.4 6.65 
Guessing overall median 86.2 6.53 

Bayesian neural network 
With no hidden units 25.3 3.20 
With two hidden layers· 6.5 1.78 

Instances alone 19.2 2.90 

Max. likelihood linear regression 24.8 3.29 
+ instances 14.2 2.45 

Model tree 15.7 2.45 
+ instances 13.9 2.32 

Neural network using cross validation 11.5 2.29 
+ instances 10.9 2.23 

• Performance on each of the ten divisions: Squared error: 6.4, 7.0, 5.3, 10.0, 4.4, 6.0, 13.2, 3.6, 4.8, 3.9 
Absolute error: 1.78, 1.87, 1.81, 2.13,1.47,1.78,2.43, 1.38, 1.60, 1.49. 

FIGURE 4.11. Cross-validation assessments on the Boston housing data. The 
figures are averages of performance (in terms of squared and absolute error) over 
all ten divisions of the data into training and test sets (except for the figures 
using overall means and medians, for which this would not be meaningful, due 
to stratification). The results in the bottom section are as reported by Quinlan 
(1993). 

Next, I did 750 pairs of updates using trajectories 200 leapfrog steps long 
(with a window of 20 states), with a stepsize adjustment factor of O.B. 
Finally, I ran a sampling phase consisting of 120 super-transitions, each 
consisting of ten pairs of Gibbs sampling and hybrid Monte Carlo updates, 
using trajectories 1000 leapfrog steps long (with a window of 30 states), 
with a stepsize adjustment factor of 0.6. The states saved after the last 100 
of these super-transitions were used to make predictions. Trajectories in all 
phases were computed using the partial gradient method, with a ten-way 
division of the training data. Total training time was 27 hours for each 
network, 270 hours for the entire assessment. 

The results of this assessment and those of Quinlan are shown in Fig
ure 4.11.16 As a check, I also did a cross-validation assessment of the net
work with no hidden units; as expected, its performance is similar to that 
which Quinlan reports for linear regression. 

16Note that Quinlan reports squared error in terms of "relative error" with respect to 
the squared error guessing the overall mean of the data. To convert his results to the 
form displayed, multiply by 84.4. 
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The Bayesian neural network model with two hidden layers of six units 
performed substantially better than any of the other methods. To do a 
formal test for the significance of the difference in average performance 
seen, one would need the individual results for the other methods on each 
of the ten divisions of the dataP The individual results for the Bayesian 
network with two hidden layers are given at the foot of the figure. Unless 
the other methods exhibit greater variability in performance over the ten 
divisions than is the case for the Bayesian network model, it seems fairly 
implausible that the difference seen could be due to chance. 

What is responsible for the good performance seen with this Bayesian 
network model, particularly as compared with the neural network trained 
by standard methods? Several aspects of the model might be important: 
the use of a network with two hidden layers, the use of an ARD prior, the 
use of a t-distribution for the noise, and the use of direct connections from 
inputs to all layers. The fact that the Bayesian training procedure averages 
the results of many networks might be crucial. The Markov chain Monte 
Carlo implementation might also be better at escaping local minima than 
the minimization procedure used for the standard network training. 

I have not attempted to isolate all these possible influences. I did train 
a network of the same architecture (two hidden layers of six units each) 
to minimize the standard criterion of squared error, plus a small weight 
decay penalty, and found that serious overfitting occurred. Even stopping 
training at the optimal point as judged by the test set gives performance 
of only 9.7 in terms of squared error and 2.19 in terms of absolute error. 
This is slightly better than the other non-Bayesian methods, but not close 
to the performance of the Bayesian network. Of course, it is cheating to 
pick the stopping point using the test error, so the actual performance 
achievable with this procedure would be somewhat worse. On the other 
hand, choosing a better weight decay penalty by cross-validation might 
have improved performance. 

I will also note a few relevant features of the posterior distributions 
found in the training runs that may shed some light on the reasons for 
the good performance seen. The weights on the direct connections from 
inputs to outputs were typically small, less than 0.1, but not completely 
negligible. Weights on direct connections from inputs to the second hidden 
layer were also mostly small, usually less than 0.5, except for the weights 
on connections from the DIS input, which often exceeded one. Weights on 
connections from the inputs to the first hidden layer were much larger, 

17 Even with this information, such a test might be problematical, since the distribution 
of performance for a method cannot be assumed to be Gaussian, or even unimodal, and 
since the ten performance values obtained in a cross-validation assessment such as this 
are not independent. 
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typically greater then one, and sometimes greater than ten. In many of the 
runs, such weights were substantially larger on connections from a few of 
the inputs than on the other connections. These features indicate that the 
first hidden layer is playing an important role in the network, and that the 
use of hyperparameters, and of ARD priors in particular, may have been 
beneficial. 

In my view, the results of this test can be taken as evidence of the bene
fit of the Bayesian approach regardless of what particular modeling choices 
may have been responsible for the performance improvement. Ultimately, 
we are interested in the overall merits of different problem-solving method
ologies, which, among other things, determine how such modeling choices 
are made. The Bayesian approach is based on probabilistic modeling of 
relationships, in which it is natural, for instance, to use a t-distribution for 
the noise whenever that seems appropriate, regardless of what loss function 
will be associated with the final predictions. In some other approaches, the 
fact that performance will ultimately be judged by squared error would lead 
to the use of squared error as a fitting criterion during training as well. In 
the Bayesian approach, we also need not fear overfitting, and hence are free 
to use a network with many parameters and a complex structure whenever 
it seems that the consequent flexibility may be useful. It is possible that 
techniques such as weight decay might be able to control overfitting by such 
a complex network when trained by non-Bayesian methods, but assurances 
of this are lacking. Consequently, users of a non-Bayesian methodology may 
choose an overly-simple model, out of fear of overfitting, even when a more 
complex model would in fact have worked well. 

On the other hand, these tests show that there is a considerable need for 
improvement with respect to the computation time required by the Markov 
chain Monte Carlo implementation of Bayesian neural network learning. 

4.{3 Tests on the forensic glass data 

The forensic glass data was used by Ripley (1994a, 1994b) to test several 
nonlinear classifiers, including various neural network models. The task is 
to determine the origin of a fragment of glass found at the scene of a crime, 
based on measurements of refractive index and of chemical composition 
(percent by weight of oxides of Na, Mg, AI, Si, K, Ca, Ba, and Fe). The 
original data set of 214 cases was collected by B. German.18 Ripley dis
carded the cases of headlamp glass and randomly divided the remainder 
into a training set of 89 cases and a test set of 96 cases, which he has 
kindly made available. The possible classifications in Ripley's data and the 

18This dataset is available via the World Wide Web from the UC Irving Repository 
of Machine Learning Databases, under the name "glass". The repository is located at 
URL http://'fI'fI'fI. ics. uci .edu/"'mlearn/KLRepository .html 
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number of occurrences of each in the training and test sets are as follows: 
flol).t-processed window glass (30 train, 40 test), non-float-processed win
dow glass (39 train, 37 test), vehicle glass (9 train, 8 test), and other (11 
train, 11 test). 

I normalized the inputs for this problem to have mean zero and stan
dard deviation one across the training set, as did Ripley. In terms of the 
rationale discussed in Section 4.3.1, normalization is less justifiable for this 
problem than for the Boston housing data. There is no obvious way in 
which the original investigators might have used their beliefs about the 
problem to control the population from which the data was sampled. The 
set of input attributes available also appears to simply be all those that 
could easily be measured, not those that the investigators thought might be 
most relevant. It is therefore difficult to see how normalization can act as a 
surrogate for input transformations based on expert prior knowledge. Nev
ertheless, something must be done here, since the inputs as given are very 
un-normalized, to an extent that appears from my non-expert perspective 
to be clearly undesirable. 

For the network models tested, I used informative priors for the hyper
parameters in an attempt to reflect my actual beliefs about the range of 
plausible values for the weights in various classes. This was done out of 
concern that vague priors could lead to networks in which the weights into 
the output units were very large. The softmax model used would then pro
duce conditional distributions for the target given the inputs in which one 
of the target values has a probability close to one. This corresponds to a 
belief that, if only we knew enough, the targets would be very predictable, 
given the inputs. (Note that this situation could not have arisen with the 
LED display problem of Section 4.3.2, at least when irrelevant inputs are 
absent or suppressed, because the training sets for that problem contain 
cases where the relevant inputs are identical but the target is different.) 

The possibility that the targets might be perfectly predictable is not 
completely ruled out by the prior knowledge available. However, it does 
seem somewhat unlikely - certainly it is at least equally plausible that 
in many cases the class is ambiguous. If a very vague prior is used for 
hidden-to-output weights, however, the effect will be to make the posterior 
probability of perfect predictability for this problem be very high, since 
when the prior for weight magnitudes extends over a very wide range, 
large weight magnitudes will dominate the portion of the prior range that 
is not in strong conflict with the data. This comes about when weights 
exist that perfectly explain the training data, and which continue to do 
so as the hidden-to-output weights are scaled up to have arbitrarily large 
magnitudes. In contrast, scaling down the weights into the outputs by a 
large factor will result in target distributions that are independent of the 
inputs, a possibility that will be suppressed in the posterior whenever the 
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training data is predictable to at least some degree. The prior probability for 
weights of moderate size, resulting in a moderate degree of predictability, 
will be tiny if the prior is very vague. 

The effects of using vague priors for the hyperparameters controlling 
the input-to-hidden weights are less clear, but I felt it was prudent to avoid 
extreme values here as well. For one thing, if these weights became very 
large, the hidden units would effectively compute step functions, and a 
gradient-based sampling procedure would not be expected to work well. 

