

Lecture Notes in Statistics
Edited by P. Bickel, P. Diggle, S. Fienberg, K. Krickeberg,
I. Olkin, N. Wermuth, S. Zeger

118

Springer Science+Business Media, LLC

Radford M. Neal

Bayesian Learning for Neural Networks

, Springer

Radford M. Nea!
Department of Statistics and
Department of Computer Science
University of Toronto
Toronto, Ontario
Canada MSS IA4

ISBN 978-0-387-94724-2 ISBN 978-1-4612-0745-0 (eBook)
DOI 10.1007/978-1-4612-0745-0

CIP data available.
Printed on acid-free paper.

© 1996 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 1996
AlI rights reserved. This work may not be translated or copied in whole or in part without the written
permission ofthe publisher Springer Science+Business Media, LLC,
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade
Marks and Merchandise Marks Act, may accordingly be used freely by anyonc.

Camera ready copy provided by the author.

9 8 7 6 5 4 3

Preface

This book, a revision of my Ph.D. thesis,l explores the Bayesian approach
to learning flexible statistical models based on what are known as "neural
networks". These models are now commonly used for many applications,
but understanding why they (sometimes) work well, and how they can best
be employed is still a matter for research. My aim in the work reported here
is two-fold - to show that a Bayesian approach to learning these models
can yield theoretical insights, and to show also that it can be useful in
practice. The strategy for dealing with complexity that I advocate here
for neural network models can also be applied to other complex Bayesian
models, as can the computational methods that I employ.

In Chapter 1, I introduce the Bayesian framework for learning, the neu
ral network models that will be examined, and the Markov chain Monte
Carlo methods on which the implementation is based. This presentation
presupposes only that the reader possesses a basic statistical background.

Chapter 1 also introduces the major themes of this book, which involve
two fundamental characteristics of Bayesian learning. First, Bayesian learn
ing starts with a prior probability distribution for model parameters, which
is supposed to capture our beliefs about the problem derived from back
ground knowledge. Second, Bayesian predictions are not based on a single
estimate for the model parameters, but rather are found by integrating the

1 Bayesian Learning for Neural Networks, Department of Computer Science, Univer
sity of Toronto, 1995.

VI Preface

model's predictions with respect to the posterior parameter distribution
that we obtain when we update the prior to take account of the data. For
neural network models, both these aspects present difficulties - the prior
over network parameters has no obvious relation to any prior knowledge
we are likely to have, and integration over the posterior distribution is
computationally very demanding.

I address the first of these problems in Chapter 2, by defining classes
of prior distributions for network parameters that reach sensible limits as
the size of the network goes to infinity. In this limit, the properties of
these priors can be elucidated. Some priors converge to Gaussian processes,
in which functions computed by the network may be smooth, Brownian,
or fractionally Brownian. Other priors converge to non-Gaussian stable
processes. Interesting effects are obtained by combining priors of both sorts
in networks with more than one hidden layer. This work shows that within
the Bayesian framework there is no theoretical need to limit the complexity
of neural network models. Indeed, limiting complexity is likely to conflict
with our prior beliefs, and can therefore be justified only to the extent that
it is necessary for computational reasons.

The computational problem of integrating over the posterior distribu
tion is addressed in Chapter 3, using Markov chain Monte Carlo methods.
I demonstrate that the hybrid Monte Carlo algorithm, originally developed
for applications in quantum chromodynamics, is superior to the methods
based on simple random walks that are widely used in statistical applica
tions at present. The hybrid Monte Carlo method makes the use of complex
Bayesian network models possible in practice, though the computation time
required can still be substantial.

In Chapter 4, I use a hybrid Monte Carlo implementation to test the
performance of Bayesian neural network models on several synthetic and
real data sets. Good results are obtained on small data sets when large
networks are used in conjunction with priors designed to reach limits as
network size increases, confirming that with Bayesian learning one need
not restrict the complexity of the network based on the size of the data
set. A Bayesian approach is also found to be effective in automatically
determining the relevance of inputs.

Finally, in Chapter 5, I draw some conclusions from this work, and
briefly discuss related work by myself and others since the completion of
the original thesis.

Readers interested in pursuing research in this area may obtain free soft
ware implementing the methods, as described in Appendix B. One should
note, however, that this software is not intended for use in routine data
analysis. The software is also designed only for use on Unix systems.

Preface vii

Of the many people who have contributed to this work, I would like
first of all to thank my thesis advisor, Geoffrey Hinton. His enthusiasm
for understanding learning, his openness to new ideas, and his ability to
provide insightful criticism have made working 'with him a joy. I am also
fortunate to have been part of the research group he has led, and of the
wider AI group at the University of Toronto. I would particularly like to
thank fellow students Richard Mann, Carl Rasmussen, and Chris Williams
for their helpful comments on this work and its precursors. My thanks also
go to the present and former members of my Ph.D. committee, Mike Evans,
Scott Graham, Rudy Mathon, Demetri Terzopoulos, and Rob Tibshirani.

I am especially pleased to thank David MacKay, whose work on Bayesian
learning and its application to neural network models has been an inspi
ration to me. He has also contributed much to this work through many
conversations and e-mail exchanges, which have ranged from the philos
ophy of Bayesian inference to detailed comments on presentation. I have
benefited from discussions with other researchers as well, in particular,
Wray Buntine, Brian Ripley, Hans Henrik Thodberg, and David Wolpert.

This work was funded by the Natural Sciences and Engineering Research
Council of Canada and by the Information Technology Research Centre. For
part of my studies, I was supported by an Ontario Government Scholarship.

Contents

Preface III

1 Introduction 1

1.1 Bayesian and frequentist views of learning 3
1.1.1 Models and likelihood 3
1.1.2 Bayesian learning and prediction 4
1.1.3 Hierarchical models . . . 6
1.1.4 Learning complex models 7

1.2 Bayesian neural networks 10
1.2.1 Multilayer perceptron networks. 10
1.2.2 Selecting a network model and prior 14
1.2.3 Automatic Relevance Determination (ARD) models 15
1.2.4 An illustration of Bayesian learning for a neural net 17
1.2.5 Implementations based on Gaussian approximations 19

1.3 Markov chain Monte Carlo methods 22
1.3.1 Monte Carlo integration using Markov chains . 23
1.3.2 Gibbs sampling. 25
1.3.3 The Metropolis algorithm . . . 26

1.4 Outline of the remainder of the book 28

x Contents

2 Priors for Infinite Networks 29

2.1 Priors converging to Gaussian processes. 31
2.1.1 Limits for Gaussian and other priors with finite variance 32
2.1.2 Priors that lead to smooth and Brownian functions 34
2.1.3 Covariance functions of Gaussian priors
2.1.4 Fractional Brownian priors
2.1.5 Networks with more than one input

2.2 Priors converging to non-Gaussian stable processes.
2.2.1 Limits for priors with infinite variance . .
2.2.2 Properties of non-Gaussian stable priors.

2.3 Priors for nets with more than one hidden layer

2.4 Hierarchical models

3 Monte Carlo Implementation

3.1 The hybrid Monte Carlo algorithm
3.1.1 Formulating the problem in terms of energy.
3.1.2 The stochastic dynamics method
3.1.3 Hybrid Monte Carlo

37
39
40

43
43
45

48

51-

55

56
57
58
60

3.2 An implementation of Bayesian neural network learning. 63
3.2.1 Gibbs sampling for hyperparameters 66
3.2.2 Hybrid Monte Carlo for network parameters ... 68
3.2.3 Verifying correctness. 73

3.3 A demonstration of the hybrid Monte Carlo implementation 74
3.3.1 The robot arm problem 75
3.3.2 Sampling using the hybrid Monte Carlo method 76
3.3.3 Making predictions. 84
3.3.4 Computation time required 87

3.4 Comparison of hybrid Monte Carlo with other methods 88

3.5 Variants of hybrid Monte Carlo 91
3.5.1 Computation of trajectories using partial gradients 91
3.5.2 The windowed hybrid Monte Carlo algorithm. . 95
3.5.3 Hybrid Monte Carlo with persistent momentum 97

4 Evaluation of Neural Network Models 99

4.1 Network architectures, priors, and training procedures 100

4.2 Tests of the behaviour of large networks. 102
4.2.1 Theoretical expectations concerning large networks . 103

Contents xi

4.2.2 Tests of large networks on the robot arm problem 104

4.3 Tests of Automatic Relevance Determination 113
4.3.1 Procedures for evaluating ARD models 114
4.3.2 Tests of ARD on the noisy LED display problem 116
4.3.3 Tests of ARD on the robot arm problem. 122

4.4 Tests of Bayesian models on real data sets 126
4.4.1 Methodology for comparing learning procedures 126
4.4.2 Tests on the Boston housing data 127
4.4.3 Tests on the forensic glass data.

5 Conclusions and Further Work

5.1 Priors for complex models

5.2 Hierarchical Models - ARD and beyond

5.3 Implementation using hybrid Monte Carlo

5.4 Evaluating performance on realistic problems.

A Details of the Implementation

A.l Specifications.
A.1.1 Network architecture. .
A.1.2 Data models

136

145

145

147

150

152

153

153
153
155

A.1.3 Prior distributions for parameters and hyperparameters 156
A.1.4 Scaling of priors 159

A.2 Conditional distributions for hyperparameters
A.2.1 Lowest-level conditional distributions
A.2.2 Higher-level conditional distributions

A.3 Calculation of derivatives
A.3.1 Derivatives of the log prior density ..

159
160
160

161
162

A.3.2 Log likelihood derivatives with respect to unit values. 162
A.3.3 Log likelihood derivatives with respect to parameters 163

A.4 Heuristic choice of stepsizes 164

A.5 Rejection sampling from the prior 166

B Obtaining the software 169

Bibliography 171

Index 177

List of Figures

1.1 A multilayer percept ron network 11

1.2 An illustration of Bayesian inference for a neural network 18

2.1 Convergence of network priors to a Gaussian process . 33

2.2 Functions drawn from Gaussian priors for networks of step-
function units. 35

2.3 Functions drawn from Gaussian priors for networks of tanh hid-
den units 37

2.4 Functions drawn from fractional Brownian priors . 41

2.5 Behaviour of D(x-s/2, x+s/2) for different sorts of functions 41

2.6 Functions of two inputs drawn from Gaussian priors 42

2.7 Functions drawn from Cauchy priors . 46

2.8 Functions of two inputs drawn from non-Gaussian priors. 47
2.9 Functions computed from networks with several hidden layers. 49

2.10 Functions drawn from a combined Gaussian and non-Gaussian
prior. .. 50

3.1 Sampling using the Langevin and hybrid Monte Carlo methods 63

3.2 Progress of hybrid Monte Carlo runs in the initial phase 78

xiv List of Figures

3.3 Error in energy for trajectories computed with different step-
SIzes 80

3.4 Degree of correlation along a trajectory 80

3.5 Progress of hybrid Monte Carlo runs in the sampling phase 82

3.6 Autocorrelations for different trajectory lengths. 83

3.7 Predictive distribution from Monte Carlo data . 85

3.8 Average test error on the robot arm problem with different im-
plementations 86

3.9 Progress of simple Metropolis and Langevin methods in the
sampling phase .. 89

3.10 Error in energy for trajectories computed using partial gradients 94

3.11 Difference in free energy for windowed trajectories 94

4.1 Computational details for experiments on networks of varying
sIze 107

4.2 Results on the robot arm problem with networks of varying size 109

4.3 Predictive distributions obtained using networks of varying size 110

4.4 Results of maximum likelihood learning with networks of vary-
ing size . 112

4.5 Digit patterns for the noisy LED display problem. 116

4.6 Results on the noisy LED display problem. 120

4.7 Relevant and irrelevant input weight magnitudes for the LED
display problem 121

4.8 Input weight magnitudes for the robot arm problem with and
without ARD 124

4.9 Descriptions of inputs for the Boston housing problem 128

4.10 Results of preliminary tests on the Boston housing data 130

4.11 Cross-validation assessments on the Boston housing data 134

4.12 Networks and priors tested on the forensic glass data. 139

4.13 Results on the forensic glass data. 140

4.14 Effect of vague priors in the forensic glass problem 142

5.1 A hierarchical network model capable of finding additive structure 149

Chapter 1

Introduction

This book develops the Bayesian approach to learning for neural networks
by examining the meaning of the prior distributions that are the starting
point for Bayesian learning, by showing how the computations required by
the Bayesian approach can be performed using Markov chain Monte Carlo
methods, and by evaluating the effectiveness of Bayesian methods on sev
eral real and synthetic data sets. This work has practical significance for
modeling data with neural networks. From a broader perspective, it shows
how the Bayesian approach can be successfully applied to complex models,
and in particular, challenges the common notion that one must limit the
complexity of the model used when the amount of training data is small. I
begin here by introducing the Bayesian framework, discussing past work on
applying it to neural networks, and reviewing the basic concepts of Markov
chain Monte Carlo implementation.

Our ability to learn from observation is our primary source of knowledge
about the world. We learn to classify objects - to tell cats from dogs, or
an 'A' from a 'B' - on the basis of instances presented to us, not by being
given a set of classification rules. Experience also teaches us how to predict
events - such as a rainstorm, or a family quarrel - and to estimate unseen
quantities - such as when we judge the likely weight of an object from its
size and appearance. Without this ability to learn from empirical data, we
would be unable to function in daily life.

Theories and methodologies of learning are interesting from a number
of perspectives. Psychologists try to model the learning abilities of humans

2 Chapter 1. Introduction

and other animals, and to formulate high-level theories of how learning op
erates, while neurobiologists try to understand the biological mechanisms of
learning at a lower level. Workers in artificial intelligence would like to un
derstand in a more general way how learning is possible in a computational
system, and engineers try to apply such insights to produce useful devices.
Statisticians develop methods of inference from data that for certain tasks
are more reliable and more sensitive than unaided common sense. Philoso
phers would like to understand the fundamental nature and justification of
inductive learning.

The work I report in this book is aimed primarily at engineering ap
plications. The "neural network" models used are designed for predicting
an unknown category or quantity on the basis of known attributes. Such
models have been applied to a wide variety of tasks, such as recognizing
hand-written digits (Le Cun, et al 1990), determining the fat content of
meat (Thodberg 1996), and predicting energy usage in buildings (MacKay
1993). Some of the methods I develop here may also have uses in statisti
cal inference for scientific applications, where the objective is not only to
predict well, but also to obtain insight into the nature of the process be
ing modeled. Although neural networks were originally intended as abstract
models of the brain, I do not investigate whether the models and algorithms
I develop here might have a role in neural or psychological models.

The work I describe does have wider implications for the philosophy
of induction, and its applications to artificial intelligence and statistics.
The Bayesian framework for learning, on which this work is based, has
been the subject of controversy for several hundred years. It is clear that
the merits of Bayesian and competing approaches will not be settled by
philosophical disputation, but only by demonstrations of effectiveness in
practical contexts. I hope that the work I report here will contribute in
this respect. In another direction, the infinite network models I discuss
challenge common notions regarding the need to limit the complexity of
models, and raise questions about the meaning and utility of "Occam's
Razor" within the Bayesian framework.

The next section introduces the Bayesian view of learning in a general
context. I then describe past work on applying the Bayesian framework to
learning for neural networks, and indicate how this work will contribute
to this approach in two respects - first, by examining the meaning for
neural network models of the prior distribution that is the starting point for
Bayesian learning, and second, by showing how the posterior distribution
needed for making predictions in the Bayesian framework can be obtained
using Markov chain Monte Carlo methods. To provide a foundation for the
latter work, I also briefly review the basics of the Markov chain Monte
Carlo method.

1.1 Bayesian and frequentist views of learning 3

1.1 Bayesian and frequentist views of learning

The statistical methodology of Bayesian learning is distinguished by its
use of probability to express all forms of uncertainty. Learning and other
forms of inference can then be performed by what are in theory simple
applications of the rules of probability. The results of Bayesian learning are
expressed in terms of a probability distribution over all unknown quantities.
In general, these probabilities can be interpreted only as expressions of our
degree of belief in the various possibilities.

In contrast, the conventional frequentist approach to statistics uses prob
abilities only to represent the long-run frequencies of the outcomes of re
peatable experiments. A frequentist strategy for learning takes the form of
an estimator for unknown quantities, which one tries to show will usually
produce good results.

To illustrate the difference between Bayesian and frequentist learning,
consider tossing a coin of unknown properties. There is an irreducible uncer
tainty regarding the outcome of each toss, which can be expressed by saying
that the coin has a certain probability of landing heads rather than tails.
Since the properties of the coin are uncertain, however, we do not know
what this probability of heads is (it might not be one-half). A Bayesian will
express this uncertainty using a probability distribution over possible val
ues for the unknown probability of the coin landing heads, and will update
this distribution using the rules of probability theory as the outcome of
each toss becomes known. To a frequentist, such a probability distribution
makes no sense, since there is only one coin in question, and its properties
are in fact fixed. The frequentist will instead choose some estimator for the
unknown probability of heads, such as the frequency of heads in past tosses,
and try to show that this estimator is good according to some criterion.

Introductions to Bayesian statistics are provided by Press (1989), Robert
(1995), and Schmitt (1969); Berger (1985), Bernardo and Smith (1994), Box
and Tiao (1973), DeGroot (1970), and Gelman, Carlin, Stern, and Rubin
(1995) offer more advanced treatments. Barnett (1982) presents a compar
ative view of different approaches to statistical inference. Unfortunately,
these books do not deal much with complex models of the sort that are the
subject of this book.

1.1.1 Models and likelihood

Consider a series of quantities, x(1), x(2), ... , generated by some process in
which each xli) is independently subject to random variation. We can define
a probabilistic model for this random process, in which a set of unknown
model parameters, e, determine the probability distributions of the xU).
Such probabilities, or probability densities, will be written in the form

4 Chapter 1. Introduction

p(X(i) 18). In the coin tossing example, the x(i) are the results ofthe tosses
(heads or tails), and 0 is the unknown probability of the coin landing heads;
we then have P(x(i) 18) = [8 if x(i) = heads; 1-0 if x(i) = tails]. Another
simple situation is when the xU) are real-valued quantities assumed to
have a Gaussian distribution, with mean and standard deviation given by
0= {p, u}. In this case, P(x(i) I p, u) = exp(_(x(i) - p)2 / 2(2) / y'2;u.

Learning about 0 is possible if we have observed the values of some
of the x(i), say x(1), ... , x(n). For Bayesian as well as many frequentist
approaches, the impact of these observations is captured by the likelihood
function, L(0) = L(8 I x(1), ... , x(n»), which gives the probability of the
observed data as a function of the unknown model parameters:

L(O) = L(O I x(1!, . .. , x(n»)
n

II p(x(i) I B) (1.1)
;=1

This definition is written as a proportionality because all that matters is
the relative values of L(8) for different values of O.

In the method of maximum likelihood, the unknown parameters are esti
mated by the value, 0, that maximizes the likelihood, L(O I x(1), .. . , x(n»).
In the coin tossing problem, the maximum likelihood estimate for 0 turns
out to be the frequency of heads among x(1), ... ,x(n). For many models, use
of the maximum likelihood estimate can be justified in frequentist terms on
the basis that it has certain desirable properties, such as convergence to the
true value as the amount of observational data increases. The maximum
likelihood method does not always work well, however. When it doesn't,
the method of maximum penalized likelihood estimation is sometimes bet
ter. This procedure estimates 0 by the value that maximizes the product
of the likelihood and a penalty function, which may be designed to "reg
ularize" the estimate, perhaps by favouring values that are in some sense
less "extreme".

In engineering applications, we are usually not interested in the value
of 0 itself, but rather in the value of some quantity that may be observed
in the future, say x(n+1). In a frequentist context, the most obvious way of
predicting such quantities is to use the estimated value for 0, basing our
prediction on p(x(n+1) I 0). More sophisticated methods that take account
of the remaining uncertainty in 0 are also possible.

1.1.2 Bayesian learning and prediction

The result of Bayesian learning is a probability distribution over model
parameters that expresses our beliefs regarding how likely the different pa
rameter values are. To start the process of Bayesian learning, we must de
fine a prior distribution, P(0), for the parameters, that expresses our initial

1.1 Bayesian and frequentist views of learning 5

beliefs about their values, before any data has arrived. When we observe
x(1) , ... , x(n), we update this prior distribution to a posterior distribution,
using Bayes' Rule:

P(X(l), . .. , x(n) I 9) P(9)
P(x(1), ... , x(n»)

(1.2)

ex: L(9 I x(I), ... , x(n») P(9) (1.3)

The posterior distribution combines the likelihood function, which contains
the information about 9 derived from observation, with the prior, which
contains the information about 9 derived from our background knowledge.
The introduction of a prior is a crucial step that allows us to go from a
likelihood function to a probability distribution, and thereby allows learn
ing to be performed using the apparatus of probability theory. The prior is
also a common focus for criticism of the Bayesian approach, as some people
view the choice of a prior as being arbitrary.

In the coin tossing example, we might start with a uniform prior for (),
the probability of heads. As we see the results of more and more tosses, the
posterior distribution obtained by combining this prior with the likelihood
function will become more and more concentrated in the vicinity of the
value corresponding to the observed frequency of heads.

To predict the value of an unknown quantity, x(n+I), a Bayesian inte
grates the predictions of the model with respect to the posterior distribution
of the parameters, giving

This predictive distribution for x(n+l) given x(1), ... , x(n) is the complete
Bayesian inference regarding x(n+I), which can be used for many purposes,
depending on the needs of the user. The ability to produce such a distri
bution is one advantage of the Bayesian approach.

In some circumstances we may need to make a single-valued guess at
the value of x(n+I). The best way to do this depends on our loss junction,
f(x, x), which expresses our judgement of how bad it is to guess x when the
real value is x. For squared error/oss, f(x, x) = (x - X)2, guessing the mean
of the predictive distribution minimizes the expected loss. For absolute
error loss, f(x, x) = Ix - xl, the best strategy is to guess the median of the
predictive distribution. For discrete-valued x, we might choose to use 0-1
loss, which is zero if we guess correctly, and one if we guess incorrectly. The
optimal strategy is then to guess the mode of the predictive distribution.

In the coin tossing example, if we use a uniform prior for the probability
of heads, the Bayesian prediction for the result of toss n + 1 given the

6 Chapter 1. Introduction

results of the first n tosses turns out to be p(x(n+1) I x(1), ... , x(n)) =
[(h+l)/(n+2) if x(n+1) = heads; (t+1}/(n+2) if x(n+1) = tails], where h
and t are the numbers of heads and tails amongst x(1), ... , x(n). If we have
a 0-1 loss function, we should guess that x(n+1) will be a head if h > t,
but guess tails if t > h (if h = t, both guesses are equally good); This is of
course just what we would expect, and is also what we would be led to do
using the maximum likelihood estimate of B = hln.

However, even in this simple problem we can see the effect of prediction
by integration rather than maximization if we consider more complicated
actions. We might, for example, have the option of not guessing at all,
and may wish to make a guess only if we are nearly certain that we will
be right. If we have tossed the coin twice, and each time it landed heads,
naive application of maximum likelihood will lead us to conclude that the
coin is certain to land heads on the next toss, since B = 1. The Bayesian
prediction with a uniform prior is a more reasonable probability of 3/4
for heads, which might not be high enough to prompt us to guess. The
Bayesian procedure avoids jumping to conclusions by considering not just
the value of 0 that explains the data best, but also other values of 0 that
explain the data reasonably well, and hence also contribute to the integral
of equation (1.4).

The formation of a predictive distribution by the integration of equa
tion (1.4) is at the heart of Bayesian inference. Unfortunately, it is often
the source of considerable computational difficulties as well. Finding the
single value of 0 with maximum posterior probability density is usually
much easier. Use of this maximum a posteriori probability (MAP) estimate
is sometimes described as a Bayesian method, but this characterization is
inaccurate except when one can argue that the result of using this single
value approximates the integral of equation (1.4). In general, this is not
true - indeed, the MAP estimate can be shifted almost anywhere simply
by switching to a new parameterization of the model that is equivalent to
the old, but related to it by a nonlinear transformation. MAP estimation is
better characterized as a form of maximum penalized likelihood estimation,
with the penalty being the prior density of the parameter values in some
preferred parameterization.

1.1.3 Hierarchical models

In the previous section, a common parameter, 0, was used to model the
distribution of many observable quantities, xU). In the same way, when
the parameter has many components, 0 = {0 1 ,"" Op}, it may be useful
to specify their joint prior distribution using a common hyperparameter,
say /, which is given its Qwn prior. Schemes such as this are known as
hierarchical models, and may be carried to any number of levels.

1.1 Bayesian and frequentist views of learning 7

If the (}k are independent given 'Y, we will have

J Ph)" IT P((}k I 'Y) d'Y
k:l

(1.5)

Mathematically, we could have dispensed with 'Y and simply written a direct
prior for () corresponding to the result of this integration. (In general the
ek will not be independent in this direct prior.) The formulation using
a hyperparameter may be much more intelligible, however. The situation
is the same at the lower level - we could integrate over e to produce
a specification of the model in terms of a direct prior for the observable
variables x(1), x(2), ... , but most models lose their intuitive meaning when
expressed in this form.

To give a simple example, suppose the observable variables are the
weights of various dogs, each classified according to breed, and that (h
is the mean weight for breed k, used to specify a Gaussian distribution for
weights of dogs of that breed. Rather than using the same prior for each (}k,

independently, we could instead give each a Gaussian prior with a mean of
'Y, and then give 'Y itself a prior as well. The effect of this hierarchical struc
ture can be seen by imagining that we have observed dogs of several breeds
and found them all to be heavier than expected. Rather than stubbornly
persisting with our underestimates for every new breed we encounter, we
will instead adjust our idea of how heavy dogs are in general by changing
our view of the likely value of the hyperparameter 'Y. We will then start to
expect even dogs of breeds that we have never seen before to be heavier
than we would have expected at the beginning.

One way of avoiding needless intellectual effort when defining a hier
archical model is to give the top-level hyperparameters prior distributions
that are very vague, or even improper (i.e. have density functions whose
integrals diverge). Often, the data is sufficiently informative that the pos
terior distributions of such hyperparameters become narrow despite the
vagueness of the prior. Moreover, the posterior would often change very
little even if we were to expend the effort needed to define a more specific
prior for the hyperparameters that expressed our exact beliefs. One should
not use vague or improper priors recklessly, however, as they are not always
mnocuous.

1.1.4 Learning complex models

"Occam's Razor" - the principle that we should prefer simple to complex
models when the latter are not necessary to explain the data - is often
held to be an essential component of inductive inference. In scientific con
texts, its merits seem clear. In the messy contexts typical of engineering
applications, its meaning and utility are less· obvious. For example, we do

8 Chapter 1. Introduction

not expect that there is any simple procedure for recognizing handwriting.
The shapes of letters are arbitrary; they are written in many styles, whose
characteristics are more a matter of fashion than of theory; stains and dirt
may appear, and must somehow be recognized as not being part of the
letters. Indeed, there is no reason to suppose that there is any limit to the
complications involved in this task. It will always be possible to improve
performance at least a bit by taking account of further rare writing styles,
by modeling the shapes of the less common forms of ink blots, or by em
ploying a deeper analysis of English prose style in order to make better
guesses for smudged letters.

It is a common belief, however, that restricting the complexity of the
models used for such tasks is a good thing, not just because of the obvious
computational savings from using a simple model, but also because it is
felt that too complex a model will over fit the training data, and perform
poorly when applied to new cases. This belief is certainly justified if the
model parameters are estimated by maximum likelihood. I will argue here
that concern about overfitting is not a good reason to limit complexity in
a Bayesian context.

One way of viewing the overfitting problem from a frequentist perspec
ti ve is as a trade-off between the bias and the variance of an estimator, both
of which contribute to the expected squared error when using the estimate
to predict an observable quantity (Geman, Bienenstock, and Doursat 1992).
These quantities may depend on the true underlying process, and reflect
expectations with respect to the random generation of training data from
this process. The bias of an estimator measures any systematic tendency
for it to deliver the wrong answer; the variance measures the degree to
which the estimate is sensitive to the randomness of the training examples.

One strategy for designing a learning procedure is to try to minimize
the sum of the (squared) bias and the variance (note, however, that the
procedure that minimizes this sum depends on the unknown true process).
Since reducing bias often increases variance, and vice versa, minimizing
their sum will generally require a trade-off. Controlling the complexity of
the model is one way to perform this trade-off. A complex model that is
flexible enough to represent the true process can have low bias, but may
suffer from high variance, since its flexibility also lets it fit the random
variation in the training data. A simple model will have high bias, unless
the true process is really that simple, but will have lower variance. There
are also other ways to trade off bias and variance, such as by use of a
penalty function, but adjusting the model complexity is perhaps the most
common method.

This strategy leads to a choice of model that varies with the amount of
training data available - the more data, the more complex the model used.
In this way, one can sometimes guarantee that the performance achieved

1.1 Bayesian and frequentist views of learning 9

will approach the optimum as the size of the training set goes to infinity, as
the bias will go down with increasing model complexity, while the variance
will also go down due to the increasing amounts of data (provided the
accompanying increase in model complexity is sufficiently slow). Rules of
thumb are sometimes used to decide how complex a model should be used
with a given size training set (e.g. limit. the number of parameters to some
fraction of the number of data points). More formal approaches of this
sort include the "method of sieves" (Grenander 1981) and "structural risk
minimization" (Vapnik 1982).

From a Bayesian perspective, adjusting the complexity of the model
based on the amount of training data makes no sense. A Bayesian defines
a model, selects a prior, collects data, computes the posterior, and then
makes predictions. There is no provision in the Bayesian framework for
changing the model or the prior depending on how much data was collected.
If the model and prior are correct for a thousand observations, they are
correct for ten observations as well (though the impact of using an incorrect
prior might be more serious with fewer observations). In practice, we might
sometimes switch to a simpler model if it turns out that we have little data,
and we feel that we will consequently derive little benefit from using a
complex, computationally expensive model, but this would be a concession
to practicality, rather than a theoretically desirable procedure.

For problems where we do not expect a simple solution, the proper
Bayesian approach is therefore to use a model of a suitable type that is
as complex as we can afford computationally, regardless of the size of the
training set. Young (1977), for example, uses polynomial models of indefi
nitely high order. I have applied mixture models with infinite numbers of
components to small data sets (Neal 1992a); the infinite model can in this
case be implemented with finite resources. Nevertheless, this approach to
complexity has not been widely appreciated - at times, not even in the
Bayesian literature.

I hope that the work described in this book will help increase aware
ness of this view of complexity. In addition to the philosophical interest of
the idea, avoiding restrictions on the complexity of the model should have
practical benefits in allowing the maximum information to be extracted
from the data, and in producing a full indication of the uncertainty in the
predictions.

In light of this discussion, we might ask whether Occam's Razor is of any
use to Bayesians. Perhaps. In some scientific applications, simple explana
tions may be quite plausible. Jeffreys and Berger (1992) give an example of
this sort, illustrating that Bayesian inference embodies an automatic pref
erence for such simple hypotheses. The same point is discussed by MacKay
(1992a) in the context of more complex models, where "simplicity" cannot
necessarily be determined by merely counting parameters. Viewed in one

10 Chapter 1. Introduction

way, these results explain Occam's Razor, and point to the appropriate def
inition of simplicity. Viewed another way, however, they say that Bayesians
needn't concern themselves with Occam's Razor, since to the extent that
it is valid, it will be applied automatically anyway.

1.2 Bayesian neural networks

Workers in the field of "neural networks" have diverse backgrounds and
motivations, some of which can be seen in the collection of Rumelhart and
McClelland (1986b) and the books by Hertz, Krogh, and Palmer (1991),
Bishop (1995), and Ripley (1996). In this book, I focus on the potential for
neural networks to learn models for complex relationships that are inter
esting from the viewpoint of artificial intelligence or useful in engineering
applications.

In statistical terms, neural networks are "non parametric" models - a
term meant to contrast them with simpler "parametric" models in which
the relationship is characterized in terms of a few parameters, which often
have meaningful interpretations. (The term "non parametric" is somewhat
of a misnomer in this context, however. These models do have parameters;
they are just more numerous, and less interpretable, than those of "para
metric" models.) Neural networks are not the only nonparametric models
that can be applied to complex problems, of course, though they are among
the more widely used such. I hope that the work on Bayesian learning for
neural networks described in this book will ultimately be of help in devising
and implementing other non parametric Bayesian methods as well.

1.2.1 Multilayer perceptron networks

The neural networks most commonly used in engineering applications, and
the only sort discussed in this book, are the multilayer perceptron networks
(Rumelhart, Hinton, and Williams 1986a, 1986b), also known as "back
propagation" or "feedforward" networks. These networks take in a set of
real inputs, Xi, and from them compute one or more output values, fk(X),

perhaps using some number of layers of hidden units. In a typical network
with one hidden layer, such as is illustrated in Figure 1.1, the outputs might
be computed as follows:

fk(X) bk + L vjkhj(x)
j

tanh (aj + L UijXi)

i

(1.6)

(1.7)

Here, Uij is the weight on the connection from input unit i to hidden unit j;
similarly, Vjk is the weight on the connection from hidden unit j to output

1. 2 Bayesian neural networks 11

Output Units

Hidden Units

Input Units

FIGURE 1.1. A multilayer perceptron wit.h four input units, one layer of five
hidden units, and two output units. The input units at the bottom are fixed
to their values for a particular case. The values of the hidden units are then
computed, followed by the values of the output units. The value for a hidden or
output unit is a function of the weighted sum of values it receives from the units
that are connected to it via the arrows.

unit k. The aj and bk are the biases of the hidden and output units. These
weights and biases are the parameters of the network.

Each output value, !k(X), is just a weighted sum of hidden unit values,
plus a bias. Each hidden unit computes a similar weighted sum of input
values, and then passes it through a nonlinear activation function. The
activation function chosen here is the hyperbolic tangent (tanh), an anti
symmetric function of sigmoidal shape, whose value is close to -1 for large
negative arguments, zero for a zero argument, and close to +1 for large
positive arguments. A nonlinear activation function allows the hidden units
to represent "hidden features" of the input that are useful in computing the
appropriate outputs. If a linear activation function were used, the hidden
layer could be eliminated, since equivalent results could be obtained using
direct connections from the inputs to the outputs.

Several people (Cybenko 1989, Funahashi 1989, Hornik, Stinchcombe,
and White 1989) have shown that a multilayer percept ron network with one
hidden layer can approximate any function defined on a compact domain
arbitrarily closely, if sufficient numbers of hidden units are used. Never
theless, more elaborate network architectures may have advantages, and
are commonly used. Possibilities include using more layers of hidden units,
providing direct connections from inputs to outputs, and using different ac
tivation functions. However, in "feed forward" networks such as I consider
here, the connections never form cycles, in order that the values of the
outputs can be computed in a single forward pass, in time proportional to
the number of network parameters.

12 Chapter 1. Introduction

Multilayer percept ron networks can be used to define probabilistic mod
els for regression and classification tasks by using the network outputs to
define the conditional distribution for One or more targets, Yk, given the
various possible values of an input vector, x. The distribution of x itself is
not modeled; it may not even be meaningful, since the input values might
simply be chosen by the user. Models based on multilayer perceptrons have
been applied to a great variety of problems. One typical class of applica
tions are those that take as input sensory information of some type and
from that predict some characteristic of what is sensed. Thodberg (1996),
for example, predicts the fat content of meat from spectral information.

For a regression model with real-valued targets, the conditional distribu
tion for the targets, Yk, given the input, x, might be defined to be Gaussian,
with Yk having a mean of fk{X) and a standard deviation of Uk. The differ
ent outputs are usually taken to be independent, given the input. We will
then have

P{y I x) II ~ exp(- (fk{X) - Yk)2 /2uD
k y 27rUk

(1.8)

The "noise levels", Uk, might be fixed, or might be regarded as hyper
parameters (which stretches the previously-given definition of this term,
but corresponds to how these quantities are often treated).

For a classification task, where the target, y, is a single discrete value
indicating one of J{ possible classes, the softmax model (Bridle 1989) can
be used to define the conditional probabilities of the various classes using
a network with J{ output units, as follows:

P{y=k I x) exp{!k{x)) / L exp{fk/{X)) (1.9)
k'

This method of defining class probabilities is also used in generalized linear
models in statistics (McCullagh and NeIder, 1983, Section 5.1.3).

The weights and biases in neural networks are learned based on a set of
training cases, (x(l), y(1)), ... , (x(n), y(n)), giving examples of inputs, x(i),

and associated targets, y(i) (both of which may have several components).
Standard neural network training procedures adjust the weights and biases
in the network so as to minimize a measure of "error" on the training
cases, most commonly, the sum of the squared differences between the
network outputs and the targets. Minimization of this error measure is
equivalent to maximum likelihood estimation for the Gaussian noise model
of equation (1.8), since minus the log of the likelihood with this model is
proportional to the sum of the squared errors.

Finding the weights and_biases that minimize the chosen error function
is commonly done using some gradient-based optimization method, using
derivatives of the error with respect to the weights and biases that are

1.2 Bayesian neural networks 13

calculated by backpropagation (Rumelhart, Hinton, and Williams 1986a,
1986b). There are typically many local minima, but good solutions are
often found despite this.

To reduce overfitting, a penalty term proportional to the sum of the
squares of the weights and biases is often added to the error function,
resulting in a maximum penalized likelihood estimation procedure. This
modification is known as weight decay, because its effect is to bias the
procedure in favour of small weights. Determining the proper magnitude of
the weight penalty is difficult - with too little weight decay, the network
may "overfit" , but with too much weight decay, the network will "underfit" ,
ignoring the data.

The method of cross validation (Stone 1974) is sometimes used to find
an appropriate weight penalty. In the simplest form of cross validation, the
amount of weight decay is chosen to optimize performance on a validation
set separate from the cases used to estimate the network parameters. This
method does not make efficient use of the available training data, however.
In n-way cross validation, the training set is partitioned into n subsets,
each of which is used as the validation set for a network trained on the
other n-l subsets. Total error on all these validation sets is used to pick a
good amount of weight decay, which is then used in training a final network
on all the data. This procedure is computationally expensive, however, and
could run into problems if the n networks find dissimilar local minima, for
which different weight penalties are appropriate.

In the Bayesian approach to neural network learning, the objective is
to find the predictive distribution for the target values in a new "test"
case, given the inputs for that case, and the inputs and targets in the
training cases. Since the distribution of the inputs is not being modeled,
the predictive distribution of equation (1.4) is modified as follows:

p(y(n+l) I x(n+1), (x(1), y(1)), ... , (x(n), yen)))

= J p(y(n+l) I x(n+1), e) p(e I (x(1), y(1)), ... , (x(n), yen))) de (1.10)

Here, () represents the network parameters (weights and biases). The poste
rior density for these parameters is proportional to the product of whatever
prior is being used and the likelihood function, as in equation (1.3). The
likelihood is slightly modified because the distribution of the inputs is not
being modeled:

n

II P(y(i) I x(i), (}) (1.11)
i=1

The distribution for the target values, y(i), given the corresponding inputs,
x(i), and the parameters of the network is defined by the type of model with

14 Chapter 1. Introduction

which the network is being used; for regression and softmax classification
models it is given by equations (1.8) and (1.9).

If we wish to guess a component of y(n+1), with squared error loss,
the best strategy is to guess the mean of its predictive distribution. For a
regression model, this reduces to the following guess:

Here the network output functions, /k, are written with the dependence on
the network parameters, (), being shown explicitly.

1.2.2 Selecting a network model and prior

At first sight, the Bayesian framework may not appear suitable for use
with neural networks. Bayesian inference starts with a prior for the model
parameters, which is supposed to embody our prior beliefs about the prob
lem. In a multilayer percept ron network, the parameters are the connection
weights and unit biases, whose relationship to anything that we might know
about the problem seems obscure. The Bayesian engine thus threatens to
stall at the outset for lack of a suitable prior.

However, to hesitate because of such qualms would be contrary to the
spirit ofthe neural network field. MacKay (1991, 1992b) has tried the most
obvious possibility of giving the weights and biases Gaussian prior distribu
tions. This turns out to produce results that are at least reasonable. In his
work, MacKay emphasizes the advantages of hierarchical models. He gives
results of Bayesian learning for a network with one hidden layer, applied
to a regression problem, in which he lets the variance of the Gaussian prior
for the weights and biases be a hyperparameter. This allows the model to
adapt to whatever degree of smoothness is indicated by the data. Indeed,
MacKay discovers that the results are improved by using several variance
hyperparameters, one for each type of parameter (weights out of input
units, biases of hidden units, and weights and biases of output units). He
notes that this makes sense in terms of prior beliefs if the inputs and out
puts of the network are quantities of different sorts, measured on different
scales, since in this case the effect of using a single variance hyperparameter
would depend on the arbitrary choice of measurement units.

In a Bayesian model of this type, the role of the hyperparameters con
trolling the priors for weights is roughly analogous to the role of a weight
decay constant in conventional training. With Bayesian training, values
for these hyperparameters (more precisely, a distribution of values) can be
found without the need for_ a validation set.

Buntine and Weigend (1991) discuss several possible schemes for prior
distributions, such as priors that favour networks that produce high or

1.2 Bayesian neural networks 15

low entropy predictions, or that compute smooth functions. The degree of
preference imposed can be controlled by a hyperparameter. Their treatment
of smoothness priors applies only to simple networks, however. This work
links the choice of prior for weights to the actual effects of these weights
on the function computed by the network, which is clearly necessary if we
are to choose a prior that represents our beliefs about this function.

This past work shows that useful criteria for selecting a suitable prior
can sometimes be found even without a full understanding of what the
priors over weights and biases mean in terms of the functions computed by
the network. Still, the selection of a pa.rticular network architecture and
associated prior remains ad hoc. Bayesian neural network users may have
difficulty claiming with a straight face that their models and priors are
selected because they are just what is needed to capture their prior beliefs
about the problem.

The work I describe in Chapter 2 addresses this problem. Applying
the philosophy of Bayesian learning for complex problems outlined in Sec
tion 1.1.4, I focus on priors for networks with an infinite number of hidden
units. (In practice, such networks would be approximated by large finite
networks.) Use of an infinite network is in accord with prior beliefs, since
seldom will we believe that the true function we are learning can be ex
actly represented by any finite network. In addition, the characteristics of
priors for infinite networks can often be found analytically. Further insight
into the nature of these priors can be obtained by randomly generating
networks from the prior and visually examining the functions that these
networks compute. In Chapter 4, I report the results of applying networks
with relatively large numbers of hidden units to actual data sets.

1.2.3 A utomatic Relevance Determination (ARD) models

Another dimension of complexity in neural network models is the num
ber of input variables used in modeling the distribution of the targets. In
many problems, there will be a large number of potentially measurable
attributes which could be included as inputs if we thought this would im
prove predictive performance. Unlike the situation with respect to hidden
units, however, including more and more inputs (all on an equal footing)
must ultimately lead to poor performance, since with enough inputs, it is
inevitable that an input which is in fact irrelevant will by chance appear in
a finite training set to be more closely associated with the targets than are
the truly relevant inputs. Predictive performance on test cases will then be
poor.

Accordingly, we must limit the number of input variables we use, based
on our assessment of which attributes are most likely to be relevant. (Al
ternatively, if we do include a huge number of inputs that we think are

16 Chapter 1. Introduction

probably irrelevant, we must use an asymmetrical prior that expresses our
belief that some inputs are less likely to be relevant than others.) However,
in problems where the underlying mechanisms are not well understood, we
will not be confident as to which are the relevant attributes. The inputs we
choose to include will be those that we believe may possibly be relevant,
but we will also believe that some of these inputs may turn out to have
little or no relevance. We would therefore like to use models that can auto
matically determine the degree to which such inputs of unknown relevance
are in fact relevant.