The network architectures and priors I tried on this problem are de
scribed in Figure 4.12. All networks were used in conjunction with the 
softmax (logistic) model for the targets (Bridle 1989). In accordance with 
the general philosophy that I advocate, the model that I would choose a pri
ori is the most complex one, based on the network with 12 hidden units, 
using an ARD prior. For all the models, I used a Cauchy prior for the 
hidden-to-output weights, implemented using a 2-level hierarchical prior, 
with the low level prior being Gamma with a == 1 (see Section 4.1). This 
choice was somewhat arbitrary - I have no strong reason to think that a 
Gaussian prior for these weights would be worse. Networks with and with
out ARD were tried, using informative priors, as discussed above, except 
for the models based on networks without hidden units (these networks 
cannot represent a decision boundary that perfectly fits all the training 
data, and so should not have problems with excessively large weights). One 
network with vaguer priors was tried as well, to see whether this actually 
made any difference. 

For the networks without hidden units, I ran the Markov chain Monte 
Carlo procedure for 500 super-transitions, with each super-transition com
posed of 100 pairs of Gibbs sampling updates and hybrid Monte Carlo 
updates. The hybrid Monte Carlo trajectories were 100 leapfrog steps long, 
computed using a stepsize adjustment factor of 0.7. The window-based ac
ceptance procedure was used, with a window of five states. The partial 
gradient method was not used, since the training set is quite small, and 
hence is presumably not very redundant. The states saved from the last 
300 super-transitions were used to make predictions. These runs each took 
4.2 hours, but considerably shorter runs would in fact have been adequate. 

For the networks with hidden units, I ran the sampling phase for 200 
super-transitions, with a super-transition in this case consisting of 50 pairs 
of Gibbs sampling and hybrid Monte Carlo updates. The trajectories were 
1000 leapfrog steps long, with a window of ten states, and were computed 
using a stepsize adjustment factor of 0.5. I used the states from the last 
100 super-transitions to make predictions. These runs took 18.8 hours for 
the networks with six hidden units, and 28.6 hours for the network with 
12 hidden units. Using the states from the last 50 super-transitions out of 
the first 100 in these runs gives results that are only a bit worse, however. 
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Bial-a."d lnp.'·O •• p.' Hidden.. 0."., Bi •• ·Hi4"era Input.Hidden 
w '" w '" w '" w '" w '" 

Net with no hidden units 
Without ARD 100 0.1 100 0.1 - - -
With ARD 100 0.1 100 .001:0.5 - - -

Net with 6 hidden units 
Without ARD 100 1 100 1 lOOH:l 1:1 100 1 100 1 

With ARD 100 1 100 1:2.5 IOOH 2 1:1 100 1 100 1:2.5 

With ARD (vaguer) 100 1 100 .001:0.5 100H2 0.1:1 100 0.1 100 .001:0.5 

Net with 12 hidden units 
With ARD 100 1 100 1:2.' IOOH2 1:1 100 1 100 1:2.5 

FIGURE 4.12. Networks and priors tested on the forensic glass data. The priors 
for the hyperparameters were all of the Gamma form (equation 4.2). Two-level 
priors were used for some classes of weights in some models. The top-level mean 
precision (inverse variance) associated with a group of weights is given by w, 
and for hidden-to-output weights is scaled according to the number of hidden 
units (H). The shape parameters for the Gamma distributions are given by a. 
For two-level priors, two a values are given -- the first controls the shape of the 
prior for the high-level hyperparameter, which has mean Wj the second controls 
the shape of the priors for the low-level hyperparameters, whose common mean 
is given by the high-level hyperparameter. 

Computation time might therefore have been cut in half, though we would 
then have less basis for deciding whether the true equilibrium distribution 
had been reached. 

The predictive performance of these networks is shown in Figure 4.13, 
along with the results that Ripley (1994a) reports for neural networks 
and other methods. Performance is judged here by three criteria - mis
classification rate, mis-classification rate with the two types of window glass 
not distinguished, and average log probability assigned to the correct class. 
The first two criteria are also used by Ripley. The mis-classification rate is 
the fraction of test cases for which the best guess produced by the model 
is not correct, the best guess being the class whose predictive probability 
is the highest. When the two categories of window glass are combined, the 
predictive probabilities for each are summed for the purpose of determin
ing the best guess. In a forensic application, a guess without any indication 
of reliability is perhaps not useful. To test the accuracy of the full pre
dictive distribution produced by the models, I report minus the log of the 
predictive probability of the correct class, averaged over the test cases.19 

19 For this problem, it may in fact be inappropriate to use predictive probabilities in 
any of these ways, since such probabilities take no account of other available informa
tion. Instead, the likelihoods for the various classes might be reported; these could then 
be combined with likelihoods derived from other data, together with a suitable prior. 
One approach would be to convert the predictive probabilities found here to relative 
likelihoods by dividing each class's probability by its frequency in the training set. 
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Full Merged Average 
Model or procedure used error rate error rate neg log prob 

From base rates in training set 61% 20% 1.202 

Network with no hidden units 
Without ARD 42% 17% 0.937 
With ARD 49% 17% 0.916 

Network with six hidden units 
Without ARD (two runs) 28% 14% 0.831 

28% 14% 0.777 

With ARD (two runs) 26% 14% 0.765 
27% 14% 0.767 

With ARD, vaguer priors 33% 18% 0.873 

Network with 12 hidden units 
With ARD 25% 14% 0.745 

Network with two hidden units 
Max. penalized likelihood 38% 16% -
Approx. Bayesian method 38% 14% -

Network with six hidden units 
Max. penalized likelihood 33% 16% -
Approx. Bayesian method 28% 12% -

Linear discriminant 41% 22% -

Nearest neighbor 26% 17% -

Projection pursuit 40% 19% -

Classification tree 28% 15% -

MARS 
Degree=1 37% 17% -

Degree=2 31% 19% -

FIGURE 4.13. Results on the forensic glass data. The figures shown are percent 
mis-classification, percent mis-classification with the two types of window glass 
merged, and the average of minus the (natural) log probability of the correct 
class (where available), all over the test set of 96 cases. The first line shows the 
performance achieved by simply using the base rates for the classes, taken from 
their frequencies in the training set. The next section gives results of various 
Bayesian neural network models trained by Markov chain Monte Carlo. The last 
two sections give results reported by Ripley (1994a), first for neural networks 
trained with "weight decay" (maximum penalized likelihood) or by an approxi
mate Bayesian method, secol),d for various other statistical procedures. 
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Note that the test set on which these performance figures are based is 
quite small (96 cases). Ripley (1994a) considers differences of 4% or less 
in mis-classification rate to not be significant (at the 5% level), a criterion 
which I will also use in the assessments below. Note, however, that there is 
also an unquantified degree of variability with respect to the random choice 
of training set, which is not taken into account by this criterion. One should 
therefore treat any observed differences as being suggestive only, as with 
any comparison of methods that is based on a single training set. 

For the networks with no hidden units, use of ARD did not appear to 
produce any benefit. In fact, the error rate on the full classification task 
is worse with ARD than without ARD, though the ARD model is slightly 
better in terms of average log probability for the true target. Use of ARD 
did have a significant effect on the network weights that were found. In 
the posterior distribution for the ARD model, the weights from two of 
the inputs (those giving the percent by weight of oxides of Mg and AI) 
were substantially bigger than the weights from other inputs, by a factor of 
almost ten,.on average. The corresponding differences in weight magnitudes 
were much less for the non-ARD model. 

The runs for networks with six hidden units produced one strange result. 
In the first run using a non-ARD prior, the distribution for the magnitudes 
of input-to-hidden weights changed dramatically around super-transition 
80 (out of 200). At this point, these weights changed from magnitudes of 
less than ten to magnitudes in the hundreds; they may still have been 
slowly growing at the end of the run. I did another run to see whether this 
behaviour occurred consistently, and found that in the second run these 
weights stayed small (magnitudes around ten or less) for the duration. 
These weights also remained small in two runs using ARD priors. It is 
possible that the same change seen in the first non-ARD run would have 
occurred in the second non-ARD run ifit had continued for longer, however. 
It is possible also that the ARD runs might have converged eventually to 
a distribution in which these weights were large, though it is also plausible 
that the use of an ARD prior for these weights would change the behaviour. 

As shown in Figure 4.13, for the networks with six hidden units, the 
observed performance of the ARD models was slightly better than that of 
the non-ARD models, but the differences are not significant, except perhaps 
with respect to the poor value for average log probability seen with the non
ARD network with large input-to-hidden weights. Use of ARD did appear 
to have a significant effect of the magnitudes of the weights from different 
inputs; these magnitudes were more spread out in the ARD runs than in the 
second non-ARD run. It is difficult to interpret the results, however, since 
the variation in weight magnitudes between different inputs for a single 
network is less than the posterior variation in the overall magnitudes for 
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FIGURE 4.14. Effect of vague priors in the forensic glass problem. The graphs 
show the progress of two quantities during the course of simulation runs for 
networks with six hidden units, using ARD priors. On the left is the run for 
the model with informative (fairly narrow) priors; on the right is the run for 
the same model with vaguer priors. The solid line plots the average entropy of 
the conditional distributions for targets in test cases, as defined by the network 
parameters from each state (note that this is not the same as the entropy of the 
predictive distribution, in which we integrate over the posterior). The dotted line 
plots the square root of the average magnitude of hidden-to-output weights. 

input-to-hidden weights. There are also direct connections from inputs to 
outputs, making it difficult to tell what the total effect of each input is. 

One run was done for an ARD model with vaguer priors. In the result
ing posterior distribution for network parameters, the hidden-to-output 
weights had large magnitudes, and the conditional distributions for targets 
had low entropy, as expected on the basis of the previous discussion. The 
input-to-hidden weights also had large magnitudes. The effects of using 
vague priors are illustrated in Figure 4.14; note how the entropy tends to 
be less when the hidden-to-output weights are large. 

Finally, I did a run using a network with 12 hidden units, with an ARD 
prior. As seen in Figure 4.13, the performance of this model was the best 
of any tested here, though not all the differences are statistically signifi
cant. The results for the ARD network with 12 hidden units and for the 
ARD networks with 6 hidden units are also not significantly different from 
that of the network with six hidden units that Ripley (1994a) trained with 
an approximate Bayesian method based on Gaussian approximations to 
several modes_ All the Bayesian network models trained by Markov chain 
Monte Carlo (except the one with overly-vague priors) performed signif
icantly better than the other networks trained by Ripley. Of the other 
statistical techniques that Ripley tried, only the nearest neighbor and clas-
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sification tree methods performed well. Their observed performance was 
slightly worse than that of the ARD network with 12 hidden units, but the 
difference is not statistically significant. 

These tests show that vague priors should not be used recklessly. Care 
in this respect seems to be especially necessary for classification models. 
The different results obtained from the two runs of the non-ARD model 
show that one should also not recklessly assume that apparent convergence 
of a Markov chain sampler is real - dearly, at least one of these two 
runs did not sample adequately from the true equilibrium distribution. 
Use of simulated annealing, as in my previous work (Neal 1992b), might 
help in this respect, though there will still be no guarantees. It would also 
be interesting to apply a "tempering" method (Marinari and Parisi 1992, 
Geyer and Thompson 1995, Neal, in presB), in order to sample efficiently in 
cases where the posterior distribution has widely separated modes, which 
is one possible explanation for the divergence seen here between the two 
non-ARD runs. 



Chapter 5 

Conclusions and Further Work 

The preceding three chapters have examined the meaning of Bayesian neu
ral network models, showed how these models can be implemented by 
Markov chain Monte Carlo methods, and demonstrated that such an im
plementation can be applied in practice to problems of moderate size, with 
good results. In this concluding chapter" I will review what has been ac
complished in these areas, and describe on-going and potential future work 
to extend these results, both for neural networks and for other flexible 
Bayesian models. 

5.1 Priors for complex models 

OJ;le major result of this work is that, when an appropriate prior is used, 
one need not limit the comple·xity of a network model based on the amount 
of training data available. This was shown theoretically in Chapter 2, and 
demonstrated empirically in Chapter 4. In hindsight, at least, the ability to 
use complex models on small data sets is simply what would be expected, 
from a Bayesian viewpoint. Nevertheless, it has not been apparent to previ
ous investigators, perhaps because of the pervasive influence of frequentist 
methods, for which such limits on complexity can indeed be essential. 

With the realization that one need not keep networks small, the way was 
opened for the examination in Chapter 2 of networks with infinite numbers 
of hidden units. Only in the infinite network limit does it become possible to 
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analytically derive interesting properties of the prior over functions implied 
by the prior over network parameters. 

I first investigated the properties of priors that converge to Gaussian 
processes as the number of hidden units goes to infinity. These priors can 
be characterized by their covariance functions. Priors were developed that 
produce smooth, Brownian, and fractional Brownian functions. Further 
theoretical work in this area would be of interest. The arguments relating 
to fractional Brownian priors that I presented could be made more rigorous, 
and one could contemplate extensions to "multi-fractals" , whose properties 
are different at different scales. The rate of convergence to the infinite 
network limit could be quantified. It would also be interesting to apply 
fractional Brownian models to actual data sets. This is supported by the 
implementation scheme described in Chapter 3 and Appendix A. I have 
not tried this yet, however, and some difficulties with convergence might 
be anticipated with such models. 

Although the examination of Gaussian priors revealed much of interest, 
it also showed that such priors are in some respects disappointing. Infinite 
networks drawn from these priors do not have hidden units that represent 
"hidden features" of the input. The ability to find such hidden features is 
often seen an interesting aspect of neural network learning. With Gaussian 
priors, we also do not see any fundamentally new phenomena when we go to 
networks with more than one hidden layer - we just get another Gaussian 
process, albeit with a different covariance function. 

Furthermore, for problems where we do feel that these Gaussian process 
models are appropriate, it may well be that a direct implementation of a 
Bayesian model based on a Gaussian process would work better in practice 
than a Bayesian network model that converges to a similar Gaussian process 
for a large number of hidden units. This possibility, mentioned in Chapter 2, 
has recently been pursued by Williams and Rasmussen (1996). For a fixed 
covariance function, Bayesian inference with this model - ie, formation of 
a predictive distribution for a test case give data on n training cases - can 
be accomplished using standard matrix operations in O(n3 ) time, which is 
tolerable for training sets containing up to at least several hundred cases. 
The well-known methods of smoothing splines and kriging are equivalent to 
certain Bayesian models of this type (Wahba 1990), but for reasons that are 
mysterious to me, such Gaussian process models have apparently received 
little consideration for problems with more than two or three dimensions. 

In the Gaussian process models used by Williams and Rasmussen (1996), 
the covariance function is determined by hyperparameters that are analo
gous to those used in the network models of this book. In light of the theo
retical convergence results of Chapter 2, one would expect such a model to 
perform similarly to a Bayesian network model with one large hidden layer 
and Gaussian priors. (The models of Williams and Rasmussen do not use 
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exactly the same form of covariance function as that for such a network 
model, but the covariance functions appear to have similar properties.) In 
preliminary evaluations, the performance of these two methods was indeed 
found to be very similar, with both performing better than several com
peting methods (Rasmussen 1996). 

The limitations of Gaussian priors (or any prior with finite variance), 
and the fact that the models they define may be better handled by a non
network implementation, motivate interest in priors that converge to non
Gaussian stable distributions. A basic convergence result for these priors 
was derived in Chapter 2, but much work remains to be done in character
izing their properties theoretically, as could perhaps be done using some 
analogue of the covariance function used to characterize Gaussian processes. 
Future research could also look at an alternative implementation scheme 
for such priors based on their representation as Poisson processes (see Sec
tion 2.2.1). In such an implementation, the finite number of hidden units 
available would not come from a finite a.pproximation to the limiting dis
tribution, but would instead be those with the largest hidden-to-output 
weights from the true limiting distribution. This scheme might make more 
efficient use of the available hidden units, since resources would not be 
wasted on units with small weights (and hence little influence). It might 
also allow one to estimate how much the results could differ from those 
that would be obtained using the true infinite network. 

Some preliminary results concerning priors for networks with more than 
one hidden layer were reported in Chapter 2, and a network with two hidden 
layers was found to perform well in the tests on the Boston housing data 
in Chapter 4. I believe that further work on priors for such networks might 
produce insights of practical importance. Work on networks with an infinite 
number of hidden layers would be of at least theoretical interest, in that it 
would test how far one can push the idea that limiting the complexity of 
the model is unnecessary. 

The theoretical examination of priors in Chapter 2 was supplemented 
by visual examination of functions drawn from these priors. People have of 
course looked at samples from priors before. Nevertheless, I believe that this 
technique is not as widely used as it deserves to be. I hope that my use of it 
here has demonstrated its utility in deveiloping an intuitive understanding 
of complex Bayesian models. 

5.2 Hierarchical Models - ARD and beyond 

Another aspect of prior specification emphasized in this work is the use 
of hierarchical models whose hyperparameters can adopt values that are 
appropriate given the characteristics of the data at hand. 
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One example of this approach is the Automatic Relevance Determina
tion (ARD) model, which is meant to allow the data to determine which 
inputs should influence the predictions. The tests done on synthetic data 
in Chapter 4 showed that use of ARD resulted in the suppression of inputs 
that were unrelated to the prediction task, as well as those that were re
lated, but were superseded by other inputs. The ARD method was also used 
for the tests on real data, with the result that some inputs were suppressed 
relative to others, but here the correct behaviour is of course unknown. Fur
ther experiments would be required to properly assess the effect of ARD 
on predictive performance for the real data sets. 

In more recent work, I have extended the idea of Automatic Relevance 
Determination to produce hierarchical models that can determine an ap
propriate additive structure for a regression function. In an additive regres
sion model (Hastie and Tibshirani 1990), a real-valued target, y, might be 
modeled as follows, in terms of inputs Xl, X2, and X3: 

y (5.1) 

where 91, 92, and 93 are unknown functions, and f represents Gaussian 
noise. This form is more general than a linear model, but less general than 
a model in which y is an arbitrary function of Xl, x2, and X3, plus noise. 
If the above additive form is appropriate for the actual data, using it will 
have advantages over an unrestricted regression model, both in terms of 
predictive performance, and in terms of interpretability. 

However, just as we will often not be sure which inputs are relevant for 
predicting a target, y, we will also often be unsure whether an unrestricted 
or an additive model is more appropriate - or, indeed, whether some 
intermediate model might be best, such as one in which y is modeled as 
a function of Xl and X2 plus a function of X3. One could try to somehow 
identify the "true" model from among the various possibilities, but for 
many problems, our actual belief will be that none of the additive models 
can be exactly true (ie, that there is at least some small degree of interaction 
between all the variables). In such situations, it makes sense to instead use 
a single hierarchical model that can produce a variety of approximately 
additive models, as well as an unrestricted model, depending on the settings 
of its hyperparameters. The data will then be able to select an appropriate 
form for the regression function, or perhaps several forms, with certain 
posterior probabilities. 

Using a single hierarchical model may also be computationally easier 
than computing the posterior probabilities of several models with varying 
degrees of additivity. To calculate posterior model probabilities, one must 
compute the prior probability of the training data under each model, which 
is often quite difficult (Neal 1993b, Sections 2.3 and 6.2). 
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FIGURE 5.1. A hierarchical network model capable of finding additive structure. 
The network takes three inputs, Xl, X2, X3, and computes a single output, which 
gives the mean of the target value, y. This output is computed using three groups 
of hidden units, each of which has its own set of hyperparameters, controlling the 
scale of its contribution to the output, and the degree to which the group pays 
attention to each of the three inputs. These hyperparameters are represented by 
heavy lines crossing the connections whose weights they control. The connections 
out of Xl and X3 (and the associated hyperparameters) have been suppressed for 
clarity. 