Models of this sort have been developed by David MacKay and my
self, and used by MacKay in a model of energy usage in buildings (Mackay
1994a). In such an Automatic Relevance Determination (ARD) model, each
input variable has associated with it a hyperparameter that controls the
magnitudes of the weights on connections out of that input unit. These
hyperparameters are given some prior distribution, and conditional on the
values of these hyperparameters, the weights out of each input have inde
pendent Gaussian prior distributions with standard deviation given by the
corresponding hyperparameter. If the hyperparameter associated with an
input specifies a small standard deviation for weights out of that input,
these weights will likely all be small, and the input will have little effect on
the output; if the hyperparameter specifies a large standard deviation, the
effect of the input will likely be significant. The posterior distributions of
these hyperparameters will reflect which of these situations is more proba
ble, in light of the training data.

ARD models are intended for use with a complex network in which
each input is associated with many weights, with the role of the ARD
hyperparameters being to introduce dependencies between these weights.
In such a situation, if the weight on one connection out of an input becomes
large, indicating that the input has some relevance, this will influence the
distribution of the associated hyperparameter, which in turn will make it
more likely that other weights out of the same input will also be large.

Formally, one could define an ARD model for a network with a single
target and no hidden units, in which each input unit connects only to the
target (a network equivalent to a simple linear regression model). However,
each ARD hyperparameter in this simple network would control the dis
tribution of only a single weight, eliminating its role in introducing depen
dencies. By integrating over the ARD hyperparameters, we could produce
a direct specification for the prior over weights in which each weight would
be independent of the others, but would now have some prior distribution
other than a Gaussian. This might or might not be a good model, but in
either case, it seems likely that its properties could be more easily under
stood in this direct formulation, with the hyperparameters eliminated. On

1.2 Bayesian neural networks 17

the other hand, this method of obtaining a non-Gaussian prior might have
computational advantages in some contexts.

Although use of ARD models may seem to be straightforward exten
sion of MacKay's previous use of several hyperparameters to control the
distribution of different classes of weights (see Section 1.2.2), these models
in fact raise several subtle issues. Just what do we mean by a "large" or
"small" value of the standard deviation for the prior over weights associ
ated with a particular input? The answer must depend somehow on the
measurement units used for this input. 'What prior should we use for the
ARD hyperparameters? It would be convenient if we could use a vague
prior, but it is not clear that this will give the best results. These issues
are discussed further in Chapter 4, where ARD models are evaluated on
several data sets.

1.2.4 An illustration of Bayesian learning for a neural net

An example will illustrate the general concept of Bayesian learning, its
application to neural networks, and the infeasibility of brute force methods
of Bayesian computation for problems of significant size.

Figure 1.2 shows Bayesian learning in action for a regression model based
on a neural network with one input, one output, and 16 hidden units. The
operation of the network is described by equations (1.6) and (1.7). The
condi tional distri bu tion for the target is given by equation (1. 8), with the
noise level set to rr = 0.1.

On the left of the figure are the functions computed by ten such networks
w~ose weights and biases were drawn from independent Gaussian prior
distributions, each with mean zero and standard deviation one, except for
the output weights, which had standard deviation 1/JI6. As explained
in Chapter 2, setting the standard deviation of the output weights to be
inversely proportional to the square root of the number of hidden units
ensures that the prior over functions computed by the network reaches a
sensible limit as the number of hidden units goes to infinity.

On the right of Figure 1.2 are ten functions drawn from the posterior
distribution that results when this prior is combined with the likelihood
due to the six data points shown (see equations (1.3) and (1.11)). As one
would hope, the posterior distribution is concentrated on functions that
pass near the data points.

The best way to guess the targets associated with various input values,
assuming we wish to minimize the expected squared error in the guesses, is
to use the average of the network functions over the posterior distribution
of network parameters (as in equation (1.12)). We can make a Monte Carlo
estimate of this average across the posterior by averaging the ten functions

18 Chapter 1. Introduction

+2 - +2 -

+1 -

-I -

-2 - -2 -

-3 - -3 -

-I 0 +1 -I 0 +1

FIGURE 1.2. An illustration of Bayesian inference for a neural network. On the
left are the functions computed by ten networks whose weights and biases were
drawn at random from Gaussian prior distributions. On the right are six data
points and the functions computed by ten networks drawn from the posterior
distribution derived from the prior and the likelihood due to these data points.
The heavy dotted line is the average of the ten functions drawn from the posterior,
which is an approximation to the function that should be guessed in order to
minimize expected squared error loss.

shown that were drawn from the posterior. This averaged function is shown
in the figure by a heavy dotted line. Bayesian inference provides more than
just a single-valued guess, however. By examining the sample of functions
from the posterior, we can also see how uncertain these guesses are. We can,
for example, see that the uncertainty increases rapidly beyond the region
where the training points are located.

Figure 1.2 was produced using a simple algorithm that is of interest
both because it illuminates the nature of Bayesian learning, and because
it illustrates that direct approaches to performing Bayesian inference can
rapidly become infeasible as the problem becomes bigger.

The left half of the figure was easy to produce, since generating values for
the network weights and biases from independent Gaussian distributions
can be done quickly using standard methods (Devroye 1986). It is, in fact,
very often the case that sampling from the prior is simple and fast, even
for complex models.

The right half of the figure was produced by generating many networks
from the prior, computing the likelihood for each based on the six training
points, and then accepting each network with a probability proportional
to its likelihood, with the constant of proportionality chosen to make the
maximum probability of acceptance be one. Networks that were not ac-

1.2 Bayesian neural networks 19

cepted were discarded, with the process continuing until ten networks had
been accepted; these ten are shown in the figure.

This algorithm - a form of rejection sampling (Devroye 1986) - di
rectly embodies the definition of the posterior given by equation (1.3). The
prior contributes to the result by controlling the generation of candidate
networks; the likelihood contributes by controlling which of these candi
dates are accepted. The algorithm is not very efficient, however. As can
be seen by looking at the right of Figure 1.2, the functions computed by
most networks drawn from the prior do not pass near the training points
(within a few standard deviations, with (7' = 0.1) - in fact, none of the
ten functions shown there are close to all the data points. The number of
functions that will have to be drawn from the prior before one is accepted
will therefore be high. Generating the sample of ten functions from the
posterior shown in the figure turned out to require generating 2.6 million
networks from the prior.

As the number of data points in the training set increases, the time
required by this method grows exponentially. More efficient methods are
clearly needed in practice.

1.2.5 Implementations based on Gaussian approximations

The posterior distribution for the parameters (weights and biases) of a
multilayer percept ron network is typically very complex, with many modes.
Finding the predictive distribution for a test case by evaluating the integral
of equation (1.10) is therefore a difficult task. In Chapter 3, I address this
problem using Markov chain Monte Carlo methods. Here, I will discuss
implementations based on Gaussian approximations to modes, which have
been described by Buntine and Weigend (1991), MacKay (1991, 1992b,
1992c), and Thodberg (1996). Hinton and van Camp (1993) use a Gaussian
approximation of a different sort.

Schemes based on Gaussian approximations to modes operate as follows:

1) Find one or more modes of the posterior parameter distri
bution.

2) Approximate the posterior distribution in the vicinity of
each such mode by a Gaussian whose inverse covariance ma
trix matches the second derivatives of the log posterior at
the mode.

3) If more than one mode is being used, decide how much
weight to give to each.

4) Approximate the predictive distribution of equation (1.10)
by the corresponding integral with respect to the Gaus-

20 Chapter 1. Introduction

sian approximation to the mode, or the weighted mixture
of Gaussians approximating the several modes.

Step (4) is easy for models that are linear in the vicinity of a mode. Simple
approximations may suffice in other cases (MacKay 1992c). At worst, it can
be done fairly efficiently by simple Monte Carlo methods (Ripley 1994a).

I have not mentioned above how to handle hyperparameters, such as the
prior variances for groups of weights, and the noise level for a regression
problem. This is a matter about which there has been some controversy.

Buntine and Weigend (1991) analytically integrate over the hyperparam
eters, and then look for modes of the resulting marginal posterior distri
bution for the parameters. Eliminating the hyperparameters in this way
may appear to be an obviously beneficial simplification of the problem, but
this is not the case - as MacKay (1994b) explains, integrating out such
hyperparameters can sometimes produce a marginal posterior parameter
distribution in which the1mode is entirely unrepresentative of the distribu
tion as a whole. Basing ain approximation on the location of the mode will
then give drastically incorrect results.

In MacKay's implementation (1991, 1992b, 1992c), he assumes only that
the Gaussian approximation can be used to represent the posterior distribu
tion of the parameters for given values of the hyperparameters. He fixes the
hyperparameters to the values that maximize the probability of the data
(what he calls the "evidence" for these values of the hyperparameters).
In finding these values, he makes use of the Gaussian approximation to
integrate over the network parameters.

MacKay's "evidence" approach to handling the hyper parameters is com
putationally equivalent to the "ML-II" method of prior selection (Berger
1982, Section 3.5.4). From a fully Bayesian viewpoint, it is only an approxi
mation to the true answer, which would be obtained by integrating over the
hyperparameters as well as the parameters, but experience has shown that
it is often a good approximation. Wolpert (1993) criticizes the use of this
procedure for neural networks on the grounds that by analytically integrat
ing over the hyperparameters, in the manner of Buntine and Weigend, one
can obtain the relative posterior probability densities for different values of
the network parameters exactly, without the need for any approximation.
This criticism is based on a failure to appreciate the nature of the task.
The posterior probability densities for different parameter values are, in
themselves, of no interest - all that matters is how well the predictive dis
tribution is approximated. MacKay (1994b) shows that in approximating
this predictive distribution, it is more important to integrate over the large
number of parameters in the network than over the typically small number
of hyperparameters.

1.2 Bayesian neural networks 21

This controversy has perhaps distracted attention from other problems
with Gaussian approximation methods that I believe are more significant.

First, how should one handle the presence of multiple modes? One ap
proach is to ignore the problem, simply assuming that all the modes are
about equally good. The general success of neural network learning pro
cedures despite the presence of local minima suggests that this approach
may not be as ridiculous as it might sound. Nevertheless, one would like
to do better, finding several modes, and making predictions based on a
weighted average of the predictions from each mode. One possibility is to
weight each mode by an estimate of the total probability mass in its vicin
ity, obtained from the relative probability density at the mode and the
determinant of the covariance matrix of the Gaussian used to approximate
the mode (Buntine and Weigend 1991, Ripley 1994a). This is not a fully
correct procedure, however - the weight a mode receives ought really to be
adjusted according to the probability of t.he mode being found by the op
timization procedure, with the easily found modes being given less weight
than they would otherwise have had, since they occur more often. For large
problems this will not be possible, however, since each mode will typically
be seen only once, making the probabilities of finding the modes impossible
to determine. Another problem is that if the Gaussian approximation is not
very accurate, one mode may receive most of the weight simply because
it happened to be favoured by approximation error. Such problems lead
Thodberg (1996) to use the estimated probability mass only to select a
"committee" based on the better modes (perhaps from different models),
to each of which he assigns equal weight.

A second, potentially more serious, question is whether the Gaussian ap
proximation for the distribution in the vicinity of a mode is reasonably good
(even for fixed values of the hyperparameters). One reason for optimism
in this regard is that the posterior distribution for many models becomes
increasingly Gaussian as the amount of training data increases (DeGroot
1970, Chapter 10). However, if we subscribe to the view of complexity pre
sented in Section 1.1.4, we should not confine ourselves to simple models,
for which this asymptotic result may be relevant, but should instead use
as complex a model as we can handle computationally, in order to extract
the maximum information from the data,. and obtain a full indication of
the remaining uncertainty. I believe that the Gaussian approximation will
seldom be good for such complex models.

Looking at neural network models in particular, the following argument
suggests that the Gaussian approximation may be bad when the amount of
data is insufficient to determine the values of the weights out of the hidden
units, to within a fairly small fraction of their values. In a multivariate
Gaussian, the conditional distribution of one variable given values forthe
other variables has a variance that is independent of the particular values

22 Chapter 1. Introduction

the other variables take (these affect only the conditional mean). Accord
ingly, for the Gaussian approximation to the posterior distribution of the
weights in a network to be good, the conditional distribution for a weight
into a hidden unit must have a variance almost independent of the values
of the weights out of that hidden unit. Since the weights out of a hidden
unit have a multiplicative effect on the hidden unit's influence, this can be
true only if the posterior variation in these weights is small compared to
their magnitude.

As will be seen in Chapter 2, when reasonable priors are used, all or most
of the weights out of the hidden units in a large network will be small, and,
individually, each such hidden unit will have only a small influence on the
network output. In the posterior distribution, the variation in the weights
out of these hidden units will thus be large compared to their magnitudes,
and we should not expect the Gaussian approximation to work well.

Finally, Hinton and van Camp (1993) take a rather different approach to
approximating the posterior weight distribution by a Gaussian. They em
ploy an elaboration of the Minimum Description Length framework (Rissa
nen 1986) that is equivalent to Bayesian inference using an approximation
to the posterior distribution chosen so as to minimize the Kullback-Leibler
divergence with the true posterior. Hinton and van Camp choose to approx
imate the posterior by a Gaussian with a diagonal covariance matrix. Note
that the Gaussian of this class that minimizes the Kullback-Leibler diver
gence with the true posterior will not necessarily be positioned at a mode
(though one might expect it to be close). For the reasons just outlined, we
may expect that Gaussian approximations of this sort will also fail to be
good for large networks in which the weights are not well determined.

1.3 Markov chain Monte Carlo methods

In Chapter 3, I will present an implementation of Bayesian learning for neu
ral networks in which the difficult integrations required to make predictions
are performed using Markov chain Monte Carlo methods. These methods
have been used for many years to solve problems in statistical physics, and
have recently been widely applied to Bayesian models in statistics. Markov
chain Monte Carlo methods make no assumptions concerning the form of
the distribution, such as whether it can be approximated by a Gaussian. In
theory at least, they take proper account of multiple modes, as well as the
possibility that the dominant contribution to the integral may come from
areas not in the vicinity of any mode. The main disadvantage of Markov
chain methods is that they may in some circumstances require a very long
time to converge to the desired distribution.

1.3 Markov chain Monte Carlo methods 23

The implementation in Chapter 3 is based on the "hybrid Monte Carlo"
algorithm, which was developed for applications in quantum chromody
namics, and has not previously been applied in a'statistical context. In this
section, I describe the basic concept of Markov chain Monte Carlo, and
review two better-known methods on which the hybrid Monte Carlo algo
rithm is based; I leave the exposition of the hybrid Monte Carlo algorithm
itself to Chapter 3. I have reviewed these methods in more detail elsewhere
(Neal 1993b). Tierney (1994) and Smith and Roberts (1993) also review
recent work on Markov chain Monte Carlo methods and their applications
in statistics.

1. 3.1 Monte Carlo integration using Markov chains

The objective of Bayesian learning is to produce predictions for test cases.
This may take the form of finding predictive probabilities, as in equa
tion (1.10), or of making single-valued guesses, as in equation (1.12). Both
tasks require that we evaluate the expectation of a function with respect
to the posterior distribution for model parameters. Writing the posterior
probability density for the parameters as Q(B), the expectation of a(B) is

E[a] J a(B) Q(B) dB (1.13)

For example, by letting a(O) = fk(x(n+ll., B), we get the integral of equa
tion (1.12), used to find the best guess for y1n +1) under squared error loss.

Such expectations can be estimated by the Monte Carlo method, using
a sample of values from Q:

E[a] ~ (1.14)

where B(1), ... , B(N) are generated by a process that results in each of them
having the distribution defined by Q. In simple Monte Carlo methods, the
B(t) 'are independent. When Q is a complicated distribution, generating such
independent values is often infeasible, but it may nevertheless be possible to
generate a series of dependent values. The Monte Carlo integration formula
of equation (1.14) still gives an unbiased estimate of E[a] even when the
O(t) are dependent, and as long as the dependence is not too great, the
estimate will still converge to the true value as N increases.

Such a series of dependent values may be generated using a Markov
chain that has Q as its stationary distribution. The chain is defined by
giving an initial distribution for the first state of the chain, 0(1), and a
set of transition probabilities (or densities) for a new state, 0(t+1), to follow
the current state, O(t). The probability densities for these transitions will be

24 Chapter 1. Introduction

written as T(B(t+1) I B(t»). An invariant (or stationary) distribution, Q, is
one that persists once it is established - that is, if B(t) has the distribution
given by Q, then O(t/) will have the same distribution for all t' > t. This
invariance condition can be written as follows:

Q(B') J T((J' I B)Q((J)d(J (1.15)

Invariance with respect to Q is implied by the stronger condition of detailed
balance - that for all 0 and (j':

T((J' I B) Q(B) T(B I B') Q(B') (1.16)

A chain satisfying detailed balance is said to be reversible.

A Markov chain that is ergodic has a unique invariant distribution, its
equilibrium distribution, to which it converges from any initial state. If we
can find an ergodic Markov chain that has Q as its equilibrium distribu
tion, we can estimate expectations with respect to Q using equation (1.14),
with (j(1), ... , ()(N) being the states of the chain, perhaps with some early
states discarded, since they may not be representative of the equilibrium
distribution. Because of the dependencies between the (j(t), the number of
values for 0 needed for the Monte Carlo estimate to reach a certain level of
accuracy may be larger than would be required if the O(t) were independent,
sometimes much larger. The chain may also require a long time to reach a
point where the distribution of the current state is a good approximation
to the equilibrium distribution.

The effect of dependencies on the accuracy of a Monte Carlo estimate
can be quantified in terms of the autocorrelations between the values of
a(O(t») once equilibrium has been reached (see, for example, (Ripley 1987,
Neal 1993b)). If a has finite variance, the variance of the estimate of E[a]
given by equation 1.14 will be Var[aJl N if the O(t) are independent. When
the (J(t) are dependent, and N is large, the variance of the estimate is
Var[a] I (NIT), where

T (1.17)
.=1

is a measure of the inefficiency due to the presence of dependencies. Here,
p(s) is the autocorrelation of a at lag s, defined by

p(s) = E[(a(()(t») - E[a]) (a(O(t-s») - E[a])]
Yarra]

(1.18)

Since we assume that equilibrium has been reached, the value used for
t does not affect the above definition. For Markov chains used to sample
complex distributions, these autocorrelations are typically positive, leading
to a value for T greater than one. (It is possible for T to be less than one,

1.3 Markov chain Monte Carlo methods 25

however, in which case the dependencies actually increase the accuracy of
the estimate.)

To use the Markov chain Monte Carlo method to estimate an expecta
tion with respect to some distribution, Q, we need to construct a Markov
chain which is ergodic, which has Q as its equilibrium distribution, which
converges to this distribution as rapidly as possible, and in which the states
visited once the equilibrium distribution is reached are not highly depen
dent. To construct such a chain for a complex problem, we can combine the
transitions for simpler chains, since as long t~s each such transition leaves
Q invariant, the result of applying these transitions in sequence will also
leave Q invariant. In the remainder of this section, I will review two simple
methods for constructing Markov chains that will form the basis for the
implementation described in Chapter 3.

1.3.2 Gibbs sampling

Gibbs sampling, known in the physics literature as the heatbath method,
is perhaps the simplest Markov chain Monte Carlo method. It is used in
the "Boltzmann machine" neural network of Ackley, Hinton, and Sejnowski
(1985) to sample from distributions over stochastic hidden units, and has
become widely used for statistical problems, following its exposition by
Geman and Geman (1984) and by Gelfand and Smith (1990).

Gibbs sampling is applicable when we wish to sample from a distribution
over a multi-dimensional parameter, () = {()1, ... , ()p}. Presumably, directly
sampling from the distribution given by Q(()) is infeasible, but we assume
that we can generate a value from the conditional distribution (under Q)
for one component of () given values for all the other components of (). This
allows us to simulate a Markov chain in which ()(t+1) is generated from ()(t)

as follows:

P· k ()(t+l) f h d' 'b' f () . ()(t) ()(t) (}(t) IC 1 rom t e Istn utIOn 0 1 gIven 2 , 3 , ... , up

P· k ()(t+1) f h d' 'b t' f () . ()(t+1) ()(t) ()(t) IC 2 rom t e Istn u IOn 0 2 given 1 , 3 , ... , p

. (t+l) (t+l) (t+1) ()(t) fl(t) PIck OJ from the dIstnbutlOn of ()j gIven 01 , ... , 0j_1 , j+l"'" up

. (t+1) (t+l) (t+1) (t+1) Pick Op from the dIstnbutlOn of ()p gIVen ()l , ()2 , ... , ()p-l

Note that the new value for OJ is used immediately when picking a new
value for ()j+1'

Such transitions will leave the desired distribution, Q, invariant if all the
steps making up each transition leave Q invariant. Since step j leaves Ok for

26 Chapter 1. Introduction

k ::/= j unchanged, the desired marginal distribution for these components is
certainly invariant. Furthermore, the conditional distribution for OJ in the
new state given the other components is defined to be that which is desired.
Together, these ensure that if we started from the desired distribution, the
joint distribution for all the OJ after all the above steps must also be the
desired distribution. These transitions do not necessarily lead to an ergodic
Markov chain, however; this must be established in each application.

Whether Gibbs sampling is useful for Bayesian inference depends on
whether the posterior distribution of one' parameter conditional on given
values for the other parameters can easily be sampled from. For many
statistical problems, these conditional distributions are of standard forms
for which efficient generation procedures are known. For neural networks,
however, the posterior conditional distribution for one weight in the net
work given values for the other weights can be extremely messy, with many
modes. There appears to be no reasonable way of applying Gibbs sampling
in this case. However, Gibbs sampling is one component of the hybrid Monte
Carlo algorithm, which can be used for neural networks. In the implemen
tation of Chapter 3, it will also be used to update hyperparameters.

1.3.3 The Metropolis algorithm

The Metropolis algorithm was introduced in the classic paper of Metropo
lis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), and has since seen
extensive use in statistical physics. It is also the basis for the widely-used
optimization method of "simulated annealing" (Kirkpatrick, Gelatt, and
Vecchi 1983).

In the Markov chain defined by the Metropolis algorithm, a new state,
O(t+l) , is generated from the previous state, O(t), by first generating a candi
date state using a specified proposal distribution, and then deciding whether
or not to accept the candidate state, based on its probability density rel
ative to that of the old state, with respect to the desired invariant distri
bution, Q. If the candidate state is accepted, it becomes the next state of
the Markov chain; if the candidate state is instead rejected, the new state
is the same as the old state, and is included again in any averages used to
estimate expectations.

In detail, the transition from O(t) to O(t+l) is defined as follows:

1) Generate a candidate state, 0* , from a proposal distribution
that may depend on the current state, with density given
by S(O* IO(t)).

2) If Q(O*) 2:: Q((}(t)), accept the candidate state; otherwise,
accept the candidate state with probability Q((}*)/Q((}(t)).

1.3 Markov chain Monte Carlo methods 27

3) If the candidate state is accepted, let O(t+l) = 0*; if the
candidate state is rejected, let O(t+1) = O(t).

The proposal distribution must be symmetrical, satisfying the condition
S(O' I 0) = S(O I 0'). In some contexts, Q(O) is defined in terms of an
"energy" function, E(O), with Q(O) ex exp(-E(e)). In step (2), one then
always accepts candidate states with lower energy, and accepts states of
higher energy with probability exp(-(E(O*) - E(e(t))).

To show that these transitions leave Q invariant, we first need to write
down the transition probability density function. This density function is
singular, however, since there is a non-zero probability that the new state
will be exactly the same as the old state. Fortunately, in verifying the
detailed balance condition (equation (1.16)), we need pay attention only to
transitions that change the state. For 0' t e, the procedure above leads to
the following transition densities:

T(e' 10) = S(e' I B) min (1, Q(O')/Q(e))

Detailed balance can thus be verified as follows:

T(B' 10) Q(O) s(e' I e) min (1, Q(e')/Q(e)) Q(B)

S(B' I B) min (Q(B), Q(B'))

= S(B I 0') min (Q(B'), Q(O))

S(B I 0') min (1, Q(B)/Q(O')) Q(B')

= T(B I 0') Q(O')

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

The Metropolis updates therefore leave Q invariant. Note, however, that
they do not always produce an ergodic Markov chain; this depends on
details of Q, and on the proposal distribution used.

Many choices are possible for the proposal distribution of the Metropolis
algorithm. One simple choice is a Gaussian distribution centred on O(t), with
standard deviation chosen so that the probability of the candidate state
being accepted is reasonably high. (A very low acceptance rate is usually
bad, since successive states are then highly dependent.) When sampling
from a complex, high-dimensional distribution, the standard deviation of
such a proposal distribution will often have to be small, compared to the
extent of Q, since large changes will almost certainly lead to a region of
low probability. This will result in a high degree of dependence between
successive states, since many steps will be needed to move to a distant
point in the distribution. This problem is exacerbated by the fact that
these movements take the form of a random walk, rather than a systematic
traversal.

Due to this problem, simple forms of the Metropolis algorithm can be
very slow when applied to problems such as Bayesian learning for neural

28 Chapter 1. Introduction

networks. As will be seen in Chapter 3, however, this problem can be allevi
ated by using the hybrid Monte Carlo algorithm, in which candidate states
are generated by a dynamical method that largely avoids the random walk
aspect of the exploration.

1.4 Outline of the remainder of the book

The main part of this book deals with three issues concerning Bayesian
learning for neural networks.

In Chapter 2, I examine the properties of prior distributions for neural
networks, focusing on the limit as the number of hidden units in the network
goes to infinity. My aim is to show that reasonable priors for such infinite
networks can be defined, and to develop an understanding of the properties
of such priors, so that we can select an appropriate prior for a particular
problem.

In Chapter 3, I address the computational problem of producing pre
dictions based on Bayesian neural network models. Such predictions in
volve integrations over the posterior distribution of network parameters
(see equation (1.10)), which I estimate using a Markov chain Monte Carlo
method based on the hybrid Monte Carlo algorithm. The aim of this work
is to produce the predictions mathematically implied by the model and
prior being used, using a feasible amount of computation time.

In Chapter 4, I evaluate how good the predictions of Bayesian neural
network models are, using the implementation of Chapter 3. One of my aims
is to further demonstrate that Bayesian inference does not require limiting
the complexity of the model based on the amount of training data, as was
already shown in Chapter 2. I also evaluate the effectiveness of hierarchi
cal models, in particular the Automatic Relevance Determination model.
The tests on real data sets demonstrate that the Bayesian approach, imple
mented using hybrid Monte Carlo, can be effectively applied to problems
of moderate size.

Finally, in Chapter 5, I summarize the contributions of this work, and
describe further work done by myself and others since the completion of
the original thesis on which this book is based. I also indicate possible
directions for future research.

Chapter 2

Priors for Infinite Networks

In this chapter, I show that priors over network parameters can be defined
in such a way that the corresponding priors over functions computed by
the network reach reasonable limits as the number of hidden units goes to
infinity. When using such priors, there is thus no need to limit the size
of the network in order to avoid "overfitting". The infinite network limit
also provides insight into the properties of different priors. A Gaussian
prior for hidden-to-output weights results in a Gaussian process prior for
functions, which may be smooth, Brownian, or fractional Brownian. Quite
different effects can be obtained using prior's based on non-Gaussian stable
distributions. In networks with more than one hidden layer, a combination
of Gaussian and non-Gaussian priors appears most interesting.

The starting point for Bayesian inference is a prior distribution over the
model parameters, which for a multilayer percept ron ("backprop") network
are the connection weights and unit biases. This prior distribution is meant
to capture our prior beliefs about the relationship we are modeling. When
training data is obtained, the prior is updated to a posterior parameter
distribution, which is then used to make predictions for test cases.

A problem with this approach is that the meaning of the weights and
biases in a neural network is obscure, making it hard to design a prior
distribution that expresses our beliefs. Furthermore, a network with a small
number of hidden units can represent only a limited set of functions, which
will generally not include the true function. Hence our actual prior belief
will usually be that the model is simply wrong.

30 Chapter 2. Priors for Infinite Networks

I propose to address these problems by focusing on the limit as the
number of hidden units in the network approaches infinity. Several people
(Cybenko 1989, Funahashi 1989, Hornik, Stinchcombe, and White 1989)
have shown that in this limit a multilayer perceptron network with one
layer of hidden units can approximate any continuous function defined on
a compact domain arbitrarily closely. An infinite network will thus be a rea
sonable "nonparametric" model for many problems. Furthermore, it turns
out that in the infinite network limit we can easily analyse the nature of
the priors over functions that result when we use certain priors for the net
work parameters. This allows us to select an appropriate prior based on our
knowledge of the characteristics of the problem, or to set up a hierarchical
model in which these characteristics can be inferred from the data.

In practice, of course, we will have to use networks with only a finite
number of hidden units. The hope is that our computational resources will
allow us to train a network of sufficient size that its characteristics are close
to those of an infinite network.

Note that in this approach one does not restrict the size of the network
based on the size of the training set - rather, the only limiting factors
are the size of the computer used and the time available for training. Ex
perience training networks by methods such as maximum likelihood might
lead one to expect a large network to "overfit" a small training set, and
perform poorly on later test cases. This does not occur with Bayesian learn
ing, provided the width of the prior used for hidden-to-output weights is
scaled down in a simple fashion as the number of hidden units increases,
as required for the prior to reach a limit.

These statements presume that the implementation of Bayesian infer
ence used produces the mathematically correct result. Achieving this is
not trivial. Methods based on making a Gaussian approximation to the
posterior (MacKay 1991, 1992b; Buntine and Weigend 1991) may break
down as the number of hidden units becomes large. Markov chain Monte
Carlo methods (Neal 1992b, 1993a, 1993b, and Chapter 3 of this book)
produce the correct answer eventually, but may sometimes fail to reach the
true posterior distribution in a reasonable length of time. In this chapter,
I do not discuss such computational issues; my aim instead is to gain in
sight through theoretical analysis, done with varying degrees of rigour, and
by sampling from the prior, which is much easier than sampling from the
posterior.

For most of this chapter, I consider only multilayer percept ron networks
that take I real-valued inputs, Xi, and produce 0 real-valued outputs given
by functions fk(X), all of which are computed using a common layer of H
hidden units, whose values hj (x), are produced with the tanh activation

2.1 Priors converging to Gaussian processes 31

function. In detail:

H

fk{X) bk + L Vjkhj(X) (2.1)
j=1

I

hj(x) tanh (aj + L UjjXj) (2.2)
;=1

At times, I will consider networks in which the tanh activation function is
replaced by a step function that takes the value -1 for negative arguments
and +1 for positive arguments. (Learning: for networks with step-function
hidden units is computationally difficult, but these networks are some
times simpler to analyse.) Networks with more than one hidden layer are
discussed in Section 2.3.

When neural networks are used as regression and classification models,
the outputs of the network are used to define the conditional distribution for
the targets given the inputs. What is of interest then is the prior over these
conditional distributions that results from the prior over output functions.
For regression models, the relationship of the target distribution to the
network outputs is generally simple - the outputs give the mean of a
Gaussian distribution for the targets. For classification models such as the
"softmax" model of Bridle (1989), the relationship is less straightforward.
This matter is not examined in detail in this chapter; I look only at the
properties of the prior over output functions, which provides the basis for
understanding the prior over conditional distributions.

2.1 Priors converging to Gaussian processes

Most past work on Bayesian inference for neural networks (eg, MacKay
1992b) has used independent Gaussian distributions as the priors for net
work weights and biases. In this section, I investigate the properties of pri
ors in which the hidden-to-output weights, Vjk, and output biases, bk, have
zero-mean Gaussian distributions with standard deviations of (Tv and (Tb. It
will turn out that as the number of hidden units increases, the prior over
functions implied by such priors converges to a Gaussian process. These
priors can have smooth, Brownian, or fradional Brownian properties, as
determined by the covariance function of the Gaussian process.

For the priors that I consider in detail, the input-to-hidden weights,
Ujj, and the hidden unit biases, aj, also have Gaussian distributions, with
standard deviations (T u and (T a, though for the fractional Brownian priors,
(Tu and O"a are not fixed, but depend on the value of common parameters
associated with each hidden unit.

32 Chapter 2. Priors for Infinite Networks

2.1.1 Limits for Gaussian and other priors with finite
varzance

To determine what prior over functions is implied by a Gaussian prior for
network parameters, let us look first at the prior distribution of the value
of output unit k when the network inputs are set to some particular values,
xU) - that is we look at the prior distribution of !k(x(1») that is implied
by the prior distributions for the weights and biases.

From equation (2.1), we see that h(x(1») is the sum of a bias and the
weighted contributions of the H hidden units. Under the prior, each term
in this sum is independent, and the contributions of the hidden units all
have identical distributions. The expected value of each hidden unit's con
tribution is zero: E[Vjkhj(x(1»)] = E[Vjk]E[hj (x(1»)) = 0, since Vjk is inde
pendent of aj and the Uij (which determine hj (x(1»)), and E[Vjk] is zero by
hypothesis. The variance of the contribution of each hidden unit is finite:
E[(Vjkhj(X(1»)2] = E[v]klE[hj (x(1»)2] = u;E[hj (x(1»)2], which must be fi-
nite since hj(x(l») is bounded. Defining V(x(1») = E[hj (x(1»)2], which is
the same for all j, we can conclude by the Central Limit Theorem that for
large H the total contribution of the hidden units to the value of h(x{l»)
becomes approximately Gaussian, with variance H u;V(x(1»). The bias, bk,
is also Gaussian, with variance u~, so for large H the prior distribution of
h (x(I») is also approximately Gaussian, with variance u~ + H u;V(x(1»).

Accordingly, to obtain a well-defined limit for the prior distribution of
the value ofthe function at any particular point, we need only scale the prior
variance of the hidden-to-output weights according to the number of hidden
units, setting Uv = wv H-1/2 , for some fixed wv . The prior for !k(x(1») then
converges to a Gaussian of mean zero and variance u~ + w;V(x(1») as H
goes to infinity.

Adopting this scaling for U'IJ' we can investigate the prior joint distri
bution of the values of output k for several values of the inputs - that
. th .. t d' t 'b t' f I ((1») I (n») h (1) (n) IS, e JOIn IS n u IOn 0 Jk X , ••• , Jk X , were x , ... , x are
the particular input values we choose to look at. An argument paralleling
that above shows that as H goes to infinity this prior joint distribution
converges to a multivariate Gaussian, with means of zero, and covariances

u~ + Lu;E[hj(x(p»)hj(x(q»)]
j

u~ + w;C(x(p), x(q»)

(2.3)

(2.4)

where C(x(p), x(q») = E[hj(x(p»)hj(x(q»)), which is the same for all j: Dis
tributions over functions of this sort, in which the joint distribution of
the values of the function at any finite number of points is multivariate
Gaussian, are known as Gaussian processes; they arise in many contexts,

+3-

+2-

+1-

0-

-I -

-2

-3- I I I I I I

-3 -2 -I 0 +1 +2 +3

H=l

2.1 Priors converging to Gaussian processes 33

+3-

+2-

+1-

0-

-1-

-2- .

-3- I I I I I

-3 -2 -I 0 +1 +2 +3

H=3

+3-

+2-

+1-

0-

-I -

-2

-3 - " '"
-3 -2 -I 0 +1 +2 +3

H=10

FIGURE 2.1. Convergence of network priors to a Gaussian process. Each of the
plots is based on lODD networks with one input unit, one output unit, and a single
layer of 1,3, or 10 tanh hidden units. The network weights were randomly drawn
from prior distributions with 0'" = 5, O'a = 15, O'b = 0.1, and O'v = H- 1/ 2 , where
H is the number of hidden units. Each network is represented by a point whose
horizontal coordinate is the output of the network when the input is -0.2, and
whose vertical coordinate is the output of the network when the input is +0.4.

including spatial statistics (Ripley 1981), splines (Wahba 1990), computer
vision (Szeliski 1989), and computer graphics (Peitgen and Saupe 1988).

The prior covariances between the values of output k for different values
of the inputs are in general not zero, which is what allows learning to
occur. Given values for Ik(x(1)), ... , !k(x(n-l)), we could explicitly find the
infinite network's predictive distribution for the value of output k for case n
by conditioning on these known values to produce a Gaussian distribution
for !k(x(n)). This procedure may indeed be of practical interest, though
it does require evaluation of C(x(p), x(q)) for all x(p) in the training set
and x(q) in the training and test sets, which would likely have to be done
by numerical integration. In this book, predictive distributions for models
based on finite networks will be found by other means (see Chapter 3), but
insight into Bayesian learning for large networks with Gaussian priors can
be gained by considering this picture of how a predictive distribution is
formed by conditioning on the training data.

Figure 2.1 illustrates the convergence of network priors to a Gaussian
process. The joint distribution of the network output for two particular
input values is very non-Gaussian for a network with a single hidden unit
(H = 1, on the left), but approaches a bivariate Gaussian distribution
as the number of hidden units increases to H = 3 (middle) and H = 10
(on the right). Note that in the limiting prior distribution, the outputs of
the network for these two inputs are correlated, so knowing the value of
the output for one of these input values (a "training case") will help in
predicting the output for the other input value (a "test case").

The joint distribution for the values of all the outputs of the network for
some selection of values for inputs will also become a multivariate Gaussian

34 Chapter 2. Priors for'Infinite Networks

in the limit as the number of hidden units goes to infinity. It is easy to see,
however, that the covariance between fkl (x(p)) and f k2(X(q)) is zero when
ever kl i k2' since the weights into different output units are independent
under the prior. Since zero covariance implies independence for Gaussian
distributions, knowing the values of one output for various inputs does not
tell us anything about the values of other outputs, at these or any other
input points. When the number of hidden units is infinite, it makes no dif
ference whether we train one network to produce two outputs, or instead
use the same data to train two networks, each with one output. (I assume
here that these outputs are not linked in some other fashion, such as by the
assumption that their values are observed with a common, but unknown,
level of noise.)

This independence of different outputs is perhaps surprising, since the
outputs are computed using shared hidden units. However, with the Gaus
sian prior used here, the values of the hidden-to-output weights all go to
zero as the number of hidden units goes to infinity. The output functions
are built up from a large number of contributions from hidden units, with
each contribution being of negligible significance by itself. Hidden units
computing common features of the input that would be capable of linking
the outputs are therefore not present. Dependencies between outputs could
be introduced by making the weights to various outputs from one hidden
unit be dependent, but if these weights have Gaussian priors, they can be
dependent only if they are correlated. Accordingly, it is not possible to
define a Gaussian-based prior expressing the idea that two outputs might
show a large change in the same input region, the location of this region
being unknown a priori, without also fixing whether the changes in the two
outputs have the same or opposite sign.

The results in this section in fact hold more generally for any hidden unit
activation function that is bounded, and for any prior on input-to-hidden
weights and hidden unit biases (the Uij and aj) in which the weights and
biases for different hidden units are independent and identically distributed.
The results also apply when the prior for hidden-to-output weights is not
Gaussian, as long as the prior has zero mean and finite variance.

2.1.2 Priors that lead to smooth and Brownian functions

I will start the detailed examination of Gaussian process priors by consid
ering those that result when the input-to-hidden weights and hidden biases
have Gaussian distributions. These turn out to give locally Brownian priors
if step-function hidden units are used, and priors over smooth functions if
tanh hidden units are used. For simplicity, I at first discuss only networks
having a single input, but Section 2.1.5 will show that the results apply
with little change to networks with any number of inputs.

2.1 Priors converging to Gaussian processes 35

+2 -

+1 -

+1 -
0-

-I - o -

-2 -

-1 -

-s 0 +s -s 0 +5

+1 -

+1 -

o -

-1 -

-1 o +1 -1 o +1

FIGURE 2.2. Functions drawn from Gaussian priors for networks with step-
function hidden units. The two functions shown on the left are from a network
with 300 hidden units, the two on the right from a network with 10 000 hidden
units. In both cases, (J'a = (J'" = (J'b = Wv = 1. The upper plots show the overall
shape of each function; the lower plots show IGhe central area in more detail.

To begin, consider a network with one input in which the hidden units
compute a step function changing from -1 to +1 at zero. In this context,
the values of the input weight, Ulj, and bias, aj, for hidden unit j are
significant only in that they determine the point in the input space where
that hidden unit's step occurs, namely -aj / ulj. When the weight and bias
have independent Gaussian prior distributions with standard deviations UIJ

and (J'a, the prior distribution of this step-point is Cauchy, with a width
parameter of (J" a / (J" IJ •

Figure 2.2 shows functions drawn from the prior distributions for two
such networks, one network with 300 hidden units and one with 10 000
hidden units. Note that the general nature of the functions is the same

36 Chapter 2. Priors for Infinite Networks

for the two network sizes, but the functions from the larger network have
more fine detail. This illustrates that the prior over functions is reaching a
limiting distribution as H increases.

(In this and subsequent figures, the functions shown are not necessarily
the first that were generated. Some selection was done in order to ensure
that typical features are displayed, and to find pairs of functions that fit
together nicely on a graph, without overlapping too much. In all cases, the
functions shown were selected from a sample of no more than ten functions
drawn from the prior.)

The variation in the functions shown in Figure 2.2 is concentrated in the
region around x = 0, with a width of roughly U a/ Uti. Within this region, the
function is locally Brownian in character, as a consequence of being built up
from the many small, independent steps contributed by the hidden units.
Far from x = 0, the functions become almost constant, since few hidden
units have their steps that far out. For the remainder ofthis chapter, I will
confine my attention to the properties of functions in their central regions,
where all points have approximately equal potential for being influenced
by the hidden units.

When tanh hidden units are used instead of step-function units, the
functions generated are smooth. This can be seen by noting that all the
derivatives (to any order) of the value of a tanh hidden unit with respect
to the inputs are polynomials in the hidden unit value and the input
to-hidden weights. These derivatives therefore have finite expectation and
finite variance, since the hidden unit values are bounded, and the weights
are from Gaussian distributions, for which moments of all orders exist. At
scales greater than about 1 / Uti, however, the functions exhibit the same
Brownian character that was seen with step-function hidden units.

The size of the central region where the properties of these functions
are approximately uniform is roughly (J" a + 1) / Uti. To see this, note that
when the input weight is u, the distribution of the point where the hidden
unit value crosses zero is Gaussian with standard deviation ua/lul. The
influence of a hidden unit with this input weight extends a distance of
about l/lul, however, so points within about (ua + l)/lul of the origin
are potentially influenced by hidden units with input weights of this size.
Since the probability of obtaining a weight of size lu I declines exponentially
beyond lui = Uti, the functions will have similar properties at all points
within a distance of about (ua + 1)/O"tI of the origin.

Functions drawn from priors for networks with tanh hidden units are
shown in Figure 2.3.

2.1 Priors converging to Gaussian processes 37

+1 -

0- 0-

-1 - -1 -

-1 o +1 -1 o +1

FIGURE 2.3. Functions drawn from Gaussian priors for a network with 10 000
tanh hidden units. Two functions drawn from a prior with (Tu = 5 are shown on
the left, two from a prior with (Tu = 20 on the right. In both cases, (Tu/(Tu = 1
and (Tb = Wv = 1. The functions with different au were generated using the same
random number seed, the same as that used to generate the functions in the
lower-right of Figure 2.2. This allows a direct evaluation of the effect of changing
au. (Note that use of step function hidden units is equivalent to letting au go to
infinity, while keeping aa/au fixed.)