Figure 5.1 shows a hierarchical model of this sort based on a multilayer 
perceptron network. This model is essentially three ARD models joined 
together at the output. Each of these sub-models has its own set of hyper
parameters that control the magnitudes of weights on connections into and 
out of its own group of hidden units. The functions computed by each sub
model (ie, the weighted sum of the values of the hidden units in each group) 
are added together to produce the network output, which is interpreted as 
the mean of the conditional distribution for the target, y. 

If an additive decomposition of the regression function is in fact appro
priate, we would hope that the posterior distribution for this model will 
be concentrated on sets of values for the hyperparameters in which each 
group of hidden units pays attention to exactly one of the three inputs, so 
that the three groups will compute the three functions, 91(X), 92(X), and 
93(X), of equation (5.1). If, on the other hand, the three variables interact, 
we would hope that at least one of the groups of hidden units will end 
up with hyperparameter values that allow it to look at all three inputs. If 
there is no additive structure at all, we might expect the contribution to 
the output of all but one of the groups of hidden units to be suppressed, by 
means of the hyperparameters controlling their hidden-to-output weights. 
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Other structures, such as the intermediate model mentioned above, should 
also be possible. With any of these structures, inputs whose effects have 
been largely suppressed may still have a slight influence, as will be desir
able when we do not believe that the true function has an exactly additive 
form. 

From preliminary experiments, it appears that this scheme does indeed 
operate as desired - finding additive structure when it is present, and not 
finding it when it is not present. Furthermore, the predictive performance 
of a network with the multiple groups of hidden units shown in Figure 5.1 
can be better than that of a simple ARD model when the function does 
indeed have additive structure. These models push the limits of the present 
Markov chain implementation, as they require that the Markov chain ex
plore a complex space of possible hyperparameter values. The problem of 
random walks discussed in Chapter 3 is of significance here, as the hyper
parameters are presently updated using Gibbs sampling, which does not 
suppress random walk behaviour. Exploration may also be inhibited by 
local modes in the posterior distribution over hyperparameters. 

Hierarchical models with multiple groups of hidden units may be use
ful in other contexts as well. With appropriate sets of connections and 
hyperparameters, models can be defined that have the potential to pro
duce functions with more than one scale of variation, to select between a 
Gaussian or non-Gaussian prior for hidden-to-output weights, or to select 
between a one-layer and a two-layer network. As with ARD models and 
the model of Figure 5.1, the actual result of applying such models might 
be a network that only approximately satisfies some restricted form, or 
a posterior distribution over several network structures with substantially 
different characteristics. 

A final cautionary note regarding hierarchical models: The tests in 
Chapter 4 indicate that care is required when using vague priors for hyper
parameters. Such priors are a convenience, since they allow one to avoid 
thinking about what the exactly appropriate prior would be; they also 
work well in some contexts. The results on the forensic glass data show 
that vague priors can sometimes lead to problems, however, especially with 
classification models. One might also expect to see problems when using 
very vague priors with the elaborate hierarchical models discussed above. 

5.3 Implementation using hybrid Monte Carlo 

Another major theme of this work is the use of a Markov chain Monte 
Carlo implementation bas~d on the hybrid Monte Carlo algorithm of Du
ane, Kennedy, Pendleton, and Roweth (1987). I demonstrated in Chapter 3 
that hybrid Monte Carlo can be many times faster at sampling the poste-
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rior distribution for network weights than simpler forms of the Metropolis 
algorithm; other methods, such as Gibbs sampling, cannot be applied to 
this problem at all. Without hybrid Monte Carlo, the Markov chain Monte 
Carlo approach would not be feasible for any but the smallest networks. 

The utility of the hybrid Monte Carlo algorithm extends beyond the 
neural network field. Although Gibbs sampling and simple forms of the 
Metropolis algorithm are adequate for many problems of Bayesian infer
ence, I believe that hybrid Monte Carlo can solve many such problems 
faster than the methods presently used, and will permit the use of com
plex models for which the computations have hitherto been infeasible. One 
recent use is for the Gaussian process models of Williams and Rasmussen 
(1996), discussed in Section 5.1, for which a form of hybrid Monte Carlo 
is used to sample from the posterior distribution of the hyper parameters 
controlling the covariance function. 

Although the implementation I have described in this thesis is the result 
of several design iterations, there is no reason to think that it is optimal. 
The time required for the tests in Chapter 4 shows that improvement in this 
respect is quite important. Many implementation schemes differing in detail 
could be investigated. For example, the leapfrog stepsizes could be chosen 
differently, the hyperparameters could be updated by hybrid Monte Carlo 
rather than Gibbs sampling, a different parameterization of the weights 
or the hyperparameters could be used, and the manual methods used to 
choose a good trajectory length could be improved. Three variants of the 
basic hybrid Monte Carlo method, using "partial gradients", "windows", 
and "persistence", were investigated in Chapter 3, and found to give some 
improvement, especially when used together. Other variants remain to be 
tried, including those based on discretizations of the dynamics accurate 
to higher order than the leapfrog method, and possible variants that ex
ploit the (somewhat limited) ability to quickly recalculate the output of a 
network when a single weight changes (if intermediate results are stored). 
Finally, one could try applying methods for escaping local modes such 
as simulated tempering (Marinari and Parisi 1992, Geyer and Thompson 
1995) and tempered transitions (Neal, in press). 

A topic that was only touched on in Chapter 3 is the use of a Markov 
chain Monte Carlo implementation to evaluate the accuracy of other im
plementations, such as those based on Gaussian approximations. It would 
be most useful if one could use the Monte Carlo implementation to uncover 
some interesting class of easily-identifiable situations where the Gaussian 
approximation can be relied upon. This may be too much to hope for, how
ever. Another approach would be to develop procedures whereby Markov 
chain Monte Carlo methods could be applied to a subset of the training 
data, at lower computational cost than a full Monte Carlo run, and the 
results used to assess whether the Gaussian approximation would be ade-
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quate when applied to the full data set. On the other hand, it is possible 
that use of the Markov chain Monte Carlo implementation will in the end 
prove best in all or most circumstances, once the effort of verifying the 
validity of Gaussian or other approximations is taken into account. 

5.4 Evaluating performance on realistic problems 

In Chapter 4, I tested various neural network models on real and synthetic 
data sets. The main conclusion from these tests is that Bayesian learning 
implemented using hybrid Monte Carlo can be effectively applied to real 
problems of moderate size (with tens of inputs, and hundreds of training 
cases). On one data set (the Boston housing data), the predictive perfor
mance obtained using the Bayesian methodology was substantially better 
than that previously obtained using other methods; on another data set 
(the forensic glass data), performance was as good as any obtained with 
other methods. Approximately a day of computation was required to train 
the networks on these real data sets. This time is large compared to that 
required by standard methods, but small enough that use of this imple
mentation of Bayesian learning would be practical in many contexts. 

Results on only two real data sets are of course not sufficient to support 
any sweeping claims regarding the superiority of Bayesian learning. More 
evaluations, on more data sets, in comparison with the best alternative 
methods, would be required before any conclusions could be drawn that 
might be accepted by advocates of the methods found to be inferior. It is 
an unfortunate fact that although performance on real data - or better, 
on real problems, with real-world context - is the ultimate ground on 
which learning methods must be judged, fair and comprehensive tests of 
performance on real problems are quite difficult, and quite laborious, to 
perform. A group of us at the University of Toronto, led by Geoffrey Hinton, 
are currently working on the DELVE project, building a large collection of 
data sets, and an environment that facilitates using this data to make valid 
comparisons of learning methods on realistic tasks.! We hope that we, 
and other researchers, will soon be able to obtain more definitive evidence 
regarding the merits of Bayesian learning for neural networks and of other 
modern methods for solvin~ nonparametric regression and classification 
tasks. 

1 For the latest information on the DELVE project, visit our Web page, at URL 
http://www.cs.utoronto.ca/neuron/delve/ 



Appendix A 

Details of the Implementation 

This appendix contains mathematical details regarding the Bayesian neural 
network implementation described in Chapter 3, and used for the evalua
tions in Chapter 4. Some features of this implementation are not discussed 
in these earlier chapters, but are described here for completeness. 

Due to the variety of network architectures accommodated, it is neces
sary here to use a notation that is more systematic, albeit more cumber
some, than that which is used elsewhere. This notation is summarized on 
the next page. 

A.1 Specifications 

This section defines the class of network models that are implemented by 
the software, and explains how they are specified, in an abstract way. (For 
the detailed syntax of network specifications, and other non-mathematical 
details, see the documentation that comes with the software.) 

A .1.1 Network architecture 

The multilayer percept ron networks that this implementation supports con
sist of a layer of input units, zero or more hidden layers with tanh activation 
function, and a layer of output units. Units in each hidden layer are con
nected to units in the preceding hidden layer and to units in the input 
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Values associated with units 

vI Value of ith input unit, before the offset is added 

vf Value of ith hidden unit in layer £, before the offset is added 

vf Value of ith output unit 

uf Value of the input to the ith hidden unit 

Parameters of the network 

t{ Offset for ith input unit 

tf Offset for ith hidden unit in layer £ 

bf Bias for ith unit in hidden layer £ 

bP Bias for ith output unit 

W[.~o Weight from ith input unit to jth output unit 

w[,1 Weight from ith input unit to jth unit in hidden layer £ 

wt;I,! Weight from ith unit in hidden layer £-1 to jth unit in hidden layer £ 

w;:jO Weight from ith unit in hidden layer £ to the jth output unit 

u{v° 
u{vl 
U~-I,l 

(1~I~ 

(1~'~ 
i-I,l 

uw,i 

Hyperparameters defining priors for parameters 

Common sigma for offsets of input units 

Common sigma for offsets of units in hidden layer £ 

Common sigma for biases of units in hidden layer e 
Common sigma for biases of output units 

Common sigma for weights from input units to output units 

Common sigma for weights from input units to units in hidden layer e 
Common sigma for weights from units in hidden layer £-1 to units in 
hidden layer £ 

Common sigma for weights from units in hidden layer £ to output 
units 

Sigma for weights from input unit i to output units 

Sigma for weights from input unit i to units in hidden layer .e 
Sigma for weights from unit i in hidden layer £-1 to units in hidden 
layer £ 

Sigma for weights from unit i in hidden layer e to output units 

Sigma adjustment for weights and biases into output unit i 

Sigma adjustment for weights and biases into unit i in hidden layer e 
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layer. Units in the output layer are connected to units in the hidden layers 
and to units in the input layer. Each ofthese connections has an associated 
weight, used to form a weighted sum of inputs.to a unit along incoming 
connections. Each unit in the hidden and output layers has a bias, which 
is added to this weighted sum of inputs. Each unit in the input and hid
den layers has an offset, which is added to its output. Any of these sets 
of parameters (associated with a particular layer, or pair of layers) may 
be missing in any particular network, producing the same effect as if their 
values were zero. 

The following formulas define the outputs, vP, of a network for given 
values of the inputs, vI. Note that the interpretation of these outputs is 
determined by the data model, described next. 

u~ • bl L I,l( I I) i + Wk,i Vk + tk + L w l -.1,i(vi - 1 + t i - 1) 
k,' k k (A.l) 

k k 

v~ • tanh(uf} (A.2) 

vO , bO L I,O( I I) i + Wk ,; Vk + tk LL I,O( l l) + W k ,; Vk +tk (A.3) 
k l k 

Here, and subsequently, the summations are over all units in the appropri
ate layer, or over all hidden layers (for £). The number of layers and the 
numbers of units in each layer are part of the architecture specification, 
but these numbers are not given symbols here. The term in the equation 
for uf involving layer £-1 is omitted for the first hidden layer. 

A.l.2 Data models 

Networks are normally used to define models for the conditional distribu
tion of a set of "target" values given a set of "input" values. There are three 
sorts of models, corresponding to three sorts of targets - real-valued tar
gets (a "regression" model), binary-valued targets (a "logistic regression" 
model), and "class" targets taking on values from a (small) finite set (a 
generalized logistic regression, or "softmax" model). For regression and lo
gistic regression models, the number of target values is equal to the number 
of network outputs. For the softmax model, there is only one target, with 
the number of possible values for this target being equal to the number of 
network outputs. 

The distributions for real-valued targets, Yj, in a case with inputs v{ may 
be modeled by independent Gaussian distributions with means given by the 
corresponding network outputs, and with standard deviations given by the 
hyperparameters O'j - the "noise levels" for the targets. The probability 
density for a target given the associated inputs and the network parameters 
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is then 

P(Yj I inputs, parameters) 

Alternatively, each case, c, may have its own set of standard deviations, 
(jj,c, with the corresponding precisions, Tj,c = (j;'~, being given Gamma 
distributions with means of Tj and shape parameter a2 (called this for 
reasons that will become clear later): 

(a2/ 2Tj)0:2/2 0:2/2-1 ( I) 
r(a2/2) Tj,c exp - Tj,c a 2 2Tj (A.5) 

The previous case corresponds to the degenerate Gamma distribution with 
a2 = 00. Otherwise, integrating out Tj,c gives a t-distribution for the target 
with a2 "degrees of freedom": 

P(Yj I inputs, parameters) 

f((a2+ 1}/2) [1 + (y. _ v~)2 la (j~r(0:2+1)/2 (A.6) 
r(a2/2) Jrra2 o'j J J 2 J 

For a logistic regression model, the probability that a binary-valued 
target, Yj, has the value 1 is given by 

P(Yj = 1 I inputs, parameters) (A.7) 

For a softmax model, the probability that a class target, y, has the value 
j is given by 

P(y = j I inputs, parameters) exp(v?) I L:exp(v?) (A.8) 
k 

A .1. 3 Prior distributions for parameters and hyperparameters 

The prior distributions for the parameters of a network are defined in terms 
of hyperparameters. Conceptually, this implementation provides for one 
hyperparameter for every parameter, but these lowest-level hyperparam
eters are not explicitly represented. Mid-level hyperparameters control the 
distribution of a group of low-level hyperparameters that are all of one type 
and all associated with the same source unit. High-level (or "common") 
hyperparameters control the distribution of the mid-level hyperparameters, 
or of the low-level hyperparameters for parameter types with no mid-level 
hyperparameters. The same three-level scheme is used for noise levels in 
regression models. 

These hyperparameters are represented in terms of "sigma" values, (j, 

but their distributions are specified in terms of the corresponding "preci
sions", T = (j-2, which are given Gamma distributions. The top-level mean 
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is given by a "width" value associated wit.h the parameter type. The shape 
parameters of the Gamma distributions are determined by "alpha" values 
associated with each type of parameter. An alpha value of infinity concen
trates the entire distribution on the mean, effectively removing one level 
from the hierarchy. The sigma for a weight may also be multiplied by an 
"adjustment" value that is associated with the destination unit. 

This gives the following generic scheme for the priors for weights: 

(a /2w )a w •o/2 
W,O w a w 0/ 2-1 ( /2) r(Q'w.o/2) Tw' exp - Twaw,o Ww (A.9) 

For weights from input units to output units, for example, Tw will equal 
T~,o = [0'~,o]-2, and similarly for Tw,i, while Ta,j will equal [0'~i]-2. The 
top-level precision value, Ww, is derived from the "width" value specified 
for this type of weight. The positive (possibly infinite) values aw.o and aw.l 

are also part of the prior specification for input to output weights, while aa 

is a specification associated with the output units (note that in this case 
the "width" value is fixed at one, as freedom to set it would be redundant). 

The distribution for a weight from unit i of one layer to unit j of another 
layer may be Gaussian with mean zero and standard deviation given by 
O'w,iO'a,j = [Tw.iTa.j]-1/2. That is: 

P(Wi,j I O'w.i, O'a.j) 

(Here, Wi,j represents, for example, w{f, in which case O'w.; represents O'~,~ 
and O'a.j represents O'~j') 

Alternatively, each individual weight may have its own "sigma", with the 
corresponding precision having a Gamma distribution with mean Tw,iTa,j 

and shape parameter given by a w ,2' The previous case corresponds to the 
degenerate distribution with Q'w.2 = 00. Otherwise, we can integrate over 
the individual precisions and obtain t-distributions for each weight: 

P(W;,j I O'w,i, O'a,j) (A.13) 
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The same scheme is used for biases, except that for them there are no 
mid-level hyperparameters. We have 

(ab,0/2wb t· b•o/ 2 O'.b.o/ 2-1 
f(ab,0/2) rb exp ( - 'rbab,0/2wb) (A.I4) 

where 'rb might, for example, be rf! = [ofJ-2, etc. 

The distribution of the biases is then either 

(A.I5) 

if ab,1 = 00, or if not 

P(bj I (fb, (fa,i) 

f((ab,l +1)/2) [1 + b~/o: (f2(f2.]-(O'.b.l+1)/2 (A.I6) 
f(a /2) ~ (f (f' t b,l b a,t b,1 V" -b,l b a,t 

For the offsets added to input and hidden unit values, there are no mid
level hyperparameters, and neither are "adjustments" used. We have 

Ph) (A.17) 

where rt might, for example, be r{ = [(f{j-2, etc. 

The distribution of the offsets is then either 

(A. IS) 

if at,l = 00, or if not 

P(tj I (ft) f((at,1+1)/2) [1 +e/a (f2]-(0< •. 1+1)/2 (A.I9) 
f(o: /2) ~ (f t t,l t t,l V .. -t,1 t 

The scheme for noise levels in regression models is also similar, with rj, 
the precision for target j, being specified in terms of an overall precision, 
r, as follows: 

(ao/2w)O<O/2 
,"--':"--':-,.-- ro<o/2-I exp ( - rao/2w) 

f(ao/2) 
P(r) (A.20) 

P(rjlr) = (at/2r)O'.d 2 0'../2-1 ( /) 
f(at/2) rj exp - rj a 1 2r (A.2I) 

where w, ao, and a1 are' parts of the noise specification. A third alpha 
(a2) is needed for the final specification of the noise in individual cases, as 
described in the Section A.1.2. 
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A .1.4 Scaling of priors 

The top-level mean precisions used in the preceding hierarchical priors (the 
w values) may simply be taken as specified (actually, what is specified is 
the corresponding "width", w- I / 2 ). Alternatively, for connection weights 
only (not biases and offsets), the w for values of one type may be scaled 
automatically, based on the number of source units that feed into each 
destination unit via connections of this type. This scaling is designed to 
produced sensible results as the number of source units goes to infinity, 
while all other specifications remain unchanged. 

The theory behind this scaling concerns the convergence of sums of inde
pendent random variables to "stable distributions" (Feller 1966, Samorod
nitsky and Taqqu 1994), as discussed in Chapter 2. The symmetric stable 
distributions are characterized by a width parameter and an index, a, in 
the range (0,2]. If Xl"'" Xn are independent and each has the same sym
metric stable distribution of index a, then (Xl + ... + Xn)/n l / a has this 
same stable distribution as well. The stable distribution with index 2 is 
the Gaussian. The sums of all random variables with finite variance con
verge to the Gaussian, along with some others. Typically, random variables 
whose moments are defined up to but not including a converge to the stable 
distribution with index a, for a < 2. 

This leads to the following scaling rules for producing w based on the 
specified base precision, Wo, the number of source units, n, and the relevant 
a value (see below): 

ron for a = 00 

wona/(a-2) for a > 2 
w (A.22) 

won logn for a = 2 (but fudged to won if n < 3) 

won2/ a for a < 2 

Here, a is a w,2 if that is finite, and is otherwise aw,l. The scheme doesn't 
really work if both aw,l and a w,2 are finite. When a = 2, the scaling 
produces convergence to the Gaussian distribution, but with an unusual 
scale factor, as the t-distribution with a = 2 is in the "non-normal" domain 
of attraction of the Gaussian distribution. 