2.1.3 Covariance functions of Gaussian priors

A Gaussian process can be completely characterized by the mean values of
the function at each point, always zero for the network priors discussed here,
along with the covariance of the function value at any two points, given by
equation (2.4). The difference between priors that lead to locally smooth
functions and those that lead to locally Brownian functions is reflected in
the local behaviour of their covariance functions. From equation (2.4), we
see that this is directly related to the covariance of the values of a hidden
unit at nearby input points, C(x(p), x(q»), which can be written as

C(x(p),x(q)) = ~ (V(x(p)) + V(x(q)) - E[(h(x(p») - h(X(q»))2]) (2.5)

V - ~ D(x(p), x(q») (2.6)

where V(x(p») ~ V ~ V(x(q»), for nearby x(p) and x(q), and D(x(p),x(q»)
is the expected squared difference between the values of a hidden unit at
x(p) and x(q).

For step-function hidden units, (h(x(p») - h(X(q»))2 will be either 0 or
4, depending on whether the values of the hidden unit's bias and incom
ing weight result in the step being located between x(p) and x(q). Since
the location of this step will be approximately uniform in the local vicin
ity, the probability of the step occurring between x(p) and x(q) will rise

38 Chapter 2. Priors for Infinite Networks

proportionally with the separation of the points, giving

Ix(p) - x(q) I (2.7)

where'" indicates proportionality for nearby points. This behaviour is char
acteristic of Brownian motion.

For networks with tanh hidden units, with Gaussian priors for the bias
and incoming weight, we have seen that the functions are smooth. Accord
ingly, for nearby x(p) and x(q) we will have

(2.8)

We can get a rough idea of the behaviour of D(x(p), x(q») for all points
within the central region as follows. First, fix the input-to-hidden weight,
u, and consider the expectation of (h(x-s/2) - h(x+s/2))2 with respect
to the prior distribution of the bias, a, which is Gaussian with standard
deviation (J' a' With u fixed, the point where the hidden unit's total input
crosses zero will have a prior distribution that is Gaussian with standard
deviation (J'a/lul, giving a probability density for the zero crossing to occur
at any point in the central region of around lul/O'a. We can now distinguish
two cases. When lui ~ 1/ s, the transition region over which the hidden
unit's output changes from -1 to +1, whose size is about l/lul, will be
small compared to s, and we can consider that (h(x-s/2) - h(x+s/2))2
will either be 0 or 4, depending on whether the total input to the hidden
unit crosses zero between x-s/2 and x+s/2, which occurs with probability

around (Iul/O'a)s. When lul.$ l/s, (h(x-s/2) - h(x+s/2))2 will be about
(luls)2 if the interval [x-s/2, x+s/2] is within the transition region, while
otherwise it will be nearly zero. The probability of [x-s/2, x+s/2] lying in
the transition region will be about (lul/O'a){l/lul) = l/O'a. Putting all this
together, we get

where C1, C2, •.. are constants of order one. Taking the expectation with
respect to a symmetrical prior for u, with density p(u), we get

Ea ,u[(h(x-s/2) - h(x+s/2))2]

C1S 100 C s211/. ~ 2 - up(u) du + 2 _2_ u2 p(u) du
(J'a 1/_ O'a 0

(2.10)

Finally, if we crudely approximate the Gaussian prior for u by a uniform
distribution over [-0' u, +0' ...], with density p(u) = 1/20' u, we get

D(x-s/2, x+s/2) Ea,u[(h(x-s/2) - h(x+s/2))2]

2.1 Priors converging to Gaussian processes 39

if s ;S l/(J'u

if s ~ l/(J'u
(2.11)

Thus these functions are smooth on a small scale, but when viewed on scales
significantly larger than 1/(J'u, they have a Brownian nature characterized
by D(x-s/2, x+s/2) being proportional to s.

2.1.4 Fractional Brownian priors

It is natural to wonder whether a prior on the weights and biases going into
hidden units can be found for which the resulting prior over functions has
fractional Brownian properties (Falconer 1990, Section 16.2), for which

D(x(p), x(q)) Ix(p) - x(q) 1'1 (2.12)

As above, values of 1] = 2 and 'f} = 1 correspond to smooth and Brownian
functions, respectively. Functions with intermediate properties are obtained
when 1 < 'f} < 2; functions "rougher" than Brownian functions are obtained
when 0 < 'f} < 1.

One way to achieve these effects would be to change the hidden unit
activation function from tanh(z) to sign(z)\zl('1- 1)/2 (Peitgen and Saupe
1988, Sections 1.4.1 and 1.6.11). However, the unbounded derivatives of
this activation function would pose problems for gradient-based learning
methods. I will describe a method of obtaining fractional Brownian func
tions with 1 < 1] < 2 from networks with tanh hidden units by altering the
priors for the hidden unit biases and input weights.

To construct this fractional Brownian prior, we associate with hidden
unit j an "adjustment" value, Aj , that controls the magnitude of that
hidden unit's incoming weights and bias. Given A j , we let the incoming
weights, Uij, have independent Gaussian distributions with standard devia
tion (J'u = Ajwu, and we let the bias, aj, have a Gaussian distribution with
standard deviation (J'a = Ajwa. We give the Aj themselves independent
prior distributions with probability density p(A) ex: A -7) exp (- (7]-1) / 2A 2),
where T'f> 1, which corresponds to a Gamma distribution for l/AJ. Note
that if we integrate over Aj to obtain a direct prior for the weights and
biases, we find that the weights and biases are no longer independent, and
no longer have Gaussian distributions.

To picture why this setup should result in a fractional Brownian prior
for the functions computed by the network, consider that when Aj is large,
hj (x) is likely to be almost a step function, since (J'u will be large. (Aj does
not affect the distribution of the point where the step occurs, however,
since this depends only on (J'a/(J'u.) Such near-step-functions produced by
hidden units with Aj greater than some limit will contribute in a Brownian
fashion to D(x(p), x(q)), with the contribution rising in direct proportion

40 Chapter 2. Priors for Infinite Networks

to the separation of x(p) and x(q). However, as this separation increases,
the value of Aj that is sufficient for the hidden unit to behave as a step
function in this context falls, and the number of hidden units that effectively
behave as step functions rises. The contribution of such hidden units to
D(x(p), x(q)) will therefore increase faster than for a Brownian function.
The other hidden units with small Aj will also contribute to D(x(p), x(q)),
quadratically with separation, but for nearby points their contribution will
be dominated by that of the units with large Aj , if that contribution is
sub-quadratic.

We can see this in somewhat more detail by substituting C1' u = Ajwu
and C1'a = Ajwa in equation (2.11), obtaining

Ea,u [(h(x-s/2) - h(x+s/2))2]

1 { C3 AjW~S2 if Aj ;5 1/ SWu

Wa C4WuS+C5/A;wus ifAj~l/swu
(2.13)

Integrating with respect to the prior for Aj, we get

D(x-s/2, x+s/2) ~ C3 WuS Ap(A) dA +
2 211/WUS

Wa 0

C4 WuS jOO p(A)dA
Wa l/w u s

+ ~ JOO A-2p(A) dA (2.14)
WaWu S l/w u s

The mode of p(A) is at ((7]_1)/7])1/2. Before this point p(A) drops rapidly,
and can be approximated as being zero; after this point, it drops as A -'1.

The integrals above can thus be approximated as follows, for 7] ::j 2:

D(x-s/2, x+s/2)

1 { C6W~S'1 + C7W~s2 if s;5 (7]/(TJ-l))1/2jwu
~ (2.15)

Wa CSWuS + C9/WuS if s ~ (7]/(7]-1))1/2/ Wu

When 1 < "1 < 2, the s'1 term will dominate for small s, and the function
will have fractional Brownian properties; when 7] > 2, the s2 term will
dominate, producing a smooth function; "1 = 2 is a special case, for which
D(x-s/2, x+s/2) '" s2Iog(I/8).

Fractional Brownian functions drawn from these priors are shown in
Figure 2.4. Figure 2.5 shows the behaviour of D(x - 8/2, x + 8/2) for the
same priors, as well as for the priors used in Figures 2.2 and 2.3.

2.1.5 Networks with more than one input

The priors discussed here have analogous properties when used for networks
with several inputs. In particular, the value of the network function along

2.1 Priors converging to Gaussian processes 41

+2 -

o -

+1 -

-I -

0-

-I o +1 -I o +1

FIGURE 2.4. Functions drawn from fractional Brownian priors for a network
with 10 000 tanh hidden units. Two functions drawn from a prior with '1 = 1.3
are shown on the left, two from a prior with '1 = 1.7 on the right. In both cases,
Wa = W" = (Tb = Wv = 1.

leO

I
I

le-2 -+--7f--It---+----+-

le-3 -f'---;'I----j----j---

Je-4 -+----+-----j------

le-2 le-l leO

(7 u =20

leO

le-2

le-3 -+ir----Ir---j-------t--

le-4 -+----j------+-

le-2 Ie-I leO

1/=1.3

1/=1.7

1/=3.0

FIGURE 2.5. Behaviour of D(x-s/2, x+s/2) as s varies for Brownian, smooth,
and fractional Brownian functions. The plots on the left are for the Brownian
prior used in Figure 2.2, and the smooth priors used in Figure 2.3; those on the
right are for the fractional Brownian priors used in Figure 2.4, as well as for a
similar prior on the Aj with '1 = 3, which lea.ds to a smooth function. All values
are for x = 0.2. They were computed by Monte Carlo integration using a sample
of 100000 values drawn from the prior for the bias and weight into a hidden unit;
the values are hence subject to a small amount of noise. Note that both scales
are logarithmic, so that a function proportional to s'1 should appear as a straight
line of slope '1. Straight lines of the expected slopes are shown beside the curves
to demonstrate their convergence for small s.

42 Chapter 2. Priors for Infinite Networks

FIGURE 2.6. Functions of two inputs drawn from Gaussian priors. The function
in the upper left is from a network with 10000 step-function hidden units, that
in the upper right from the corresponding network with tanh hidden units, using
the same random number seed. In both cases, (Ta = (Tu = 10. The two lower
functions are from networks with tanh hidden units, using fractional Brownian
priors. The function in the lower left has '7 = 1.3, that in the lower right '7 = 1.7.
In both cases, Wa = Wu = 1. The plots show the input region from -1 to +1.

any line in input space has the same properties as those described above for
a network with a single input. Since all the priors discussed are invariant
with respect to rotations of the input space, we may confine our attention
to lines obtained by varying only one of the inputs, say the first. Rewriting
equation (2.2) as

I

tanh (UljXl + aj + L UijXi)
i=2

(2.16)

we see that when X2,.'" XI are fixed, they act simply to increase the
variance of the effective bias. This merely spreads the variation in the
function over a larger range of values for Xl.

Figure 2.6 shows functions of two inputs drawn from Brownian, smooth,
and fractional Brownian priors.

2.2 Priors converging to non-Gaussian stable processes 43

2.2 Priors converging to non-Gaussian stable
processes

Although we have seen that a variety of interesting priors over functions
can be produced using Gaussian priors for hidden-to-output weights and
output biases, these priors are in some respects disappointing.

One reason for this is that it may be possible to implement Bayesian
inference for these priors, or for other Gaussian process priors with similar
properties, using standard methods based directly on the covariance func
tion, without any need for an actual network. We may thus need to look
at different priors if Bayesian neural networks are to significantly extend
the range of models available. (On the other hand, it is possible that the
particular covariance function created by the network might be of special
interest, or that control of the covariance function via hyperparameters
might most conveniently be done in a network formulation.)

Furthermore, as mentioned earlier, with Gaussian priors the contribu
tions of individual hidden units are all negligible, and consequently, these
units do not represent "hidden features" that capture important aspects of
the data. If we wish the network to do this, we need instead a prior with the
property that even in the limit of infinitely many hidden units, there are
some individual units that have non-negligible output weights. Such non
Gaussian priors can indeed be constructed, using prior distributions for the
weights from hidden to output units that do not have finite variance.

2.2.1 Limits for priors with infinite variance

The theory of stable distributions (Feller 1966, Section VI.l, Samorodnitsky
and Taqqu 1994) provides the basis for analysing the convergence of priors
in which hidden-to-output weights have infinite variance. If random vari
ables Zl, ... ,Zn are independent, and all the Zi have the same symmetric
stable distribution of index 0:, then (Zl + ... + Zn)/n1/ a has the same dis
tribution as the Zi. Such symmetric stable distributions exist for 0 < 0: S 2,
and for each index they form a single fa.mily, varying only in width. The
symmetric stable distributions of index Q' = 2 are the Gaussians of varying
standard deviations; those of index 0: = 1 are the Cauchy distributions of
varying widths; the densities for the symmetric stable distributions with
most other indexes have no convenient forms.

If independent variables Zl,"" Zn each have the same distribution,
one that is in the normal domain of attrflction of the family of symmetric
stable distributions of index 0:, then the distribution of (Zl + ... + Zn)/n 1/ a
approaches such a stable distribution as n goes to infinity. All distributions
with finite variance are in the normal domain of attraction of the Gaussian.
Distributions with tails that (roughly speaking) have densities that decline

44 Chapter 2. Priors for Infinite Networks

as z-(a+1), with 0 < 0' < 2 are in the normal domain of attraction of the
symmetric stable distributions of index 0' (Feller, 1966, Sections IX.8 and
XVII.5).

We can define a prior on network weights in such a fashion that the
resulting prior on the value of a network output for a particular input
converges to a non-Gaussian symmetric stable distribution as the number
of hidden units, H, goes to infinity. This is done by using independent,
identical priors for the hidden-to-output weights, Vjk, with a density whose
tails go as vjk(a+1), with 0' < 2. For all the examples in this book, I use

a t-distribution with density proportional to (1 + v]kl 0'(T;)-(a+1)/2. The
prior distribution of the contribution of a hidden unit to the output will
have similar tail behaviour, since the hidden unit values are bounded. Ac
cordingly, if we scale the width parameter of the prior for hidden-to-output
weights as (Tv = wvH- 1/ a , the prior for the total contribution of all hidden
units to the output value for a particular input will converge to a symmet
ric stable distribution of index 0'. If the prior for the output bias is a stable
distribution of this same index, the value of the output unit for that input,
which is the sum of the bias and the hidden unit contributions, will have
a prior distribution in this same stable family. (In practice, it may not be
convenient for the bias to have such a stable distribution as its prior, but
using a different prior for the bias will have only a minor effect.)

To rigorously show that these priors converge, we would need to show
not only that the prior distribution for the value of the function at any
single point converges (as shown above), but that the joint distribution
of the value of the function at any number of points converges as well -
i.e. that the dependencies between points converge. I do not attempt this
here, but the plots below (e.g. Figure 2.7) lend empirical support to this
proposi tion.

To gain insight into the nature of priors based on non-Gaussian stable
distributions, we can look at the expected number of hidden-to-output
weights lying in some small interval, [w, w + f], in the limit as H goes to
infinity. For a given H, the number of weights in this interval using the prior
that is scaled down by H-1/a will be the same as the number that would
be in the interval [wH 1/ a , wH1/a+fH1/ a] if the unscaled prior were used.
As H increases, this interval moves further and further into the tail of the
unsealed prior distribution, where, by construction, the density goes down
as v-(a+l). The probability that a particular weight will lie in this small
interval is thus proportional to fHl/0I(wH1/a)-(a+l) = fW-(a+1) H-l. The
expected total number of weights from all H hidden units that lie in the
interval [w, w + f] is therefore proportional to fW-(a+1), in the limit as H

goes to infinity.

2.2 Priors converging to non-Gaussian stable processes 45

Thus, whereas for Gaussian priors, all the hidden-to-output weights go
to zero as H goes to infinity, for priors based on symmetric stable distri
butions of index 0' < 2, some of the hidden units in an infinite network
have output weights of significant size, allowing them to represent "hidden
features" . As an aside, the fact that the number of weights of each size has
non-zero expectation means that the prior can be given an alternative for
mulation in terms of a Poisson process for hidden-to-output weights. (Note
that though such a process could be defined for any 0', it gives rise to a
well-defined prior over functions only if 0 < 0' < 2.)

The above priors based on non-Gaussian stable distributions lead to
prior distributions over functions in which the functions computed by dif
ferent output units are independent, in the limit as H goes to infinity, just
as was the case for Gaussian priors. This comes about because the weights
to the various output units from a single hidden unit are independent. As
H goes to infinity, the fraction of weights that are of significant size goes
to zero, even while the actual number of such weights remains non-zero.
There is thus a vanishingly small chance that a single hidden unit will have
a significant effect on two different outputs, which is what would be needed
to make the two outputs dependent.

However, with non-Gaussian priors, we can introduce dependence be
tween outputs without also introducing correlation. One way to do this
is use i-distributions that are expressed as mixtures of Gaussian distribu
tions of varying scale. With each hidden unit, j, we associate an output
weight variance hyperparameter, 1T~,j' As a prior, we give l/IT~,j a Gamma
distribution with shape parameter 0'/2 and mean lTv. Given a value for
this common hyperparameter, the weights out of a hidden unit, Vjk, have
independent Gaussian distributions of variance 1T~ ,j' By integrating over
the hyperparameter, one can see that each hidden-to-output weight has
a i-distribution with index 0', as was the case above. Now, however, the
weights out of a single hidden unit are dependent - they are all likely to
have similar magnitudes, since they depend on the common value of lTv.

This prior thus allows single hidden units to compute common features
that affect many outputs, without fixinl~ whether these effects are in the
same or different directions.

2.2.2 Properties of non-Gaussian stable priors

In contrast to the situation for Gaussian process priors, whose properties
are captured by their covariance functions, I know of no simple way to
characterize the distributions over functions produced by the priors based
on non-Gaussian stable distributions. I will therefore confine myself in this
section to illustrating the nature of these priors by displaying functions
sampled from them.

46 Chapter 2. Priors for Infinite Networks

+1 -

+1 -

o - '1
-I -

I~ 0- 1

-I 0 +1 -I 0 +1

FIGURE 2.7. Functions drawn from Cauchy priors for networks with step
function hidden units. Functions shown on the left are from a network with 150
hidden units, those on the right from a network with 10000 hidden units. In both
cases, lJ"a = lJ"u = IJ"b = Wv = 1.

As before, we can begin by considering a network with a single real input
and a single real output, with step-function hidden units. Figure 2.7 shows
two functions drawn from priors for such networks in which the weights and
biases into the hidden units have independent Gaussian distributions and
the weights and bias for the output have Cauchy distributions (the stable
distribution with a = 1). Networks with 150 hidden units and with 10 000
hidden units are shown, for which the width parameter of the Cauchy
distribution was scaled as Uv = wvH- 1 . As is the case for the Gaussian
priors illustrated in Figure 2.2, the general nature of the functions is the
same for the small networks and the large networks, with the latter simply
having more fine detail. The functions are clearly very different from those
drawn from the Gaussian prior that are shown in Figure 2.2. The functions
from the Cauchy prior have large jumps due to single hidden units that
have output weights of significant size.

When the prior on hidden-to-output weights has a form that converges
to a stable distribution with 0 < a < 1, the dominance of small numbers
of hidden units becomes even more pronounced than for the Cauchy prior.
For stable priors with 1 < a < 2, effects intermediate between the Cauchy
and the Gaussian priors are obtained. These priors may of course be used
in conjunction with tanh hidden units. Figure 2.8 illustrates some of these
possibilities for functions of two inputs.

An infinite network whose prior is based on a stable distribution with a
small a can be used to express whatever valid intuitions we may sometimes
have that might otherwise lead us to use a network with a small number
of hidden units. With a small a, the contributions of a small subset of the
hidden units will dominate, which will be good if we in fact have reason to
believe that the true function is close to one that can be represented by a

2.2 Priors converging to non-Gaussian stable processes 47

FIGURE 2.8. Functions of two inputs drawn from priors that converge to
non-Gaussian stable distributions. Functions on the left are from networks with
step-function hidden units; those on the right are the corresponding functions
from networks with tanh hidden units, with 0'" = 20. For the functions at the
top, the prior on hidden-to-output weights was a t-distribution with C\' = 0.5; in
the middle, the prior was Cauchy (a t-distribution with C\' = 1); on the bottom
the prior was a t-distribution with C\' = 1.5. All the networks had 1000 hidden
units. In all cases, priors with O'a/O'u := 1 were used; the plots extend from -1 to
+ 1 for both inputs, within the corresponding central region.

48 Chapter 2. Priors for Infinite Networks

small network. The remaining hidden units will still be present, however,
and able to make any small corrections that are needed to represent the
function exactly.

2.3 Priors for nets with more than one hidden layer

In this section, I take a preliminary look at priors for multilayer perceptron
networks with more than one layer of hidden units, starting with networks
in which the outputs are connected only to the last hidden layer, each hid
den layer after the first has incoming connections only from the preceding
hidden layer, and the first hidden layer has incoming connections only from
the inputs.

Consider such a network with several layers of step-function hidden
units, with all the weights and biases having Gaussian prior distributions.
Assume that the standard deviation of the weights on the connections out
of a hidden layer with H units is scaled down by H-l/ 2 , as before. We are
again interested in the limiting distribution over functions as the number
of hidden units in each layer goes to infinity.

Figure 2.9 shows functions of one input drawn from this prior for net
works with one, two, and three hidden layers. The function value is shown
by a dot at each of 500 grid points in the central region of the input space.
(This presentation shows the differences better than a line plot does.) With
one hidden layer, the function is Brownian, as was already seen in Fig
ure 2.2. With two hidden layers, the covariance between nearby points falls
off much more rapidly with their separation, and with three hidden layers,
this appears to be even more pronounced.

This is confirmed by numerical investigation, which shows that the net
works with two and three hidden layers satisfy equation (2.12) with T} ~ 1/2
and T} ~ 1/4, respectively. For networks where only the first hidden layer
is connected to the inputs, it should be true in general that adding an
additional hidden layer with step-function units after what was previously
the last hidden layer results in a reduction of T} by a factor of two. To
see this, note first that the total input to one of the hidden units in this
new layer will have the same distribution as the output of the old net
work. For a unit in the new hidden layer, (h(x(p)) - h(x(q)))2 will be 0 or
4 depending on whether the unit's total input changes sign between x(p)

and x(q). The probability of this occurring will be directly proportional
to the difference in value between the total input to the unit at x(p) and
the total input at x(q). By hypothesis, this difference is Gaussian with a
variance proportional to Ix(p) - x(q) 1'1, giving an expected absolute magni
tude for the difference that is proportional to Ix(p) - x(q) 1'1/2. From this it

2.3 Priors for nets with more than one hidden layer 49

FIGURE 2.9. Functions computed by networks with one (top), two (middle),
and three (bottom) layers of step-function hidden units, with Gaussian priors.
All networks had 2000 units in each hidden layer. The value of each function is
shown at 500 grid points along the horizontal axis.

follows that D(x(p),x(q)) = E[(h(x{p)) - h(X{q)))2] is also proportional to
Ix(p) - x(q)I,,/2.

Though it is interesting that fractional Brownian priors with T/ < 1 can
be obtained in this manner, I suspect that such priors will have few applica
tions. For small values of T/, the covariances between the function values at
different points drop off rapidly with distance, introducing unavoidable un
certainty in predictions for test points that are even slightly different from
training points. This situation is difficult to distinguish from that where
the observed function values are subject to independent Gaussian noise,
unless the training set contains multiple observations for exactly the same
input values. Modeling independent noise is much easier than modeling
fractional Brownian functions, and hence is to be preferred on pragmatic
grounds when both models would give similar results.

More interesting effects can be obtained using a combination of Gaus
sian and non-Gaussian priors in a network with two hidden layers of the
following structure. The first hidden layer contains Hl tanh or step-function
units, with priors for the biases and the weights on the input connections
that are Gaussian, or of the fractional Brownian type described in Sec
tion 2.1.4. The second hidden layer contains H2 tanh or step-function units,
with Gaussian priors for the biases and for the weights on the connections

50 Chapter 2. Priors for Infinite Networks

Fl GURE 2.10. Two functions drawn from a combined Gaussian and non-Gaussian
prior for a network with two layers of tanh hidden units. The first hidden layer
contained HI = 500 units; the second contained H2 = 300 units. The priors
for weights and biases into the first hidden layer were Gaussian with standard
deviation 10. The priors for weights and biases into the second hidden layer were
also Gaussian, with the biases having standard deviation 20 and the weights from
the first hidden layer having standard deviation 20H;I/2. The weights from the
second hidden layer to the output were drawn from a t-distribution with (l' = 0.6
and a width parameter of H:;1/0.6, which converges to the corresponding stable
distribution. The central regions of the functions are shown, where the inputs
vary from -1 to + 1.

from the first hidden layer (with the standard deviation for these weights
scaled as H-;1/2). There are no direct connections from the inputs to the
second hidden layer. Finally, the outputs are connected only to the last
hidden layer, with a prior for the hidden-to-output weights that converges
to a non-Gaussian stable distribution of index a (for which the width of
the prior will scale as H:;l/O:).

With this setup, the function giving the total input into a unit in the
second hidden layer has the same prior distribution as the output function
for a network of one hidden layer with Gaussian priors, which may, for
example, have the forms seen in Figures 2.2, 2.3, 2.4, or 2.6. The step
function or tanh hidden units will convert such a function into one bounded
between -1 and + 1. Such a hidden unit may be seen as a "feature detector"
that indicates whether the network inputs lie in one of the regions where
the hidden unit's total input is significantly greater than zero. The use of
non-Gaussian priors for the weights from these hidden units to the outputs
allows individual features to have a significant effect on the output.

Functions drawn from such a prior are illustrated in Figure 2.10. Such
functions have low probability under the priors for networks with one hid
den layer that have been discussed, suggesting that two-layer networks will
be advantageous in some applications.

Finally, we can consider the limiting behaviour of the prior over functions
as the number of hidden layers increases. If the priors on hidden-to-hidden

2.4 Hierarchical models 51

weights, hidden unit biases, and input-to-hidden weights (if present) are
the same for all hidden layers, the prior over the functions q>mputed by
the units in the hidden layers of such a network will have the form of a
homogeneous Markov chain - that is, under the prior, the distribution
of functions computed by hidden units in layer f + 1 is influenced by the
functions computed by earlier layers only through the functions computed
by layer f, and furthermore, the conditional distribution of functions com
puted by layer f + 1 given those computed by layer C is the same for all
f. We can now ask whether this Markov chain converges to some invari
ant distribution as the number of layers goes to infinity, given the starting
point established by the prior on weights into the first hidden layer. If the
chain does converge, then the prior over functions computed by the output
units should also converge, since the outputs are computed solely from the
hidden units in the last layer.

This question of convergence appears difficult to answer. Indeed, when
each hidden layer contains an infinite number of hidden units, it is not even
obvious how convergence should be defined. Nevertheless, from the discus
sion above, it is clear that a Gaussian-based prior for a network with many
layers of step-function hidden units, with no direct connections from inputs
to hidden layers after the first, either does not converge as the number of
layers goes to infinity, or if it can be regarded as converging, it is to an un
interesting distribution concentrated on completely unlearnable functions.
However, if direct connections from the inputs to all the hidden layers are
included, it appears that convergence to a sensible distribution may occur,
and of course there are also many possibilities involving non-Gaussian sta
ble priors and hidden units that compute a smooth function such as tanh
rather than a step function.

Finding a prior with sensible properties for a network with an infinite
number of hidden layers, each with an infinite number of units, would
perhaps be the ultimate demonstration that Bayesian inference does not
require limiting the complexity of the model. Whether such a result would
be of any practical significance would of course depend on whether such
networks have any significant advantage over networks with one or two lay
ers, and on whether a prior close to the limit is obtained with a manageable
number of layers (say less than ten) and a manageable number of hidden
units per layer (at most in the hundreds).

2.4 Hierarchical models

Often, our prior knowledge will be too unspecific to fix values for (Tb, wv , (T a

(or W a), and (Tu (or wu), even if we have complete insight into their effects
on the prior. We may then wish to treat these values as unknown hyper-

52 Chapter 2. Priors for Infinite Networks

parameters, giving them higher-level prior distributions that are rather
broad. Insight into the nature of the prior distributions produced for given
values of the hyperparameters is still useful even when we plan to use such
a hierarchical model, rather than fixing the hyperparameters to particular
values, since this insight allows us to better understand the nature of the
model, and to judge whether the range of possibilities it offers is adequate
for our problem.

One benefit of a hierarchical model is that the degree of "regularization"
that is appropriate for the task can be determined automatically from the
data (MacKay 1991, 1992b). The results in this chapter clarify the meaning
of this procedure - by allowing (T" to be set by the data, we let the data
determine the scale above which the function takes on a Brownian character
(see equation (2.11)). The results concerning fractional Brownian priors
suggest that it might be useful to make TJ a hyperparameter as well, to
allow the fractional Brownian character of the function to be determined
by the data. Similarly, when using a t-distribution as a prior for weights,
it might be useful to make the shape parameter, a, be a hyperparameter,
and thereby allow the index of the stable distribution to which the prior
converges to vary.

Consideration of the results in the chapter also reveals a potential prob
lem when these hierarchical models are used with networks having large
numbers of hidden units. The extent of the central region over which the
characteristics of functions drawn from the prior are approximately uniform
is determined by the ratio (Ta/(T". When these quantities are hyperparam
eters, the size of this region can vary independently of the smoothness
characteristics of the function, which depend only on (T". Typically, the
size of this region will not be fixed by the data - if the data indicate that
the properties of the actual function are uniform over the region for which
training data is available, then any values of the hyperparameters that lead
to a central region at least this large will be compatible with the data. If
the number of hidden units is small, the central region will presumably be
forced to have approximately the same extent as the training data, in order
that all the hidden units can be exploited. When there are many hidden
units, however, the pressure for them to all be used to explain the training
data will be much less, and the size of the central region will be only loosely
constrained.

This phenomenon will not necessarily lead to bad predictive perfor
mance - indeed, if extrapolation outside the region of the training data
is to be done, it is desirable for the central region to extend beyond the
training data, to include the region where predictions are to be made. If
we are interested only in the training region, however, using a model whose
central region is much larger then the training region may lead to substan
tial wasted computation, as many hidden units in the network will have

2.4 Hierarchical models 53

no influence on the area of interest. Some reformulation of the model that
allowed the user to exercise greater control over the central region would
be of interest.

Chapter 3

Monte Carlo Implementation

This chapter presents a Markov chain Monte Carlo implementation of
Bayesian learning for neural networks in which network parameters are
updated using the hybrid Monte Carlo algorithm, a form of the Metropo
lis algorithm in which candidate states Q7'e found by means of dynamical
simulation. Hyperparameters are updated separately using Gibbs sampling,
allowing their values to be used in chasing good stepsizes for the discretized
dynamics. I show that hybrid Monte Cado performs better than simple
Metropolis, due to its avoidance of random walk behaviour. I also discuss
variants of hybrid Monte Carlo in which dynamical computations are done
using "partial gradients", in which acceptance is based on a "window" of
states, and in which momentum updates incorporate ''persistence''.

The implementation of Bayesian learning for multilayer perceptron net
works due to MacKay (1991, 1992b) uses a Gaussian approximation for the
posterior distribution of the network parameters (weights and biases), and
single-valued estimates for the hyperparameters (prior variances for the
parameters, and the noise variance). Such approximate Bayesian methods
have proven useful in some practical applications (MacKay 1994a, Thod
berg 1996). However, as discussed in Chapter 1, there are reasons to believe
that these methods will not always produce good approximations to the
true result implied by the model, especially if complex models are used in
order to take full advantage of the available data.

There is thus a need for an implementation of Bayesian learning that
does not rely on any assumptions concerning the form of the posterior

56 Chapter 3. Monte Carlo Implementation

distribution. At a minimum, such an implementation would be useful in
assessing the accuracy of methods based on Gaussian approximations. If
Gaussian approximation methods are often inadequate, as I expect, an
implementation that avoids such assumptions will be necessary in order
to assess the true merits of Bayesian neural network models, and to apply
them with confidence in practical situations.

Bayesian learning for neural networks is a difficult problem, due to
the typically complex nature of the posterior distribution. At present, it
appears that only Markov chain Monte Carlo methods (reviewed in Sec
tion 1.3.1) offer any hope of producing in a feasible amount of time results
whose accuracy is reasonably assured, without the need for any question
able assumptions. As will be seen, however, the Markov chain Monte Carlo
methods commonly used for statistical applications are either not applica
ble to this problem or are very slow. Better results can be obtained using
the hybrid Monte Carlo algorithm, due to its avoidance of random wall< be
haviour. Hybrid Monte Carlo was originally developed for use in quantum
chromodynamics, and is not widely known outside the lattice field theory
community. I believe this algorithm is of general interest, however, and will
prove useful in many statistical applications.

I begin this chapter by reviewing the hybrid Monte Carlo algorithm,
after which I describe an implementation of Bayesian learning for multilayer
percept ron networks based on it. The range of network models handled by
this implementation and the details of the computational methods used are
described in Appendix A. I demonstrate the use of this implementation on
the "robot arm" problem of MacKay (1991, 1992b). I then compare the
performance of hybrid Monte Carlo with other methods, such as simple
forms ofthe Metropolis algorithm. I conclude by examining several variants
of the basic hybrid Monte Carlo method, which can sometime improve
performance.

Note that throughout this chapter the objective is to develop a compu
tationally feasible procedure for producing the Bayesian predictions that
are mathematically implied by the model being employed. Whether such
predictions are good, in the sense of being close to the true values, is an
other matter, consideration of which is for the most part deferred to Chap
ter 4. The use of this implementation in Chapter 4 will also further test its
computational performance, for a variety of networks architectures, data
models, and priors.

3.1 The hybrid Monte Carlo algorithm

The hybrid Monte Carlo algorithm of Duane, Kennedy, Pendleton, and
Roweth (1987) merges the Metropolis algorithm with sampling techniques

3.1 The hybrid Monte Carlo algorithm 57

based on dynamical simulation. The output of the algorithm is a sample of
points drawn from some specified distribution, which can then be used to
form Monte Carlo estimates for the expectations of various functions with
respect to this distribution (see equation (1.14)). For Bayesian learning, we
wish to sample from the posterior distribution given the training data, and
are interested in estimating the expectations needed to make predictions
for test cases, such as in equation (1.12).

One way of viewing the hybrid Monte Carlo algorithm is as a com
bination of Gibbs sampling and a particularly elaborate version of the
Metropolis algorithm. I assume here that the reader is familiar with these
two methods, which were reviewed in Section 1.3.1. The hybrid Monte
Carlo algorithm itself, and methods related to it, have been reviewed by
Toussaint (1989), Kennedy (1990), and myself (Neal 1993b).

3.1.1 Formulating the problem in terms of energy

The hybrid Monte Carlo algorithm is expressed in terms of sampling from
the canonical (or Boltzmann) distribution for the state of a physical system,
which is defined in terms of an energy function. However, the algorithm can
be used to sample from any distribution for a set of real-valued variables
for which the derivatives of the probability density can be computed. It is
convenient to retain the physical terminology even in non-physical contexts,
by formulating the problem in terms of an energy function for a fictitious
physical system.

Accordingly, suppose we wish to sample from some distribution for a
"position" variable, q, which has n real-valued components, qj. In a real
physical system, q would consist of the coordinates of all the particles; in
our application, q will be the set of network parameters. The probability
density for this variable under the canonical distribution is defined by

P(q) ex exp(-E(q)) (3.1)

where E(q) is the "potential energy" function. (The "temperature" param
eter of the canonical distribution is here set to one, as it plays no role in
the present application.) Any probability density that is nowhere zero can
be put in this form, by simply defining E(q) = -logP(q)-logZ, for any
convenient Z.

To allow the use of dynamical methods, we introduce a "momentum"
variable, p, which has n real-valued components, Pi, in one-to-one corre
spondence with the components of q. The canonical distribution over the
"phase space" of q and P together is defined to be

P(q, p) ex exp(-H(q, p)) (3.2)

where H(q,p) = E(q) + K(p) is the "Hamiltonian" function, which gives
the total energy. K(p) is the "kinetic energy" due to the momentum, for

58 Chapter 3. Monte Carlo Implementation

which the usual choice is

K(p) (3.3)

The mi are the "masses" associated with each component. Adjustment of
these mass values can improve efficiency, but for the moment they may be
taken to all be one.

In the distribution of equation (3.2), q and P are independent, and the
marginal distribution of q is the same as that of equation (3.1), from which
we wish to sample. We can therefore proceed by defining a Markov chain
that converges to the canonical distribution for q and p, and then simply
ignore the P values when estimating expectations of functions of q. This
manoeuver may appear pointless at present, but will eventually be shown
to yield substantial benefits through its suppression of random walk be
haviour.

3.1.2 The stochastic dynamics method

Hybrid Monte Carlo can be viewed as an elaboration of the stochastic
dynamics method (Andersen 1980), in which the task of sampling from the
canonical distribution for q and P given by equation (3.2) is split into two
sub-tasks - sampling uniformly from values of q and P with a fixed total
energy, H(q,p), and sampling states with different values of H.

Sampling at a fixed total energy is done by simulating the Hamiltonian
dynamics of the system, in which the state evolves in fictitious time, r,
according to the following equations:

dqi oH Pi (3.4) +-dr OPi mi

dPi oH oE
(3.5)

dr Oqi Oqi

To do this, we must be able to compute the partial derivatives of E with
respect to the qi.

Three properties of Hamiltonian dynamics are crucial to its use in sam
pling. First, H stays constant as q and p vary according to this dynamics,
as can be seen as follows:

dH
dr

L [OH dqi + oH dPi]
. oqj dr BPi dr ,

[8H BH 8H 8H]
~ Oqi OPi - BPi 8qi

(3.6)

o (3.7)

3.1 The hybrid Monte Carlo algorithm 59

Second, Hamiltonian dynamics preserves the volumes of regions of phase
space - i.e. if we follow how the points in some region of volume V move
according to the dynamical equations, we find that the region where these
points end up after some given period of time also has volume V. We can
see this by looking at the divergence of the motion in phase space:

[8 (dqi) a (dPi)] ~ 8qi dr + 8Pi dr ,
[8H 8H]

= ~ 8qi 8pi - OPi 8qi ,
= 0 (3.8)

Finally, the dynamics is reversible. After following the dynamics forward
in time for some period, we can recover the original state by following the
dynamics backward in time for an equal period. We cann also return to the
initial state by negating the momentum variables, following the dynamics
for the same period, and then negating the momentum variables again.

Together, these properties imply that the canonical distribution for q
and P is invariant with respect to transitions that consist of following a tra
jectory for some pre-specified period of time using Hamiltonian dynamics.
The probability that we will end in some small region after the transition
will be the same as the probability that we started in the corresponding
region (of equal volume) found by reversing the dynamics. If this proba
bility is given by the canonical distribution, the probability of being in the
final region will also be in accord with the canonical distribution, since the
probabilities under the canonical distribution depend only on H, which is
the same at the start and end of the trajectory.

In many cases, transitions based on Hamiltonian dynamics will eventu
ally explore the whole region of phase space with a given value of H. Such
transitions are clearly not sufficient to produce an ergodic Markov chain,
however, since regions with different values of H are never visited.

In the stochastic dynamics method, an ergodic Markov chain is obtained
by alternately performing deterministic dynamical transitions and stochas
tic Gibbs sampling ("heatbath") updates of the momentum. Since q and
P are independent, P may be updated without reference to q by drawing
a new value with probability density proportional to exp(-K(p)). For the
kinetic energy function of equation (3.3), this is easily done, since the Pi
have independent Gaussian distributions. These updates of P can change
H, allowing the entire phase space to be explored.

The length in fictitious time of the trajectories is an adjustable param
eter of the stochastic dynamics method. It is best to use trajectories that
result in large changes to q. This avoids the random walk effects that would
result from randomizing the momentum after every short trajectory. (This
point is discussed further below, in connection with hybrid Monte Carlo.)

In practice, Hamiltonian dynamics cannot be simulated exactly, but can
only be approximated by some discretization using finite time steps. In the

60 Chapter 3. Monte Carlo Implementation

leapfrog discretization, a single step finds approximations to the position
and momentum, (j and p, at time r + (from (j and p at time r as follows:

Pier + ~) Pier) - .: oE ((j(r))
2 oqi

(3.9)

Qi(r+f) ~() + p;(r+~) qi r (
mi

(3.10)

Pier + () Pi(r+~) - .:oE(q(r+())
2 2 Oqi (3.11)

Such a leapfrog step consists of a half-step for the Pi, a full step for the
qi, and another half-step for the Pi. (One can instead do a half-step for
the qi, a full step for the Pi, and another half-step for the qi, but this is
usually slightly less convenient.) To follow the dynamics for some period of
time, 6.r, a value is chosen for the stepsize, f, that is thought to be small
enough to give acceptable error, and equations (3.9)-(3.11) are applied for
L = 6. r / (steps in order to reach the target time. When this is done, the
last half-step for Pi in one leapfrog step will be immediately followed by
the first half-step for Pi in the next leapfrog step. All but the very first and
very last such half-steps can therefore be merged into full steps starting at
times r + h + (/2, which "leapfrog" over the steps for the qi that start at
times r + h.

In the leapfrog discretization, phase space volume is still preserved (a
consequence of the fact that each of the changes to a component of q or
P in a leapfrog step depends only on the current values of the other com
ponents). The dynamics can also still be reversed (by simply applying the
same number of leapfrog steps with (negated). However, the value of H
no longer stays exactly constant. Because of this, Monte Carlo estimates
found using the stochastic dynamics method will suffer from some system
atic error, which will go to zero only as the stepsize, f, is reduced to zero
(with the number of steps needed to compute each trajectory then going
to infinity).

3.1.3 Hybrid Monte Carlo

In the hybrid Monte Carlo algorithm of Duane, et al (1987), the systematic
error of the stochastic dynamics method is eliminated by merging it with
the Metropolis algorithm.

Like the uncorrected stochastic dynamics method, the hybrid Monte
Carlo algorithm samples points in phase space by means of a Markov chain
in which stochastic and dynamical transitions alternate. In the stochastic
transitions, the momentum is replaced using Gibbs sampling, as described
in the previous section. The dynamical transitions in the hybrid Monte
Carlo method are also similar to those in the stochastic dynamics method,

3.1 The hybrid Monte Carlo algorithm 61

but with two changes - first, the momentum is negated after the trajectory
is computed; second, the point reached by following the dynamics is only
a candidate for the new state, to be accepted or rejected based on the
change in total energy, as in the Metropolis algorithm. If the dynamics were
simulated exactly, the change in H would always be zero, and the new point
would always be accepted. When the dynamics is simulated using some
approximate discretization, H may change, and moves will occasionally
be rejected. These rejections exactly eliminate the bias introduced by the
inexact simulation.

In detail, given values for the leapfrog stepsize, E, and the number of
leapfrog steps, L, a dynamical transition is performed as follows:

1) Starting from the current state, (q, p) = ((j(O) , p(O)), perform
L leapfrog steps with a stepsize of E, resulting in the state
((j(EL), p(EL)).

2) Negate the momentum variables, thereby producing the state
(q*,p*) = (q-(fL), -p(fL)).

3) Regard (q*, p*) as a candidate for the next state, as in the
Metropolis algorithm, accepting it with probability

min (1, exp (- (H(q*,p*) - H(q,p)))),
and otherwise letting the new state be the same as the old.

The negation of the momentum in step (2), together with the reversibility
of the leapfrog dynamics, ensures that if we were to perform a dynami
cal transition starting with the candidate state above, (q*, p*), the state
proposed would be the initial state above, (q, p). Furthermore, since the
leapfrog steps preserve phase space volume, points in phase space are not
squeezed together or spread apart by the mapping from current to pro
posed state. The proposal of a candidate state above therefore has the
symmetry required for a Metropolis update to leave the desired distribu
tion invariant (see Section 1.3.3). The negation ofthe momentum variables
in step (2) is in fact unnecessary if the momentum will be replaced in a
Gibbs sampling step before the next dynamical transition anyway, but it is
necessary if the dynamical transitions are employed in some other context,
as in Section 3.5.3.