A.2 Conditional distributions for hyperparameters 

Implementation of Gibbs sampling for hyperparameters requires sampling 
from the conditional distribution for one hyperparameter given the values 
of the other hyperparameters and of the network parameters. This section 
describes how this is done. 
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A .2.1 Lowest-level conditional distributions 

The simplest conditional distributions to sample from are those for "sigma" 
hyperparameters that directly control a set of network parameters. This will 
be the situation for the lowest-level sigmas, as well as for higher-level sigmas 
when the lower-level sigmas are tied exactly to this higher-level sigma (i.e. 
when the "alpha" shape parameter for their distribution is infinite). The 
situation is analogous for sigma values relating to noise levels in regression 
models, except that the errors in training case are what is modeled, rather 
than the network parameters. 

In general, we will have some hyperparameter T = /1-2 that has a 
Gamma prior, with shape parameter we will call a, and with mean w (which 
may be a higher-level hyperparameter). The purpose of T is to specify the 
precisions for the independent Gaussian distributions of n lower-level quan
tities, Zi. In this situation, the conditional distribution for T will be given 
by the following proportionality: 

P(T I {zd, ... ) ex Ta/2- 1 exp(-Ta/2w) . II T1/2exp(-Tzl!2) (A.23) 

ex T(a+n)/2-1 exp (-T(a/w + Lzl}J2) 
i 

(A.24) 

The first factor in equation (A.23) derives from the prior for T, the remain
ing factors from the effect of T on the probabilities of the Zi. The result 
is a Gamma distribution that can be sampled from by standard methods 
(Devroye 1986). 

When the distributions of the Zi are influenced by "adjustments", Ta,i, 
the above formula is modified as follows: 

P(T I {zd, {Ta,i}, ... ) 

ex T(a+n)/2-1 exp (-T(a/w + LTa,iZl)J2) 
i 

(A.25) 

Gibbs sampling for the adjustments themselves is done in similar fashion, 
using the weighted sum of squares of parameters influenced by the adjust
ment, with the weights in this case being the precisions associated with 
each parameter. 

A.2.2 Higher-level conditional distributions 

Sampling from the conditional distribution for a sigma hyperparameter that 
controls a set of lower-level sigmas is more difficult, but can be done in the 
most interesting cases using rejection sampling. This method is generally 
adequate, but not completely satisfactory. I plan to replace it with a better 
scheme soon. 
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Assume that we wish to sample from the distribution for a precision 
hyperparameter r, which has a higher-level Gamma prior specified by 0'0 
and w, and which controls the distributions of lower-level hyperparameters, 
Ti, that have independent Gamma distributions with shape parameter 0'1 
and mean r. The conditional distribution for r is then given by the following 
proportionality: 

P(r I {rd, .. ·) 

DC r ao!2-1 exp(-rao/2w) . II r-ad2 exp( -ria1/2r) (A.26) 

DC r(ao- nad!2-1 exp (-rao/2w - (0'12';: rd /2T) 
I 

Defining 'Y = 1fT, we get: 

P('Y I {Ti}, ... ) 

DC r2 P(r I {Td, ... ) 

DC r(ao- nad!2+ 1 exp (-Tao/2w - (0'12';: r;) / 2r) 
I 

(A.27) 

(A.28) 

(A.29) 

DC 'Y(na,-ao)/2-1exP(-'Y(a12';:Ti)/2) . exp(-ao/2w'Y) (A.30) 
I 

The first part of this has the form of a Gamma distribution for 'Y, provided 
na1 > 0'0; the last factor lies between zero and one. If na1 > 0'0, we can 
therefore obtain a value from the distribution for 'Y by repeatedly sampling 
from the Gamma distribution with shape parameter na1 - 0'0 and mean 
(na1-ao)/(a1 I:Ti) until the value of'Y generated passes an acceptance 

i 
test, which it does with probability exp( -ao/2w'Y). We may hope that the 
probability ofrejection will be reasonably low if 0'0 is small, which is typical. 

In some contexts, the values Ti are not explicitly represented, and must 
themselves be found by sampling using the method of the previous section. 

A.3 Calculation of derivatives 

To use the hybrid Monte Carlo method, we must be able to calculate the 
derivatives of the log of the posterior probability density for the parameter 
values, which are found by summing the derivatives of the log likelihood 
and of the log of the prior probability density of the parameter values. This 
section details how this is done. 
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A.3.l Derivatives of the log prior density 

For fixed values of the explicitly-represented hyperparameters, one can eas
ily obtain the derivatives of the log of the prior probability with respect to 
the network weights and other parameters. Generically, if Cl'w,2 = 00, we 
get, from equation (A.12), that 

while otherwise, we get, from equation (A.14), that 

o 
ow' ,logP(wi,j I (Tw,i, (Ta,j) 

',J 
Cl'w,2 + 1 Wi,j 

W· , ',J 

Cl'W,2(T!,i(T~,j [1 + W[,j!Cl'W,2(T!,i(T~,j] 

(A.3I) 

(A.32) 

Similar formulas for derivatives with respect to the biases are obtained 
from equations (A.I5) and (A.I6) and for derivatives with respect to the 
offsets from equations (A.I8) and (A.19). 

A.3.2 Log likelihood derivatives with respect to unit values 

The starting point for calculating the derivatives of the log likelihood with 
respect to the network parameters is to calculate the derivative of the log 
likelihood due to a particular case with respect to the network outputs. For 
the regression model with Cl'2 = 00, we get from equation (A.4) that 

o 0 Yj - vy 
ov9 logP(y I Vj ) (T~ 

J J 

(A.33) 

When Cl'2 is finite, we get from equation (A.6) that 

o 
ovo logP(y I v7) 

J 

Cl'2 + 1 Yj - vy 
- Cl'2(Tl [I+(Yj-vY)2!Cl'2(Tl] 

(A.34) 

For the model of binary targets given by equation (A. 7), we get the 
following, after some manipulation: 

o 0 
ov9 log P(y I Vj ) 

J 

[ 0 ]-1 Yj - 1 + exp(-vj ) (A.35) 

(A.36) 

For the many-way "soft max" classification model of equation (A.8), we 
get the following (where 8 (y, j) is one if Y = j and zero otherwise): 

{) , . exp(vy) 
!OJ 0 logP(y I {vrl) = 8(Y,J) - L (0) (A.37) 
UVj exp vk 

k 
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J(y,j) - P(y = j I {vp}) (A.38) 

Let L be the log likelihood due to a single training case - that is, L = 
log P(y I inputs, parameters) = log P(y I outputs). Once the derivatives 
of L with respect to the output unit values are known, its derivatives with 
respect to the values of the hidden and input units can be found by the 
standard backpropagation method. From equations (A.I), (A.2), and (A.3): 

{)L 

{)v~ 
= 

I 

{)L 

{)u~ 
I 

{)L ~ 10 {)L ~ ~ I l {)L 
{)v! = .l....J Wi,} {)v9 + .l....J.l....J Wi,} {)U~ 

I j J l j J 

(A.39) 

(A.40) 

(A.4I) 

In (A.39), the second term is not present when f is the last hidden layer. 

A.3.3 Log likelihood derivatives with respect to parameters 

The derivatives of L with respect to the net.work parameters (with explicitly 
represented noise sigmas fixed) are obtained using the derivatives with 
respect to unit values and unit inputs found in the previous section, as 
follows: 

8L 8L 
(A.42) 
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The derivatives found in this way for each training case are summed over the 
full training set, and added to the derivatives with respect to the log prior 
density, to give the derivatives with respect to the log posterior probability 
density, which control the hybrid Monte Carlo dynamics. 

A.4 Heuristic choice of stepsizes 

Stepsizes for dynamical trajectory computations and for Metropolis up
dates are heuristically chosen based on the values of the training inputs and 
the current values of the hyperparameters. These stepsize choices are made 
on the assumption that the system is near equilibrium, moving about in an 
approximately Gaussian hump of the posterior distribution. If the axes of 
this hump were aligned with the coordinate axes, the optimal stepsize along 
each axis would be in the vicinity of the standard deviation along that axis. 
Since the axes of the bowl may not be aligned with the coordinate axes, 
the actual stepsizes may have to be less than this. On the other hand, the 
estimates used are in some respects conservative. Any overall adjustment 
of the stepsizes to account for these factors must be done manually by the 
user. 

Estimates of the posterior standard deviations along the axes are based 
on estimates of the second derivatives of the log posterior probability den
sity along the axes. These second derivatives are estimated using estimates 
of the second derivatives of the log likelihood with respect to the values of 
units in the network. 

Letting L be the log likelihood for a single training case, we get the 
following for real-valued targets, with (}:2 = 00, using equation (A.33): 

1 
O"~ 

J 

while for finite (}:2, we get from equation (A.34) that 

(A.50) 

{}2L (}:2\1 [(1+ (VJ):)-l + 2(VJ;2(1+ (VJ ):)-2] (A.51) 
{)( vJ)2 (}:20"j (}:20"j (}:20"j (}:20"j 

This is estimated by its maximum value, which occurs at vJ = 0: 

{PL 
- {}(vJ)2 

For binary-valued targets, equation (A.36) gives 

{}2L 

8(vJ)2 
1 

[1 + exp( vJ)][1 + exp( -v7)] 
1 

4 

(A.52) 

(A.53) 
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Again, the estimate is based on the maximum possible value, which occurs 
when v? = O. 

We get a similar estimate for a class target, using equation (A.38): 

exp(v?) [ exp(v?) 1 
~exp(vr) 1- ~exp(vr) 

1 
~ -

4 
(A.54) 

These estimates for the second derivatives of L with respect to the out
puts are propagated backward to give estimates for the second derivatives 
of L with respect to the values of hidden and input units. 