The values for f and for L used above may be chosen at random from
some fixed distribution. This may be useful when the best values are not
known, or vary from place to place. Some random variation may also be
needed to avoid periodicities that could interfere with ergodicity (Macken
zie 1989), though this is not expected to be a problem for an irregular
distribution such as a neural network posterior.

The name Langevin Monte Carlo is given to hybrid Monte Carlo with
L = 1, that is, in which candidate states are generated using only a sin-

62 Chapter 3. Monte Carlo Implementation

gle leapfrog step. The "smart Monte Carlo" method of Rossky, Doll, and
Friedman (1978) is equivalent to this.

Only when L is reasonably large, however, does one obtain the principal
benefit of hybrid Monte Carlo - the avoidance of random walks. One might
think that a large error in H would develop over a long trajectory, leading
to a very low acceptance rate. For sufficiently small stepsizes, this usually
does not occur. Instead, the value of H oscillates along the trajectory, and
the acceptance rate is almost independent of trajectory length. For step
sizes above a certain limit, however, the 'leapfrog discretization becbmes
unstable, and the acceptance rate is very low. The optimal strategy is usu
ally to select a stepsize just a bit below this point of instability. Trajectories
should be made long enough that they typically lead to states distant from
their starting point, but no longer. Shorter trajectories would result in the
distribution being explored via a random walk; longer trajectories would
wastefully traverse the whole distribution several times, ending finally at a
point similar to one that might have been reached by a shorter trajectory.

Figure 3.1 illustrates the advantage of using long trajectories in hybrid
Monte Carlo. Here, the distribution for q = (ql, q2) that we wish to sample
from is a bivariate Gaussian with high correlation, defined by the potential
energy function

E(q) (qUui + qUu~ - 2pqlq2/U1U2) /2(1-p2) (3.12)

We could of course transform to a different coordinate system in which the
two components are independent, at which point sampling would become
easy. In more complex problems this will be difficult, however, so we assume
that we cannot do this. If the masses, ml and m2, associated with the two
components are set to one, the leapfrog method is stable for this problem
as long as the stepsize used is less than twice the standard deviation in
the most confined direction; to keep the rejection rate low, we will have to
limit ourselves to a stepsize a bit less than this. Many leapfrog steps will
therefore be needed to explore in the less confined direction.

The left of Figure 3.1 shows the progress oftwenty Langevin Monte Carlo
iterations. In each iteration, the momentum is replaced from its canonical
distribution, and a single leapfrog step is then performed (with the result
sometimes being rejected). Due to the randomization of the direction each
iteration, the progress takes the form of a random walk. If each iteration
moves a distance of about f, then k iterations will typically move a distance
of only about tv'k.

The right the Figure 3.1 shows a single hybrid Monte Carlo trajectory
consisting of twenty leapfrog steps, with the momentum being randomized
only at the start. Such trajectories move consistently in one direction, until
they are "reflected" upon reaching a region of low probability. Accordingly,
in k steps that each move a distance of about f, the hybrid Monte Carlo

3.2 An implementation of Bayesian neural network learning 63

FIGURE 3.1. Sampling using the Langevin and hybrid Monte Carlo methods. The
distribution sampled from is a bivariate Gaussian with (Tl = (T2 = 1, and p = 0.99,
represented above by its one standard deviation contour. Sampling by Langevin
Monte Carlo is illustrated on the left, which shows twenty single-step trajectories
(except some rejected trajectories are not shown). Sampling by hybrid Monte
Carlo is illustrated on the right, which shows a single twenty-step trajectory. In
both cases, the leapfrog method was used with a stepsize of 0.15. Only the course
of the position variables is depicted; the momentum variables are not shown.

can move a distance of up to fk, permitting much more efficient exploration
than is obtained with a random walk.

The Langevin Monte Carlo method does permit use of a somewhat
larger leapfrog stepsize while maintaining a good acceptance rate, but
for distributions with high correlations this advantage is more than off
set by the penalty from performing a random walk. Gibbs sampling for
such distributions also produces a random walk, with similar size changes.
In a simple version of the Metropolis algorithm, in which candidate states
are drawn from a symmetric Gaussian distribution centred at the current
point, maintaining a high acceptance rate requires limiting the size of the
changes to about the same amount as are produced with Langevin Monte
Carlo or Gibbs sampling, again resulting in a random walk. (For this two
dimensional problem, simple Metropolis in fact performs best when quite
large changes are proposed, even though the acceptance rate is then very
low, but this strategy ceases to work in higher-dimensional problems.)

3.2 An implementation of Bayesian neural network
learning

Bayesian learning and its application to multilayer perceptron networks
were discussed in Chapter 1. I will recap the notation here. The network is

64 Chapter 3. Monte Carlo Implementation

parameterized by weights and biases, collectively denoted by B, that define
what function from inputs to outputs is computed by the network. This
function is written as f(x, B). A prior for the network parameters is de
fined, which may depend on the values of some hyperparameters, "(. The
prior density for the parameters is written as P(B I "(), the prior density for
the hyperparameters themselves as P("(). We have a set of training cases,
(x(1), y(1)), ... , (x(n), y(n)), consisting of independent pairs of input values,
x(i), and target values, y(i). We aim to model the conditional distribution
for the target values given the input values, which we specify in terms of
f(x, 0), perhaps also using the hyperparameters, "f. These conditional prob
abilities or probability densities for the target are written as P(y I x, 0, ')').

Our ultimate objective is to predict the target value for a new test case,
y(n+l), given the corresponding inputs, x(n+l), using the information in
the training set. This prediction is based on the posterior distribution for 0
and ,,(, which is proportional to the product of the prior and the likelihood
due to the training cases:

n

ex P("() P(O I "() II P(y(c) I x(c), B, "() (3.13)
c=l

Predictions are made by integration with respect to this posterior distri
bution. The full predictive distribution is

p(y(n+l) I x(n+1) , (x(l), y(1)), ... , (x(n), y(n))) (3.14)

= J p(y(n+1) I x(n+l), 0, "() P(O, ')' I (x(l), y(1)), . .. , (x(n), y(n))) dO d"(

For a regression model, the single-valued prediction that minimizes ex
pected squared-error loss is the mean of the predictive distribution. If the
conditional distribution for the targets is defined to have a mean given by
the corresponding network outputs, this optimal prediction is

In the Markov chain Monte Carlo approach, these integrals, which take the
form of expectations offunctions with respect to the posterior distribution,
are approximated by the average value of the function over a sample of
values from the posterior.

I believe that hybrid Monte Carlo is the most promising Markov chain
method for sampling from the posterior distribution of a neural network
model. One cannot even attempt to use ordinary Gibbs sampling for this
problem, since sampling from the conditional distributions is infeasible.

3.2 An implementation of Bayesian neural network learning 65

Simple forms of the Metropolis algorithm are possible, but will suffer from
random walks. Uncorrected stochastic dynamics (see Section 3.1.2) can also
be applied to this problem (Neal 1993a), but as this raises the possibility
of unrecognized systematic error, the hybrid Monte Carlo method appears
to be the safer choice. These other methods will be compared to hybrid
Monte Carlo in Section 3.4.

There are many possible ways of using hybrid Monte Carlo to sample
from the posterior distribution for a neural network model. In my earliest
work on this problem (Neal 1992b), I felt that use of "simulated annealing"
(Kirkpatrick, Gelatt, and Vecchi 1983) was desirable, in order to overcome
the potential problem that the simulation could be trapped for a long time
in a local minimum of the energy. I therefore chose a parameterization of
the model in which the prior was uniform, since this allows annealing to
be done without affecting the prior. In the simulation results I reported,
annealing was indeed found to be beneficial. However, later work revealed
that the primary benefit of annealing was in overcoming the bad effects of
the parameterization used - which had been chosen only because it made
annealing more convenient!

In later work, I therefore abandoned use of annealing (though it remains
possible that it might be beneficial in some form). Many other implemen
tation decisions remain, however.

Hyperparameters can be handled in several ways. In previous implemen
tations (Neal 1992a, 1993a), I replaced them with equivalent scale factors.
Rather than letting the standard deviation of a group of weights, Wi, be
controlled by a hyperparameter, (1", I instead expressed these weights in
terms of a scale factor, s, and a set of unscaled weights, Ui, with Wi = SUi.

The prior distribution for the Uj was fixed, with a standard deviation of
one, while S was given its own prior. Hybrid Monte Carlo was then applied
to update both S and the Uj. While this method worked reasonably well,
it had the undesirable effect that the optimal stepsize for use with the Ui

would vary with the current value of s.

The choices made in the implementation described in this chapter are
based in part on this previous experience. I cannot claim that my latest
choices are optimal, however. Many possibilities remain to be evaluated,
and I expect that the performance reported here may ultimately be im
proved upon significantly.

I aim in this implementation to handle a wide range of network ar
chitectures and associated data models. Both regression and classification
models are implemented, networks with any number of hidden layers are
allowed, and prior distributions that include all those discussed in Chap
ter 2 are supported (except for those based on step-function hidden units,
which are not suitable for implementation using backpropagation). Not all

66 Chapter 3. Monte Carlo Implementation

aspects of these models are discussed in detail here, but they are described
in Appendix A. Many useful extensions have not yet been implemented, but
could be within the general framework of this implementation. Such possi
ble extensions include those mentioned in Section 2.4 in which 17 (control
ling the fractional Brownian character of the function) and a (controlling
the index of the stable distribution) are treated as hyperparameters, and
regression models in which the noise level varies depending on the inputs
("heteroscedasticity", in statistical parlance).

Another objective of this implementation is to minimize the amount of
"tuning" that is needed to obtain good performance. Gibbs sampling is very
nice in this respect, as it has no tunable parameters. In simple forms of the
Metropolis algorithm, one must decide on the magnitude of the changes
proposed, and in hybrid Monte Carlo one must select both the stepsize,
f, and the number of leapfrog steps, L. I attempt in this implementation
to derive the stepsizes automatically, though the user must still adjust
these stepsizes by a small amount to get good performance. Specifying the
number of leapfrog steps in a trajectory is still left to the user.

The scheme used for setting stepsizes relies on a separation of the up
dates for the hyperparameters from the updates for the network parameters
(weights and biases). The hyperparameters are updated by Gibbs sampling.
The network parameters are updated by hybrid Monte Carlo, using step
sizes that depend on the current values of the hyperparameters. These two
aspects of the implementation will now be described in turn.

3.2.1 Gibbs sampling for hyperparameters

Two types of hyperparameters are present in neural network models -
those in terms of which the prior distribution of the parameters is expressed,
and those that specify the noise levels in regression models. One might not
regard quantities of the latter type as "hyperparameters" , since they do not
control the distribution of lower-level "parameters", but I use the same term
here because in this implementation quantities of both types are handled
similarly, via Gibbs sampling. These quantities also handled similarly in
the implementation of MacKay (1991, 1992b) and in the work of Buntine
and Weigend (1991).

In the simplest cases, a hyperparameter of the first type controls the
standard deviation for all parameters in a certain group. Such a group
might consist of the biases for all units of one type, or the weights on all
connections from units of one type to those of another type, or the weights
on all connections from a particular unit to units of some type. The manner
in which parameters are grouped is a modeling choice that is made on the
basis of prior knowledge. -

3.2 An implementation of Bayesian neural network learning 67

In detail, let the parameters in a particular group be Ul, ... ,Uk (in the
notation given previously, these are components of 8). Conditional on the
value ofthe controlling hyperparameter, let the parameters in this group be
independent, and have Gaussian distributions with mean zero and standard
deviation Uu' It is convenient to represent this standard deviation in terms
of the corresponding "precision", defined to be Tu = u;;2. The distribution
for the parameters in the group is then given by

(27l')-k/2 T:/ 2 exp (- Tu L: ur / 2) (3.16)
i

The precision is given a Gamma distribution with some mean, W u , and
shape parameter specified by au, with density

P(TU) (au /2wu)Ou/2 r ou / 2 - 1 exp (- r, a /2w)
r(a tl /2) u u tl u

(3.17)

In the previous notation, Tu is a component of J. The values of Wu and au
may for the moment be considered fixed.

The prior for Tu is "conjugate" to its use in defining the distribution
for the Ui. The conditional distribution for T" given values for the Ui is
therefore also of the Gamma form:

P(Ttl I Ul, ... ,Uk)

ex T~u/2-1exp(-Tuau/2wu)' T:/2exp(-TuL:ur/2) (3.18)
i

ex T~ou+k)/2-1 exp (- Tu(Ciu/'o,)u + L: un /2)
i

(3.19)

From the above expression, one can see that the prior for Tu can be inter
preted as specifying au imaginary parameter values, whose average squared
magnitude is l/wu . Small values of Ciu produce vague priors for Ttl.

The conditional distribution of equation (3.19) is what is needed for a
Gibbs sampling update, since given Ul, ... ,Uk, the value of Tu is indepen
dent of the other parameters, hyperparameters, and target values. Efficient
methods of generating Gamma-distributed random variates are known (De
vroye 1986).

The implementation described in Appendix A allows for more complex
situations, in which the priors for the precisions may be specified using
higher-level hyperparameters. For example, each hidden unit might have
an associated hyperparameter giving the precision for weights out of that
unit, with the mean for these precisions (w in equation (3.17)) being a
common higher-level hyperparameter, shared by all units of one type. Gibbs
sampling for the lower-level hyperparameters remains as above, but more
complex methods are needed to implement Gibbs sampling for the higher
level hyperparameter. The distribution given to a single parameter may

68 Chapter 3. Monte Carlo Implementation

also be a t-distribution, rather than a Gaussian. Since t-distributions can be
represented as mixtures of Gaussian distributions with precisions given by
Gamma distributions, this can be implemented by extending the hierarchy
downward, to include implicit precision variables associated with individual
parameters.

The treatment of hyperparameters specifying the amount of noise in
regression models is similar. Again, it is convenient for the hyperparameters
to be precision values, Tk = (1;;2, where (1k is here the standard deviation of
the noise associated with the kth target value. Given the inputs, network
parameters, and the noise standard deviations, the various target values in
the training set are independent, giving:

P{ (1) (n) I (1) (n) 0) Yk , ... , Yk X, ••• , x , ,TIc

= (211") -n/2 r;/2 exp (- rk E (Yke) - fk (X (c) ,0)) 2 / 2) (3.20)
e

As before, we give Tk a Gamma prior:

(o/2w)a/2 a/2-1 (
P{Tk) = r(o/2) rk exp -Tko/2w) (3.21)

and obtain a Gamma distribution for Tk given everything else:

P(Tk I (x(1), y(1»), ... , (x(n), y(n»), 0)

ex r~a+n)/2-1 exp (- Tk (o/w + E (yle) - fk (x (c) ,0))2/2) (3.22)
c

Variations on this scheme described in Appendix A include models with
higher-level hyperparameters linking the TIc, or alternatively that use a
single r for all targets, and models in which the noise follows at-distribution
rather than a Gaussian.

3.2.2 Hybrid Monte Carlo for network parameters

A Markov chain that explores the entire posterior distribution can be ob
tained by alternating Gibbs sampling updates for the hyperparameters, as
described in the previous section, with hybrid Monte Carlo updates for the
network parameters.

To apply the hybrid Monte Carlo method, we must formulate the desired
distribution in terms of a potential energy function. Since we wish to sample
from the posterior distribution for network parameters (the weights and
biases), the energy will be ~ function of these parameters, previously called
0, which now play the role of the "position" variables, q, of an imaginary
physical system. {From here on, 0 and q will be used interchangeably, as

3.2 An implementation of Bayesian neural network learning 69

:1ppropriate in context). The hyperparameters will remain fixed throughout
:me hybrid Monte Carlo update, so we can omit from the energy any terms
that depend only on the hyperparameters. For -the generic case described
by equation (3.13), the potential energy is derived from the log of the prior
and the log of the likelihood due to the training cases, as follows:

n

E(8) F(-y) - logP(81 ,) - L 10gP(y(c) I x(c), B, ,) (3.23)
c:=1

where F(-y) is any function of of the hyperparameters that we find conve
nient. The canonical distribution for this energy function, which is propor
tional to exp(- E(B)), will then produce the posterior probability density
for B given ,. Note that the energy function will change whenever the
hyperparameters change, which will normally be between successive hy
brid Monte Carlo updates, when new values for the hyperparameters are
chosen using Gibbs sampling.

The detailed form of the energy function will vary with the network
architecture, the prior, and the data model used. As a specific example,
suppose that the network parameters form two groups, u and v, so that
B = {Ul, ... , Uk, VI, ... , Vh}; let the prior standard deviations for these two
groups be (Tu and (Tv. Suppose also that the target is a single real value,
modeled with a Gaussian noise distribution of standard deviation (T. The
hyperparameters are then, = {Tu, Tv, T}, where Tu = (T;;2, Tv = (T;;2, and
T = (T-2. The priors for the two groups of weights conditional on the hyper
parameters are ofthe form given by equation (3.16), and the likelihood due
to the training cases is given by equation (3.20). The resulting potential
energy function is

k h n

E(B) = Tu L uri 2 + Tv L vJ/2 + T L (y(C) - f(x(C), 0))2/ 2 (3.24)
;=1 j=1 c=1

It is helpful to impose a very large upper limit (e.g. 1030) on the value of
E above. This avoids problems with floating-point overflow during compu
tation of trajectories that turn out to be unstable, since the derivatives of
E at points where the limit is exceeded are zero, preventing the instability
from going further.

This energy function is similar to the error function (with weight decay
penalty) that is minimized in conventional neural network training. Recall,
however, that the objective in a Monte Carlo implementation of Bayesian
learning is not to find the minimum of the energy, but rather to sample
from the corresponding canonical distribut;ion.

To sample from this canonical distribution using the hybrid Monte Carlo
method, we introduce momentum variables, Pi, in one-to-one correspon
dence with the position variables, qi, which are here identified with the

70 Chapter 3. Monte Carlo Implementation

parameters, O. With each momentum variable, we also associate a positive
"mass", mi. These masses are used in defining the kinetic energy, K(p),
associated with the momentum (equation (3.3)), with the result that the
canonical distributions for the Pi are Gaussian with means of zero and vari
ances mi (independently of each other and of the position). As described
in Section 3.1.3, a single hybrid Monte Carlo update starts by generating
new values for all the momentum variables from their canonical distribu
tion. A candidate state is then found by following a trajectory computed
using the leapfrog discretization of Hamiltonian dynamics (equations (3.9)
(3.11))' applied for some number of steps, L, using some stepsize, f. Finally
this candidate is accepted or rejected based on the change in total energy,
H(q,p) = E(q) + K(p). Calculation of the derivatives of E with respect to
the qi is required in order to perform the leapfrog steps; these derivatives
can be found by the usual "backpropagation" method (Rumelhart, Hinton,
and Williams 1986a, 1986b).

We would like to set the masses, mi, the stepsize, [, and the number of
leapfrog steps in a trajectory, L, to values that will produce a Markov chain
that converges rapidly to the posterior distribution, and then rapidly moves
about the posterior. Rapid movement will keep the dependence between
states in the Markov chain low, which typically increases the accuracy
of Monte Carlo estimates based on a given number of such states (see
Section 1.3.1). In this implementation, the number of leapfrog steps must
be set by the user. (Ways of making this choice are discussed in connection
with the demonstration of Section 3.3.) I attempt to set the masses and the
stepsize automatically, but the user may still need to adjust these quantities
based on the observed rejection rate.

It is convenient to recast the choice of masses, mi, and stepsize, [, as
a choice of individual stepsizes, fi, that are applied when updating each
component of the position and momentum. The leapfrog method of equa
tions (3.9)-(3.11) can be rewritten as follows:

Pi(r + ~) Pi (r) [/ vm; 0 E c()) (3.25) vm; --- -qr vm; 2 Oqi

lfi(r+f) ~ Pi(r + ~)
qi(r) + ([/..;m;) vm; (3.26)

Pi(r+f) Pi(r +~) f/vm;aE C()) (3.27) vm; vm; - -qr+f
2 oqj

Rather than applying the leapfrog equations to update Pi and qi, we can
therefore store the values Pi / vm; instead of the Pi, and update these values
(along with the qi) using leapfrog steps in which different components have
different stepsizes, given by fi = [/ vm;.

3.2 An implementation of Bayesian neural network learning 71

This re-expression of the leapfrog method reduces slightly the amount of
computation required, and has the additional advantage that the canonical
distribution of Pi / vrn; is independent of mi. Accordingly, after a change in
the mj, the Pi / vrn; values will be distributed according to the new canon
ical distribution as long as they were previously distributed according to
the old canonical distribution. In this implementation, the mj (equivalently,
the fj) are set based on the values of the hyperparameters, and therefore
change whenever the hyperparameters are updated using Gibbs sampling,
normally before each hybrid Monte Carlo update. In the standard hybrid
Monte Carlo method, these updates begin with the complete replacement
of the momentum variables, so the invariance of the distribution of Pi / vrn;
is of no significance. However, this is not the case for the variant of hybrid
Monte Carlo with "persistence" discussed in Section 3.5.3.

A basis for choosing good stepsizes can be found by examining the be
haviour of the leapfrog method applied to a simple system with a single
position component (and hence a single momentum component) with the
Hamiltonian H(q, p) = q2/2a2 + p2/2. A leapfrog step for this system is

p(r + !) p(r) ~. q(r)/a2 (3.28)

q(r + f) q(r) + fp(r+~) (3.29)

p(r + f) p(r + ~)- ~ q(r + f)/a2 (3.30)

This defines a linear mapping from (q(r), p(r)) to (q(r + f), p(r + f)). By
examining the properties of this mapping, it is straightforward to show that
H (q, p) diverges if this leapfrog step is repeatedly applied with f > 2u, but
that H remains bounded when it is applied with f < 2a. Setting f. somewhat
below 2u will therefore keep the error in H small, and the rejection rate
low, regardless of how long the trajectory is.

This simple system serves as an approximate model for the behaviour of
the leapfrog method when applied to a more complex system whose poten
tial energy function can locally be approximated by a quadratic function of
q. ,By a suitable translation and rotation of coordinates, such a quadratic
energy function can be put in the form

E(q) L q'f /2u'f (3.31)

In this form, the components are independent under the canonical distribu
tion, and do not affect one another in the leapfrog steps - the behaviour
of each pair, (qj,Pi), is as for the simple system considered above. How
ever, the final decision to either accept or reject the result of following
a trajectory is based on the total change in H, to which all components
contribute.

72 Chapter 3. Monte Carlo Implementation

If we use the same stepsize for all components in this system, then to
keep the rejection rate low, we will have to use a stepsize less than 2u min,

where O"min is the smallest of the Uj, as otherwise the error in H due to one
or more components will diverge as the trajectory length increases. If other
of the O"j are much larger than O"rnin, then with this small stepsize a large
number of leapfrog steps will be required before these other components
change significantly.

This inefficiency can be avoided by using a different stepsize for each
component (equivalently, a different mass). For the ith component, we can
set the stepsize, ti, to a value a bit less than 20"j, with the result that even
short trajectories traverse the full range of all components.

In practice, this result is too much to hope for, both because the poten
tial energy is at best only approximately quadratic, and because we do not
know how to translate and rotate the coordinate system so as to remove
the interactions between components of q. Nevertheless, using a different
stepsize for each component will generally be advantageous.

In this implementation, I use a heuristic approach in which the stepsizes
are set as follows:

[
82 E] -1/2

tj ~ TJ 8qr (3.32)

where 7J is a stepsize adjustment factor, chosen by the user. If the energy
really were as in equation (3.31), the heuristic would give tj ~ TJO"i, which
is close to optimal when 7J ~ 1. When the different components interact,
however, these stepsizes may be too large, and the user may need to use a
smaller value for TJ in order to produce an acceptable rejection rate.

Unfortunately, we cannot set the stepsizes based on the actual values of
82 E / 8qr at the starting point of the trajectory. Doing this would render
the method invalid, as the trajectory would cease to be reversible - when
starting at the other end, different stepsizes would be chosen, leading to a
different trajectory. We are allowed to use the current values of the hyper
parameters, which are fixed during the hybrid Monte Carlo update, as well
as the values of the inputs and targets in the training cases, but we must
not use quantities that depend on the network parameters.

Details of the heuristic procedure for setting the tj using permissible
information are given in Appendix A (Section A.4). The difficult part is
the estimation of _82 L / 8w'fj, where L is the log likelihood due to a training
case, and Wij is a weight in the network. Such estimates are obtained by
first estimating -{j2 L / 8v;, where Vj is the value of a unit in the network.
These estimates are found by a form of backpropagation, which need be
done only once, not for every training case, since we are not permitted to
use the actual values of Vj for a particular case anyway. Several heuristic
approximations are made during this procedure: when a value depends on

3.2 An implementation of Bayesian neural network learning 73

Vj, the maximum is sometimes used; when the sign of a term depending
on Vj may be either positive or negative, it is replaced by zero, on the
assumption that these terms will ultimately cancel when we sum the results
over the training set; and when a value depends on the magnitude of a
weight, the magnitude corresponding to the associated hyperparameter is
used. To find _82 L / 8wlj based on _82 L /8vJ, we need the value of vl.
When Vi is an input unit, this value is available (since the inputs are fixed);
when Vi is a hidden unit, the maximum possible value of V[= 1 is used.

3.2.3 Verifying correctness

The Markov chain Monte Carlo implementation described above is fairly
complex, raising the question of how one can verify that the software im
plementing the method is correct.

One common type of implementation error results in answers that are
correct, but require more computation time to obtain than they should
have. In this respect, note that the validity of the hybrid Monte Carlo
method requires only that the dynamics be reversible and preserve volume
in phase space, and that the end-point of the trajectory be accepted or
rejected based on a correct computation of the change in total energy.
Errors computing the derivatives of E used in the leapfrog method do
not invalidate the results, but will usually result in a large error in the
trajectory and a consequent high rejection rate. (For severe errors, of course,
the resulting inefficiencies may be so great that the Markov chain does
not converge in any reasonable amount of time, and so no answers are
obtained.)

Once a feel for correct behaviour is obtained, such errors can often be
recognized by the anomalously high rejection rate, which can be reduced
only by using a very small stepsize adjustment factor, or by using very
short trajectories. The correctness of the derivative computation can then
be tested by comparison with the results obtained using finite differences (a
check commonly done by users of other neural network procedures as well).
One can also look at the effect of reducing the stepsize while increasing the
number of leapfrog steps to compensate; with a correct implementation the
computed trajectory should reach a limit as the stepsize is reduced. This
latter check may also reveal errors in the trajectory computation itself.

Incorrect answers may be produced as a result of errors in other compo
nents of the implementation, such as in the computation of the total energy
used in deciding whether to reject, or in the Gibbs sampling updates for
the hyperparameters. Such answers may sometimes be obviously ridicu
lous, but other times they may appear reasonable. To detect such errors,
we need to compare with the answers produced using a method that is as

74 Chapter 3. Monte Carlo Implementation

far as possible independent of that being tested, and which preferably is
simpler, and hence less likely to be erroneously implemented.

I have used the method of rejection sampling from the prior for this
purpose. (This method was also used to produce the illustration in Sec
tion 1.2.4. Rejection sampling in general is discussed by Devroye (1986).)
This method produces a sample of independent values from the poste
rior given the training data, from which Monte Carlo estimates can be
computed, and compared with those obtained using the dependent values
produced by a Markov chain method. These independent values frou{ the
posterior are obtained by generating independent values from the prior and
then rejecting some of these with probability proportional to the likelihood
due to the training data, with the scaling factor for the likelihood chosen so
that the maximum possible rejection probability is one. (When a regression
model is used in which the noise level is a hyperparameter, the likelihood
has no upper bound, so the method must be modified slightly, as described
in Appendix A, Section A.5.)

The rejection rate with this method can be extremely high. It can be
feasibly applied only to very small training sets, with priors carefully chosen
to give a high probability to parameter values that are well-matched to the
data. For the test to be sensitive, large samples from the posterior must be
obtained using both the rejection sampling method and the Markov chain
Monte Carlo method being tested. I have performed these tests only for
some simple network models with one hidden layer, which do not exercise
all features of the implementation. Nevertheless, I expect that with a fair
amount of effort it will usually be possible to use rejection sampling to test
the correctness of the implementation when applied to a specific network
model of interest for some application. Of course, subtle errors whose effects
are fairly small may remain undetected, but these tests can provide some
confidence that the results are not grossly in error.

3.3 A demonstration of the hybrid Monte Carlo
implementation

To illustrate the use of the implementation based on hybrid Monte Carlo,
and provide an idea of its performance, I will show here how it can be
applied to learning a neural network model for the "robot arm" problem
used by Mackay (1991, 1992b) to illustrate his implementation of Bayesian
inference based on Gaussian approximations. This problem was also used
in my tests of earlier hybrid Monte Carlo implementations (Neal 1992b,
1993a).

All timing figures given in this section are for an implementation written
in C and run on an SGI Challenge D machine, with a MIPS R4400 CPU and

3.3 A demonstration of the hybrid Monte Carlo implementation 75

R4010 FPU, running at 150 MHz. The code was written with reasonable
attention to efficiency, but was not fanatically tuned. Evaluation of the tanh
activation function for hidden units was done using the standard library
routine; use of fast approximations based on table lookup can lead to a
build-up of error over long trajectories.

3.3.1 The robot arm problem

The task in the robot arm problem is to learn the mapping from joint
angles to position for an imaginary "robot arm". There are two real input
variables, Xl and X2, representing joint angles, and two real target values, Y1

and Y2, representing the resulting arm position in rectangular coordinates.
The actual relationship between inputs and targets is as follows:

Y1 = 2.0 cos(xt} + 1.3 COS(X1 + X2) + e1

Y2 2.0 sin(xt) + 1.3 sin(xl + X2) + e2

(3.33)

(3.34)

where el and e2 are independent Gaussian noise variables of standard de
viation 0.05.

David MacKay kindly provided me with the training and test sets he
used in his evaluations. Both these data sets contain 200 input-target pairs,
which were randomly generated by picking Xl uniformly from the ranges
[-1.932, -0.453] and [+0.453, +1.932], and X2 uniformly from the range
[0.534,3.142].

The robot arm data is modeled using a network with one layer of tanh
hidden units. The inputs connect to the hidden units, and the hidden
units to the outputs; there are no direct connections from inputs to out
puts. MacKay divides the parameters for this network into three classes -
input-to-hidden weights, hidden unit biases, and hidden-to-output weights
together with output unit biases - and uses three hyperparameters to con
trol the standard deviations of Gaussian priors for parameters in each of
these three classes. I used three analogous hyperparameters, but did not
group the output unit biases with the hidden-to-output weights. Instead,
I simply gave the output biases fixed Gaussian distributions with a stan
dard deviation of one. This change in the model is motivated by the scaling
properties discussed in Chapter 2, which show that while the magnitude of
the hidden-output weights should go down as the number of hidden units
increases, there is no reason for any corresponding change in the magnitude
of the output biases.

In his work, MacKay gives the hyperparameters improper uniform dis
tributions. This is not safe with a Markov chain Monte Carlo implementa
tion, however, because the resulting posterior is also technically improper
(though only because of its behaviour far from the region of high proba
bility density). This is not a problem in MacKay's implementation, which

76 Chapter 3. Monte Carlo Implementation

sets the hyperparameters to single values, but would eventually result in
divergent behaviour of a Markov chain sampling from the posterior.

Accordingly, I gave proper Gamma priors to the hyperparameters, rep
resented by precision values, as in equation (3.17). In all three cases, the
shape parameter used was a = 0.2, which gives a fairly broad distribution,
approximating the improper prior used by MacKay. The mean was w = 1
for the precision of input-to-hidden weights and hidden unit biases. For
the precision of the hidden-to-output weights, I set w to the number of
hidden units, which is in accord with the scaling relationships discussed in
Chapter 2.

I let the precision value for the noise (assumed the same for both targets)
be a hyperparameter as well, with a Gamma prior as in equation (3.21),
with a = 0.2 and w = 100 (corresponding to (J = 0.1). MacKay fixes the
noise level to the true value of (J = 0.05, but it seems more realistic to let
the noise level be determined from the data.

3.3.2 Sampling using the hybrid Monte Carlo method

In this demonstration, Markov chain sampling from the posterior distri
bution was done using two phases, the first designed to reach a rough
approximation to equilibrium quickly, the second to sample efficiently from
that point. This is generally a good strategy, though the details of the two
phases described below are not necessarily optimal for all problems.

In the initial phase, we start from some initial state, and simulate a
Markov chain for as long as is needed for it to reach a rough approximation
to the posterior distribution. In the sampling phase, we continue from the
state reached at the end of the initial phase, generally using a different
Markov chain, proceeding for long enough that a close approximation to
the equilibrium distribution has been reached, and enough subsequent data
has been collected to produce Monte Carlo estimates of adequate accuracy.
Several runs of this two-phase procedure may be done, using different ran
dom number seeds; this provides a further check on whether equilibrium
has actually been reached, as well as more data on which to base estimates.

In this section, I will demonstrate how these phases can be carried out
for a network with 16 hidden units, applied to the robot arm problem with
200 training cases. The ultimate aim was to use the sample of networks
obtained to make predictions for the targets in 200 test cases.

For both the initial phase and sampling phases, the Markov chain used
was built by alternating Gibbs sampling updates for the hyperparameters
(see Section 3.2.1) with hybrid Monte Carlo updates for the parameters
(see Section 3.2.2). For the -hybrid Monte Carlo updates, we must specify
the number of leapfrog steps in a trajectory, L, and an adjustment factor,

3.3 A demonstration of the hybrid Monte Carlo implementation 77

1], for the heuristically chosen stepsizes. Typically, the best value for L is
different for the initial phase and the sampling phase, which is one reason
for having two phases.

Most of the computation time in this implementation goes to perform
ing the leapfrog steps, since to evaluate the derivatives of E needed in
each such step one must apply the network to all the training cases. Gibbs
sampling for the hyperparameters and for the momentum variables takes
comparatively little time. To facilitate comparison of runs in which the
hybrid Monte Carlo trajectories consist of different numbers of leapfrog
steps, I will present the results in terms of super-transitions, which may
contain different numbers of hybrid Monte Carlo iterations, with different
values of L, but which (for each phase) all contain the same number of
leapfrog steps, and hence take approximately the same amount of compu
tation time. 1 Within a super-transition, each hybrid Monte Carlo update
is preceded by a Gibbs sampling update for the hyperparameters.

To investigate behaviour in the initial phase, I ran a series of tests us
ing super-transitions in which a total of 210 = 1024 leapfrog steps were
performed, in the form of 2k hybrid Monte Carlo updates, each based on
a trajectory of L = 210 - k leapfrog steps, with 0 ::; k ::; 10. Each run
started with the network parameters all set to zero; the initial values of the
hyperparameters are irrelevant, since they are immediately replaced in the
first Gibbs sampling update. I let each run go for twenty super-transitions,
which took approximately 5.6 minutes of computation time in total. (Thus
each leapfrog step took approximately 16 milliseconds.)

For all runs, the automatically assigned stepsizes were adjusted down
wards by a factor of 1] = 0.3. A good value for 1] must be found by trial
and error; as a rule of thumb, it should be set so that the rejection rate is
roughly 20%. Alternatively, one might set 'fJ at random prior to each hybrid
Monte Carlo update, using some moderately broad distribution.

Figure 3.2 shows the progress of these runs for k = 0, k = 4, and k = 8,
which correspond to super-transitions consisting of a single hybrid Monte
Carlo update with a trajectory of 1024 leapfrog steps, to 16 hybrid Monte
Carlo updates with trajectories of 64 leapfrog steps, and to 256 hybrid
Monte Carlo updates with trajectories of 4 leapfrog steps, together, in each
case, with a like number of Gibbs sampling updates. Progress is shown in

1 With the present implementation, this is not entirely true when L is very smail, since
the hyperparameters then change frequently, and whenever they do, the derivatives of E
must be re-evaluated. This slowdown could be avoided by performing the Gibbs sampling
updates less frequently, or by saving intermediate results that would allow the derivatives
to be re-evaluated without re-examining all the l;raining cases. Taking account of this
slow-down for small L would in any case only strengthen the conclusions reached in this
evaluation.

78 Chapter 3. Monte Carlo Implementation

Training .--- ___ •• :~~:---------------- __ _
error :...... ,

......... ,.. "
... ,.:, .. -..... _--,).,------ ""---.

" , \' ,
\ \ \
\ ' \

'\ " .. _-- "

········4··

1.0 -

" \ ,_ ,\ , \, \

" , ,\ \
\ \ \

\ \ \
\ \ \
\' ,
" \, , . \

0.1 -

" '---' ... -.

.. ~:.:::~::::::::;;~;;;;;.:~~~;:::::::::;:~ : .. :.:.:.:.:,:.:~ ... ~--:. ... ,., '.\.\.'.' .. ' ""'" . ""'"
0.01 - "--_,~,_,_,_,_"_,, "',~~_ .

--- .. _-_"!

5 10 15 20

Number of super-transitions

FIGURE 3.2. Progress of hybrid Monte Carlo runs in the initial phase. The plot
shows the average squared error on the training set after each super-transition,
on a log scale. The solid lines show the progress of three runs in which trajectories
64 leapfrog steps long were used. Dotted lines show the progress of three runs
with trajectories of 4 leapfrog steps, dashed lines the progress of three runs with
trajectories of 1024 leapfrog steps.

the figure in terms of the average squared error on the training set, which is
closely related to the potential energy. The training set error was initially
very high, since the network parameters had not adapted to the data. Once
the training error had largely stabilized at a lower value, I assumed that
the chain had reached at least a rough approximation to the equilibrium
distribution, and that the sampling phase could begin.

As can be seen, convergence to a roughly equilibrium distribution was
faster using trajectories consisting of 64 leapfrog steps than when using
trajectories of 4 or 1024 leapfrog steps; trajectories of length 16 and length
256 were also inferior, though less dramatically so. This optimal trajectory
length of 64 leapfrog steps is quite short in comparison with what will later
be seen to be the optimum trajectory length for the sampling phase. This
is understandable. The initial energy of the system is quite high, and must
drop significantly for equilibrium to be reached. Energy is dissipated in
the hybrid Monte Carlo method only when the momentum variables are
replaced from their canonical distribution, which occurs only at the begin
ning of each hybrid Monte Carlo update, before the trajectory is computed.
Rapid dissipation of energy therefore requires that many updates be done,
with correspondingly short trajectories. The increased frequency of Gibbs
sampling updates when trajectories are short may also contribute to faster

3.3 A demonstration of the hybrid Monte Carlo implementation 79

convergence. For very short trajectories, however, the slowing effect of the
resulting random walk dominates.

Once the initial phase is complete, we can find good values for the step
size adjustment factor, 7], and trajectory length, L, for use in the sampling
phase. Prior to reaching a rough equilibrium at the end of the initial phase,
it is possible that the situation will not have stabilized enough for this to
be done.

Figure 3.3 shows data on how the error in total energy varies with 7].

This data was obtained by continuing the simulation from the state at the
end of one of the initial phase runs, using values of 7] randomly selected
from an interval of one order of magnitude around 7] = 0.5. Trajectories of
length 100 were used here, but the results are similar for all but very short
trajectories. As can be seen, for 7] greater than about 0.5, the leapfrog
method becomes unstable, and very large (positive) errors result, which
would lead to a very high rejection rate if such a value of TJ were used. The
value TJ = 0.3 used in the initial phase is close to optimal and was therefore
used for the sampling phase as well.

In order to minimize the extent to which the Markov chain undertakes a
random walk, L should be chosen so that relevant functions of state at the
end-point of a trajectory are almost uncorrelated with the corresponding
values at the start-point. Trajectories should not be longer than is necessary
to achieve this, of course.

Figure 3.4 shows the variation of several quantities along a single tra
jectory 10000 leapfrog steps long, computed with 7] = 0.3, starting from
the final state of one of the initial phase runs. The quantities directly rel
evant to the prediction task are the outputs of the network for the inputs
in the test set; one such output is shown on the left of the figure. Though
some short-range correlations are evident, these appear to die out within
about 500 leapfrog steps, as is confirmed by numerical estimation, in so far
as is possible from this small amount of data. A value of L = 500 might
therefore seem appropriate for use in the sampling phase.

The right side of Figure 3.4 tells a different story, however. For each
of the three classes of parameters for this network, it shows the variation
along the trajectory of the square root of the average squared magnitude
of parameters in that class. (These quantities determine the distribution
of the hyperparameters associated with the classes.) Correlations are evi
dent in these quantities over spans of several thousand leapfrog steps. Such
long-term correlations are also found in the values of individual network
parameters. These facts suggest that trajectories in the sampling phase
should be several thousand leapfrog steps long (with TJ = 0.3).

One might question the need for such long trajectories, since the quan
tities exhibiting these long-range correlations are not of interest in them-

80 Chapter 3. Monte Carlo Implementation

>10 -

t:.H

8-

6-

4-

2-

0-

0.15 0.2

, '. . , -
..... : .. '.!.-.

,
0.3 0.4 0.5 0.7 1.0 1.5

Stepsize adjustment factor r,.,), log scale

FIGURE 3.3. Error in energy for trajectories computed with different stepsizes.
Each point plotted shows the change in total energy (H) for a trajectory of 100
leapfrog steps in which stepsizes were adjusted by the factor given on the horizon
tal axis (with changes greater than 10 plotted at 10). The starting point for the
first trajectory was the last state from one of the initial phase runs with L = 64
shown in Figure 3.2. Starting points for subsequent trajectories were obtained
by continuing the simulation using hybrid Monte Carlo with these trajectories,
along with Gibbs sampling updates of the hyperparameters. Values for '1 were
randomly generated from a log-uniform distribution.

1.19 -

1.18 -

1.17-

1.16-

1.15 -

1.14-

1.13-

1.12 -

1.11 -

1.10-

1.09 -

o 5000 10000

2.5 -

/ .. .

.... / '

..........

3.0 -

2.0 -

1.0-,\ ~

0.8-~ -

o 5000 10000

FIGURE 3.4. Degree of correlation along a trajectory. The plot on the left shows
the first output of the network for inputs (-1.47, 0.75), as the network parameters
vary along a trajectory 10 000 leapfrog steps long (with '1 = 0.3), plotted every
100 steps. On the right, the variation in the square root of the average squared
magnitude of parameters in three classes is shown - for input-hidden weights
(solid), hidden biases (dotted), and hidden-output weights (dashed) - plotted
on a log scale. The trajectory began with the state at the end of one of the initial
phase runs with L = 64 shown in Figure 3.2.

3.3 A demonstration of the hybrid Monte Carlo implementation 81

selves. It is nevertheless prudent to pay attention to these quantities, for
two reasons.

First, the initial phase produces a state that is only presumed to be from
roughly the equilibrium distribution. Further exploration of the state space
in the sampling phase may reveal that the true equilibrium distribution is
in fact quite different; alternatively, if this does not happen, our confidence
that the true equilibrium has been found if! increased. For this purpose, the
sampling phase should explore regions of state space that are representative
of the posterior distribution in all relevant respects, which must certainly
include aspects related to the hyperparameter values.

Second, even if autocorrelations for the quantities of interest appear
from a short segment of the chain to go to zero fairly rapidly, as in the
left of Figure 3.4, it is possible that if the values were examined over a
longer period, significant long-term correlations would be evident. It is
difficult to ever be completely sure that this is not the case, but here again
confidence can be increased by ensuring that the chain explores the full
range of hyperparameter values.

Figure 3.5 shows several sampling phase runs, with different trajectory
lengths, each continuing from the state at the end of one of the initial
phase runs with L = 64. For these runs, I used super-transitions consisting
of 32000 leapfrog steps. For the run using trajectories of length L = 125,
each super-transition therefore consisted of 256 pairs of Gibbs sampling
and hybrid Monte Carlo updates; for the run with L = 2000, each super
transition consisted of 16 pairs of updates; and for the run with L = 32000,
each consisted of a single Gibbs sampling update followed by a single hybrid
Monte Carlo update. The state at the end of each super-transition was
saved for possible later use in making predictions. The rejection rate for
hybrid Monte Carlo updates was about 1.3% in all runs. Each run took
approximately nineteen hours of computation time.

The results of these runs show that the initial phase had not fully con
verged to the equilibrium distribution. Equilibrium does appear to have
been reached after about 50 sampling phase super-transitions for the run
with L = 125, and after about 25 super-transitions for the runs with
L = 2000 and L = 32000.

The run with L = 2000 clearly explored the range of these quantities
more rapidly than did the run with L = 125. The relative merits of L ==
2000 and L = 32 000 are less evident. To get a better idea of the effect of
varying L, I did three independent sampling runs of 150 super-transitions
with L set to each of 125, 500, 2000, 8000, and 32000, in each case starting
from the end states of the three initial phase runs with L = 64 shown
in Figure 3.2. For each value of L, I used the data from the three runs
to estimate the autocorrelations in the square root of the average squared

82 Chapter 3. Monte Carlo Implementation

L=125

10-

• /: •• / J" - "'. -.- .~. -"" ._ ••.• \ •••• _/ ••••••••

f<£/:..f::(=-~,"-,_v"'/~~~--JV~~~v-~
5-

2-

1-

0.5 -

0.2 -

o 50 100 150

10 -

5 -

2-

L=2000
1 -

0.5 -

0.2 -

o 50 100 150

10-

5-

2-

L=32000
1-

0.5 -

0.2 -

o 50 100 150

FIGURE 3.5. Progress of hybrid Monte Carlo runs in the sampling phase. These
plots show the variation in the square root of the average squared magnitudes of
parameters in the three classes during the course of hybrid Monte Carlo sampling
runs using various trajectory lengths (L). The stepsize adjustment factor was
,., = 0.3 in all cases. The runs were started with the state at the end of one of the
initial phase runs with L = 64 shown in Figure 3.2. The horizontal axes show the
number of super-transitions, each consisting of 32 000 leapfrog steps. The vertical
axes show the square roots of the average squared magnitudes on a log scale, with
input-hidden weights shown- with solid lines, hidden biases with dotted lines, and
hidden·output weights with dashed lines.

3.3 A demonstration of the hybrid Monte Carlo implementation 83

0.0 - 0.0 -

o 10

Input-Hidden Weights Hidden Biases

10 o 10

1.=125
t;;;'SOO ·
i:;;iOOi"
wooo·
wili60

Hidden- Output Weights

FIGURE 3.6. Autocorrelations for different trajectory lengths. The plots show
autocorrelations for the square root of the average squared magnitude of network
parameters in each of three classes. The horizontal axes give the lags, measured
in super-transitions consisting of 32 000 leapfrog steps; the vertical axes show
the estimated autocorreiations at these lags, for sampling runs that have reached
equilibrium. Results are shown for runs in which the hybrid Monte Carlo updates
use various trajectory lengths (L), as indicated.

magnitude of the parameters in different classes. In making these estimates,
data from the first 50 super-transitions in each run was discarded, as the
equilibrium distribution may not have been reached by then.

The results are shown in Figure 3.6. Trajectories of length L = 8000 have
the smallest autocorrelations, though L = 2000 is not much worse. This is
as anticipated from the trajectory plot in the right of Figure 3.4, showing
that a reasonable value for L can be selected before extensive computations
are done.

I have done some preliminary experiments to investigate why the auto
correlations for quantities shown in Figure 3.6 are non-zero (for lags greater
than zero) even for the best sampling runs, with L = 8000. Three runs of
150 super-transitions with L = 8000 were done in which there was only a
single Gibbs sampling update for the hyperparameters at the start of each
super-transition. (Recall that in a normal sampling run with L = 8000,
a Gibbs sampling update is done before each of the four hybrid Monte
Carlo updates in a super-transition.) Autocorrelations for the square roots
of the average squared magnitudes of input-hidden weights and hidden
output weights (but not hidden biases) were significantly greater in these
runs than in the normal runs. The observed autocorrelations were in fact
consistent with the hypothesis that these autocorrelations are determined
entirely by the frequency of Gibbs sampling updates, as autocorrelations at
lag 4.e in these runs were similar to autocorrelations at lag .e in the normal
runs. In further sampling runs with a single Gibbs sampling update in e~ch
super-transition but with twice as many hybrid Monte Carlo updates (tak-

84 Chapter 3. Monte Carlo Implementation

ing twice as much time), the autocorrelations were reduced only slightly,
adding further support to the hypothesis that the Gibbs sampling com
ponent of the Markov chain is the primary cause of the autocorrelations
seen.

These results suggest that performance might be improved by merging
the updates of the hyperparameters with the updates of the parameters.
Such a scheme might be aimed at increasing the frequency of hyperparam
eter updates, or at suppressing the random walk nature of these updates
by performing them using hybrid Monte Carlo. However, one would like to
preserve the capability in the present implementation of using the hyper
parameter values to set stepsizes for the parameter updates; this require
ment makes devising such a scheme non-trivial.

3.3.3 Making predictions

Once we have one or more realizations of the Markov chain from the sam
pling phase, we can make predictions for test cases by using the states from
these realizations as the basis for Monte Carlo estimates. States prior to
when equilibrium was apparently reached should be discarded. Each state
after equilibrium gives us values for the network parameters and hyper
parameters that come from the posterior distribution given the training
data (equation 3.13).

The sample from the posterior can be used directly to obtain a sample
from the predictive distribution for the targets in a test case (equation 3.14),
which may be useful in visualizing the predictive distribution, as well as
being the basis for numerical estimates. The process is illustrated in Fig
ure 3.7. We first compute the outputs of the network with the given test
inputs for the values of the network parameters taken from the equilibrium
portion of the sampling phase run (or runs). For the plot on the left of the
figure, the last 100 states of one run were used, the first 50 being discarded
in case they were not from the equilibrium distribution. In the model being
used, the actual targets are obtained from these outputs by adding Gaus
sian noise, with a standard deviation (the same for both outputs) given by
a hyperparameter that is also being estimated. To each of the 100 output
values, we therefore add Gaussian noise with standard deviation given by
the hyperparameter value that is part of the same state, to produce the
sample from the predictive distribution shown on the right of the figure.
(The posterior distribution of the noise standard deviation had a mean of
0.051, with a standard deviation of 0.002; recall that the true value used
to generate the data was 0.05.)

If we need to make single-valued guesses for the targets in a test case,
with the aim of minimizing expected squared error, we should guess the
mean of the predictive distribution, which is the same as the mean value of

3.3 A demonstration of the hybrid Monte Carlo implementation 85

-2.75 - -2.75 -

, "

-2.80 - -2.80 - • •• 1 •• . " " ," .: ...
" .. ~ .. . " ~ ..
~ -2.85 - -2.85 - . "

-2.90- -2.90 -

I I I I I I I I r I
1.05 1.10 1.15 1.20 1.25 1.05 1.10 1.15 1.20 1.25

FIGURE 3.7. Predictive distribution from Monte Carlo data. The plot on the
left shows the values of the two network outputs when the inputs are set to
(-1.471,0.752) and the network parameters are taken from the last 100 su
per-transitions of one of the hybrid Monte Carlo sampling runs with L = 8000.
The plot on the right shows the same 100 values with Gaussian noised added,
with the standard deviation of the noise being determined in each case by the
value of the noise-level hyperparameter at that point in the run; this plot repre
sents the predictive distribution for the target values with these inputs. (The true
relationship of equation (3.34) gives outputs (before noise) of (1.177, -2.847) for
these inputs.)

the network outputs. We can estimate this mean by simply averaging the
network outputs for the values of the parameters taken from the sampling
phase runs. The accuracy of such a Monte Carlo estimate is determined by
the variance of the quantity whose mean is being estimated, the number
of points in the sample, and the autocorrelations between these points,
as is discussed in Section 1.3.1. In the example here, the autocorrelations
of networks outputs for test cases from one super-transition to another in
the sampling phase turn out to be quite small (assuming, as always, that
there are no undetected long-range correlations). Accordingly, the variance
of the estimate is just the variance of the output divided by the number
of sample points, 100 here. For the test case illustrated in Figure 3.7, the
estimated predictive means, with standard errors, are 1.1446 ± 0.0015 and
-2.845 ± 0.0015. (Note that the accuracy of the Monte Carlo estimate of
the predictive mean does not tell us what the likely error is when using this
mean as a guess for the actual target values, The latter might be estimated
by the standard deviation of the predictive distribution, but this estimate
may be bad if the model is bad.)

The relationship between the predictions of the model and the actual
targets in test cases is the subject of Chapter 4, but it is of interest here
to compare the test error for the robot arm problem using the hybrid
Monte Carlo implementation with the test error found by MacKay (1991,
1992b) using his implementation based on Gaussian approximations. (But
note that the model I used is slightly different than that MacKay uses, as
explained in Section 3.3.1.) Figure 3.8 shows the test error for the different

86 Chapter 3. Monte Carlo Implementation

Gaussian approximation method of MacKay
Solution with highest evidence
Solution with lowest test error

Hybrid Monte Carlo, with 150 super-transitions
Last 100 points from individual runs
Last 100 points from all three runs

Hybrid Monte Carlo, with 30 super-transitions
Last 15 points from individual runs
Last 15 points from all three runs

A verage squared test error

0.00573
0.00557

0.00558 0.00554 0.00561
0.00557

0.00557 0.00562 0.00560
0.00558

FIGURE 3.8. Average test error on the robot arm problem with different im
plementations. The hybrid Monte Carlo sampling runs used super-transitions of
32000 leapfrog steps each, with L = 8000 and '1 = 0.3.

implementations, measured as the average over the 200 test cases of the
total squared error in guessing the two targets. The expected test error for
guesses based on knowledge of the true distribution is 0.00500.

The test errors for MacKay's Gaussian approximation method are taken
from a figure in his paper.2 MacKay trains networks from many random
starting points, finding many local minima, and evaluates the quality of
each run by an "evidence" measure. In the top section of Figure 3.8, I give
the test error both for the network of MacKay's with the largest evidence,
and for the network with the smallest test error (but slightly lower evi
dence). The network with smallest test error cannot be identified from the
training data, of course, but it is possible that a similarly small test error
could be obtained by averaging the outputs of several of the networks with
large evidence.

The middle section of Figure 3.8 shows results based on networks from
the last 100 super-transitions of the hybrid Monte Carlo sampling runs
described previously, with L = 8000. Results were very similar using the
other runs with 500 ~ L ~ 32000, but slightly worse for L = 125. The
first results shown are for guesses found by averaging the outputs of the
100 networks in each run separately. There is little variation over the three
runs, an indication that these runs had all reached a good approximation
to the true equilibrium distribution and had sampled from its entirety.
Since the guesses made here are based on Monte Carlo estimates of the
predictive means, rather than the exact values implied by the model, the

2See Figure 11 of (MacKay 1992b). MacKay reports test performance in terms of the
total squared error on the test set, scaled 50 that the expected total error based on the
true relationship is equal to the total number of test targets. To convert his figures to
average squared error, divide by 400 and multiply by 0.0050.

3.3 A demonstration of the hybrid Monte Carlo implementation 87

average squared error will be larger than that which would be obtained
using an exact implementation - specifically, the expected squared error
on a single test case will be inflated by the variance of the Monte Carlo
estimate for the predictive mean for that case. The test error that results
when the networks from all three runs are combined is shown in the figure
as well; it differs little from the results of the separate runs. This provides
additional evidence that equilibrium had been reached. It also shows that
the inflation of the squared error due to the variance of the estimates is
negligible in this example.

As can be seen, the test error using the hybrid Monte Carlo implemen
tation is a bit better than for the network of MacKay's with the largest
evidence (though no better than the network of MacKay's with lowest
test error). It is tempting to regard this as an indication that the guesses
found using hybrid Monte Carlo are closer to the true Bayesian predictions,
though there is no theoretical guarantee that the true Bayesian predictions
will have lower test error. The difference is rather small, however, so it
appears that MacKay's Gaussian approximation was indeed adequate for
the robot arm problem.

3.3.4 Computation time required

Solving the robot arm problem using one of these hybrid Monte Carlo runs
requires nearly twenty hours of computation time - nineteen hours for
the 150 super-transitions in the sampling phase, plus a bit for the initial
phase and for chosing good values of Land 1] to use in the sampling phase.
One may wonder whether this much computation time is really necessary
to solve the problem using hybrid Monte Carlo. The bottom section of
Figure 3.8 shows the test error obtained using the first 30 super-transitions
of the sampling runs, with only the last 15 states of each run used in
the estimates, earlier states being discarded in case they are not from the
equilibrium distribution. As can be seen, the results from these shorter runs,
each requiring about four hours of computation time, are not appreciably
different from those based on the longer runs.

Unfortunately, it is only in retrospect that we can be sure that these
short runs give good results. The first 30 super-transitions of the runs
provide no clear evidence that equilibrium had been reached, though from
the longer runs it appears that it had. Nevertheless, it may be necessary
to use such short runs if more time is not available. Indeed, much more
drastic abbreviations of the procedure can be contemplated. For example,
averaging the outputs of the final five networks from all three initial phase
runs with L = 64 shown in Figure 3.2 gives a test error of 0.00597. In
some circumstances, this might be considered an acceptable result, obtained
using about seventeen minutes of computation time.

88 Chapter 3. Monte Carlo Implementation

It would be interesting to know how the computation time for Bayesian
learning using hybrid Monte Carlo compares with that using the Gaussian
approximation method. David MacKay (personal communication, 1994)
has informed me that finding a solution for the robot arm problem using his
program for Bayesian neural network learning requires about six minutes of
computation time on a machine (a SPARC 10) of power roughly comparable
to that of the machine used for my tests. Perhaps ten such runs would
be needed to have some confidence that a good local minimum has been
found, for a total computation time of about one hour. David MacKay feels
that improvements to the program might significantly reduce this time.
The hybrid Monte Carlo method may thus be somewhat slower than the
Gaussian approximation method on the robot arm problem. These timing
figures should not be taken too seriously, however, since they are heavily
influenced by the details of the machines and programs used, and by the
effort expended to ensure that the answer arrived at is as good as is possible.

3.4 Comparison of hybrid Monte Carlo with other
methods

I claimed earlier that the hybrid Monte Carlo method is superior to simple
forms of the Metropolis algorithm and to the Langevin method, due to its
avoidance ofrandom walk behaviour. In this section I will substantiate this
claim with regard to the robot arm problem. I will also investigate whether
uncorrected dynamical methods offer any advantage for this problem.

Comparisons of performance are easiest during the sampling phase, once
the situation has stabilized. I will first look at how well various methods
sample the square root of the average squared magnitude of the hidden
output weights, which determines the distribution of the associated hyper
parameter. Recall that this was one of the quantities used to assess sampling
performance in Section 3.3.2.

Figure 3.9 shows this quantity being sampled first by a simple form of
the Metropolis algorithm with a Gaussian proposal distribution, second
by the Langevin method (i.e. hybrid Monte Carlo with L = 1), and third
by hybrid Monte Carlo with L = 2000 (which was seen in Section 3.3
to be close to the optimal trajectory length). The heuristic procedure for
determining stepsizes described in Section 3.2.2 was used for all methods.
For the simple Metropolis method, the "stepsize" for a parameter was used
as the standard deviation for its Gaussian proposal distribution (the mean
being the current value). The proposed changes for different parameters
were independent. Note that the super-transitions used here consisted of
only 2000 leapfrog steps or Metropolis updates, compared to 32000 for the
super-transitions in the sampling phase described in Section 3.3.2.

3.4 Comparison of hybrid Mont.e Carlo with other methods 89

5.65 -

5.60 -

5.55 - 10, ". w" .. "v.. JI'L r\,
5.50 -':' .)"v+'75r~ ... ~

"'U~~'" I~'.'I"''' \.
5.45 - ., \\ .'

\
5.40 - V'y,\...
5.35, ,

.() HK) 200

Simple Metropolis

5.40 -

5.35,

o 1(Xl 21K)

Langevin Method Vs. Hybrid Monte Carlo

FIGURE 3.9. Progress of simple Metropolis and Langevin methods in the sam
pling phase. These plots show the square root of the average squared magnitude
of the hidden-output weights for runs started from the equilibrium distribution
(from the end of one of the sampling phase hybrid Monte Carlo runs). The hori
zontal axis gives the number of super-transitions, each consisting of 2000 simple
Metropolis or Langevin updates for the parameters, or for the plot on the right,
of a single hybrid Monte Carlo update using a trajectory 2000 leapfrog steps long.
(In all cases, each parameter update is preceded by a Gibbs sampling update for
the hyperparameters). On the left, results are shown for simple Metropolis with
'1 = 0.1 (solid), '1 = 0.3 (dotted), and '1 = 0.9 (dashed). In the centre, results are
shown for the Langevin method, with the same values of '1. On the right, these
results are re-plotted (solid) along with the result using hybrid Monte Carlo with
'1 = 0.3 and L = 2000 (dotted). Note the chang;e in vertical scale.

Results for the simple Metropolis method are shown in the left of Fig
ure 3.9, with the stepsize adjustment factor, "I, set to 0.1, 0.3, and 0.9. The
acceptance rates with these values of "I were 76%, 39%, and 4%, respec
tively. For." = 2.7, the acceptance rate was 0.04%, and performance was
poorer than for any of the runs shown.

Results for the Langevin method are shown in the centre of Figure 3.9,
again for." set to 0.1, 0.3, and 0.9. The acceptance rates were 99%, 81%,
and 0.8%, respectively. No changes were accepted in a run with." = 2.7.

The plot on the right of Figure 3.9 shows that all these results are much
worse than those obtained in a run using hybrid Monte Carlo with." = 0.3
and L = 2000. We can get a rough idea of how much worse the other
methods are as follows. The width of the region explored by the simple
Metropolis and Langevin runs in 200 super-transitions was in no case more
than about 0.2. The hybrid Monte Carlo run explored a range of about 6,
not much less than the full range seen in the longer runs of Figure 3.5. Since
the simple Metropolis and Langevin runs operate via a random walk, for
them to explore a similar range would likely require about (6/0.2)2 = 900
times as many super-transitions as required for hybrid Monte Carlo.

90 Chapter 3. Monte Carlo Implementation

The difference in how well the methods sample was somewhat less dra
matic for the quantities of direct interest, the outputs of the network for
test cases, but it was still very substantial. As discussed in Section 1.3.1,
the efficiency with which the expectation of a quantity can be estimated is
determined by the sum of the autocorrelations for that quantity at all lags.
For outputs in test cases, the sum of these auto correlations was found to
be a factor of ten or more greater for the simple Metropolis and Langevin
methods than for hybrid Monte Carlo with L = 2000.

I have also tried using simple Metropolis and the Langevin method in
the initial phase, with a variety of values for 7]. None of these runs came
close to the performance of the hybrid Monte Carlo runs with L = 64
shown in Figure 3.2.

Might there be some way of getting simple Metropolis to perform better?

In an optimization context, Szu and Hartley {1987} advocate using a
multivariate Cauchy rather than a Gaussian as the Metropolis proposal
distribution. I have tried using a Cauchy proposal distribution for this
problem and found the results to be little different from those described
above using the Gaussian proposal distribution.

For many problems, the Metropolis algorithm can be made more efficient
by using a proposal distribution in which only a small part of the state is
altered. This is advantageous if the energy of the slightly altered state can
be incrementally computed in much less time than would be required to
find the energy of a completely new state. Such incremental computation
is possible for neural networks with one output and one hidden layer; if
appropriate intermediate results are saved, the outputs of such a network
can be re-computed in constant time after a change in one weight. Opti
mistically, one might hope for an order of magnitude or more improvement
in efficiency from using this technique in a simple Metropolis method. How
ever, one could also try using this technique to speed up the computation
of trajectories for hybrid Monte Carlo, so it is not clear that success here
would change the relative merits of the two algorithms.

I have also investigated whether uncorrected stochastic dynamics {see
Section 3.1.2} might have advantages over hybrid Monte Carlo. With hybrid
Monte Carlo, the stepsize we can use is limited by the resulting rejection
rate; for uncorrected stochastic dynamics, the stepsize is limited by our
tolerance for the systematic error that inexact simulation introduces. In
sufficiently large problems, we might expect that stochastic dynamics will
have an advantage, since the error in the energy that controls the rejection
rate will grow with system size, but the systematic error may perhaps not
(for more on this, see the discussion by Toussaint (1989)). However, for
the robot arm problem, I- found that no significant benefit was obtainable
using uncorrected stochastic dynamics, either with long trajectories, or with

3.5 Variants of hybrid Monte Carlo 91

trajectories one step long (the uncorrected Langevin method). For stepsizes
much larger than was used for the hybrid Monte Carlo runs, the trajectories
became unstable, and the systematic error was very large. This is as one
would expect from the data on the error in energy shown in Figure 3.3.

Uncorrected stochastic dynamics might still be of interest for reasons
other than increased speed. Its greater simplicity might make it more at
tractive for hardware implementation, for instance. I have tried using un
corrected stochastic dynamics in a sampling phase run with L = 8000 and
T/ = 0.3. This run was identical to the corresponding hybrid Monte Carlo
run except that trajectories were never rejected. The results using uncor
rected stochastic dynamics were essentially indistinguishable from those
using hybrid Monte Carlo, showing that this is a viable option. I had
previously obtained similar results with an earlier implementation (Neal
1993a). Nevertheless, I believe that hybrid Monte Carlo is the more robust
choice for general use. When too large a stepsize is used with hybrid Monte
Carlo, the result is the easily diagnosed problem of a high rejection rate;
with uncorrected stochastic dynamics, the result is systematic error that
might sometimes be significant, yet go unnoticed.

3.5 Variants of hybrid Monte Carlo

A number of variants of the hybrid Monte Carlo algorithm have been pro
posed. Some that might be useful in this application have not yet been
evaluated, such as the use of discretizations of the dynamics other than the
leapfrog method (Creutz and Gocksch 1989). I have made preliminary in
vestigations into three variants - in which trajectories are computed using
"partial gradients", in which a "windowed" acceptance procedure is used,
and in which random walks are suppressed by using "persistence" rather
by than by using long trajectories. These variations are not always better
than the standard procedure, but they do give a significant advantage in
some circumstances, especially when used together.

3.5.1 Computation of trajectories using partial gradients

When minimizing the training error for a neural network using gradient
descent, many people do not compute the derivatives of the total error at
each step, but instead look at only one training case, selected at random, or
in sequence. (This is the method used in the original papers of Rumelhart,
Hinton, and Williams (1986a, 1986b), for example.) In the limit of small
stepsizes, this "on-line" learning procedure gives the same result as looking
at all training cases each time, since at a small enough scale the error
function will be close to linear, and the average effect of the on-line steps
will be the same as that of a step based on the full training error. One

92 Chapter 3. Monte Carlo Implementation

might expect the on-line procedure to be superior when the training set is
redundant, having many similar training cases.

A similar idea can be applied to the computation of trajectories for hy
brid Monte Carlo. Taking a somewhat more general view, let us assume
that we have J{ approximations to the potential energy function, given
by Ek (q), for k = 1, ... , J{, and that the average of these approximations

K
gives the true energy function, i.e. E(q) = (1/ K) L Ek(q). We can now

k=l
consider replacing each of the leapfrog steps based on derivatives of E, done
with a stepsize of f, by a sequence of J{ leapfrog steps using in sequence
the derivatives of each of the Ek, what I will call the "partial gradients" ,
each done with a stepsize of f/ J{. I will call such a sequence of leapfrog
steps based on partial gradients a "multi-leap" with J(steps; a multi-leap
with one step is just an ordinary leapfrog step. In order to preserve re
versibility, it is necessary to randomly decide for each trajectory whether
to perform the multi-leaps by using the Ek in ascending order or in de
scending order. Alternatively, one can select a random permutation of the
Ek for each trajectory, which also insures against the possibility that some
particular ordering might be especially bad. This is the method I used in
the experiments described below. (It would also be valid to choose a ran
dom permutation for each multi-leap within a trajectory, but this leads to
much larger errors.)

In the limit of small f, the procedure using partial gradients should
produce the same trajectory as the standard procedure using full gradients.
Of more interest is what happens for larger f. If the Ek are in fact all
identical to E, then the new procedure will be stable up to values of f

that are J(times larger than those under which the standard procedure is
stable. With a suitable choice of f, each multi-leap will then move J(times
as far as a single standard leapfrog step could. Presumably the Ek are not
quite identical to E, but if they are good approximations to it, we may
expect that we will be able to use a value of f that is at least somewhat
greater than that usable with the standard procedure.

Of course, this procedure will be advantageous only if the partial gradi
ents are cheaper to compute than the full gradient. When E represents the
log of the posterior probability, cheaper approximations can be obtained by
looking at only part of the training set. We can rewrite the energy function
of equation (3.23) as follows (setting F(-y) to zero for simplicity):

n

E(8) = - log P(8 I 'Y) L log P(y(c) I x(c), 8, 'Y) (3.35)
c=l

1 K
J(L [- logP(8 I 'Y) - J(L logP(y(c) I x(c), 8, 'Y)] (3.36)

k=l CEGk

3.5 Variants of hybrid Monte Carlo 93

where the Gk form a partition of the n-case training set (preferably, as close
to an equal partition as is possible). We can therefore use approximations
defined as follows:

- log P(O I/') - J{ I: log P(y(c) I x(c), 0, /,) (3.37)
cE(lk

We choose J{ to be greater than one, but still much less than n. The cost
of performing a multi-leap in which the derivatives of Ek are computed for
each k will then be only slightly greater than the cost of a single standard
leapfrog step in which the derivatives of E are computed once.

In order for the procedure as a whole to leave the desired distribution
exactly invariant, the end-point of a hybrid Monte Carlo trajectory com
puted using these approximations must be accepted or rejected based on
the exact value of E. If the trajectories used are long, as will usually be
necessary, this full evaluation of E will be a small part of the total cost of
a hybrid Monte Carlo update.

I have investigated the effects of using partial gradients for the robot
arm problem, with 200 training cases, by looking at the error in H over a
trajectory of 200 multi-leaps for various values of the stepsize adjustment
factor, TJ. The results are shown in Figure 3.10, for J{ = 1 (the standard
method),]{ = 4 (Gk of size 50), and J{ = 16 (Gk of size 12 or 13). As
can be seen, trajectories computed with K = 4 remain stable up to about
'fJ = 1.0, twice the limit for stability with the standard method. Little or
no further improvement is seen with]{ = 16, however. For small values of
'fJ, the error in H with]{ = 4 is larger than for J{ = 1. For values of 'fJ
between 0.5 and 1.0, the error with K = 4 is smaller, since the standard
procedure is unstable, but the error is still large enough to produce a rather
low acceptance rate.

Because of this, it is difficult to obtain much net benefit from using
partial gradients for this problem. For example, I tried using 1) = 0.6 and
L = 4000 with]{ = 4, which should produce trajectories similar to those
produced by the standard procedure with '1 = 0.3 and L = 8000, but using
about half the computation time. Due to the larger error in H, however,
the acceptance rate for these trajectories was only about 50%, whereas for
the standard procedure is was about 85%. Considering that there is a bit
more computational overhead with f{ = 4 than with K = 1, the cost per
accepted trajectory is about the same.

More empirical and theoretical work is needed to better understand the
effect of using partial gradients. It seems possible that significant benefits
might be obtained when the training set is larger than is the case in the
robot arm problem, or when the model or prior are different. Fortunately, it
turns out that a significant benefit can be obtained even for the robot arm

94 Chapter 3. Monte Carlo Implementation

>30- ... -_._ _ ... _ __ ... >30- ... ' "-- --....:. _ .• >30-

20- 20- 20-

10- 10- 10-

, .'
0-· ;. 0-1':", I,

". .. ," ::., "', 0- .'. .. ' . ,
".

I I I I I I I I I
0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

K=l K=4 K=16

FIGURE 3.10. Error in energy for trajectories computed using partial gradients.
Each plot shows the change in total energy (H) for 100 trajectories consisting of
200 multi-leaps with l(steps. The plot on the left is for l(= 1, the same as the
standard method, for which data is also shown in Figure 3.3. The plots for l(= 4
and l(= 16 show the effect of using partial gradients. The horizontal axes show
the randomly-selected stepsize adjustment factors (ry) on a log scale; the vertical
axes show the change in H, with changes greater than 30 plotted at 30. Starting
points for the trajectories were obtained by using these trajectories in a hybrid
Monte Carlo simulation, started at equilibrium.

>30- ... _ _ •.•.•• >30- _" ... _ >30-

20- 20 20-

10- 10- 10-

0- .. • 0- , : ... " \': . : 0- ,~,,\o, .\f#. :\o • . ,:., •

I

1.0
I

0.5
I

1.0
I

2.0
I

0.5
I

1.0
I

2.0

K=l K=4 K=16

FIGURE 3.11. Difference in free energy for windowed trajectories. This figure
is similar to Figure 3.10, but the trajectories were evaluated in terms of the
difference in free energy between windows of length 20 at the beginning and end;
this difference is shown on the vertical axes.

3.5 Variants of hybrid Monte Carlo 95

problem if the partial gradient method is combined with the "windowed"
variant of hybrid Monte Carlo, which willi be described next.

3.5.2 The windowed hybrid Monte Carlo algorithm

I have developed a variant of hybrid Monte Carlo in which transitions take
place between "windows" of states at the beginning and end of a trajec
tory, rather than between single states (Neal 1994). Whether a candidate
transition is accepted or rejected is based on the sum of the probabilities
of the states in each window. This procedure has the effect of averaging
over errors in H along the trajectory, increasing the acceptance rate. In
this section, I will investigate the merits of this variant when applied to the
robot arm problem, both when trajectories are computed by the standard
method, and when they are computed using partial gradients.

In the windowed hybrid Monte Carlo algorithm, a trajectory computed
by L leapfrog steps (or, if partial gradients are used, by L multi-leaps) is
regarded as a sequence of L+ 1 states, in which the first W states constitute
the "reject" window, 'Il, and the last W states the "accept" window, A. The
free energy of a window W is defined in analogy with statistical physics,
as follows

F(W) -log [L exp (- H (q s, Ps))] (3.38)
sEW

The sum of the probabilities of all states in a window is given, up to a
constant factor, by exp(- F (W)), so the free energy plays the same role for
windows as the total energy does for states.

Operation of the windowed algorithm is analogous to that of the stan
dard algorithm - the momentum is randomized, a trajectory is computed,
and the result of the trajectory is either accepted or rejected. In the win
dowed algorithm, however, the decision to accept or reject is based on the
difference in free energies between the accept and reject windows. If the
trajectory is accepted, the next state of the Markov chain is taken from the
accept window, with a particular state from that window being selected at
random according to their relative probabilities. Similarly, if the trajectory
is rejected, the next state is randomly selected from the reject window.

It turns out that for this procedure to be valid, one further elabora
tion is required - the start state must be randomly positioned within the
reject window. To accomplish this, we first choose an offset, T, for the
start state uniformly from {O, ... , W - I}. We then compute the trajectory
backwards from its normal direction for T leapfrog steps. (If the partial
gradient method is used, we go backwards for T multi-leaps, during which
the approximations must be applied in the reverse of their normal order.)
Finally, after restoring the initial state, we compute the forward part of the
trajectory, consisting of L - T leapfrog steps (or multi-leaps).

96 Chapter 3. Monte Carlo Implementation

The windowed algorithm can be used with a window size, W, up to the
total number of states in the trajectory, L + 1. However, my tests on the
robot arm problem were done only with windows much smaller than L;
specifically, I used W = 20, while as seen in Section 3.3, the appropriate
value of L is in the thousands. With such small windows, the distance
moved when a trajectory is accepted is almost the same as for the standard
algorithm with the same trajectory length. The two methods can therefore
be compared by looking at their acceptance rates, which are determined
by the differences in total energy or free energy between the start and end
of the trajectory.

Figure 3.11 shows the difference in free energy between the accept and
reject windows for 100 trajectories of length 200 started from the equilib
rium distribution for the robot arm problem, for trajectories computed with
full gradients (I< = 1), and with partial gradients (J< = 4 and J< = 16).
These plots correspond directly to those in Figure 3.10, done with the
non-windowed algorithm. Comparing the two figures, it is clear that for
trajectories that remain stable, the free energy differences for the win
dowed algorithm are significantly less than the total energy differences for
the standard algorithm. As one would expect, there is no difference in the
point at which the trajectories become unstable.

Accordingly, we should be able to use a larger value of 'T] with the win
dowed algorithm than with the standard algorithm, while still maintaining
a low rejection rate. For trajectories computed using the full gradient (on
the left of the figures), this will give only a modest benefit, since the tra
jectories become unstable at about fJ = 0.5, not too far above the value
'T] = 0.3 that was used in Section 3.3. (Note that in practice we would want
to leave some safety margin between the value of fJ used and the point where
the trajectories becomes unstable, since the point of instability will not be
measured exactly and might vary during the course of the simulation.)

The windowed algorithm provides a significant benefit only when there
is a significant range of stepsizes where the trajectories are not yet unsta
ble, but do have large enough error that the acceptance rate is low. The
size of this range should generally increase with the number of parameters
(Neal 1994), so the windowed algorithm might be more useful with larger
networks. The range of stepsizes giving stable trajectories with large error
is also bigger when partial gradients are used, as seen in Figure 3.10. The
centre and right plots of Figure 3.11 show that the windowed algorithm
does indeed reduce the free energy differences in these cases.

To confirm that combining partial gradients with the windowed algo
rithm can give a significant benefit, I did three sampling phase runs· with
J< = 4, L = 4000, W = 20, and fJ = 0.6, using super-transitions of 32000
leapfrog steps, as in the Section 3.3. Trajectories of 4000 leapfrog steps
with 1] = 0.6 should be equivalent to trajectories of 8000 leapfrog steps

3.5 Variants of hybrid Monte Carlo 97

with 'fJ = 0.3, which were found in Section 3.3 to be of approximately
optimal length.

Since twice as many trajectories are computed in a super-transition with
L = 4000 than with L = 8000, we may hope for these runs to progress at
twice the rate of the L = 8000 runs with the standard algorithm, as long
as the rejection rate is not higher. The observed rejection rate using partial
gradients and windows with 'fJ = 0.6 was approximately 15%, which is
indeed close to the 13% rate seen for the standard algorithm with 'fJ =
0.3. As we would therefore expect, the runs using partial gradients and
windows appeared to converge to the equilibrium distribution in about half
the time (less than 10 super-transitions vs. around 15 or 20). Estimated
autocorrelations for the quantities shown in Figure 3.6 were also as expected
for a factor of two speedup.

3.5.3 Hybrid Monte Carlo with persistent momentum

I will briefly mention one further variation on hybrid Monte Carlo that I
have used recently, due to Horowitz (1991), which I will refer to as hybrid
Monte Carlo with "persistence" for the momentum.

Recall that the main advantage of hybrid Monte Carlo over other Markov
chain methods is that random walks can be suppressed by using long trajec
tories, consisting of many leapfrog steps. In standard hybrid Monte Carlo,
this advantage is lost if short trajectories are used, because the momentum
variables are replaced in a Gibbs sampling step between each trajectory.
Horowitz (1991) proposes using trajectories as short as a single leapfrog
step, but with only partial replacement of the momentum variables be
tween trajectories. Motion will therefore tend to "persist" in largely the
same direction from one trajectory to the next, suppressing random walk
behaviour.

An iteration of hybrid Monte Carlo wit.h persistence operates as follows:

a) Perform a partial replacement of the momentum variables,
setting them to new values, p~, as follows:

where ni is a Gaussian random variate with mean zero and
variance given by the mass, mi, and A is a parameter of the
method, with a value between I) and 1.

b) Perform a dynamical transition, as described by steps (1)
(3) on page 61 - briefly, one finds a candidate state by
performing L leapfrog steps and then negating the momen
tum, and one then accepts or rejects this candidate state
based on the change in H.

98 Chapter 3. Monte Carlo Implementation

c) Negate the momentum variables, regardless of whether the
candidate state was accepted in step (b).

Setting A to zero in step (a) produces the equivalent of standard hybrid
Monte Carlo. Setting A to a value only slightly less than one produces a
large degree of persistence, as the momentum variables will then be changed
only slightly.

Steps (a) to (c) above will leave the canonical distribution invariant if
each step does so individually. The dynamical transition of step (b) leaves
the canonical distribution invariant for the reasons discussed previously.
That steps (a) and (c) also leave the canonical distribution invariant can
be seen directly from equation (3.2).

Step (c) of the procedure is crucial. Without it, the negation in step (b)
will result in the path of each accepted trajectory being almost retraced
when the next trajectory is accepted - not at all what we hope for from
a method that is supposed to move persistently in one direction. The two
negations cancel when the candidate state in step (b) is accepted. One
might think that the method could be simplified by removing the negations
from both step (b) and step (c), but the resulting method would not leave
the canonical distribution invariant.

Note, however, that this method will perform well only if the rejection
rate in step (b) is small, since when a rejection occurs, the state is left un
changed by step (b), but the momentum is still negated in step (c), causing
an undesirable reversal of direction. Horowitz (1991) uses trajectories con
sisting of a single leapfrog step, which for a given stepsize produce a lower
rejection rate than longer trajectories. I generally use trajectories of mod
erate length with the "windowed" acceptance procedure of Section 3.5.2;
this can also produce a very low rejection rate.

Is there any advantage to be gained by suppressing random walks in this
way rather than by using long trajectories? In a general context, it is not
clear that there is any advantage. With this implementation of Bayesian
neural network learning, however, reducing the length of trajectories allows
Gibbs sampling updates for the hyperparameters to occur more often. As
discussed at the end of Section 3.3.2, the frequency of hyperparameter
updates may well be the limiting factor in this implementation.

My preliminary experience is that using shorter trajectories with persis
tence can indeed speed up sampling. Rasmussen (1996) has also obtained
good results with this method. More systematic investigation of the merits
of this and other variants of hybrid Monte Carlo is required, however.

Chapter 4

Evaluation of Neural Network Models

This chapter reports empirical evaluations of the predictive performance
of Bayesian neural network models applied to several synthetic and real
data sets. Good results were obtained when large networks with appropri
ate priors were used on small data sets for a synthetic regression problem,
confirming expectations based on properties of the associated priors over
functions. The Automatic Relevance Determination model was effective in
suppressing irrelevant inputs in tests on synthetic regression and classifi
cation problems. Tests on two real data sets showed that Bayesian neural
network models, implemented using hybrid Monte Carlo, can produce good
results when applied to realistic problems of moderate size.

From a doctrinaire Bayesian viewpoint., a learning procedure is correct
if it accurately captures our prior beliefs, and then updates these beliefs to
take proper account of the data. If these prior beliefs are uninformative,
or are actually wrong, the Bayesian procedure may have poor predictive
performance, but the fault in such a case lies not with the procedure em
ployed, but with our own ignorance or error. There might therefore seem to
be no point in empirically testing Bayesian learning procedures; we should
simply select a procedure that implements a model and prior that accord
with our beliefs, as determined by careful introspection.

Whatever its merits in simple situations, this approach is clearly in
adequate when using complex models such as neural networks. Although
we can gain some insight into the nature of these models by theoretical
analysis and by sampling from the prior, as was done in Chapter 2, we

100 Chapter 4. Evaluation of Neural Network Models

will probably never have a complete, intuitive understanding of their na
ture, and hence will never be entirely confident that our selection of such a
model truly captures our prior beliefs. Furthermore, even complex models
are seldom complex enough. We usually try to make do with a model that
ignores certain aspects of our beliefs that we hope are not crucial for the
problem at hand. This hope will not always be fulfilled.

Empirical testing therefore does have a role to play in the development
of complex Bayesian models. It may reveal characteristics of the models
that were not apparent to us initially, as well as identifying as crucial
some aspects of the problem that we had at first hoped we could ignore.
Testing is also needed in order to judge whether the implementation used
is adequate. Finally, empirical performance is the only common ground on
which Bayesian methods can be compared with those having a different
philosophical basis.

In this chapter, I first use two synthetic data sets to evaluate a number
of Bayesian neural networks models, using the Markov chain Monte Carlo
implementation described in Chapter 3. One objective of these tests is to
confirm that large networks perform well even with small training sets, as
expected from the analysis in Chapter 2. Another aim is to investigate the
performance of hierarchical models, particularly the Automatic Relevance
Determination (ARD) model.

I then apply the Bayesian method to two real data sets, using models
and priors selected in light of the discussions in Chapters 1 and 2, as well as
the previous experience with synthetic data sets. These real data sets have
been previously used in evaluations of other learning procedures, allowing
some comparisons to be made between these procedures and the Bayesian
models.

4.1 Network architectures, priors, and training
procedures

The tests reported in this chapter used the network architectures and priors
discussed in Chapters 1 and 2 and the hybrid Monte Carlo implementation
of Chapter 3. I will briefly review these here. Additional details are also
found in Appendix A.

The networks used are multilayer perceptrons with zero or more layers
of tanh hidden units. The first hidden layer is connected to the inputs;
subsequent hidden layers are connected to the previous hidden layer, and
optionally to the inputs as well. The linear output units have connections
from the last hidden layer (if present), and may also have direct connections
from the input units. There are also biases for the hidden and output units.

4.1 Network architectures, pri()rs, and training procedures 101

The outputs of the network define the conditional distribution of the target
values associated with the inputs, according to whatever data model is
being used.

The priors for the network parameters (the weights and biases) are de
fined hierarchically, using hyperparameters that control the standard de
viations for weights and biases in various groups. In some cases, a single
hyperparameter controls all the weights on connections from units in one
layer to units in another layer (e.g. all weights from the input units to units
in the first hidden layer). In other models, a finer level of control is exer
cised, with a separate hyperparameter being used to control the weights
out of each unit of some type (e.g. all weights from one input unit to units
in the first hidden layer).

In detail, suppose that U1, ••. , Uk are the parameters (weights or biases)
in one group. The hyperparameter associated with this group gives the
standard deviation, Uu, of a Gaussian prior for these weights:

(27r)-k/2 a-;;k exp (- 2: U[/ 2a-~)
i

(4.1)

The prior for the hyperparameter itself is expressed in terms of the "pre
cision" , Tu = a-;;2, which is given a prior distribution of the Gamma form,
with mean Wu:

(a /2w)0:"/2
u u 1".O:u/ 2- 1 exp (_ T: a /2w)
r(au /2) u u u u

(4.2)

The value of au (which must be positive) controls how broad the prior
for Tu is, with the prior being broader for values of au close to zero. Note
that the prior for a-~ = 1/Tu implied by equation (4.2) has a heavier up
ward tail than the prior for Tu itself. Put another way, the prior for log a-u

has a heavier upward tail than downward tail. This asymmetry is proba
bly undesirable; the Gamma form was chosen despite this because of its
mathematical convenience.