When doing this backward propagation, we need an estimate of the 
second derivative of L with respect to the summed input to a tanh hidden 
unit, given its second derivative with respect to the unit's output. Letting 
the hidden unit output be v = tanh(u), we have 

d2L ~ [(1- v2 ) dL] (A.55) 
du 2 du dv 

. 2 2 d2 L 2 dL 
(A.56) (1-v) - - 2v(1-v)-

dv2 dv 

(1 _ V2)2 d2 L d2 L 
(A.57) ~ ~ 

dv 2 dv2 

The first approximation assumes that since 2v(1-v2 )(dL/dv) may be either 
positive or negative, its effects will (optimistically) cancel when averaged 
over the training set. Since v is not known, the second approximation above 
takes the maximum with respect to v. The end result is that we just ignore 
the fact that the hidden unit input is passed through the tanh function. 

The backward propagation also ignores any interactions between multi
ple connections from a unit. Since the stepsizes chosen are not allowed to 
depend on the actual values of the network parameters, the magnitude of 
each weight is taken to be equal to the corresponding sigma hyperparam
eter, multiplied by the destination unit adjustment, if present. This gives 
the following generic estimate: 

(A.58) 

Here, S is the source layer, D goes through the various layers receiving 
connections from S, !T;,f is the hyperparameter controlling weights to layer 
D out of unit i in S, a~d !T~j is the sigma adjustment for unit j in D. 

The second derivative of L with respect to a weight, W~jD, can be ex
pressed as follows: 
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cPL 
(A.59) 

8(W?'P)2 
• ,J 

When the weight is on a connection from an input unit, vf = v{ is the ith 
input for this training case, which is known. If the weight is on a connection 
from a hidden unit, (vf)2 is assumed to be one, the maximum possible 
value. 

Second derivatives with respect to biases and offsets are simply equal to 
the second derivatives with respect to the associated unit values. 

These heuristic estimates for the second derivatives of L due to each 
training case with respect to the various network parameters are summed 
for all cases in the training set. To these are added estimates of the sec
ond derivatives of the log prior probability density with respect to each 
parameter, giving estimates of the second derivatives of the log posterior 
density. 

For the second derivative of the log prior density with respect to weight 
Wi ,j, we have 

1 
(A.60) 

if 0'2 is infinite, while for finite 0'2, we use an estimate analogous to equa
tion (A.52): 

(A.61) 

Biases and offsets are handled similarly. 

Finally, the stepsize used for a parameter is the reciprocal of the square 
root of minus the estimated second derivative of the log posterior with 
respect to that parameter. 

A.5 Rejection sampling from the prior 

In addition to the Monte Carlo implementation based on Markov chain 
sampling, a simple Monte Carlo procedure using rejection sampling has 
also been implemented. This procedure is very inefficient; it is intended 
for use only as a means of checking the correctness of the Markov chain 
implementations. 

The rejection sampling procedure is based on the idea of producing 
a sample from the posterior by generating networks from the prior, and 
then accepting some of these networks with a probability proportional to 
the likelihood (for the given training data) of the generated parameter and 
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hyperparameter values. For data models with discrete targets, this idea can 
be implemented directly, as the likelihood is the probability of the targets 
in the training set, which can be no more than one. For regression models, 
the likelihood is the probability density of the targets, which can be greater 
than one, making its direct use as an acceptance probability invalid. If the 
noise levels for the targets are fixed, however, the likelihood is bounded, and 
can be used as the acceptance probability after rescaling. For a Gaussian 
noise model (equation (AA)), this is accomplished by simply ignoring the 
factors of 1/-..!2rrO'j in the likelihood; the analogous procedure can be used 
for noise from a i-distribution (equation (A.6)). 

When the noise levels are variable hyperparameters, a slightly more 
elaborate procedure must be used, in which the noise levels are not gener
ated from the prior, but rather from the prior multiplied by a bias factor 
that gives more weight to higher precisions (lower noise). This bias factor is 
chosen so that when it is cancelled by a corresponding modification to the 
acceptance probability, these probabilities end up being no greater than 
one. 

Specifically, the overall noise precision, r, and the noise precisions for 
individual targets, the rj, are sampled from Gamma distributions obtained 
by modifying the priors of equations (A.20) and (A.21) as follows: 

/(T) ex Tnm/2 P(r) (A.62) 

ex r(ao+nm)/2-1 exp (- Tao/2w) (A.63) 

/h I T) ex rjn/2 P(Tj I T) (A.64) 

ex T-(a 1+n)/2 TJa 1 +n)/2-1 exp ( - rjat/2r) (A.65) 

Here, n is the number of training cases and m is the number of targets. 
The resulting joint sampling density is 

m m 

l(r, {rj}) = l(r) IIl(Tj I r) ex P(r, {rj}) II r}/2 (A.66) 
j=l j=l 

Since this sampling density is biased in relation to the prior by the factor 
m 
I1 T".'/2, when constructing the acceptance probability we must multiply 
j=l J m n m 

the likelihood by the inverse of this factor, n Tj- n / 2 = n n OJ. This 
j=l c=lj=l 

cancels the factors of l/O'j in the target probabilities of equations (AA) 
and (A.6), leaving an acceptance probability which is bounded, and can 
be adjusted to be no more than one by ignoring the remaining constant 
factors. 



Appendix B 

Obtaining the software 

The implementation of Bayesian learning for neural networks described in 
Appendix A is available free of charge for research and educational pur
poses. This implementation is written in C, and currently is designed for 
use only on Unix systems. It does not require any special graphics or user 
interface environment. The software also does not use any special Unix 
facilities, but it is nevertheless likely that various modifications would be 
required in order for it to run in some other environment, and I cannot 
undertake to provide assistance with any such conversion. 

Potential users should note that this software is intended to support 
research in Bayesian neural network learning, not as a tool for routine data 
analysis. 

The software is available over the Internet, via my World Wide Web 
home page, at URL 

http://www.cs.utoronto.ca/~radford/ 

It can also be obtained by anonymous ftp to ftp. cs. utoronto. ca, direc
tory pub/radford. Look in the README file there for further instructions. 

Unfortunately, it is difficult to say for how long the above instructions 
will remain valid. If you encounter difficulties, you should be able to find an 
up-to-date link at Springer-Verlag's Web page, which is currently located 
at URL 

http://www.springer-ny.com/ 
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auto correlations, 24, 81-85,90,97, 

106 
Automatic Relevance 

Determination (ARD), 15-17, 
102, 113-116,148 

I-level vs. 2-level priors for, 123 
alternative to compare with, 114 
magnitudes of weights when 

using, 120,123, 136,141-142 
prior distributions for, 114-115, 

125 
tests on LED display problem, 

116-122 
tests on robot arm problem, 

122-125 

backpropagation, 13, 70, 111, 163 

Bayes' Rule, 5 
Bayesian learning, see Bayesian 

statistics; learning, Bayesian 
Bayesian statistics, 3 

books about, 3 
controversy regarding, 2, 5 

bias (for a unit), 11, 155 
prior distribution for, 158 

bias-variance tradeoff, 8 
Boltzmann distribution, see 

canonical distribution 
Boltzmann machine, 25 
Boston housing data, 127 

computational performance on, 
134 

cross-validation tests on, 
132-136 

messy aspects of, 127-129 
neural network models for, 

129-132 
predictive performance on, 131, 
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preliminary tests on, 129-132 
Quinlan's results on, 133, 134 

Brownian functions, 35-37 
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candidate state, 26 
canonical distribution, 57, 69 

invariance under Hamiltonian 
dynamics, 59 

over phase space, 57 
CART (Classification and 

Regression Trees), 116, 119 
Cauchy distribution, 35, 43, 46 
Central Limit Theorem, 32 
central region, 36, 52-53 
classification models, 12, 14, 31, 

150, 155 
coin tossing, 3-6 
committee (of networks), 21 
complex models, see model, 

complexity of 
computational expense 

of Bayesian learning using 
Gaussian approximation, 88, 
152 

of Bayesian learning using 
hybrid Monte Carlo, 87-88, 
152 

of cross-validation, 13 
of rejection sampling from the 

prior, 19 
computational performance 

on Boston housing data, 134 
on forensic glass data, 138 
on LED display problem, 119 
on robot arm problem, 87-88, 

113, 123, 125 
conjugate prior, 67 
covariance function, 37, 146 
cross validation, 13, 119, 127, 129 

DELVE project, 152 
derivatives 

erroneous computation of, 73 
of log likelihood, 162-164 
of log prior density, 162 
of potential energy, 58, 70, 93 

detailed balance, 24, 27 
dissipation of energy, 78 
dogs, weights of, 7 

domain of attraction, 43, 159 

early stopping, 112 
energy function, 27, 57-58, 68 

approximations to, 92 
entropy-based priors, 15 
equilibrium distribution, 24 

confirming convergence to, 81, 
87, 106, 143 

getting close to, 76 
error on training cases, 12 
estimator, 3 

bias and variance of, 8, 9 
MAP, 6 
maximum likelihood, 4 
penalized likelihood, 4 

evaluation of learning methods, 
99-100, 126-127, 152 

evidence approach, 20, 86, 108, 114 
criticism of, 20 

extrapolation, 52 

forensic glass data, 136 
computational performance on, 

138 
neural network models for, 

137-138 
predictive performance on, 

139-143 
Ripley's results on, 139 

fractional Brownian functions, 
39-40 

hyperparameter controlling, 52 
with." < 1,49 

free energy (of window), 95 
frequentist statistics, 3 

Gamma distribution, 39, 67, 101, 
156 

Gaussian approximation, see 
posterior distribution, 
Gaussian approximation to 

Gaussian distribution, 4, 21, 27, 
43, 159 

example of sampling from, 62 



Gaussian process, 31-42, 146 
Brownian, 38 
convergence to, 33, 36 
covariance function for, 37, 146 
direct implementation of, 43, 

146 
fractional Brownian, 39-40, 146 
smooth,38 

Gibbs sampling, 25-26 
ergodicity of, 26 
for neural network model, 26 
invariance for, 25 
use in Bayesian inference, 26 
use in hybrid Monte Carlo, 60 
use in stochastic dynamics, 59 