Integrating over Tu reveals that the prior for U1 , ... , Uk is in fact a multi
variate t-distribution, with au as its shape parameter. This way of viewing
the prior is not particular useful when the parameter group consists of
all the weights between units in two layers, but it can be when the prior
is for a more specific group of weights. When the weights on the connec
tions out of each hidden unit are treated as a separate group, with each
hidden unit having an associated precision hyperparameter, the resulting
t-distributions (with au < 2) produce priors that, when properly scaled,
converge to non-Gaussian stable distributions, and can thus be used in
indefinitely large networks, as discussed in Chapter 2, and below in Sec-

102 Chapter 4. Evaluation of Neural Network Models

tion 4.2.1 Using separate hyperparameters for the weights out of each input
unit gives the Automatic Relevance Determination (ARD) prior discussed
in Section 1.2.3, and below in Section 4.3.2 In these cases, it is often desir
able to add another level to the hierarchy by letting the mean precision for
the weights (w in equation 4.2) be a hyperparameter as well, common to a
number of parameter groups of one type. This higher-level hyperparameter
can then be given a prior of the same Gamma form.

Gibbs sampling and hybrid Monte Carlo were used to sample from
the posterior distribution for the network parameters and hyperparam
eters, conditional on the training data, in the manner demonstrated in
Section 3.3. Each run consisted of a short initial phase, whose purpose was
to reach a rough approximation of equilibrium, and a much longer sampling
phase, whose purpose was to reach a close approximation of equilibrium,
and then to collect a sample of values from the posterior distribution of
network parameters sufficient for making predictions. The sampling phases
consisted of some number of "super-transitions", each of which consisted of
some number of pairs of Gibbs sampling updates for the hyperparameters
and hybrid Monte Carlo updates for the parameters. Only the states at the
ends of the super-transitions were saved for possible later use in making
predictions. The hybrid Monte Carlo trajectory length (L) and stepsize
adjustment factor (1]) were set differently for the two phases, based on trial
and error and on tests following the initial phase. The "partial gradient"
and "windowed" variants of hybrid Monte Carlo (see Section 3.5) were used
for some problems. When partial gradients are used, I will use the phrase
"leapfrog step" to refer to what was called a "multi-leap" in Chapter 3 -
that is, a series of leapfrog steps that together look once at each training
case.

Timing figures given in this chapter are for the same machine as was
used for the demonstration in Section 3.3.

4.2 Tests of the behaviour of large networks

In Chapters 1 and 2, I argued that when using a properly-specified prior
there is no need to limit the complexity of neural network models - indeed,
in most circumstances, only an infinite network is truly capable of capturing

lThe implementation also supports direct specification of t-distributions for individ
ual parameters, but the indirect form may be preferable because Tu can then be used in
the heuristic procedure for setting stepsizes (see Section 3.2.2 and Section AA).

2In an ARD network where inputs connect both to a hidden layer and directly to the
outputs, each input unit will have two hyperparameters, controlling weights on connec
tions to the two different layers.-It might be desirable to link these two hyperparameters
in some way, but the implementation does not support this at present.

4.2 Tests of the behaviour of large networks 103

our beliefs about the problem. In particular, I demonstrated in Chapter 2
that the prior over functions implied by a properly-scaled prior over weights
will reach a limit as the number of hidden units in the network increases.

We would like to know more than was established theoretically, however.
How many hidden units does it take to approach the limiting prior over
functions? Is the limiting prior better for typical problems than a prior
obtained using a small network? How well can the Markov chain Monte
Carlo implementation handle large networks? Empirical testing can help in
answering these questions.

4.2.1 Theoretical expectations concerning large networks

Before pre&enting empirical results using large networks, I will discuss the
implications and limitations of the theoretical results of Chapter 2, in order
to clarify what we might expect to see in the empirical tests.

First, note that though I advocate using networks with large number
of hidden units (to the extent that this is computationally feasible), the
arguments I present in Chapter 2 do not guarantee that increasing the
number of hidden units in a network will always lead to results that are
better than (or even as good as) those obtained with a small number of
hidden units. No such guarantee is possible. If the function being learned
happens to be tanh, for example, a network with one tanh hidden unit will
perform substantially better than any more complex network. Even if the
true function can only be exactly represented by an infinite network, it is
possible that it is very close to a function that can be represented by a
small network, in which case the small network may give better predictions
when the training set is small, unless the prior used for the large network
puts extra weight on those regions of the parameter space that produce
functions close to those representable by a small network.

The theoretical arguments do show that large networks should behave
"reasonably". By this I mean that they will neither grossly "overfit" the
data - reproducing the targets in the training set very closely but per
forming poorly on test data - nor grossly "underfit" the data - ignoring
the training set entirely. In empirical tests, we should therefore expect that
performance using any of the properly-scaled priors discussed in Chapter 2
will reach a limit as network size increases, and in this limit performance
will be reasonably good.

Many models will avoid the extremes of overfitting and underfitting,
however, of which some will perform better than others. Sometimes a sim
ple model may outperform a more complex model, at least when the train
ing data is limited. Nevertheless, I believe that deliberately limiting the
complexity of the model is not fruitful when the problem is evidently com
plex. Instead, if a simple model is found that outperforms some particular

104 Chapter 4. Evaluation of Neural Network Models

complex model, the appropriate response is to define a different complex
model that captures whatever aspect of the problem led to the simple model
performing well.

For example, suppose that on some problem a network with a small
number of hidden units outperforms one with a large number of hidden
units, using a Gaussian prior for the hidden-to-output weights. As seen in
Chapter 2, a Gaussian prior for .hidden-to-output weights leads to func
tions that are built up of contributions from many hidden units, with each
individual hidden unit's contribution being insignificant. If a small network
performs better than a large network when using this Gaussian prior, one
may suspect that the prior is not appropriate. One might then hope that
a large network using a prior based on a non-Gaussian stable distribution
would better capture the properties of the problem, as it would allow a
small number hidden units to have a large effect (as in a small network),
while also allowing small corrections to these main effects to be made using
additional hidden units.

4.2.2 Tests of large networks on the robot arm problem

I have tested the behaviour of Bayesian learning with large networks on the
robot arm problem of MacKay (1991, 1992b), a regression problem with
two input variables and two target variables, described in Section 3.3.1.
For these experiments, I divided the 200-case training set used by MacKay
into two training sets of 50 cases and one of 100 cases. Using these smaller
training sets should make it easier to "overfit" the data, if overfitting is in
fact a problem.

To evaluate predictive performance, I used a test set of 10 000 cases,
drawn from the same distribution as the training data. Two performance
criteria were used. First, following MacKay, I looked at the average over
the test set of the sum of the squared errors for the two targets, when
guessing the mean of the predictive distribution. Second, I looked at the
average sum of the absolute errors for the two targets, when guessing the
median of the predictive distribution. The second criterion is less sensitive
to large errors. Since the targets are generated with Gaussian noise of
standard deviation 0.05, the expected squared error on a single test case
when using the optimal procedure based on the true relationship is 2 x
(0.05)2 = 0.0050.3 The expected sum of absolute errors using the optimal
procedure is 2 x 0.80 x 0.05 = 0.080, where 0.80 is the expected absolute
value of a variable with a standard Gaussian distribution.

3MacKay reports test performance in terms of the total squared error on a te~t set
with 200 cases, scaled so that ~he expected total error based on the true relationship
is equal to the total number of test targets. To convert his figures to average squared
error, divide by 400 and multiply by 0.0050.

4.2 Tests of the behaviour of large networks 105

I modeled the robot arm data using networks with 6, 8, 16, and 32 tanh
hidden units. (Preliminary experiments with networks containing only four
hidden units showed that their performance was much worse.) Gaussian
priors were used for the input-to-hidden weights and for the hidden bi
ases; both Gaussian and Cauchy priors were tried for the hidden-to-output
weights. The width parameters for these priors were controlled by hyper
parameters, so that their values could adapt to the data, as would normally
be desirable for real problems. The priors for the hyperparameters control
ling the input-to-hidden weights and the hidden biases were the same for
all networks; the prior for the hyperparameter controlling the hidden-to
output weights was scaled depending on the number of hidden units, in
accord with the results of Chapter 2. For all three hyperparameters, the
priors chosen were intended to be "vague". Improper priors were avoided,
however, since they may lead to posterior distributions that are also im
proper. Very vague proper priors were avoided as well, partly because at
some extreme a vague proper prior will suffer from the problems of an im
proper prior, and partly because of the possibility that with a very vague
prior the Markov chain Monte Carlo implementation might become stuck
for an extended period in some ridiculous region of the parameter space.

In detail, the precision (inverse variance) for the input-to-hidden weights
was in all cases given a Gamma prior with mean precision of w = 100 (corre
sponding to a standard deviation of 0.1) and shape parameter 0: = 0.1 (see
equation 4.2).4 The same prior was given to the precision hyperparameter
for the hidden biases. The output biases were given a fixed Gaussian prior
with standard deviation one. The prior for the hidden-to-output weights
varied. When a Gaussian prior was used for hidden-to-output weights, the
precision of the Gaussian was given a Gamma prior with 0: = 0.1 and with
mean w = 100H, where H is the number of hidden units (corresponding
to scaling the standard deviation by H- 1/ 2). To implement a Cauchy prior
for hidden-to-output weights, a 2-level scheme was used, as described in
Section 4.1. For the low level, 0: = 1 was used, to give a bivariate Cauchy
distribution for the two weights out of each hidden unit. 5 For the high-level
precision, used as the mean for the low-level precisions, a Gamma distri
bution with 0: = 0.1 and with mean w = 100H 2 was used (corresponding
to scaling the width of the Cauchy distribution by H- 1).

4 In Chapter 3, I used priors with w = 1 and 0' = 0.2. This turns out to be not as vague
as is desirable, particularly in the direction of low variance. This is not crucial with 200
training cases (as in Chapter 3), but has a noticeable effect with only 50 training cases.

50ne might instead give the two weights out of each hidden unit independent Cauchy
distributions. In the limit of many hidden units, the two targets would then be modeled
independently (see Section 2.2.1), except for the interactions introduced by the common
hyperparameters. This model might well be better for this data, but it was not tried in
these tests.

106 Chapter 4. Evaluation of Neural Network Models

The noise level was the same for both outputs. It was controlled by a
precision hyperparameter that was given a Gamma distribution with mean
w = 100 and shape parameter 0: = 0.1.

Learning began with a short initial phase, followed by a long sampling
phase, as discussed in Section 4.1. The sampling-phase super-transitions
consisted of ten pairs of Gibbs sampling and hybrid Monte Carlo updates.
I used the partial gradient method (Section 3.5.1) for computing the hybrid
Monte Carlo trajectories, with a five-way division of the training data, and
the windowed acceptance procedure (Section 3.5.2), with a window size of
ten. Stepsize adjustment factors were chosen so as to keep the rejection
rate low (between 5% and 15%). Trajectory lengths were chosen to match
the periods over which quantities such as the sum of the squares of the
weights in various groups appeared to vary, in tests done following a few
of the initial phase runs. The resulting choices were a stepsize adjustment
factor of 1] = 0.5 and a trajectory of L = 4000 leapfrog steps for networks
with 6, 8, and 16 hidden units, and 1] = 0.4 and L = 5000 for networks
with 32 hidden units.

The number of sampling phase super-transitions needed to reach a good
approximation to equilibrium was judged subjectively, largely by looking
at the behaviour of the hyperparameters and of the squared error on the
training set. On this basis, equilibrium may well have been reached in most
cases after about 10 super-transitions, but I conservatively discarded the
first 100 super-transitions for the networks with 8, and 16 hidden units, and
the first 200 super-transitions for the networks with 6 and 32 hidden units.
The smallest networks may require longer to reach equilibrium because the
roles of the hidden units become constrainted, inhibiting movement about
the parameter space; the largest networks may require longer because the
larger number of parameters makes the Gibbs sampling updates of the
hyperparameters less efficient.

For each network, I continued the sampling phase for an additional 200
super-transitions beyond the point where equilibrium was judged to have
been reached. The 200 networks saved after these super-transitions were
applied to each of the test cases, and the outputs used to make predictions.
When guessing so as to minimize expected squared error loss, I averaged
the outputs of the 200 networks, in order to estimate the mean of the
predictive distribution for the targets in the test case. When guessing so as
to minimize expected absolute error loss, I randomly generated five values
from the target distribution defined by each network (a Gaussian with mean
given by the network outputs, and standard deviation given by the current
noise level), and then found the median of the resulting 5 x 200 target
values, in order to estimate the median of the predictive distribution.

The accuracy of such estimates for the predictive means and medians
depends not only on the sample size of 200, but also on the auto correlations

4.2 Tests of the behaviour of large networks 107

Hidden Trajectory Super-tran$itions Time (hours)
units L Tf discarded total 50 cases 100 cases

6 4000 0.5 200 400 9 15
8 4000 0.5 100 300 8 14

16 4000 0.5 100 300 14 26
32 5000 0.4 200 400 46 81

FI GURE 4.1. Computational details for experiments on networks of varying size.
The trajectory parameters shown are the number of leapfrog steps in a trajec
tory (L) and the stepsize adjustment factor (1]). Also shown are the number of
super-transitions discarded in order to reach equilibrium and the total number
of super-transitions. These implementation choices varied with the number of
hidden units, but not with the prior or with the number of training cases. The
total computation time for all super-transitions is also shown; it does vary with
the number of training cases.

of the network outputs for the test cases (see Section 1.3.1). For all com
binations of network size and prior these autocorrelations were too small
to reliably distinguish from zero on the basis of the data. Non-zero au
tocorrelations were observed for the hyperparameters, however, especially
in the largest and smallest networks. For example, in the networks with
32 hidden units, the hyperparameter controlling the magnitude of input
to-hidden weights had substantial autocorrelations up to a lag of around
five or ten super-transitions. Individual network parameters had substan
tial autocorrelations for the networks with 6 and 8 hidden units, but not
for larger networks. These autocorrelations might lead one to suspect that
there could be undetected autocorrelations for the output values as well,
but these are presumably rather small. On this assumption, the sample of
200 networks is large enough that the degradation in performance due to
the variance in the estimates of the predictive mean and median should be
negligible; this is confirmed by the fact that the error when using only 100
of these networks is quite similar.

The computational details of the Markov chain Monte Carlo runs are
sUJ;nmarized in Figure 4.1, which also gives the time required for these
computations.

The predictive performance of Bayesian learning using the three training
sets is shown in Figure 4.2, for networks with varying numbers of hidden
units, using both Gaussian and Cauchy priors for the hidden-to-output
weights. In all contexts, the networks with only 6 hidden units performed
worse than the others, but no clear pattern of variation with network size
can be seen amongst networks with 8 or more hidden units. On training set
A, the networks with 8 hidden units perform better than those with 16 or
32 hidden units, but on training set B, of the same size, the reverse is true,

108 Chapter 4. Evaluation of Neural Network Models

showing that these differences are within the variation due to the random
selection of training cases.

There is thus no reason to suspect that the larger networks were either
"overfitting" or "underfitting" the data. Instead, as expected, performance
with each training set appears to reach a reasonable limiting value as the
size of the network increases. Lack of overfitting is also indicated by the
estimates produced for the standard deviation of the noise in the targets. In
all cases, the noise estimates were close to the true value of 0.05 - slightly
higher than the true value for the small networks, quite close to the true
value for the larger networks. If the larger networks were overfitting, one
would expect their noise estimates to be substantially below the true value.

These results differ from those reported by MacKay (1991, 1992b), who
found a slight decline in the "evidence" for larger networks (up to twenty
hidden units) applied to the robot arm problem with a training set of 200
cases. (He also found that the evidence was correlated with performance on
test data.) Although MacKay did not explicitly scale the prior for hidden
to-output weights as required for a limit to be reached as the number of
hidden units increases, he did treat the variance for these weights as a
hyperparameter. The variance should therefore have adopted the proper
scaling automatically, allowing the large networks to perform well.

There are several possible explanations for this discrepancy. It is possi
ble that the decline seen by MacKay was not indicative of a general and
continuing trend - it might not have continued for still larger networks,
and it might not have been seen on another training set. As I have noted,
there is no guarantee that small networks will always perform worse than
large networks; the reverse is seen in Figure 4.2 with training set A, though
not with training set B. It is also possible that the Gaussian approxima
tion method used by MacKay became inaccurate for the larger networks; I
argued in Section 1.2.5 that this is to be expected.

Though Figure 4.2 shows no consistent differences in average squared
error or average absolute error between networks with only 8 hidden units
and those with 16 or 32 hidden units, a difference was apparent in the
predictive distributions produced. As illustrated in Figure 4.3, predictions
for test cases where the inputs were not close to those in any training case
were consistently more uncertain in the larger networks - that is, the vari
ance of the outputs of the network, plus the noise variance, was larger for
the larger networks.6 This is not unexpected. Since a small network will be
able to represent only a limited range offunctions, it will generally produce

6For test cases near to cases in the training set, the variance of the network outputs
was also generally larger for the larger networks. However, the output variance is small
for such cases, and the slightly higher output variance with the larger networks was
offset by the slightly higher noise variance found with the smaller networks.

Training Set A
(50 cases)

Training Set B
(50 cases)

Training Set C
(100 cases)

4.2 Tests of the behaviour of large networks 109

Average Squared Error
(guessing mean)

.00830 -

.00825 -

.00820 -

.00815 -

.00810 -

.00805 -

. 00800 -

.00795 -

.00790 -

.00785 -

.00780 -

.00775 -

.00780 -

.00775 -

.00770 -

.00765 -

.00760 -

.00755 -

.00750 -

.00745 -

.00740 -

.00735 -

.00670 -

.00660 -

.00650 -

. 00640 -

.00630 -

.00620 -

.00610 -

........................

6 16 32

.~

6 16 32

\ \ ..---------. \ /"
~",

16

.1020 -

.1015 -

.1010 -

.1005-

.1000 -

.0995 -

.0990 -

.0985 -

.0985 -

.0980 -

.0975 -

.0970 -

.0965 -

.0960 -

.0955 -

.0920 -

.0915 -

.0910 -

.0905 -

.0900 -

.0895 -

.0890 -

.0885 -

. 0880 -

Average Absolute Error
(guessing median)

16 32

16 32

.~

16 32

FIGURE 4.2. Results on the robot arm problem with networks of varying size.
Three training sets were used, two with 50 cases, one with 100 cases. For each
training set, Bayesian learning was done for networks with 6, 8, 16, and 32 hidden
units, using both Gaussian priors for the hidden-to-output weights (solid lines)
and Cauchy priors (dotted lines). Performance is shown in terms both of average
squared error and of average absolute error, in each case when guessing optimally
for that loss function. Performance was measured on a test set of 10000 cases.

110 Chapter 4. Evaluation of Neural Network Models

3.5 - 3.5 -

3.0 - 3.0-

2.5 -

2.0 -

1.5 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5-

.. ,:*ii{· · -. - . .-.. .

-2.0 -1.5

. .

...
\:. .. , .- :·it:· •. · \ ..•..

."~ -.;: . · 'i~t~·i . ..
• PIfIl'fi,,··· . :-':) .. r:-.. '. -. , .

-2.0 -1.5

H = 16

2.5 -

2.0 -

1.5 -

-1.0

3.5 --

3.0 -

2.5

2.0 -

1.5 -

..

. " . . ~ .
..,; ~.,.

•• !.\WY:~

-2.0 -1.5

• •• e. -. : . .-... -c. •
• I~" •• ••• •• • • ~ _ t: • .-., .. x... ••••

• :.t!.:::~ 1-· J -.l., .. --:r ••••• .. :'''''' .
:.~.

..

• I

-2.0 -1.5

H=32

-1.0

-1.0

FIGURE 4.3. Predictive distributions obtained using networks of varying size.
The plots show samples of 200 points from the predictive distributions based on
training set A for the target values associated with inputs (2.0,0.5), a point just
outside the region of the training data, as defined by network models with 6,
8, 16, and 32 hidden units, using Gaussian priors. The 200 points were obtained
using the networks from the last 200 super-transitions of the Markov chain Monte
Carlo runs.

4.2 Tests of the behaviour of large networks 111

a more restricted range of predictions than would a larger network, espe
cially when extrapolating to regions where the training data is sparse. Since
we will seldom have reason to believe that the-true function is in the re
stricted class representable by a small network, the greater certainty of the
predictions produced by the small networks will usually be unwarranted.

No clear difference in performance on this problem was seen between the
networks using Gaussian priors for the hidden-to-output weights and those
using Cauchy priors, though networks with different characteristics were
found when the two different priors were used (in particular, the largest of
the hidden-to-output weights tended to be larger in the networks learned
with the Cauchy prior than in those learned with the Gaussian prior). This
is disappointing, since as discussed in Section 4.2.1, one might sometimes
expect to see such differences. The robot arm problem may perhaps be too
simple to provide insight into this matter.

The good behaviour observed using Bayesian learning with large net
works contrasts sharply with the behaviour of maximum likelihood train
ing. This is illustrated in Figure 4.4, which shows results of maximum like
lihood learning on training set A (consisting of 50 cases). For these tests,
I fixed the priors for all the weight classes to be Gaussian with a standard
deviation of 1000, and then found the maximum a posteriori probability
(MAP) estimate for the network parameters. This is equivalent to maxi
mum penalized likelihood estimation with a very small penalty; including
this small penalty avoids the problem that the true maximum likelihood
estimate could lie at infinity (though it is still possible that the true esti
mate lies sufficiently far out that it will not be found in a run of reasonable
length). I let the standard deviation of the noise be determined by the data,
as in the Bayesian runs. This has no significant effect on the location of the
maximum, but does influence the progress of the maximization procedure.

Training for these tests was done using a method similar to the standard
"backprop with momentum" technique (Rumelhart, Hinton, and Williams
1986b), which I implemented by suppressing the stochastic aspect of the
dynamical techniques used for the Bayesian learning. (This is not necessar
ily the most efficient method, but it was convenient in this context.) The
MAP estimate was found by repeatedly updating the network parameters
and associated momentum variables via "leapfrog" steps (equations (3.9)
(3.11)), with each step being based on the full gradient computed using
all training cases. The leapfrog stepsize was the same for all parameters,
and was set manually, as the heuristic stepsize selection procedure relies
on hyperparameter values that are not present in this context. After each
leapfrog step, the momentum variables were multiplied by a factor, {, less
than one. For early iterations, Gaussian noise of variance 1 _{2 was added
to the momentum after the multiplication by {, which has the effect of
leading the system to an approximation to the Bayesian posterior distribu-

112 Chapter 4. Evaluation of Neural Network Models

~

Ie-I-

5-

2-

10·2-

5-

2-

10·3-
I

500
I

1000

H=6

~-

Ie-I-

5-

2-

1e-2-

5-

2-

1e-3-
I I

1500 2000

l-

Ie-I-

5-

1e-2-

10·3-
I I I I

500 1000 1500 2000

H=8

I I I I I

0 500 1000 1500 2000

H=16

FIGURE 4.4. Results of maximum likelihood learning with networks of varying
size. Networks with 6, 8, and 16 hidden units were learned using training set A
(containing 50 cases). The plots show the progress during learning of the average
squared error on the training set (thick line) and on the test set (thin line). The
horizontal axes gives the number of training iterations, in thousands, with points
being plotted every 10 000 iterations.

tion. For later iterations, this noise was not added, causing the system to
converge to a local maximum of the (slightly penalized) likelihood?

The results in Figure 4.4 confirm the standard view that limiting the
size of the network is necessary when learning is done using maximum
likelihood. The network with 16 hidden units severely overfit the data -
the squared error on the training set fell to an unrealistically low level, while
the squared error on the test set became very bad. Indeed, this network
',ad apparel,ly not fully converged to the maximum likelihood solution;
)' it had, th'..:re is every reason to think that performance on the test set
would have been even worse.

Performance with networks of 6 and 8 hidden units was better, but not
as good as the performance using Bayesian learning. For the final parameter
values, which appear as if they may be close to the true MAP estimates, the
squared error on the test set was 0.00905 for H = 6 and 0.01155 for H = 8;
for comparison, the worst performance of any of the Bayesian networks
trained on this data set was 0.00828 (for H = 6, with a Gaussian prior).

The problem of overfitting can sometimes be alleviated by "early stop
ping" - halting training sometime before the maximum is reached, based
on performance on a validation set separate from the training set (this
is discussed, for instance, by Baldi and Chauvin (1991)). For a problem
with as small a training set as considered here (50 cases), early stopping is

7In detail, the procedure was as follows: After initialization of the parameters to zero,
there were 10000 leapfrog steps with e = 0.008 and')' = 0, with noise added, then 100000
steps with € = 0.006 and 'Y = 0.9, with noise added, then 400000 steps with € = 0.003
and 'Y = 0.99, with no noise added, then 500000 steps with e = 0.002 and 'Y = 0.999,
with no noise added, and finally 1000000 steps with f = 0.002 and 'Y = 0.9999, with no
noise added, for a total of 2000000 leapfrog steps.

4.3 Tests of Automatic Relevance Determination 113

probably not attractive, since setting aside some of this data for use as a
validation set would likely degrade performance substantially. In any case,
as can be seen from Figure 4.4, early stopping would have at best improved
performance only slightly for the networks with 6 and 8 hidden units. For
the network with 16 hidden units, early stopping could have been advanta
geous, but performance would still have been worse than with the smaller
networks. (Note, however, that the effect of early stopping may depend a
great deal on the particular optimization method used.)

Overfitting can also be addressed by adding a penalty term to the log
likelihood, a procedure known as "weight decay" in the neural network
context. In an earlier comparison (Neal 1993a), I found (in one case, at
least) that weight decay can give results not much worse than are obtained
using Bayesian learning, provided the right degree of weight decay is used.
Determining the right degree of weight decay again requires a validation
set, however, which will reduce the amount of data in the training set.8

To summarize, these tests support the conclusion that with Bayesian
learning one can use a large network even when the training set is small,
without overfitting. This result is of significant practical importance -
when faced with a learning problem, we can simply use a network that
is as large as we think may be necessary, subject to computational con
straints, rather trying somehow to determine the "right" size of network.
By not restricting the size of the network, we avoid the possibility that a
small network might not produce as good predictions (seen in Figure 4.2
with respect to the networks with only 6 hidden units), as well as the pos
sibility that a small network may produce overly-confident predictions (as
illustrated in Figure 4.3). However, as indicated in Figure 4.1, training a
large network can take a long time. In practice, though, the training time
for a problem of this sort would usually not be quite this long - I have
here been rather generous in the length of the runs in order to increase
confidence that the results are based on the true equilibrium distributions.

4.3 Tests of Automatic Relevance Determination

The Automatic Relevance Determination (ARD) model developed by David
MacKay and myself was described briefly in Section 1.2.3. Its aim is to auto
matically determine which of many inputs to a neural network are relevant
to prediction of the targets. This is done by making the weights on the

8 Alternatively, an n-way cross-valida.tion scheme might be used, ba.sed on n divisions
of the available data into training sets and validation sets. This is computationally
expensive, however, and for neural networks might not work well in any case, due to the
possibility that the networks found with different divisions may lie in dissimilar local
minima.

114 Chapter 4. Evaluation of Neural Network Models

connections out of each input unit have a distribution that is controlled
by a hyperparameter associated with that input, allowing the relevance of
each input to be determined automatically as the values of these hyper
parameters adapt to the data.

I have tested the ARD model on the noisy LED display problem used
by Breiman, et al (1984), and on a version of the robot arm problem with
irrelevant inputs. The tests on the noisy LED display problem also allow
an evaluation of how well a hierarchical model can adapt the architecture
of a network to the data.

4-3.1 Procedures for evaluating ARD models

To evaluate the ARD model, a well-defined alternative is needed for com
parison, for which the obvious choice is a model with a single hyperparam
eter controlling the weights on connections out of all input units. For some
problems, this alternative will be ill-defined, however, since if the inputs
have different dimensions, the results will depend on the arbitrary choice of
measurement units. In such cases, it is necessary to adjust the scales of the
inputs on the basis of prior knowledge, so as to make a one-unit change in
one input have the same possible significance as a one-unit change in any
other input.

Such prior knowledge may be helpful for the ARD model as well. When
the ARD model is used in problems with many input variables, it may
be necessary to use informative priors for the hyperparameters associated
with the inputs. If vague priors are used for large numbers of hyperparam
eters, the prior probability of their taking on values appropriate for any
particular problem will be very low, perhaps too low to be overcome by the
force of the data. The posterior distribution of the hyperparameters may
then be quite broad, rather than being localized to the appropriate region.
Note, by the way, that this should not be a problem when single-valued
estimates for the hyperparameters are used that maximize the probabil
ity of the data (the "evidence"), as is done by MacKay (1991, 1992b). A
single-valued estimate is of course always localized, and the location of this
estimate will usually not be affected by a widening in the permitted range
of the hyperparameters. Consequently, one can avoid the effort of select
ing informative priors when using this technique. Overall, this effect is not
necessarily desirable, however, since there are presumably times when the
posterior distribution of the hyperparameters should not be localized, but
should instead be spread over a region whose extent is comparable to that
of the correct informative prior.

Rather than use different informative priors for different input hyper
parameters, we can instead use the same prior for all of them, after rescaling
the inputs so that a one-unit change has similar significance for each, as

4.3 Tests of Automatic Relevance Determination 115

described above. Even once this is done, however, there are still several
app,arently reasonable priors one might use. I consider two possibilities:

• A 1-level prior, in which the ARD hyperpar'ameters are independently
given rather vague priors .

• A 2-level prior, in which a high-level hyperparameter common to all
inputs is given a very vague prior, while the ARD hyperparameters
applying to each input are given less vague priors, with prior mean
determined by the common high-level hyperparameter.

The second scheme is meant to avoid the possible problems with vague
priors discussed above, but without fixing the overall degree of significance
of the inputs, which may not be intuitively clear.

It is also desirable, with or without ARD, for the values of the inputs to
be shifted so that the centre of the region of possible significance is zero.
This is needed for it to be sensible to use a Gaussian of mean zero as the
prior for the hidden unit biases.

Unfortunately, shifting and scaling the inputs according to prior knowl
edge as described above is not really possible for the tests done in this
chapter. For the two synthetic data sets, we know exactly how the data
was generated, and therefore could in theory figure out exactly how to
rescale and shift the inputs to achieve optimal performance. This would
say little about performance on real problems, however. I have therefore
chosen to use the obvious forms of the inputs for these problems, which
seem fairly reasonable.

For the other data sets, we have the problem that although the data is
real, the context is now artificial. We no longer have access to whatever
expert knowledge might have been used by the original investigators to
rescale the inputs to equalize their potential relevance. On the other hand,
we do know the results of past evaluations of other learning procedures
applied to this data, which might allow this to be done in an unfair fashion.

I have handled this problem by "normalizing" the inputs in the real data
sets - that is, by shifting and rescaling each input so as to make its mean
be zero and its standard deviation be one across the training set. This is a
common procedure, used by Quinlan (1993), for example.

From a Bayesian viewpoint, this normalization of inputs may appear
to make little sense. In some cases, the values of the input variables are
simply chosen by the investigator, in which case their distribution would
seem to have nothing to do with the relationship being modeled. In other
cases, the inputs have some distribution determined by natural variation,
but the investigator's decisions heavily influence this distribution. In an
agricultural field trial, for instance, the amount of fertilizer applied to each
plot is just whatever the experimenter decides to apply. The distribution of

116 Chapter 4. Evaluation of Neural Network Models

BBBBBBBBBB
FIGURE 4.5. Digit patterns for the noisy LED display problem.

these decisions says something about the mental state of the experimenter,
but it says nothing, one would think, about the effects of fertilizer on crop
yield. The experimenter might also measure the amount of rainfall on each
test plot. Though the rainfall is not determined by the experimenter, its
distribution is heavily influenced by the experimenter's decision on how
widely to disperse the test plots. Deciding to put some of the test plots in
the desert, for example, would radically alter this distribution.

However, normalizing the inputs makes some degree of sense if we are
willing to assume that the original investigators made sensible decisions.
If so, they presumably arranged for the distribution of the input values to
cover the range over which they expected significant effects, but did not
wastefully gather data far beyond this range. If for some particular input
they failed to gather data over what they considered an adequate range,
they presumably omitted that input from the final set used. In the absence
of any presently available expert opinion, these presumptions may be the
best guide to the range over which each input might possibly have signifi
cance. Normalizing the inputs will then equalize these ranges, making use
of a non-ARD procedure sensible, and allowing simple informative priors
to be used in an ARD model.

4.3.2 Tests of ARD on the noisy LED display problem

The noisy LED display problem was used by Breiman, Friedman, 01-
shen, and Stone (1984) to evaluate their Classification and Regression Tree
(CART) system. The task is to guess the digit indicated on a seven-segment
LED display in which each segment has a 10% chance of being wrong, inde
pendently of whether any other segments are wrong. The correct patterns
for the digits are shown in Figure 4.5. The ten digits occur equally often.
The correct patterns, the frequencies of the digits, and the nature of the
display's malfunction are assumed not to be known a priori.

The seven segments to be recognized are presented as seven input vari
ables taking on values of "off" and "on", which I represent numerically as
-0.5 and +0.5. (A symmetric representation seems appropriate, since the
problem description contains no information regarding the meaning of "off"
vs. "on", and since the CART system also treats the two possible values
symmetrically.) In one version of the problem, only these seven inputs are
present; in another version, seventeen addition irrelevant input variables

4.3 Tests of Automatic Relevance Determination 117

are included, each taking the values -0.5 and +0.5 with equal probability,
independently of any other variable. The latter version will provide a test
of the ARD model.

Breiman, et al randomly generated training sets of 200 examples, and
tested performance of the resulting classifier on a test set of 5000 additional
examples. They report that in these tests the classification tree produced by
the CART system mis-classified about 30% of the test examples, regardless
of whether the seventeen irrelevant attributes were included. The optimal
classification rule based on knowledge of the true distribution of the data
has a 26% mis-classification rate.

In applying a neural network to this ten-way classification problem, it is
appropriate to use the "softmax" model (Bridle 1989), which corresponds
to the generalized logistic regression model of statistics (see Section 1. 2.1
and Section A.1.2). The network will take the values representing the seven
segments along with any irrelevant attributes as inputs, and produce ten
outputs, corresponding to the ten possbile digits. The conditional prob
ability of a digit, given the inputs, is defined to be proportional to the
exponential of the corresponding output.

This problem can be solved optimally by a network without any hidden
units (only direct connections from input units to output units). There
appears to be nothing in the problem description to indicate that a linear
network would be adequate, however, so it might be regarded as unfair to
take advantage of this fact. I therefore used networks containing a layer of
eight hidden units, fully connected to the input units and to the output
units. I did provide direct connections from inputs to outputs as well, so
that a perfect solution was possible. I also t,rained networks without hidden
units, to see whether such a restricted model actually did perform better.

The seven segments are equally relevant in this classification problem, in
the sense that in a network implementing an optimal solution the weights
from these seven inputs will all be of equal magnitude. The problem descrip
tion does not indicate that these inputs are equally relevant, however, so
again it might seem unfair to assume this when solving the version without
irrelevant attributes. I therefore used an ARD model, with separate hyper
parameters controlling the weights out of each input. When no irrelevant
inputs are present, ARD might be detrimental, whereas when irrelevant
attributes are present, ARD is expected to improve performance. For com
parison, a model with a single hyperparameter controlling the weights from
all inputs was tested on both version of the problem as well.

In all, four network architectures were tested - a network with no hid
den units without ARD, a network with no hidden units with ARD, a
network with a hidden layer without ARD, and a network with a hidden
layer with ARD. The last of these is the architecture whose use is in ac-

118 Chapter 4. Evaluation of Neural Network Models

cord with the prior knowledge presumed to be available for this artificial
problem.

Hierarchical priors were set up as follows. In all architectures, the biases
for the output units were considered one parameter group, as were the
biases for the hidden units, and the weights from hidden units to output
units, if hidden units were present. For the non-ARD models, the weights
from the inputs to the outputs formed a single parameter group, as did
the weights from the inputs to the hidden units, if present. For the ARD
models, the weights from each input to the outputs formed separate groups,
as did the weights from each input to the hidden units, if present. For all
groups, the associated precision was given a prior as in equation (4.2),
with w = 1 and a = 0.2, except for the hidden-to-output weights, for
which w was set equal to the number of hidden units (eight), in accord
with the scaling properties discussed in Chapter 2. (Subsequent experience
on other data sets indicates that priors with a = 0.2 may be less vague
than is desirable, but I did not realize this when these tests were done. As
discussed in Section 4.3.1, it may be best to use a 2-level prior for ARD
hyperparameters, but this also was not tried in these tests.)

All four architectures were applied both to the version of the problem
with only the seven relevant inputs, and to the version with 17 additional
irrelevant inputs. For each of these eight combinations, three runs were
done, using three different randomly generated training sets of 200 cases.
The same three training sets were used for each network architecture; train
ing sets with irrelevant attributes were obtained by adding irrelevant at
tributes to the three training sets with only relevant attributes. The same
test set of 5000 cases was used to evaluate performance for all combina
tions. These commonalities permit more precise assessment of the effects
of the variations.

The initial phase of each run consisted of 200 pairs of Gibbs sampling
updates for hyperparameters and hybrid Monte Carlo updates for param
eters. The trajectories used consisted of L = 50 leapfrog steps, done with
a stepsize adjustment factor of 1] = 0.4; . The windowed variant of hybrid
Monte Carlo was used, with accept and reject windows of W = 5 states.
Partial gradients were not used for this problem, as they appeared to give
only a small benefit. The computation time required for the initial phase
varied from three to nine minutes, depending on the network architecture
and on whether irrelevant inputs were included.

For the sampling phase, the hybrid Monte Carlo updates were done with
1] = 0.4, L = 500, and W = 10. Each sampling phase consisted of 150 super
transitions, with each consisting of ten pairs of Gibbs sampling and hybrid
Monte Carlo updates. Computation time for the sampling phase varied with
the network architecture and with whether irrelevant inputs were included,
but did not vary substantially with whether ARD was used. The time

4.3 Tests of Automatiic Relevance Determination 119

required was 2.8 hours without hidden units and without irrelevant inputs,
6.0 hours with hidden units and without irrelevant inputs, 5.1 hours without
hidden units and with irrelevant inputs, and 9.4 hours with hidden units
and with irrelevant inputs.

For all runs, the sampling phase appeared to have converged within 80
super-transitions. The states saved at the end of each of the last 70 super
transitions were therefore used to make predictions. Convergence was faster
and dependencies smaller for networks without hidden units; for these, an
adequate sample could in fact have been obtained using substantially fewer
super-transitions than were actually performed.

Figure 4.6 shows the performance of these models in terms of percent
mis-classification, as measured on a test set of 5000 cases, for a standard
error of ±0.65%.9 Comparisons of the results using neural network models
with those using the CART classification tree procedure, measured on a
different test set, are therefore significant (at the 5% level) only if the
difference in performance is greater than about 2%. Since the same test
set was used for all the neural network iigures, comparisons of different
neural network models may be significant with differences less than this
(as discussed by Ripley (1994a)). Recall also that the same three training
sets are used for all the neural network models.

The results when no irrelevant inputs are included are uniformly good.
One would expect a penalty from using ARD when all inputs are of equal
relevance, and from using a model with hidden units when the problem
can be optimally solved without them, but clearly any such penalty is
undetectably small in this context. Though the results for neural network
models seem slightly better than those Breiman, et al (1984) found for
CART, this difference is not statistically significant.

The results when irrelevant inputs are included are more interesting.
CART's cross-validation-based tree pruning procedure manages to prevent
these irrelevant inputs from being used, so that performance is unaffected
by their presence. In contrast, the neural network models that did not
use ARD performed poorly in the presence of irrelevant attributes. ARD
was successful at largely suppressing the bad effects of including irrelevant
inputs, though there appears to still be a small penalty, as one would expect.
The differences seen between CART and the neural network models using
ARD are again not statistically significant"

The effects of using a separate hyper parameter to control the standard
deviations of weights out of each input in the ARD models are evident in

9If P is the true probability of mis-classification, the variance of the total number of

errors on K test cases is K p(1 - p), giving a standard error of J p(l - p) / K, which for
K = 5000, p ~ 0.3 is about 0.0065.

120 Chapter 4. Evaluati0n of Neural Network Models

Type of model Relevant attributes only Plus 17 irrelevant attributes

No hidden layer
Without ARD 28.2% 29.1% 28.7% 37.8% 38.2% 37.2%
With ARD 28.9% 29.0% 28.5% 29.8% 31.2% 31.0%

Eight hidden units
Without ARD 28.3% 29.1% 29.1% 37.8% 37.6% 33.1%
With ARD 28.4% 29.6% 29.5% 30.4% 31.7% 33.0%

Classification tree 30% 30% 31% 30% 30% 31%

FIGURE 4.6. Results on the noisy LED display problem. The figures for neural
networks show percent mis-classification on a 5000 item test set for three runs
with different training sets. Results are shown for four network models, applied
both to data sets with only the seven relevant attributes, and to data sets with
these plus 17 irrelevant attributes. Results for classification trees produced by
the CART system are also shown, from the tests by Breiman, et al (1984, Sec
tion 3.5.1). One CART run is shown for the problem with no irrelevant attributes; ,
five done with different training sets are shown for the problem with irrelevant
attributes. The training and test sets used for the CART tests are not the same
as those used for the neural network tests.

Figure 4.7, which shows the average squared magnitudes of weights out
of each input, for networks with no hidden units, with and without ARD.
(Recall that for the softmax model used here, each input is connected to
the ten outputs associated with the ten classes.) When ARD is used, the
magnitudes of weights on connections out of the relevant inputs are bigger,
and the magnitudes of weights on connections out of the irrelevant inputs
are smaller, than when ARD is not used.

One of the training sets with irrelevant inputs (the third) produced
slightly puzzling results - with hidden units in the network, the mis
classification rate was about 33% regardless of whether or not ARD was
used, better than performance ofnon-ARD networks on the other two train
ing sets, but worse than performance of ARD networks on the other two
training sets. The near-identical performance appears to be a coincidence,
since the hyperparameter values for the two networks indicate that they
are not at all similar. However, it may be that by chance the irrelevant
inputs in this training set contained some pattern that induced unusual
behaviour both with and without ARD. One would expect this to happen
occasionally with small training sets.

For the models with hidden units, the standard deviation of the hidden
to-output weights (a hyperparameter) took on fairly small values between
about 0.1 and 1.0, except for two of the networks not using ARD with
irrelevant inputs present, and the one network using ARD discussed in the
previous paragraph. This may have helped prevent the presence of hidden

Without ARD

With ARD

4.3 Tests of Automatic Relevance Determination 121

10---

i j
I ;
! I I ;
, '

O.l------~--------

10---------------

,
i !

! '

0.1----------------

FIGURE 4.7. Relevant and irrelevant input weight magnitudes for the LED dis
play problem. The plots show (on a log scale) the posterior distributions of the
square roots of the average squared magnitudes of weights on connections out
of each of the twenty-four inputs units, for the networks without hidden units,
applied to the first training set. The first seven of these twenty-four inputs are
relevant; the remaining seventeen are irrelevant. The plot on the left shows the
magnitudes when ARD is not used (only one hyperparameter); that on the right
shows the magnitudes when ARD is used (one hyperparameter for each input
unit). The points in the plots were computed from the states saved after the last
80 super-transitions of the sampling phase.

122 Chapter 4. Evaluation of Neural Network Models

units from having a damaging effect. One might actually have expected
the standard deviation for these weights to take on even smaller values,
effectively eliminating the hidden layer. That this did not happen may be
due to the prior for the associated hyperparameter not being vague enough.
Alternatively, the good test performance seen (with the ARD models) may
indicate that these weights were sufficiently small as is.

4.3.3 Tests of ARD on the robot arm problem

I have also tested the Automatic Relevance Determination model on a
variation of the robot arm problem. In this variation, six input variables,
Xl, ... , x~, were present, related to the inputs of the original problem, Xl
and X2, as follows:

Xl = Xl,

X~ = X2,

Xl + 0.02 n3,

X2 + 0.02 n4,
(4.3)

where n3, n4, n5, and n6 are independent Gaussian noise variables of mean
zero and standard deviation one. As in the original version, the targets were
functions of Xl and X2 (equivalently, of xl and x~), plus noise of standard
deviation 0.05 (see equation (3.34)). Clearly, x~ and x~ are irrelevant to
predicting the targets. In isolation, x~ and x~ would convey some informa
tion about the targets, but in the presence of xl and x~, which contain the
same information in noise-free form, they are useless, and should also be
ignored.

We would like to see whether the ARD model can successfully focus on
only Xl and x~, and, if so, whether this does indeed improve predictive
performance. To test this, I generated new versions of the training set of
200 cases used before by MacKay (1991, 1992b) and for the demonstration
in Section 3.3, and of the test set of 10000 cases used in Section 4.2.2. The
input variables in these data sets were derived from the corresponding in
puts in the original data sets in accord with equation (4.3); the targets were
the same as before. A model that completely ignored the irrelevant inputs
would therefore be able to achieve the same performance when trained
on this data as would a model trained on the original data without the
irrelevant inputs.

For these tests, I used a network with a single hidden layer of H =
16 tanh units. For all models, the hidden-to-output weights were given
Gaussian priors, whose precision was a common hyperparameter, to which
I gave a vague Gamma prior (equation 4.2)) with w = 100H and O! = 0.1.
The hidden unit biases were also given Gaussian priors, with their precision
being a hyperparameter t.hat was given a Gamma prior with w = 100 and
O! = 0.1. The output unit biases were given a Gaussian prior with a fixed
standard deviation of one.

4.3 Tests of Automatic Relevance Determination 123

Gaussian priors were also used for the input-to-hidden weights, but the
precisions for these Gaussian priors were specified in three different ways, to
produce a non-ARD model, a 1-level ARD model, and a 2-level ARD model.
In the non-ARD model, all the input-to-hidden weights had prior precisions
given by a single hyperparameter, to which I gave a vague Gamma prior
with w = 100 and a = 0.1. For the I-level ARD model, each input had an
associated hyperparameter that controlled the prior precision of weights out
of that input, with these hyperparameters being given independent Gamma
priors with w = 100 and a = 0.1. For the 2-level ARD model, each input
again had its own hyperparameter, but these low-level hyperparameters
were given somewhat less vague Gamma priors, with a = 0.5, and with
the mean w being a common high-level hyperparameter. This high-level
hyperparameter was given a very vague prior with w = 100 and a = 0.001. 10

For all three models, learning began with a short initial phase, and
continued with a long sampling phase, consisting of 200 super-transitions.
Each super-transition consisted of ten pairs of Gibbs sampling updates
for hyperparameters and hybrid Monte Carlo updates for parameters. The
hybrid Monte Carlo trajectories were L == 4000 leapfrog steps long, and
were computed using partial gradients, based on a four-way division of the
training set, with a stepsize adjustment factor of'f} = 0.6. The windowed
acceptance procedure was used, with windows of ten states. Each of these
runs required 42 hours of computation time.

Figure 4.8 shows how the magnitudes of weights on connections out of
the different inputs varied in the course of the simulations for the three
models. With both ARD models, the weights on connections out of the
four irrelevant inputs quickly became a factor of ten or more smaller in
magnitude than the weights on connections out of the two relevant inputs.
The differences in average weight magnitudes for the model without ARD
were considerably smaller (less than a factor of two).

It is interesting to compare the results seen with the I-level ARD model
to those seen with the 2-level ARD model. Although the Gamma prior used
for the hyperparameters in the I-level model was rather vague, it seems
that it was not so vague as to have no influence on the results - the prior
seems to have prevented the weight magnitudes for the irrelevant inputs
from becoming much smaller than 0.01. The magnitudes for the weights
from relevant input in the I-level model are somewhat larger than in the
2-level model, perhaps due to residual pressure to increase the disparity
with the weights from the irrelevant input.s. Since the prior for the low-

lOThis prior is perhaps vaguer than is necessary, but using a very low value for a has
the advantage that it increases the acceptance rate of the rejection sampling scheme
used to implement Gibbs Sampling for the high-level hyperparameter (see Appendix A,
Section A.5).

124 Chapter 4. Evaluation of Neural Network Models

1.0 -

0.1 -

NoARD
0.01 -

0.001

1.0 -

0.1 -

i-level ARD
0.01 -

0.001

1.0 -

0.1 -

2-level ARD
0.01 -

0.001

o

o

o

I

50

50

50

100

100

100

150 200

150 200

150 200

FIGURE 4.8. Input weight magnitudes for the robot arm problem with and with
out ARD. These plots show the square roots of the average squared magnitudes
of weights on connections from the six inputs, with the magnitudes for the two
inputs carrying noise-free information given by solid lines, the magnitudes for the
two inputs carrying noisy information by the dotted lines, and the magnitudes
for the completely irrelevant noise inputs by dashed lines (all on a log scale). The
horizontal axis gives the number of super-transitions.

4.3 Tests of Automatic Relevance Determination 125

level hyperparameters in the 2-level model is less vague than that in the
1-level model, one might wonder why the weight magnitudes influenced
by these hyperparameters were able to become more widely spread in the
2-level model. This is due to the asymmetry of the Gamma prior used,
under which the upper tail for log (T is heavier than the lower tail. In the
2-level model, the mean for the low-level hyperparameters is a high-level
hyperparameter with a very vague prior that allows it to adopt a value
that positions the low-level prior where the heavy upward tail covers the
appropriate range.

The difference seen between the I-level and 2-level models is thus in part
due to the particular form I have used for the priors. I expect that a 2-level
model will have more general advantages, however. It may be dangerous to
give very vague priors to many hyperparameters, since the prior probability
of their taking on values matching the data will then be very small. In the 2-
level model, only one high-level hyperparameter is given a very vague prior;
the others have less vague priors that should nevertheless be adequate to
permit the desired variation in weight magnitudes, once these priors are
properly positioned by the adaptation of the high-level hyperparameter.

Since the ARD models succeeded in suppressing the weights on con
nections to irrelevant" inputs, whereas the non-ARD model did not, one
would expect that the predictive performance of the ARD models would
be better than that of the non-ARD model. This was indeed the case.
On the test set of 10000 cases, the average squared error when guessing
the average outputs of the networks from the last 150 super-transitions
was 0.00597, 0.00563, and 0.00549 for the non-ARD model, 1-level ARD
model, and 2-level ARD model, respectively.ll The error using the 2-1evel
ARD model was almost identical to the error of 0.00547 measured on this
test set using the networks from the last 100 super-transitions of the first
run with L = 8000 described in Section 3.3, which was trained on the
same set of cases, but without the irrelevant inputs. It turns out that very
similar predictive performance can be obtained from shorter runs - using
only the last 50 of the first 75 super-transitions in these runs, the average
squared error was 0.00589, 0.00564, and 0.00552 for the non-ARD, 1-level
ARD, and 2-level ARD models. Runs of this length would take 16 hours of
computation time.

11 The standard errors for these figures are approximately ±O.00006, so the advantage
seen for ARD is statistically significant with respect to the variation due to the random
choice of test set. Since only a single training set was used, the random variation due to
this factor cannot be quantified.

126 Chapter 4. Evaluation of Neural Network Models

4.4 Tests of Bayesian models on real data sets

The tests on synthetic data sets described in the previous sections have
helped clarify the properties of the network models and priors tested. This
knowledge should be of use when appling Bayesian learning to real prob
lems. In this section, I test the Bayesian network models and the Markov
chain Monte Carlo implementation on two real data sets, one for a regres
sion problem and one for a classification problem;

4.4.1 Methodology for comparing learning procedures

In comparing learning procedures, we may be interested in how they dif
fer in many respects, including the accuracy of the predictions made, the
amount of computation required to produce these predictions, the ease
with which the problem can be formulated in an appropriate form, and
the extent to which the construction of a predictive model increases our
understanding of the nature of the problem. Only in the context of a real
application will we be able to judge the relative importance of these aspects,
and only in such a context will some of them be testable. Traditionally, neu
ral networks and other machine learning procedures have been compared
primarily on the basis of their predictive performance, with some attention
also paid to their computational requirements, and these aspects have been
tested using data which may be real, but for which the original context is
no longer available. Despite its limitations, this is the approach I will take
here.

Learning procedures cannot be compared in a complete absence of con
text, however. We must postulate some loss function in terms of which the
quality of the predictions can be judged. Furthermore, for the results of a
comparison to be meaningful, we must somehow distinguish between pro
cedures which just happen to do well on a particular problem, and those
which not only do well, but also might have been chosen prior to our see
ing the test results for the various procedures. Which procedures might
reasonably have been chosen will depend on what background knowledge
is assumed to be available. For these sorts of tests, there is an implicit
assumption that the background knowledge is very vague (but this is not
quite the same as a complete absence of background knowledge).

For example, suppose we are comparing neural networks with other
methods on two problems. On problem A, a neural network with one hidden
layer does better than any other method. On problem B, a neural network
with two hidden layers performs best. It would not be valid to claim that
these results demonstrate the superiority of neural networks unless there
was some way that the user could have decided on the basis of background
knowledge and the training data alone that a network with a single hidden

4.4 Tests of Bayesian models on real data sets 127

layer was appropriate for problem A, but one with two hidden layers was
appropriate for problem B.

To lessen the potential for criticism on this basis, I have used hierarchi
cal models that are capable of reducing to simpler models depending on
the settings of hyperparameters. In networks with two hidden layers, for
example, I include direct connections from the inputs to the second hidden
layer, and use a hyperparameter that controls the magnitude of the weights
from the first to the second hidden layer. If this hyperparameter takes on a
very small value, the network will effective have only a single hidden layer.
This idea was used earlier in the tests on the noisy LED display problem
(Section 4.3.2); the ARD model can also be seen as an instance of this
approach. An alternative is to somehow choose between discrete model al
ternatives on the basis of the training data. Bayesian methods for this are
emphasized by MacKay (1992a), but the required computations are diffi
cult in a Monte Carlo implementation (Neal 1993b, Sections 2.3 and 6.2).
It is also possible to choose between models by other means, such as cross
validation. Any of these methods may allow the effective model used to be
determined to a large degree by the data. If the chosen model performs
well, one can then argue that such good performance could indeed have
been achieved in a real application of a similar nature.

4.4.2 Tests on the Boston housing data

The Boston housing data originates with Harrison and Rubinfeld (1978),
who were interested in the effect of air pollution on housing prices.12 The
data set was used to test a method for combining instance-based and model
baSed learning procedures by Quinlan (1993). Although the original objec
tive of Harrison and Rubinfeld was to obtain insight into factors affecting
price, rather than to make accurate predictions, my goal here (and that of
Quinlan) is to predict housing prices based on the attributes given, with
performance measured by either squared error loss or absolute error loss.

The data concerns the median price in 1970 of owner-occupied houses in
506 census tracts within the Boston metropolitan area. Thirteen attributes
pertaining to each census tract are available for use in predicting the median
price, as shown in Figure 4.9. The data is messy in several respects. Some
of the attributes are not actually measured on a per-tract basis, but only
for larger regions. The median prices for the highest-priced tracts appear
to be censored.13

12The original data is in StatLib, available via the World Wide Web, at URL
http://lib . stat. emu. edu/, under "datasets" .

13 Censoring is suggested by the fact that the highest median price of exactly $50,000 is
reported for sixteen of the tracts, while fifteen tracts are reported to have median prices

128 Chapter 4. Evaluation of Neural Network Models

CRIM
ZN
INDUS
CRAS
NOX
RM
AGE
DIS
RAD
TAX
PTRATIO
B
LSTAT

per capita crime rate by town
proportion of residential land zoned for lots over 25,000 sq.ft.
proportion of non-retail business acres per town
Charles River dummy variable (1 if tract bounds river, 0 if not)
nitric oxides concentration (parts per 10 million)
average number of rooms per dwelling
proportion of owner-occupied units built prior to 1940
weighted distances to five Boston employment centres
index of accessibility to radial highways
full-value property-tax rate per $10,000
pupil-teacher ratio by town
1000 (Blk - 0.63? where Blk is the proportion of blacks by town
percent lower status of the population

FIGURE 4.9. Descriptions of inputs for the Boston housing problem.

Considering these potential problems, it seems unreasonable to expect
that the distribution of the target variable (median price), given the in
put variables, will be nicely Gaussian. Instead, one would expect the error
(noise) distribution to be heavy-tailed, with a few errors being much greater
than the typical error. To model this, I have used a t-distribution as the
error distribution, as described in Appendix A, Section A.1.2. This is a
common approach, used by Liu (1994), for example. I rather arbitrarily
fixed the degrees of freedom for the t-distribution to the value 4. Ideally,
one would let the degrees of freedom be a hyperparameter, but this is not
supported by the present implementation.

Harrison and Rubinfeld (1978) consider various nonlinear transforma
tions (e.g. logarithmic) of the target and input variables as the basis for
their linear model. However, Quinlan (1993) uses only a linear transfor
mation of the variables. Since I would like to compare with the results
Quinlan gives, I did the same. A neural network should be able to imple
ment whatever nonlinear transformation may be required, given enough
data to go on, so modeling the untransformed data is a reasonable demon
stration task. However, it seems likely that leaving the target (the median
price) in its original form will result in the noise variance varying with the
target value (heteroscedasticity). The procedures used by Quinlan appar
ently did nothing to adjust for this; neither do the neural network models
I used, though it should be possible to extend them to do so. I expect that
ignoring heteroscedasticity will degrade performance somewhat, but will
not cause serious problems.

I did linearly transform the input variables and targets to normalize
them to have mean zero and standard deviation one, as did Quinlan (1993).

above $40,000 and below $50,000, with prices rounded only to the nearest hundred.
Harrison and Rubinfeld (1978) do not mention any censoring.

4.4 Tests of Bayesian models on real data sets 129

As discussed in Section 4.3.1, I view this procedure as a substitute for us
ing expert knowledge to shift and rescale the input variables in order to
equalize their potential relevance. For this data set, one way in which the
prior knowledge of the original investigators may appear in the distribu
tion of the input variables is through their selection of the study area -
presumably Harrison and Rubinfeld believed that the range of variation
in input variables seen over the Boston area was similar to the range over
which these variables might be relevant, as otherwise they might have cho
sen to study housing prices in all of Massachusetts, or in just the suburb
of Newton.

Quinlan (1993) assesses the performance of various learning procedures
on this problem using ten-way cross validat.ion. In this assessment method,
each learning procedure is applied ten times, each time with nine-tenths
of the data used for training and one-tenth used for testing, and the test
errors for these ten runs are then averaged. Quinlan has kindly provided
me with the ten-way division of the data that he used for his assessments. 14

Since these cross validation assessments are computationally expensive,
before undertaking any of them, I first evaluated a number of Bayesian
neural network models using half the data (randomly selected) as a training
set and the other half as a test set. These training and test sets both
consisted of 253 cases. 1S

For the first of these preliminary tests, I trained a network with no hid
den units, corresponding to a linear regression model. Since there is only one
connection for each input in this model, ARD was not used - the input-to
output weights were simply given Gaussian distributions, with the precision
for these Gaussian distributions being a common hyperparameter, which
was given a Gamma prior with w = 100 and a = 0.1 (see equation 4.2). The
output bias was given a fixed Gaussian prior with standard deviation one.
The noise distribution was a t-distribution with four degrees of freedom
(see equation (A.6) in Appendix A), with the associated precision, (j-2,

having a Gamma prior with w = 100 and a = O.l.

This simple network was trained for 100 super-transitions, each con
sisting of ten pairs of Gibbs sampling and hybrid Monte Carlo updates.
Trajectories were 100 leapfrog steps long, with a stepsize adjustment fac
tor of l.0. Total training time was seven minutes.

The states saved after the last 50 of these super-transitions were used
for prediction. The resulting performance is reported in Figure 4.10, along

14This division of the data is stratified by target value, as described by Breiman, et
al (1984, Section 8.7.2).

15In these tests, I used a slightly incorrect normalization procedure, which has the
effect of adding a small amount of random noise to the inputs. This was fixed for the
later cross-validation assessments, and turns out to ha~e had little effect in any case.

130 Chapter 4. Evaluation of Neural Network Models

Average Average Average
Model or procedure used squared error absolute error neg log prob

Guessing mean of training set 83.4 6.70 -

Guessing median of training set 82.4 6.40 -

Network with no hidden units 28.9 3.36 2.888

Network with 8 hidden units
With Gaussian prior 13.7 2.32 2.428
With Cauchy prior 13.1 2.26 2.391

Network with 14 hidden units
With Cauchy prior 13.5 2.29 2.407

Network with two hidden layers 12.4 2.15 2.303

FIGURE 4.10. Results of preliminary tests on the Boston housing data. The
predictions for each network model were based on the posterior distribution given
the training set of 253 cases, as sampled by the Markov chain simulations. The
figures are averages over the 253-case test set of the squared error when guessing
the predictive mean, the absolute error when guessing the predictive median, and
the negative log probability density of the true target value.

with that of the other networks trained in the preliminary tests, to be dis
cussed shortly. Three performance criteria are used here - average squared
error on the test set, when guessing the mean of the predictive distribution;
average absolute error, when guessing the median of the predictive distri
bution; and average negative log probability density of the actual target
value under the predictive distribution. Squared error can be very sensi
tive to a small number of large errors; absolute error is less so; negative
log probability density is perhaps the best indicator of overall performance
when there are occasional large errors.

Next, I trained networks with a layer of eight hidden units, using both
Gaussian and Cauchy priors for the hidden-to-output weights. For these
networks, I used a 2-level ARD prior for the input-to-hidden weights, with
w = 100, a = 0.001 for the high-level Gamma prior (for the common hyper
parameter), and a = 0.5 for the low-level Gamma prior (for the hyper
parameters associated with particular inputs). The prior for hidden biases
was Gaussian, with the precision having a Gamma prior with w = 100 and
a = 0.1. In the Gaussian network, the prior for hidden-to-output weights
was Gaussian with a precision that I gave a Gamma prior with w = 100H
and a = 0.1. Here H is the number of hidden units, here eight; this give
proper scaling with network size, as discussed in Chapter 2. In the Cauchy
network, a Cauchy prior for the hidden-to-output weights was implemented
using a 2-level Gaussian prior, with w = 100H2 , a = 0.1 for the high-level
Gamma prior (for the common hyperparameter), and a = 1 for the low-

4.4 Tests of Bayesian models on real data sets 131

level Gamma prior (for the hyperparameters associated with particular
hidden units).

I included direct connections from the inputs to the outputs in these
networks. The weights on these direct connections, the bias for the output
unit, and the level of the noise were all given the same priors as for the
network with no hidden units.

Following a relatively short initial phase, these networks were trained for
250 super-transitions, each super-transition consisting of ten pairs of Gibbs
sampling and hybrid Monte Carlo updates. The states at the ends of each of
the last 150 super-transitions were used to make predictions. Trajectories
were 1500 leapfrog steps long, with a stepsize adjustment factor of 0.6.
They were computed using partial gradients, with a five-way division of
the training data. The windowed acceptance procedure was used, with a
window size of ten. Total training time was 21 hours for each network.

As can be seen in Figure 4.10, the networks with eight hidden units
performed much better than the network with no hidden units. The results
observed using the Cauchy prior were slightly better than those observed
using the Gaussian prior, but the difference should probably not be re
garded as significant.

Finally, I trained two more complex networks: one with a single hid
den layer of fourteen hidden units, another with two hidden layers, each
of six hidden units. In both networks, the hidden and output layers had
direct connections to the inputs. These networks both had 224 parameters
(weights and biases).

The priors used for the network with a single layer of fourteen hidden
units were the same as for the network with eight hidden units, using the
Cauchy prior (except for difference due to the scaling with H). The network
was also trained in the same way as were those with eight hidden units,
except that a longer initial phase was used, and the sampling phase was
continued for 300 super-transitions, with the states saved from the last 200
being used for predictions. Total training time was 46 hours.

For the network with two hidden layers, I used a Gaussian prior for
weights from the first hidden layer to the second hidden layer, and a
Cauchy prior for weights from the second hidden layer to the outputs.
This choice was inspired by Figure 2.10, which shows interesting two
dimensional functions produced from a similar model that combines Gaus
sian and non-Gaussian priors. (However, one may doubt whether six is
really close enough to infinity for this picture to be relevant. Such priors
may also behave differently with thirteen inputs than with two.)

In detail, the network model with two hidden layers used the following
priors. For the weights on connections from the inputs to the first hidden
layer, a 2-level ARD prior was used with w = 100, a == 0.1 for the high-level

132 Chapter 4. Evaluation of Neural Network Models

Gamma prior, and a = 3 for the low-level Gamma prior. An ARD prior of
the same form was used for the weights on connections from the inputs to
the second hidden layer. The choice of a = 3 for the low-level Gamma prior
produces a distribution that is not too broad; I chose this somewhat narrow
prior primarily to avoid any possible problem with the simulation becoming
lost for an extended period in some strange region of the hyperparameter
space. The weights on connections from the first hidden layer to the second
hidden layer were given Gaussian priors, with precisions given by a Gamma
prior with w = 100Hl and Q' :::::: 0.1, where Hl = 6 is the number of units
in the first hidden layer. For the weights on connections from the second
hidden layer to the outputs, I implemented a Cauchy prior using a 2-level
Gaussian prior with w = 100H~, a = 0.1 for the high-level Gamma prior,
and a = 1 for the low-level Gamma prior, where H2 = 6 is the number
of units in the second hidden layer. The priors on the biases for the two
hidden layers were both Gausian, with precisions given by Gamma priors
with w = 100 and a = 0.1. The priors for the input-to-output weights, the
output biases, and the noise level were the same as for the other networks.

Training for the network with two hidden layers began with a short
initial phase, which was followed by 100 super-transitions using the same
learning parameters as were used for the networks with one hidden layer. In
the last twenty of these super-transitions, the rejection rate climbed to over
50%. I therefore reduced the stepsize adjustment factor from 0.6 to 0.45,
and increased the trajectory length from 1500 to 2000 to compensate. With
these parameters, I let the run continue for another 200 super-transitions.
The states from these 200 super-transitions were the ones used for predic
tions. Total training time was 54 hours.

As can be seen in Figure 4.10, the performance of the network with a
single layer of fourteen hidden units differed little from that of the networks
with only eight hidden units. However, performance of the network with
two hidden layers did appear to be better than that of the networks with
only one hidden layer.

Following these preliminary runs, I decided to do a cross-validation as
sessment ofthe network with two hidden layers (each with six hidden units),
in order to compare with the results reported by Quinlan (1993). Techni
cally speaking, this is cheating - this network architecture was chosen with
knowledge of results involving all the data, whereas training for each com
ponent of the cross-validation assessment is supposed to be based solely on
the nine-tenths of the data allocated to training for that component. There
are two reasons why this does not invalidate the results. First, one could
apply the same methodology of selecting an architecture (using prelimi
nary runs trained with a subset of the data) within each component of the
cross-validation assessment. Since the training and test sets for these runs
would be only slightly smaller than for the preliminary runs done here, the

4.4 Tests of Bayesian models on real data sets 133

results would likely be similar. (This was not done because it would have
required considerably more computation time.) Second, the network archi
tecture selected is that which is the most complex, the one that would be
selected a priori under the philosophy of modeling that I am advocating.
The preliminary runs simply confirm that, as expected, using a simpler
architecture is not advantageous.

The objective of the assessments that Quinlan (1993) reports was to
evaluate whether his scheme for combining "instance-based" and "model
based" learning was beneficial. Instance-based methods (such as k-nearest
neighbor) make predictions based on similarities with "prototype" patterns.
Model-based methods (such as neural networks) may use more general rep
resentations of regularities. Quinlan proposes a combined scheme in which
a prediction for a particular test case is obtained by applying the instance
based method after adjusting the values associated with each prototype by
the amount that the model-based method predicts the prototype's value
will differ from that of the test case.

For my purposes, Quinlan's results simply indicate the performance
achievable by reasonably sophisticated applications of existing techniques,
thereby providing a standard against which I can compare the performance
obtained with a Bayesian neural network model. The neural network com
ponent of Quinlan's assessment was done by Geoffrey Hinton. The network
he used had a single hidden layer, and was t.rained to minimize squared er
ror on the training set plus a weight decay penalty. The number of hidden
units and the amount of weight decay were chosen by cross validation. In
principle, this choice would be made ten times, once for each component of
the main cross-validation assessment, but to save time a single choice was
made. The network chosen in this way had fourteen hidden units (Geoffrey
Hinton, personal communication).

I estimated that a ten-way cross-validation assessment of the Bayesian
network model with two hidden layers that used the same training pro
cedure as in the preliminary runs would required a total of 41 days of
computation time. Wishing to reduce this, I performed a number of tests
usin-g states from the preliminary run. In particular, I looked at the cor
relations of various quantities along trajectories, in order to select a good
trajectory length, and at the change in free energy from start to end of
a trajectory when using various stepsize adjustment factors, window sizes,
and partial gradient divisions, in order to select trajectory computation
parameters that would give a good acceptance rate at minimal cost.

Based on these tests, I chose the following three-phase training proce
dure for use in the cross-validation assessment. Starting with weights and
biases set to zero, I first trained the network for 1500 pairs of Gibbs sam
pling and hybrid Monte Carlo updates, using trajectories 100 leapfrog steps
long (with a window of 10 states), with a stepsize adjustment factor of 0.5.

134 Chapter 4. Evaluation of Neural Network Models

Model or procedure used Ave sqr error Ave abs error

Guessing overall mean 84.4 6.65
Guessing overall median 86.2 6.53

Bayesian neural network
With no hidden units 25.3 3.20
With two hidden layers· 6.5 1.78

Instances alone 19.2 2.90

Max. likelihood linear regression 24.8 3.29
+ instances 14.2 2.45

Model tree 15.7 2.45
+ instances 13.9 2.32

Neural network using cross validation 11.5 2.29
+ instances 10.9 2.23

• Performance on each of the ten divisions: Squared error: 6.4, 7.0, 5.3, 10.0, 4.4, 6.0, 13.2, 3.6, 4.8, 3.9
Absolute error: 1.78, 1.87, 1.81, 2.13,1.47,1.78,2.43, 1.38, 1.60, 1.49.

FIGURE 4.11. Cross-validation assessments on the Boston housing data. The
figures are averages of performance (in terms of squared and absolute error) over
all ten divisions of the data into training and test sets (except for the figures
using overall means and medians, for which this would not be meaningful, due
to stratification). The results in the bottom section are as reported by Quinlan
(1993).

Next, I did 750 pairs of updates using trajectories 200 leapfrog steps long
(with a window of 20 states), with a stepsize adjustment factor of O.B.
Finally, I ran a sampling phase consisting of 120 super-transitions, each
consisting of ten pairs of Gibbs sampling and hybrid Monte Carlo updates,
using trajectories 1000 leapfrog steps long (with a window of 30 states),
with a stepsize adjustment factor of 0.6. The states saved after the last 100
of these super-transitions were used to make predictions. Trajectories in all
phases were computed using the partial gradient method, with a ten-way
division of the training data. Total training time was 27 hours for each
network, 270 hours for the entire assessment.

The results of this assessment and those of Quinlan are shown in Fig
ure 4.11.16 As a check, I also did a cross-validation assessment of the net
work with no hidden units; as expected, its performance is similar to that
which Quinlan reports for linear regression.

16Note that Quinlan reports squared error in terms of "relative error" with respect to
the squared error guessing the overall mean of the data. To convert his results to the
form displayed, multiply by 84.4.

4.4 Tests of Bayesian models on real data sets 135

The Bayesian neural network model with two hidden layers of six units
performed substantially better than any of the other methods. To do a
formal test for the significance of the difference in average performance
seen, one would need the individual results for the other methods on each
of the ten divisions of the dataP The individual results for the Bayesian
network with two hidden layers are given at the foot of the figure. Unless
the other methods exhibit greater variability in performance over the ten
divisions than is the case for the Bayesian network model, it seems fairly
implausible that the difference seen could be due to chance.

What is responsible for the good performance seen with this Bayesian
network model, particularly as compared with the neural network trained
by standard methods? Several aspects of the model might be important:
the use of a network with two hidden layers, the use of an ARD prior, the
use of a t-distribution for the noise, and the use of direct connections from
inputs to all layers. The fact that the Bayesian training procedure averages
the results of many networks might be crucial. The Markov chain Monte
Carlo implementation might also be better at escaping local minima than
the minimization procedure used for the standard network training.

I have not attempted to isolate all these possible influences. I did train
a network of the same architecture (two hidden layers of six units each)
to minimize the standard criterion of squared error, plus a small weight
decay penalty, and found that serious overfitting occurred. Even stopping
training at the optimal point as judged by the test set gives performance
of only 9.7 in terms of squared error and 2.19 in terms of absolute error.
This is slightly better than the other non-Bayesian methods, but not close
to the performance of the Bayesian network. Of course, it is cheating to
pick the stopping point using the test error, so the actual performance
achievable with this procedure would be somewhat worse. On the other
hand, choosing a better weight decay penalty by cross-validation might
have improved performance.

I will also note a few relevant features of the posterior distributions
found in the training runs that may shed some light on the reasons for
the good performance seen. The weights on the direct connections from
inputs to outputs were typically small, less than 0.1, but not completely
negligible. Weights on direct connections from inputs to the second hidden
layer were also mostly small, usually less than 0.5, except for the weights
on connections from the DIS input, which often exceeded one. Weights on
connections from the inputs to the first hidden layer were much larger,

17 Even with this information, such a test might be problematical, since the distribution
of performance for a method cannot be assumed to be Gaussian, or even unimodal, and
since the ten performance values obtained in a cross-validation assessment such as this
are not independent.

136 Chapter 4. Evaluation of Neural Network Models

typically greater then one, and sometimes greater than ten. In many of the
runs, such weights were substantially larger on connections from a few of
the inputs than on the other connections. These features indicate that the
first hidden layer is playing an important role in the network, and that the
use of hyperparameters, and of ARD priors in particular, may have been
beneficial.

In my view, the results of this test can be taken as evidence of the bene
fit of the Bayesian approach regardless of what particular modeling choices
may have been responsible for the performance improvement. Ultimately,
we are interested in the overall merits of different problem-solving method
ologies, which, among other things, determine how such modeling choices
are made. The Bayesian approach is based on probabilistic modeling of
relationships, in which it is natural, for instance, to use a t-distribution for
the noise whenever that seems appropriate, regardless of what loss function
will be associated with the final predictions. In some other approaches, the
fact that performance will ultimately be judged by squared error would lead
to the use of squared error as a fitting criterion during training as well. In
the Bayesian approach, we also need not fear overfitting, and hence are free
to use a network with many parameters and a complex structure whenever
it seems that the consequent flexibility may be useful. It is possible that
techniques such as weight decay might be able to control overfitting by such
a complex network when trained by non-Bayesian methods, but assurances
of this are lacking. Consequently, users of a non-Bayesian methodology may
choose an overly-simple model, out of fear of overfitting, even when a more
complex model would in fact have worked well.

On the other hand, these tests show that there is a considerable need for
improvement with respect to the computation time required by the Markov
chain Monte Carlo implementation of Bayesian neural network learning.

4.{3 Tests on the forensic glass data

The forensic glass data was used by Ripley (1994a, 1994b) to test several
nonlinear classifiers, including various neural network models. The task is
to determine the origin of a fragment of glass found at the scene of a crime,
based on measurements of refractive index and of chemical composition
(percent by weight of oxides of Na, Mg, AI, Si, K, Ca, Ba, and Fe). The
original data set of 214 cases was collected by B. German.18 Ripley dis
carded the cases of headlamp glass and randomly divided the remainder
into a training set of 89 cases and a test set of 96 cases, which he has
kindly made available. The possible classifications in Ripley's data and the

18This dataset is available via the World Wide Web from the UC Irving Repository
of Machine Learning Databases, under the name "glass". The repository is located at
URL http://'fI'fI'fI. ics. uci .edu/"'mlearn/KLRepository .html

4.4 Tests of Bayesiian models on real data sets 137

number of occurrences of each in the training and test sets are as follows:
flol).t-processed window glass (30 train, 40 test), non-float-processed win
dow glass (39 train, 37 test), vehicle glass (9 train, 8 test), and other (11
train, 11 test).

I normalized the inputs for this problem to have mean zero and stan
dard deviation one across the training set, as did Ripley. In terms of the
rationale discussed in Section 4.3.1, normalization is less justifiable for this
problem than for the Boston housing data. There is no obvious way in
which the original investigators might have used their beliefs about the
problem to control the population from which the data was sampled. The
set of input attributes available also appears to simply be all those that
could easily be measured, not those that the investigators thought might be
most relevant. It is therefore difficult to see how normalization can act as a
surrogate for input transformations based on expert prior knowledge. Nev
ertheless, something must be done here, since the inputs as given are very
un-normalized, to an extent that appears from my non-expert perspective
to be clearly undesirable.

For the network models tested, I used informative priors for the hyper
parameters in an attempt to reflect my actual beliefs about the range of
plausible values for the weights in various classes. This was done out of
concern that vague priors could lead to networks in which the weights into
the output units were very large. The softmax model used would then pro
duce conditional distributions for the target given the inputs in which one
of the target values has a probability close to one. This corresponds to a
belief that, if only we knew enough, the targets would be very predictable,
given the inputs. (Note that this situation could not have arisen with the
LED display problem of Section 4.3.2, at least when irrelevant inputs are
absent or suppressed, because the training sets for that problem contain
cases where the relevant inputs are identical but the target is different.)

The possibility that the targets might be perfectly predictable is not
completely ruled out by the prior knowledge available. However, it does
seem somewhat unlikely - certainly it is at least equally plausible that
in many cases the class is ambiguous. If a very vague prior is used for
hidden-to-output weights, however, the effect will be to make the posterior
probability of perfect predictability for this problem be very high, since
when the prior for weight magnitudes extends over a very wide range,
large weight magnitudes will dominate the portion of the prior range that
is not in strong conflict with the data. This comes about when weights
exist that perfectly explain the training data, and which continue to do
so as the hidden-to-output weights are scaled up to have arbitrarily large
magnitudes. In contrast, scaling down the weights into the outputs by a
large factor will result in target distributions that are independent of the
inputs, a possibility that will be suppressed in the posterior whenever the

138 Chapter 4. Evaluation of Neural Network Models

training data is predictable to at least some degree. The prior probability for
weights of moderate size, resulting in a moderate degree of predictability,
will be tiny if the prior is very vague.

The effects of using vague priors for the hyperparameters controlling
the input-to-hidden weights are less clear, but I felt it was prudent to avoid
extreme values here as well. For one thing, if these weights became very
large, the hidden units would effectively compute step functions, and a
gradient-based sampling procedure would not be expected to work well.

The network architectures and priors I tried on this problem are de
scribed in Figure 4.12. All networks were used in conjunction with the
softmax (logistic) model for the targets (Bridle 1989). In accordance with
the general philosophy that I advocate, the model that I would choose a pri
ori is the most complex one, based on the network with 12 hidden units,
using an ARD prior. For all the models, I used a Cauchy prior for the
hidden-to-output weights, implemented using a 2-level hierarchical prior,
with the low level prior being Gamma with a == 1 (see Section 4.1). This
choice was somewhat arbitrary - I have no strong reason to think that a
Gaussian prior for these weights would be worse. Networks with and with
out ARD were tried, using informative priors, as discussed above, except
for the models based on networks without hidden units (these networks
cannot represent a decision boundary that perfectly fits all the training
data, and so should not have problems with excessively large weights). One
network with vaguer priors was tried as well, to see whether this actually
made any difference.

For the networks without hidden units, I ran the Markov chain Monte
Carlo procedure for 500 super-transitions, with each super-transition com
posed of 100 pairs of Gibbs sampling updates and hybrid Monte Carlo
updates. The hybrid Monte Carlo trajectories were 100 leapfrog steps long,
computed using a stepsize adjustment factor of 0.7. The window-based ac
ceptance procedure was used, with a window of five states. The partial
gradient method was not used, since the training set is quite small, and
hence is presumably not very redundant. The states saved from the last
300 super-transitions were used to make predictions. These runs each took
4.2 hours, but considerably shorter runs would in fact have been adequate.

For the networks with hidden units, I ran the sampling phase for 200
super-transitions, with a super-transition in this case consisting of 50 pairs
of Gibbs sampling and hybrid Monte Carlo updates. The trajectories were
1000 leapfrog steps long, with a window of ten states, and were computed
using a stepsize adjustment factor of 0.5. I used the states from the last
100 super-transitions to make predictions. These runs took 18.8 hours for
the networks with six hidden units, and 28.6 hours for the network with
12 hidden units. Using the states from the last 50 super-transitions out of
the first 100 in these runs gives results that are only a bit worse, however.

4.4 Tests of Bayesian models on real data sets 139

Bial-a."d lnp.'·O •• p.' Hidden.. 0."., Bi •• ·Hi4"era Input.Hidden
w '" w '" w '" w '" w '"

Net with no hidden units
Without ARD 100 0.1 100 0.1 - - -
With ARD 100 0.1 100 .001:0.5 - - -

Net with 6 hidden units
Without ARD 100 1 100 1 lOOH:l 1:1 100 1 100 1

With ARD 100 1 100 1:2.5 IOOH 2 1:1 100 1 100 1:2.5

With ARD (vaguer) 100 1 100 .001:0.5 100H2 0.1:1 100 0.1 100 .001:0.5

Net with 12 hidden units
With ARD 100 1 100 1:2.' IOOH2 1:1 100 1 100 1:2.5

FIGURE 4.12. Networks and priors tested on the forensic glass data. The priors
for the hyperparameters were all of the Gamma form (equation 4.2). Two-level
priors were used for some classes of weights in some models. The top-level mean
precision (inverse variance) associated with a group of weights is given by w,
and for hidden-to-output weights is scaled according to the number of hidden
units (H). The shape parameters for the Gamma distributions are given by a.
For two-level priors, two a values are given -- the first controls the shape of the
prior for the high-level hyperparameter, which has mean Wj the second controls
the shape of the priors for the low-level hyperparameters, whose common mean
is given by the high-level hyperparameter.

Computation time might therefore have been cut in half, though we would
then have less basis for deciding whether the true equilibrium distribution
had been reached.

The predictive performance of these networks is shown in Figure 4.13,
along with the results that Ripley (1994a) reports for neural networks
and other methods. Performance is judged here by three criteria - mis
classification rate, mis-classification rate with the two types of window glass
not distinguished, and average log probability assigned to the correct class.
The first two criteria are also used by Ripley. The mis-classification rate is
the fraction of test cases for which the best guess produced by the model
is not correct, the best guess being the class whose predictive probability
is the highest. When the two categories of window glass are combined, the
predictive probabilities for each are summed for the purpose of determin
ing the best guess. In a forensic application, a guess without any indication
of reliability is perhaps not useful. To test the accuracy of the full pre
dictive distribution produced by the models, I report minus the log of the
predictive probability of the correct class, averaged over the test cases.19

19 For this problem, it may in fact be inappropriate to use predictive probabilities in
any of these ways, since such probabilities take no account of other available informa
tion. Instead, the likelihoods for the various classes might be reported; these could then
be combined with likelihoods derived from other data, together with a suitable prior.
One approach would be to convert the predictive probabilities found here to relative
likelihoods by dividing each class's probability by its frequency in the training set.

140 Chapter 4. Evaluation of Neural Network Models

Full Merged Average
Model or procedure used error rate error rate neg log prob

From base rates in training set 61% 20% 1.202

Network with no hidden units
Without ARD 42% 17% 0.937
With ARD 49% 17% 0.916

Network with six hidden units
Without ARD (two runs) 28% 14% 0.831

28% 14% 0.777

With ARD (two runs) 26% 14% 0.765
27% 14% 0.767

With ARD, vaguer priors 33% 18% 0.873

Network with 12 hidden units
With ARD 25% 14% 0.745

Network with two hidden units
Max. penalized likelihood 38% 16% -
Approx. Bayesian method 38% 14% -

Network with six hidden units
Max. penalized likelihood 33% 16% -
Approx. Bayesian method 28% 12% -

Linear discriminant 41% 22% -

Nearest neighbor 26% 17% -

Projection pursuit 40% 19% -

Classification tree 28% 15% -

MARS
Degree=1 37% 17% -

Degree=2 31% 19% -

FIGURE 4.13. Results on the forensic glass data. The figures shown are percent
mis-classification, percent mis-classification with the two types of window glass
merged, and the average of minus the (natural) log probability of the correct
class (where available), all over the test set of 96 cases. The first line shows the
performance achieved by simply using the base rates for the classes, taken from
their frequencies in the training set. The next section gives results of various
Bayesian neural network models trained by Markov chain Monte Carlo. The last
two sections give results reported by Ripley (1994a), first for neural networks
trained with "weight decay" (maximum penalized likelihood) or by an approxi
mate Bayesian method, secol),d for various other statistical procedures.

4.4 Tests of Bayesian models on real data sets 141

Note that the test set on which these performance figures are based is
quite small (96 cases). Ripley (1994a) considers differences of 4% or less
in mis-classification rate to not be significant (at the 5% level), a criterion
which I will also use in the assessments below. Note, however, that there is
also an unquantified degree of variability with respect to the random choice
of training set, which is not taken into account by this criterion. One should
therefore treat any observed differences as being suggestive only, as with
any comparison of methods that is based on a single training set.

For the networks with no hidden units, use of ARD did not appear to
produce any benefit. In fact, the error rate on the full classification task
is worse with ARD than without ARD, though the ARD model is slightly
better in terms of average log probability for the true target. Use of ARD
did have a significant effect on the network weights that were found. In
the posterior distribution for the ARD model, the weights from two of
the inputs (those giving the percent by weight of oxides of Mg and AI)
were substantially bigger than the weights from other inputs, by a factor of
almost ten,.on average. The corresponding differences in weight magnitudes
were much less for the non-ARD model.

The runs for networks with six hidden units produced one strange result.
In the first run using a non-ARD prior, the distribution for the magnitudes
of input-to-hidden weights changed dramatically around super-transition
80 (out of 200). At this point, these weights changed from magnitudes of
less than ten to magnitudes in the hundreds; they may still have been
slowly growing at the end of the run. I did another run to see whether this
behaviour occurred consistently, and found that in the second run these
weights stayed small (magnitudes around ten or less) for the duration.
These weights also remained small in two runs using ARD priors. It is
possible that the same change seen in the first non-ARD run would have
occurred in the second non-ARD run ifit had continued for longer, however.
It is possible also that the ARD runs might have converged eventually to
a distribution in which these weights were large, though it is also plausible
that the use of an ARD prior for these weights would change the behaviour.

As shown in Figure 4.13, for the networks with six hidden units, the
observed performance of the ARD models was slightly better than that of
the non-ARD models, but the differences are not significant, except perhaps
with respect to the poor value for average log probability seen with the non
ARD network with large input-to-hidden weights. Use of ARD did appear
to have a significant effect of the magnitudes of the weights from different
inputs; these magnitudes were more spread out in the ARD runs than in the
second non-ARD run. It is difficult to interpret the results, however, since
the variation in weight magnitudes between different inputs for a single
network is less than the posterior variation in the overall magnitudes for

142 Chapter 4. Evaluation of Neural Network Models

le-2-1
o

1
40

1
80

I t 1-

120 160 200

InformatilJe Priors

:::.~.
le+O-

le-I -

le-2 -

le-3 -

le-4 -

le-5 -

le-6 -
1
o

1

40
1

80
1

120

Vaguer Priors

1 1
160 200

FIGURE 4.14. Effect of vague priors in the forensic glass problem. The graphs
show the progress of two quantities during the course of simulation runs for
networks with six hidden units, using ARD priors. On the left is the run for
the model with informative (fairly narrow) priors; on the right is the run for
the same model with vaguer priors. The solid line plots the average entropy of
the conditional distributions for targets in test cases, as defined by the network
parameters from each state (note that this is not the same as the entropy of the
predictive distribution, in which we integrate over the posterior). The dotted line
plots the square root of the average magnitude of hidden-to-output weights.

input-to-hidden weights. There are also direct connections from inputs to
outputs, making it difficult to tell what the total effect of each input is.