Hamiltonian dynamics, 58-59 
invariance of canonical 

distribution under, 59 
simulation of, 59, 61 

Hamiltonian function, 57 
handwriting recognition, 8 
heatbath method, see Gibbs 
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heteroscedasticity, 66, 128 
hidden features, 11, 34, 43, 45, 50, 

146 
hidden layers 

infinite number, 50-51, 147 
more than one, 48-51, 147 

hidden unit, 10, 153 
step function, 31, 35, 37, 46, 48 
tanh, 30,36, 38,46 

hierarchical models, 6, 14,51-53, 
147-150 

as alternative to comparing 
several models, 127, 148 

determining input relevance, 16 
finding additive structure, 148 
other uses of, 52, 150 

hybrid Monte Carlo, 56, 60-63, 150 
compared with other methods, 

62-63, 88-91 
demonstration on robot arm 

data, 76-84 
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ergodicityof, 61 
for bivariate Gaussian, 62-63 
for Gaussian process model, 151 
for neural network model, 

64-66, 68-73 
invariance for, 61, 98 
other variants of, 151 
with partial gradients, 91-95 
with persistence, 71,97-98 
with windows, 95-96, 118, 138 
with windows and partial 

gradients together, 96-97, 106, 
123, 131, 134 

hyperbolic tangent (tanh), 11, 75 
hyperparameters, 6, 20, 156 

common, 67, 102, 115, 156 
controlling noise level, 12, 68 
controlling prior variance, 14, 

66, 101 
Gibbs sampling for, 67, 83, 

159-161 
in additive models, 149 
in ARD models, 16, 102 
integration over, 20 
maximization with respect to, 

20 
other ways of handling, 65 

infinite networks, 15, 17, 30, 103, 
145, 147 

initial distribution, 23 
initial phase, 76-79, 102, 106, 118 
input unit, 10, 153 
invariant distribution, 24 
irrelevant inputs, 15 

kriging, 146 
Kullback-Leibler divergence, 22 

Langevin Monte Carlo, 61-63 
compared with hybrid Monte 

Carlo, 63, 88 
large networks, 102-113 
lattice field theory, 56 
leapfrog method, 59-60 
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for simple system, 71 
stability of, 62, 71, 79 
with individual stepsizes, 70 

learning 
about parameters, 4 
Bayesian, 3, 4,13, 17,18 
for neural networks, 12, 13 
frequentist, 3 
in daily life, 1 
theories of, 1 

LED display problem, 116 
Breiman's results on, 117 
computational performance on, 

119 
neural network models for, 

117-118 
predictive performance on, 

119-120 
likelihood function, 4, 5, 13, 19 
local minima, 13, 21 
logistic regression models, 155 
loss function, 5 

Markov chain, 23 
construction of, 25 
describing prior of infinite-layer 

network, 51 
ergodic, 24 
reversible, 24 

Markov chain Monte Carlo, 22-28 
for neural network model, 55-98 
reviews of, 23 

masses, 58, 70 
relation to stepsizes, 70 

maximum a posteriori probability 
(MAP) estimate, 6, 111 

maximum likelihood, 4, 8, 12 
for network applied to robot 

arm problem, 111-112 
maximum penalized likelihood, 4, 

6, 13,111 
median (guessing), 104, 106 
method of sieves, 9 
Metropolis algorithm, 26-28 

compared with hybrid Monte 
Carlo, 63, 88 

ergodicityof, 27 
for neural network model, 28 
invariance for, 27 
use in hybrid Monte Carlo, 61 

Minimum Description Length, 22 
mixture models, 9 
ML-II,20 
model (probabilistic), 3 

based on multilayer perceptron, 
12, 149 

complexity of, 2, 7-9, 21, 51, 
103, 145 

hierarchical, 6 
nonparametric, 10, 30 
parameters of, 3 
posterior probability of, 148 

model parameter, see parameters 
momentum variable, 57, 69 
Monte Carlo estimate, 17, 23 

based on dependent sample, 24 
for mean of predictive 

distribution, 64, 85 
for median of predictive 

distribution, 106 
for predictive distribution, 20 
variance of, 24, 85 

multi-fractals, 146 
multi-leap, 92 
multilayer perceptron, 10, 153 

approximations using, 11,30 
models defined using, 12, 155 
posterior distribution for, 19, 64 
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29, 53 
multiple inputs, 40, 42 
multiple outputs, 33, 34, 45 

neural networks, 10 
applications of, 2, 12 
as models of the brain, 2 
large vs. small, 46-48, 103-104 
multilayer perceptron, 10, 153 

noise level, 12, 66, 155 



for robot arm problem, 76 
prior distribution for, 68, 158 

non-Gaussian stable process, 43-48 
convergence to, 44 

nonparametric models, 10 
normalization of inputs, 115-116, 

128, 137 

Occam's Razor, 2, 7, 9 
offset (for a unit), 155 

prior distribution for, 158 
on-line learning, 91 
output unit, 11, 153 
overfitting, 8, 13, 30, 103, 104, 108, 

112-113, 135 

parameters (of a model), 3, 6 
for a multilayer perceptron, 11, 

64 
partial gradients, see hybrid Monte 

Carlo, with partial gradients 
performance, see computational 

performance; predictive 
performance 

persistence, see hybrid Monte 
Carlo, with persistence 

phase space, 57 
preservation of volume, 59, 60 

philosophy of induction, 2, 7, 9 
Poisson process, 45, 147 
polynomial models, 9 
position variable, 57, 68 
posterior distribution, 5, 17, 19 

expectations with respect to, 23 
for neural network model, 13, 

19, 64 
Gaussian approximation to, 

19-22, 55-56, 151 
modes of, 19-22, 150, 151 

precision values, 67, 101, 156 
prediction 

Bayesian, 5, 6 
frequentist, 4, 6 
uncertainty of, 6, 9, 18, 108 
using weighted average, 21 
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predictive distribution, 5, 6, 14 
for Gaussian process model, 33, 

146 
for neural network model, 13, 

19, 20, 33, 64, 84, 108 
found using Markov chain 

Monte Carlo, 64, 84-87 
median of, 104, 106 
visualizing, 84 

predictive performance 
on Boston housing data, 131, 

132, 134-136 
on forensic glass data, 139-143 
on LED display problem, 

119-120 
on robot arm problem, 85-87, 

104, 107, 125 
prior distribution, 4, 5 

Cauchy, 105 
choice of, 15, 51 
combined Gaussian and 

non-Gaussian, 49 
for a multilayer perceptron, 

14-15,29-53, 156-158 
Gaussian, 14, 16, 17, 31, 104 
improper, 7, 75, 105 
limit for infinite network, 32-34, 

36,43-45 
meaning of, 15,29 
non-Gaussian, 16, 43, 44, 104, 

147 
random generation from, 17, 18, 

30,36,45,147 
scaling with number of units, 

32,44,75,159 
vague, 7, 17,67, 105, 114, 137, 

143, 150 
probabilistic model, see model 
proposal distribution, 26-27,61, 90 

quantum chromodynamics, 56 

random walks (problem of), 27, 28, 
6.2-63, 79, 89, 97, 150 

redundancy in training set, 92 
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regression models, 12, 14, 17,31, 
155 

regularization, 4, 52 
rejection rate, 72, 73, 81, 90, 91, 

96-98 
rejection sampling, 19 

for high-level hyperparameters, 
160 

for posterior of network model, 
19, 74, 166-167 

robot arm problem, 75 
computational performance on, 

87-88, 113, 123, 125 
demonstration of 

implementation on, 76-84 
large networks applied to, 

104-113 
MacKay's results on, 86, 88, 108 
maximum likelihood applied to, 

111-112 
neural network models for, 

75-76, 104-106, 122 
predictive performance on, 

85-87, 104, 107, 125 
tests of ARD on, 122-125 

sampling phase, 76, 81-84, 102, 
106,118 

second derivatives 
of log likelihood, 164 
of log posterior density, 19, 164 
of log prior density, 166 
of potential energy, 72 

sigma values, 156 
simulated annealing, 26, 65, 143 
smart Monte Carlo, 62 
smooth functions, 14, 15, 36, 37 
smoothing splines, 146 
softmax model, 12, 14, 117, 138, 

155 
software implementing Bayesian 

neural network learning 
demonstration of, 74-88 
design decisions for, 65-66 
details regarding, 153-167 

how to obtain, 169 
verifying correctness of, 73-74 

squared error loss, 5, 14, 17, 84, 
104,106 

stable distributions, 43, 159 
stationary distribution, see 

invariant distribution 
statistical physics, 22, 26 
step function, 31, 35 
stepsize, 60, 61 

for Langevin Monte Carlo, 63 
heuristic choice of, 72-73, 

164-166 
relation to masses, 70 
selection of, 62, 66, 71-73 

stepsize adjustment factor, 72, 106 
choice of, 77, 79, 133 

stochastic dynamics, 58-60 
compared with hybrid Monte 

Carlo, 90-91 
ergodicity of, 59 
for neural network model, 65 
systematic error in, 60 

structural risk minimization, 9 
super-transitions, 77, 102 

t-distribution, 44, 52, 101, 128, 
156, 157 

targets, 12, 64, 155 
binary, 156 
discrete, 12, 156 
real-valued, 12, 155 

temperature, 57 
tempering, 143, 151 
test case, 13, 64 
tests of performance, 99-100, 

126-127, 152 
time (fictitious), 58 
timing figures, 74, 102 
training cases, 12, 64 
trajectory, 59 

computed using partial 
gradients, 92-93 

error in H along, 62, 79 



optimal length of, 59, 62, 79-81, 
106, 133 

variation of quantities along, 79, 
106 

transition probabilities, 23 
tuning (of implementation), 66 

underfitting, 13, 103, 108 

vague prior, see prior distribution, 
vague 

validation set, 13-14, 112, 113 

weight (on a connection), 10, 155 
prior distribution for, 157 

weight decay, 13, 14, 113 
width values, 157 
windows, see hybrid Monte Carlo, 

with windows 
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