One run was done for an ARD model with vaguer priors. In the result
ing posterior distribution for network parameters, the hidden-to-output
weights had large magnitudes, and the conditional distributions for targets
had low entropy, as expected on the basis of the previous discussion. The
input-to-hidden weights also had large magnitudes. The effects of using
vague priors are illustrated in Figure 4.14; note how the entropy tends to
be less when the hidden-to-output weights are large.

Finally, I did a run using a network with 12 hidden units, with an ARD
prior. As seen in Figure 4.13, the performance of this model was the best
of any tested here, though not all the differences are statistically signifi
cant. The results for the ARD network with 12 hidden units and for the
ARD networks with 6 hidden units are also not significantly different from
that of the network with six hidden units that Ripley (1994a) trained with
an approximate Bayesian method based on Gaussian approximations to
several modes_ All the Bayesian network models trained by Markov chain
Monte Carlo (except the one with overly-vague priors) performed signif
icantly better than the other networks trained by Ripley. Of the other
statistical techniques that Ripley tried, only the nearest neighbor and clas-

4.4 Tests of Bayesian models on real data sets 143

sification tree methods performed well. Their observed performance was
slightly worse than that of the ARD network with 12 hidden units, but the
difference is not statistically significant.

These tests show that vague priors should not be used recklessly. Care
in this respect seems to be especially necessary for classification models.
The different results obtained from the two runs of the non-ARD model
show that one should also not recklessly assume that apparent convergence
of a Markov chain sampler is real - dearly, at least one of these two
runs did not sample adequately from the true equilibrium distribution.
Use of simulated annealing, as in my previous work (Neal 1992b), might
help in this respect, though there will still be no guarantees. It would also
be interesting to apply a "tempering" method (Marinari and Parisi 1992,
Geyer and Thompson 1995, Neal, in presB), in order to sample efficiently in
cases where the posterior distribution has widely separated modes, which
is one possible explanation for the divergence seen here between the two
non-ARD runs.

Chapter 5

Conclusions and Further Work

The preceding three chapters have examined the meaning of Bayesian neu
ral network models, showed how these models can be implemented by
Markov chain Monte Carlo methods, and demonstrated that such an im
plementation can be applied in practice to problems of moderate size, with
good results. In this concluding chapter" I will review what has been ac
complished in these areas, and describe on-going and potential future work
to extend these results, both for neural networks and for other flexible
Bayesian models.

5.1 Priors for complex models

OJ;le major result of this work is that, when an appropriate prior is used,
one need not limit the comple·xity of a network model based on the amount
of training data available. This was shown theoretically in Chapter 2, and
demonstrated empirically in Chapter 4. In hindsight, at least, the ability to
use complex models on small data sets is simply what would be expected,
from a Bayesian viewpoint. Nevertheless, it has not been apparent to previ
ous investigators, perhaps because of the pervasive influence of frequentist
methods, for which such limits on complexity can indeed be essential.

With the realization that one need not keep networks small, the way was
opened for the examination in Chapter 2 of networks with infinite numbers
of hidden units. Only in the infinite network limit does it become possible to

146 Chapter 5. Conclusions and Further Work

analytically derive interesting properties of the prior over functions implied
by the prior over network parameters.

I first investigated the properties of priors that converge to Gaussian
processes as the number of hidden units goes to infinity. These priors can
be characterized by their covariance functions. Priors were developed that
produce smooth, Brownian, and fractional Brownian functions. Further
theoretical work in this area would be of interest. The arguments relating
to fractional Brownian priors that I presented could be made more rigorous,
and one could contemplate extensions to "multi-fractals" , whose properties
are different at different scales. The rate of convergence to the infinite
network limit could be quantified. It would also be interesting to apply
fractional Brownian models to actual data sets. This is supported by the
implementation scheme described in Chapter 3 and Appendix A. I have
not tried this yet, however, and some difficulties with convergence might
be anticipated with such models.

Although the examination of Gaussian priors revealed much of interest,
it also showed that such priors are in some respects disappointing. Infinite
networks drawn from these priors do not have hidden units that represent
"hidden features" of the input. The ability to find such hidden features is
often seen an interesting aspect of neural network learning. With Gaussian
priors, we also do not see any fundamentally new phenomena when we go to
networks with more than one hidden layer - we just get another Gaussian
process, albeit with a different covariance function.

Furthermore, for problems where we do feel that these Gaussian process
models are appropriate, it may well be that a direct implementation of a
Bayesian model based on a Gaussian process would work better in practice
than a Bayesian network model that converges to a similar Gaussian process
for a large number of hidden units. This possibility, mentioned in Chapter 2,
has recently been pursued by Williams and Rasmussen (1996). For a fixed
covariance function, Bayesian inference with this model - ie, formation of
a predictive distribution for a test case give data on n training cases - can
be accomplished using standard matrix operations in O(n3) time, which is
tolerable for training sets containing up to at least several hundred cases.
The well-known methods of smoothing splines and kriging are equivalent to
certain Bayesian models of this type (Wahba 1990), but for reasons that are
mysterious to me, such Gaussian process models have apparently received
little consideration for problems with more than two or three dimensions.

In the Gaussian process models used by Williams and Rasmussen (1996),
the covariance function is determined by hyperparameters that are analo
gous to those used in the network models of this book. In light of the theo
retical convergence results of Chapter 2, one would expect such a model to
perform similarly to a Bayesian network model with one large hidden layer
and Gaussian priors. (The models of Williams and Rasmussen do not use

5.2 Hierarchical Models - ARD and beyond 147

exactly the same form of covariance function as that for such a network
model, but the covariance functions appear to have similar properties.) In
preliminary evaluations, the performance of these two methods was indeed
found to be very similar, with both performing better than several com
peting methods (Rasmussen 1996).

The limitations of Gaussian priors (or any prior with finite variance),
and the fact that the models they define may be better handled by a non
network implementation, motivate interest in priors that converge to non
Gaussian stable distributions. A basic convergence result for these priors
was derived in Chapter 2, but much work remains to be done in character
izing their properties theoretically, as could perhaps be done using some
analogue of the covariance function used to characterize Gaussian processes.
Future research could also look at an alternative implementation scheme
for such priors based on their representation as Poisson processes (see Sec
tion 2.2.1). In such an implementation, the finite number of hidden units
available would not come from a finite a.pproximation to the limiting dis
tribution, but would instead be those with the largest hidden-to-output
weights from the true limiting distribution. This scheme might make more
efficient use of the available hidden units, since resources would not be
wasted on units with small weights (and hence little influence). It might
also allow one to estimate how much the results could differ from those
that would be obtained using the true infinite network.

Some preliminary results concerning priors for networks with more than
one hidden layer were reported in Chapter 2, and a network with two hidden
layers was found to perform well in the tests on the Boston housing data
in Chapter 4. I believe that further work on priors for such networks might
produce insights of practical importance. Work on networks with an infinite
number of hidden layers would be of at least theoretical interest, in that it
would test how far one can push the idea that limiting the complexity of
the model is unnecessary.

The theoretical examination of priors in Chapter 2 was supplemented
by visual examination of functions drawn from these priors. People have of
course looked at samples from priors before. Nevertheless, I believe that this
technique is not as widely used as it deserves to be. I hope that my use of it
here has demonstrated its utility in deveiloping an intuitive understanding
of complex Bayesian models.

5.2 Hierarchical Models - ARD and beyond

Another aspect of prior specification emphasized in this work is the use
of hierarchical models whose hyperparameters can adopt values that are
appropriate given the characteristics of the data at hand.

148 Chapter 5. Conclusions and Further Work

One example of this approach is the Automatic Relevance Determina
tion (ARD) model, which is meant to allow the data to determine which
inputs should influence the predictions. The tests done on synthetic data
in Chapter 4 showed that use of ARD resulted in the suppression of inputs
that were unrelated to the prediction task, as well as those that were re
lated, but were superseded by other inputs. The ARD method was also used
for the tests on real data, with the result that some inputs were suppressed
relative to others, but here the correct behaviour is of course unknown. Fur
ther experiments would be required to properly assess the effect of ARD
on predictive performance for the real data sets.

In more recent work, I have extended the idea of Automatic Relevance
Determination to produce hierarchical models that can determine an ap
propriate additive structure for a regression function. In an additive regres
sion model (Hastie and Tibshirani 1990), a real-valued target, y, might be
modeled as follows, in terms of inputs Xl, X2, and X3:

y (5.1)

where 91, 92, and 93 are unknown functions, and f represents Gaussian
noise. This form is more general than a linear model, but less general than
a model in which y is an arbitrary function of Xl, x2, and X3, plus noise.
If the above additive form is appropriate for the actual data, using it will
have advantages over an unrestricted regression model, both in terms of
predictive performance, and in terms of interpretability.

However, just as we will often not be sure which inputs are relevant for
predicting a target, y, we will also often be unsure whether an unrestricted
or an additive model is more appropriate - or, indeed, whether some
intermediate model might be best, such as one in which y is modeled as
a function of Xl and X2 plus a function of X3. One could try to somehow
identify the "true" model from among the various possibilities, but for
many problems, our actual belief will be that none of the additive models
can be exactly true (ie, that there is at least some small degree of interaction
between all the variables). In such situations, it makes sense to instead use
a single hierarchical model that can produce a variety of approximately
additive models, as well as an unrestricted model, depending on the settings
of its hyperparameters. The data will then be able to select an appropriate
form for the regression function, or perhaps several forms, with certain
posterior probabilities.

Using a single hierarchical model may also be computationally easier
than computing the posterior probabilities of several models with varying
degrees of additivity. To calculate posterior model probabilities, one must
compute the prior probability of the training data under each model, which
is often quite difficult (Neal 1993b, Sections 2.3 and 6.2).

5.2 Hierarchical Models - ARD and beyond 149

FIGURE 5.1. A hierarchical network model capable of finding additive structure.
The network takes three inputs, Xl, X2, X3, and computes a single output, which
gives the mean of the target value, y. This output is computed using three groups
of hidden units, each of which has its own set of hyperparameters, controlling the
scale of its contribution to the output, and the degree to which the group pays
attention to each of the three inputs. These hyperparameters are represented by
heavy lines crossing the connections whose weights they control. The connections
out of Xl and X3 (and the associated hyperparameters) have been suppressed for
clarity.

Figure 5.1 shows a hierarchical model of this sort based on a multilayer
perceptron network. This model is essentially three ARD models joined
together at the output. Each of these sub-models has its own set of hyper
parameters that control the magnitudes of weights on connections into and
out of its own group of hidden units. The functions computed by each sub
model (ie, the weighted sum of the values of the hidden units in each group)
are added together to produce the network output, which is interpreted as
the mean of the conditional distribution for the target, y.

If an additive decomposition of the regression function is in fact appro
priate, we would hope that the posterior distribution for this model will
be concentrated on sets of values for the hyperparameters in which each
group of hidden units pays attention to exactly one of the three inputs, so
that the three groups will compute the three functions, 91(X), 92(X), and
93(X), of equation (5.1). If, on the other hand, the three variables interact,
we would hope that at least one of the groups of hidden units will end
up with hyperparameter values that allow it to look at all three inputs. If
there is no additive structure at all, we might expect the contribution to
the output of all but one of the groups of hidden units to be suppressed, by
means of the hyperparameters controlling their hidden-to-output weights.

150 Chapter 5. Conclusions and Further Work

Other structures, such as the intermediate model mentioned above, should
also be possible. With any of these structures, inputs whose effects have
been largely suppressed may still have a slight influence, as will be desir
able when we do not believe that the true function has an exactly additive
form.

From preliminary experiments, it appears that this scheme does indeed
operate as desired - finding additive structure when it is present, and not
finding it when it is not present. Furthermore, the predictive performance
of a network with the multiple groups of hidden units shown in Figure 5.1
can be better than that of a simple ARD model when the function does
indeed have additive structure. These models push the limits of the present
Markov chain implementation, as they require that the Markov chain ex
plore a complex space of possible hyperparameter values. The problem of
random walks discussed in Chapter 3 is of significance here, as the hyper
parameters are presently updated using Gibbs sampling, which does not
suppress random walk behaviour. Exploration may also be inhibited by
local modes in the posterior distribution over hyperparameters.

Hierarchical models with multiple groups of hidden units may be use
ful in other contexts as well. With appropriate sets of connections and
hyperparameters, models can be defined that have the potential to pro
duce functions with more than one scale of variation, to select between a
Gaussian or non-Gaussian prior for hidden-to-output weights, or to select
between a one-layer and a two-layer network. As with ARD models and
the model of Figure 5.1, the actual result of applying such models might
be a network that only approximately satisfies some restricted form, or
a posterior distribution over several network structures with substantially
different characteristics.

A final cautionary note regarding hierarchical models: The tests in
Chapter 4 indicate that care is required when using vague priors for hyper
parameters. Such priors are a convenience, since they allow one to avoid
thinking about what the exactly appropriate prior would be; they also
work well in some contexts. The results on the forensic glass data show
that vague priors can sometimes lead to problems, however, especially with
classification models. One might also expect to see problems when using
very vague priors with the elaborate hierarchical models discussed above.

5.3 Implementation using hybrid Monte Carlo

Another major theme of this work is the use of a Markov chain Monte
Carlo implementation bas~d on the hybrid Monte Carlo algorithm of Du
ane, Kennedy, Pendleton, and Roweth (1987). I demonstrated in Chapter 3
that hybrid Monte Carlo can be many times faster at sampling the poste-

5.3 Implementation using hybrid Monte Carlo 151

rior distribution for network weights than simpler forms of the Metropolis
algorithm; other methods, such as Gibbs sampling, cannot be applied to
this problem at all. Without hybrid Monte Carlo, the Markov chain Monte
Carlo approach would not be feasible for any but the smallest networks.

The utility of the hybrid Monte Carlo algorithm extends beyond the
neural network field. Although Gibbs sampling and simple forms of the
Metropolis algorithm are adequate for many problems of Bayesian infer
ence, I believe that hybrid Monte Carlo can solve many such problems
faster than the methods presently used, and will permit the use of com
plex models for which the computations have hitherto been infeasible. One
recent use is for the Gaussian process models of Williams and Rasmussen
(1996), discussed in Section 5.1, for which a form of hybrid Monte Carlo
is used to sample from the posterior distribution of the hyper parameters
controlling the covariance function.

Although the implementation I have described in this thesis is the result
of several design iterations, there is no reason to think that it is optimal.
The time required for the tests in Chapter 4 shows that improvement in this
respect is quite important. Many implementation schemes differing in detail
could be investigated. For example, the leapfrog stepsizes could be chosen
differently, the hyperparameters could be updated by hybrid Monte Carlo
rather than Gibbs sampling, a different parameterization of the weights
or the hyperparameters could be used, and the manual methods used to
choose a good trajectory length could be improved. Three variants of the
basic hybrid Monte Carlo method, using "partial gradients", "windows",
and "persistence", were investigated in Chapter 3, and found to give some
improvement, especially when used together. Other variants remain to be
tried, including those based on discretizations of the dynamics accurate
to higher order than the leapfrog method, and possible variants that ex
ploit the (somewhat limited) ability to quickly recalculate the output of a
network when a single weight changes (if intermediate results are stored).
Finally, one could try applying methods for escaping local modes such
as simulated tempering (Marinari and Parisi 1992, Geyer and Thompson
1995) and tempered transitions (Neal, in press).

A topic that was only touched on in Chapter 3 is the use of a Markov
chain Monte Carlo implementation to evaluate the accuracy of other im
plementations, such as those based on Gaussian approximations. It would
be most useful if one could use the Monte Carlo implementation to uncover
some interesting class of easily-identifiable situations where the Gaussian
approximation can be relied upon. This may be too much to hope for, how
ever. Another approach would be to develop procedures whereby Markov
chain Monte Carlo methods could be applied to a subset of the training
data, at lower computational cost than a full Monte Carlo run, and the
results used to assess whether the Gaussian approximation would be ade-

152 Chapter 5. Conclusions and Further Work

quate when applied to the full data set. On the other hand, it is possible
that use of the Markov chain Monte Carlo implementation will in the end
prove best in all or most circumstances, once the effort of verifying the
validity of Gaussian or other approximations is taken into account.

5.4 Evaluating performance on realistic problems

In Chapter 4, I tested various neural network models on real and synthetic
data sets. The main conclusion from these tests is that Bayesian learning
implemented using hybrid Monte Carlo can be effectively applied to real
problems of moderate size (with tens of inputs, and hundreds of training
cases). On one data set (the Boston housing data), the predictive perfor
mance obtained using the Bayesian methodology was substantially better
than that previously obtained using other methods; on another data set
(the forensic glass data), performance was as good as any obtained with
other methods. Approximately a day of computation was required to train
the networks on these real data sets. This time is large compared to that
required by standard methods, but small enough that use of this imple
mentation of Bayesian learning would be practical in many contexts.

Results on only two real data sets are of course not sufficient to support
any sweeping claims regarding the superiority of Bayesian learning. More
evaluations, on more data sets, in comparison with the best alternative
methods, would be required before any conclusions could be drawn that
might be accepted by advocates of the methods found to be inferior. It is
an unfortunate fact that although performance on real data - or better,
on real problems, with real-world context - is the ultimate ground on
which learning methods must be judged, fair and comprehensive tests of
performance on real problems are quite difficult, and quite laborious, to
perform. A group of us at the University of Toronto, led by Geoffrey Hinton,
are currently working on the DELVE project, building a large collection of
data sets, and an environment that facilitates using this data to make valid
comparisons of learning methods on realistic tasks.! We hope that we,
and other researchers, will soon be able to obtain more definitive evidence
regarding the merits of Bayesian learning for neural networks and of other
modern methods for solvin~ nonparametric regression and classification
tasks.

1 For the latest information on the DELVE project, visit our Web page, at URL
http://www.cs.utoronto.ca/neuron/delve/

Appendix A

Details of the Implementation

This appendix contains mathematical details regarding the Bayesian neural
network implementation described in Chapter 3, and used for the evalua
tions in Chapter 4. Some features of this implementation are not discussed
in these earlier chapters, but are described here for completeness.

Due to the variety of network architectures accommodated, it is neces
sary here to use a notation that is more systematic, albeit more cumber
some, than that which is used elsewhere. This notation is summarized on
the next page.

A.1 Specifications

This section defines the class of network models that are implemented by
the software, and explains how they are specified, in an abstract way. (For
the detailed syntax of network specifications, and other non-mathematical
details, see the documentation that comes with the software.)

A .1.1 Network architecture

The multilayer percept ron networks that this implementation supports con
sist of a layer of input units, zero or more hidden layers with tanh activation
function, and a layer of output units. Units in each hidden layer are con
nected to units in the preceding hidden layer and to units in the input

154 A. Details of the Implementation

Values associated with units

vI Value of ith input unit, before the offset is added

vf Value of ith hidden unit in layer £, before the offset is added

vf Value of ith output unit

uf Value of the input to the ith hidden unit

Parameters of the network

t{ Offset for ith input unit

tf Offset for ith hidden unit in layer £

bf Bias for ith unit in hidden layer £

bP Bias for ith output unit

W[.~o Weight from ith input unit to jth output unit

w[,1 Weight from ith input unit to jth unit in hidden layer £

wt;I,! Weight from ith unit in hidden layer £-1 to jth unit in hidden layer £

w;:jO Weight from ith unit in hidden layer £ to the jth output unit

u{v°
u{vl
U~-I,l

(1~I~

(1~'~
i-I,l

uw,i

Hyperparameters defining priors for parameters

Common sigma for offsets of input units

Common sigma for offsets of units in hidden layer £

Common sigma for biases of units in hidden layer e
Common sigma for biases of output units

Common sigma for weights from input units to output units

Common sigma for weights from input units to units in hidden layer e
Common sigma for weights from units in hidden layer £-1 to units in
hidden layer £

Common sigma for weights from units in hidden layer £ to output
units

Sigma for weights from input unit i to output units

Sigma for weights from input unit i to units in hidden layer .e
Sigma for weights from unit i in hidden layer £-1 to units in hidden
layer £

Sigma for weights from unit i in hidden layer e to output units

Sigma adjustment for weights and biases into output unit i

Sigma adjustment for weights and biases into unit i in hidden layer e

A.l Specifications 155

layer. Units in the output layer are connected to units in the hidden layers
and to units in the input layer. Each ofthese connections has an associated
weight, used to form a weighted sum of inputs.to a unit along incoming
connections. Each unit in the hidden and output layers has a bias, which
is added to this weighted sum of inputs. Each unit in the input and hid
den layers has an offset, which is added to its output. Any of these sets
of parameters (associated with a particular layer, or pair of layers) may
be missing in any particular network, producing the same effect as if their
values were zero.

The following formulas define the outputs, vP, of a network for given
values of the inputs, vI. Note that the interpretation of these outputs is
determined by the data model, described next.

u~ • bl L I,l(I I) i + Wk,i Vk + tk + L w l -.1,i(vi - 1 + t i - 1)
k,' k k (A.l)

k k

v~ • tanh(uf} (A.2)

vO , bO L I,O(I I) i + Wk ,; Vk + tk LL I,O(l l) + W k ,; Vk +tk (A.3)
k l k

Here, and subsequently, the summations are over all units in the appropri
ate layer, or over all hidden layers (for £). The number of layers and the
numbers of units in each layer are part of the architecture specification,
but these numbers are not given symbols here. The term in the equation
for uf involving layer £-1 is omitted for the first hidden layer.

A.l.2 Data models

Networks are normally used to define models for the conditional distribu
tion of a set of "target" values given a set of "input" values. There are three
sorts of models, corresponding to three sorts of targets - real-valued tar
gets (a "regression" model), binary-valued targets (a "logistic regression"
model), and "class" targets taking on values from a (small) finite set (a
generalized logistic regression, or "softmax" model). For regression and lo
gistic regression models, the number of target values is equal to the number
of network outputs. For the softmax model, there is only one target, with
the number of possible values for this target being equal to the number of
network outputs.

The distributions for real-valued targets, Yj, in a case with inputs v{ may
be modeled by independent Gaussian distributions with means given by the
corresponding network outputs, and with standard deviations given by the
hyperparameters O'j - the "noise levels" for the targets. The probability
density for a target given the associated inputs and the network parameters

156 A. Details of the Implementation

is then

P(Yj I inputs, parameters)

Alternatively, each case, c, may have its own set of standard deviations,
(jj,c, with the corresponding precisions, Tj,c = (j;'~, being given Gamma
distributions with means of Tj and shape parameter a2 (called this for
reasons that will become clear later):

(a2/ 2Tj)0:2/2 0:2/2-1 (I)
r(a2/2) Tj,c exp - Tj,c a 2 2Tj (A.5)

The previous case corresponds to the degenerate Gamma distribution with
a2 = 00. Otherwise, integrating out Tj,c gives a t-distribution for the target
with a2 "degrees of freedom":

P(Yj I inputs, parameters)

f((a2+ 1}/2) [1 + (y. _ v~)2 la (j~r(0:2+1)/2 (A.6)
r(a2/2) Jrra2 o'j J J 2 J

For a logistic regression model, the probability that a binary-valued
target, Yj, has the value 1 is given by

P(Yj = 1 I inputs, parameters) (A.7)

For a softmax model, the probability that a class target, y, has the value
j is given by

P(y = j I inputs, parameters) exp(v?) I L:exp(v?) (A.8)
k

A .1. 3 Prior distributions for parameters and hyperparameters

The prior distributions for the parameters of a network are defined in terms
of hyperparameters. Conceptually, this implementation provides for one
hyperparameter for every parameter, but these lowest-level hyperparam
eters are not explicitly represented. Mid-level hyperparameters control the
distribution of a group of low-level hyperparameters that are all of one type
and all associated with the same source unit. High-level (or "common")
hyperparameters control the distribution of the mid-level hyperparameters,
or of the low-level hyperparameters for parameter types with no mid-level
hyperparameters. The same three-level scheme is used for noise levels in
regression models.

These hyperparameters are represented in terms of "sigma" values, (j,

but their distributions are specified in terms of the corresponding "preci
sions", T = (j-2, which are given Gamma distributions. The top-level mean

A.I Specifications 157

is given by a "width" value associated wit.h the parameter type. The shape
parameters of the Gamma distributions are determined by "alpha" values
associated with each type of parameter. An alpha value of infinity concen
trates the entire distribution on the mean, effectively removing one level
from the hierarchy. The sigma for a weight may also be multiplied by an
"adjustment" value that is associated with the destination unit.

This gives the following generic scheme for the priors for weights:

(a /2w)a w •o/2
W,O w a w 0/ 2-1 (/2) r(Q'w.o/2) Tw' exp - Twaw,o Ww (A.9)

For weights from input units to output units, for example, Tw will equal
T~,o = [0'~,o]-2, and similarly for Tw,i, while Ta,j will equal [0'~i]-2. The
top-level precision value, Ww, is derived from the "width" value specified
for this type of weight. The positive (possibly infinite) values aw.o and aw.l

are also part of the prior specification for input to output weights, while aa

is a specification associated with the output units (note that in this case
the "width" value is fixed at one, as freedom to set it would be redundant).

The distribution for a weight from unit i of one layer to unit j of another
layer may be Gaussian with mean zero and standard deviation given by
O'w,iO'a,j = [Tw.iTa.j]-1/2. That is:

P(Wi,j I O'w.i, O'a.j)

(Here, Wi,j represents, for example, w{f, in which case O'w.; represents O'~,~
and O'a.j represents O'~j')

Alternatively, each individual weight may have its own "sigma", with the
corresponding precision having a Gamma distribution with mean Tw,iTa,j

and shape parameter given by a w ,2' The previous case corresponds to the
degenerate distribution with Q'w.2 = 00. Otherwise, we can integrate over
the individual precisions and obtain t-distributions for each weight:

P(W;,j I O'w,i, O'a,j) (A.13)

158 A. Details of the Implementation

The same scheme is used for biases, except that for them there are no
mid-level hyperparameters. We have

(ab,0/2wb t· b•o/ 2 O'.b.o/ 2-1
f(ab,0/2) rb exp (- 'rbab,0/2wb) (A.I4)

where 'rb might, for example, be rf! = [ofJ-2, etc.

The distribution of the biases is then either

(A.I5)

if ab,1 = 00, or if not

P(bj I (fb, (fa,i)

f((ab,l +1)/2) [1 + b~/o: (f2(f2.]-(O'.b.l+1)/2 (A.I6)
f(a /2) ~ (f (f' t b,l b a,t b,1 V" -b,l b a,t

For the offsets added to input and hidden unit values, there are no mid
level hyperparameters, and neither are "adjustments" used. We have

Ph) (A.17)

where rt might, for example, be r{ = [(f{j-2, etc.

The distribution of the offsets is then either

(A. IS)

if at,l = 00, or if not

P(tj I (ft) f((at,1+1)/2) [1 +e/a (f2]-(0< •. 1+1)/2 (A.I9)
f(o: /2) ~ (f t t,l t t,l V .. -t,1 t

The scheme for noise levels in regression models is also similar, with rj,
the precision for target j, being specified in terms of an overall precision,
r, as follows:

(ao/2w)O<O/2
,"--':"--':-,.-- ro<o/2-I exp (- rao/2w)

f(ao/2)
P(r) (A.20)

P(rjlr) = (at/2r)O'.d 2 0'../2-1 (/)
f(at/2) rj exp - rj a 1 2r (A.2I)

where w, ao, and a1 are' parts of the noise specification. A third alpha
(a2) is needed for the final specification of the noise in individual cases, as
described in the Section A.1.2.

A.2 Conditional distributions for hyperparameters 159

A .1.4 Scaling of priors

The top-level mean precisions used in the preceding hierarchical priors (the
w values) may simply be taken as specified (actually, what is specified is
the corresponding "width", w- I / 2). Alternatively, for connection weights
only (not biases and offsets), the w for values of one type may be scaled
automatically, based on the number of source units that feed into each
destination unit via connections of this type. This scaling is designed to
produced sensible results as the number of source units goes to infinity,
while all other specifications remain unchanged.

The theory behind this scaling concerns the convergence of sums of inde
pendent random variables to "stable distributions" (Feller 1966, Samorod
nitsky and Taqqu 1994), as discussed in Chapter 2. The symmetric stable
distributions are characterized by a width parameter and an index, a, in
the range (0,2]. If Xl"'" Xn are independent and each has the same sym
metric stable distribution of index a, then (Xl + ... + Xn)/n l / a has this
same stable distribution as well. The stable distribution with index 2 is
the Gaussian. The sums of all random variables with finite variance con
verge to the Gaussian, along with some others. Typically, random variables
whose moments are defined up to but not including a converge to the stable
distribution with index a, for a < 2.

This leads to the following scaling rules for producing w based on the
specified base precision, Wo, the number of source units, n, and the relevant
a value (see below):

ron for a = 00

wona/(a-2) for a > 2
w (A.22)

won logn for a = 2 (but fudged to won if n < 3)

won2/ a for a < 2

Here, a is a w,2 if that is finite, and is otherwise aw,l. The scheme doesn't
really work if both aw,l and a w,2 are finite. When a = 2, the scaling
produces convergence to the Gaussian distribution, but with an unusual
scale factor, as the t-distribution with a = 2 is in the "non-normal" domain
of attraction of the Gaussian distribution.

A.2 Conditional distributions for hyperparameters

Implementation of Gibbs sampling for hyperparameters requires sampling
from the conditional distribution for one hyperparameter given the values
of the other hyperparameters and of the network parameters. This section
describes how this is done.

160 A. Details of the Implementation

A .2.1 Lowest-level conditional distributions

The simplest conditional distributions to sample from are those for "sigma"
hyperparameters that directly control a set of network parameters. This will
be the situation for the lowest-level sigmas, as well as for higher-level sigmas
when the lower-level sigmas are tied exactly to this higher-level sigma (i.e.
when the "alpha" shape parameter for their distribution is infinite). The
situation is analogous for sigma values relating to noise levels in regression
models, except that the errors in training case are what is modeled, rather
than the network parameters.

In general, we will have some hyperparameter T = /1-2 that has a
Gamma prior, with shape parameter we will call a, and with mean w (which
may be a higher-level hyperparameter). The purpose of T is to specify the
precisions for the independent Gaussian distributions of n lower-level quan
tities, Zi. In this situation, the conditional distribution for T will be given
by the following proportionality:

P(T I {zd, ...) ex Ta/2- 1 exp(-Ta/2w) . II T1/2exp(-Tzl!2) (A.23)

ex T(a+n)/2-1 exp (-T(a/w + Lzl}J2)
i

(A.24)

The first factor in equation (A.23) derives from the prior for T, the remain
ing factors from the effect of T on the probabilities of the Zi. The result
is a Gamma distribution that can be sampled from by standard methods
(Devroye 1986).

When the distributions of the Zi are influenced by "adjustments", Ta,i,
the above formula is modified as follows:

P(T I {zd, {Ta,i}, ...)

ex T(a+n)/2-1 exp (-T(a/w + LTa,iZl)J2)
i

(A.25)

Gibbs sampling for the adjustments themselves is done in similar fashion,
using the weighted sum of squares of parameters influenced by the adjust
ment, with the weights in this case being the precisions associated with
each parameter.

A.2.2 Higher-level conditional distributions

Sampling from the conditional distribution for a sigma hyperparameter that
controls a set of lower-level sigmas is more difficult, but can be done in the
most interesting cases using rejection sampling. This method is generally
adequate, but not completely satisfactory. I plan to replace it with a better
scheme soon.

A.a Calculation of derivatives 161

Assume that we wish to sample from the distribution for a precision
hyperparameter r, which has a higher-level Gamma prior specified by 0'0
and w, and which controls the distributions of lower-level hyperparameters,
Ti, that have independent Gamma distributions with shape parameter 0'1
and mean r. The conditional distribution for r is then given by the following
proportionality:

P(r I {rd, .. ·)

DC r ao!2-1 exp(-rao/2w) . II r-ad2 exp(-ria1/2r) (A.26)

DC r(ao- nad!2-1 exp (-rao/2w - (0'12';: rd /2T)
I

Defining 'Y = 1fT, we get:

P('Y I {Ti}, ...)

DC r2 P(r I {Td, ...)

DC r(ao- nad!2+ 1 exp (-Tao/2w - (0'12';: r;) / 2r)
I

(A.27)

(A.28)

(A.29)

DC 'Y(na,-ao)/2-1exP(-'Y(a12';:Ti)/2) . exp(-ao/2w'Y) (A.30)
I

The first part of this has the form of a Gamma distribution for 'Y, provided
na1 > 0'0; the last factor lies between zero and one. If na1 > 0'0, we can
therefore obtain a value from the distribution for 'Y by repeatedly sampling
from the Gamma distribution with shape parameter na1 - 0'0 and mean
(na1-ao)/(a1 I:Ti) until the value of'Y generated passes an acceptance

i
test, which it does with probability exp(-ao/2w'Y). We may hope that the
probability ofrejection will be reasonably low if 0'0 is small, which is typical.

In some contexts, the values Ti are not explicitly represented, and must
themselves be found by sampling using the method of the previous section.

A.3 Calculation of derivatives

To use the hybrid Monte Carlo method, we must be able to calculate the
derivatives of the log of the posterior probability density for the parameter
values, which are found by summing the derivatives of the log likelihood
and of the log of the prior probability density of the parameter values. This
section details how this is done.

162 A. Details of the Implementation

A.3.l Derivatives of the log prior density

For fixed values of the explicitly-represented hyperparameters, one can eas
ily obtain the derivatives of the log of the prior probability with respect to
the network weights and other parameters. Generically, if Cl'w,2 = 00, we
get, from equation (A.12), that

while otherwise, we get, from equation (A.14), that

o
ow' ,logP(wi,j I (Tw,i, (Ta,j)

',J
Cl'w,2 + 1 Wi,j

W· , ',J

Cl'W,2(T!,i(T~,j [1 + W[,j!Cl'W,2(T!,i(T~,j]

(A.3I)

(A.32)

Similar formulas for derivatives with respect to the biases are obtained
from equations (A.I5) and (A.I6) and for derivatives with respect to the
offsets from equations (A.I8) and (A.19).

A.3.2 Log likelihood derivatives with respect to unit values

The starting point for calculating the derivatives of the log likelihood with
respect to the network parameters is to calculate the derivative of the log
likelihood due to a particular case with respect to the network outputs. For
the regression model with Cl'2 = 00, we get from equation (A.4) that

o 0 Yj - vy
ov9 logP(y I Vj) (T~

J J

(A.33)

When Cl'2 is finite, we get from equation (A.6) that

o
ovo logP(y I v7)

J

Cl'2 + 1 Yj - vy
- Cl'2(Tl [I+(Yj-vY)2!Cl'2(Tl]

(A.34)

For the model of binary targets given by equation (A. 7), we get the
following, after some manipulation:

o 0
ov9 log P(y I Vj)

J

[0]-1 Yj - 1 + exp(-vj) (A.35)

(A.36)

For the many-way "soft max" classification model of equation (A.8), we
get the following (where 8 (y, j) is one if Y = j and zero otherwise):

{) , . exp(vy)
!OJ 0 logP(y I {vrl) = 8(Y,J) - L (0) (A.37)
UVj exp vk

k

A.3 Calculation of derivatives 163

J(y,j) - P(y = j I {vp}) (A.38)

Let L be the log likelihood due to a single training case - that is, L =
log P(y I inputs, parameters) = log P(y I outputs). Once the derivatives
of L with respect to the output unit values are known, its derivatives with
respect to the values of the hidden and input units can be found by the
standard backpropagation method. From equations (A.I), (A.2), and (A.3):

{)L

{)v~
=

I

{)L

{)u~
I

{)L ~ 10 {)L ~ ~ I l {)L
{)v! = .l....J Wi,} {)v9 + .l....J.l....J Wi,} {)U~

I j J l j J

(A.39)

(A.40)

(A.4I)

In (A.39), the second term is not present when f is the last hidden layer.

A.3.3 Log likelihood derivatives with respect to parameters

The derivatives of L with respect to the net.work parameters (with explicitly
represented noise sigmas fixed) are obtained using the derivatives with
respect to unit values and unit inputs found in the previous section, as
follows:

8L 8L
(A.42)

{)b9 {)v9
I ,

{)L {)L
(A.43) {)M {)u~

I I

8L {)L
(A.44)

8t~ {)v~
I I

8L {)L
(A.45)

{)t! {)v!
I I

{)L {)L j' l (A.46) {) l,o {) 0 (Vi +t;)
W· . Vj • ,J

8L {)L (v~-l + t~-l) (A.47) {) i-1,t {) t ,. I
W· . Uj

',J

{)L {)L .r I (A.48)
{)T.t {iT (Vi + ti)

W· . Uj I,J

{)L {)L J I
(A.49)

() 1,0 () 0 (Vi + t;)
W· . Vj , ,)

164 A. Details of the Implementation

The derivatives found in this way for each training case are summed over the
full training set, and added to the derivatives with respect to the log prior
density, to give the derivatives with respect to the log posterior probability
density, which control the hybrid Monte Carlo dynamics.

A.4 Heuristic choice of stepsizes

Stepsizes for dynamical trajectory computations and for Metropolis up
dates are heuristically chosen based on the values of the training inputs and
the current values of the hyperparameters. These stepsize choices are made
on the assumption that the system is near equilibrium, moving about in an
approximately Gaussian hump of the posterior distribution. If the axes of
this hump were aligned with the coordinate axes, the optimal stepsize along
each axis would be in the vicinity of the standard deviation along that axis.
Since the axes of the bowl may not be aligned with the coordinate axes,
the actual stepsizes may have to be less than this. On the other hand, the
estimates used are in some respects conservative. Any overall adjustment
of the stepsizes to account for these factors must be done manually by the
user.

Estimates of the posterior standard deviations along the axes are based
on estimates of the second derivatives of the log posterior probability den
sity along the axes. These second derivatives are estimated using estimates
of the second derivatives of the log likelihood with respect to the values of
units in the network.

Letting L be the log likelihood for a single training case, we get the
following for real-valued targets, with (}:2 = 00, using equation (A.33):

1
O"~

J

while for finite (}:2, we get from equation (A.34) that

(A.50)

{}2L (}:2\1 [(1+ (VJ):)-l + 2(VJ;2(1+ (VJ):)-2] (A.51)
{)(vJ)2 (}:20"j (}:20"j (}:20"j (}:20"j

This is estimated by its maximum value, which occurs at vJ = 0:

{PL
- {}(vJ)2

For binary-valued targets, equation (A.36) gives

{}2L

8(vJ)2
1

[1 + exp(vJ)][1 + exp(-v7)]
1

4

(A.52)

(A.53)

AA Heuristic choice of stepsizes 165

Again, the estimate is based on the maximum possible value, which occurs
when v? = O.

We get a similar estimate for a class target, using equation (A.38):

exp(v?) [exp(v?) 1
~exp(vr) 1- ~exp(vr)

1
~ -

4
(A.54)

These estimates for the second derivatives of L with respect to the out
puts are propagated backward to give estimates for the second derivatives
of L with respect to the values of hidden and input units.

When doing this backward propagation, we need an estimate of the
second derivative of L with respect to the summed input to a tanh hidden
unit, given its second derivative with respect to the unit's output. Letting
the hidden unit output be v = tanh(u), we have

d2L ~ [(1- v2) dL] (A.55)
du 2 du dv

. 2 2 d2 L 2 dL
(A.56) (1-v) - - 2v(1-v)-

dv2 dv

(1 _ V2)2 d2 L d2 L
(A.57) ~ ~

dv 2 dv2

The first approximation assumes that since 2v(1-v2)(dL/dv) may be either
positive or negative, its effects will (optimistically) cancel when averaged
over the training set. Since v is not known, the second approximation above
takes the maximum with respect to v. The end result is that we just ignore
the fact that the hidden unit input is passed through the tanh function.

The backward propagation also ignores any interactions between multi
ple connections from a unit. Since the stepsizes chosen are not allowed to
depend on the actual values of the network parameters, the magnitude of
each weight is taken to be equal to the corresponding sigma hyperparam
eter, multiplied by the destination unit adjustment, if present. This gives
the following generic estimate:

(A.58)

Here, S is the source layer, D goes through the various layers receiving
connections from S, !T;,f is the hyperparameter controlling weights to layer
D out of unit i in S, a~d !T~j is the sigma adjustment for unit j in D.

The second derivative of L with respect to a weight, W~jD, can be ex
pressed as follows:

166 A. Details of the Implementation

cPL
(A.59)

8(W?'P)2
• ,J

When the weight is on a connection from an input unit, vf = v{ is the ith
input for this training case, which is known. If the weight is on a connection
from a hidden unit, (vf)2 is assumed to be one, the maximum possible
value.

Second derivatives with respect to biases and offsets are simply equal to
the second derivatives with respect to the associated unit values.

These heuristic estimates for the second derivatives of L due to each
training case with respect to the various network parameters are summed
for all cases in the training set. To these are added estimates of the sec
ond derivatives of the log prior probability density with respect to each
parameter, giving estimates of the second derivatives of the log posterior
density.

For the second derivative of the log prior density with respect to weight
Wi ,j, we have

1
(A.60)

if 0'2 is infinite, while for finite 0'2, we use an estimate analogous to equa
tion (A.52):

(A.61)

Biases and offsets are handled similarly.

Finally, the stepsize used for a parameter is the reciprocal of the square
root of minus the estimated second derivative of the log posterior with
respect to that parameter.

A.5 Rejection sampling from the prior

In addition to the Monte Carlo implementation based on Markov chain
sampling, a simple Monte Carlo procedure using rejection sampling has
also been implemented. This procedure is very inefficient; it is intended
for use only as a means of checking the correctness of the Markov chain
implementations.

The rejection sampling procedure is based on the idea of producing
a sample from the posterior by generating networks from the prior, and
then accepting some of these networks with a probability proportional to
the likelihood (for the given training data) of the generated parameter and

A.S Rejection sampling from the prior 167

hyperparameter values. For data models with discrete targets, this idea can
be implemented directly, as the likelihood is the probability of the targets
in the training set, which can be no more than one. For regression models,
the likelihood is the probability density of the targets, which can be greater
than one, making its direct use as an acceptance probability invalid. If the
noise levels for the targets are fixed, however, the likelihood is bounded, and
can be used as the acceptance probability after rescaling. For a Gaussian
noise model (equation (AA)), this is accomplished by simply ignoring the
factors of 1/-..!2rrO'j in the likelihood; the analogous procedure can be used
for noise from a i-distribution (equation (A.6)).

When the noise levels are variable hyperparameters, a slightly more
elaborate procedure must be used, in which the noise levels are not gener
ated from the prior, but rather from the prior multiplied by a bias factor
that gives more weight to higher precisions (lower noise). This bias factor is
chosen so that when it is cancelled by a corresponding modification to the
acceptance probability, these probabilities end up being no greater than
one.

Specifically, the overall noise precision, r, and the noise precisions for
individual targets, the rj, are sampled from Gamma distributions obtained
by modifying the priors of equations (A.20) and (A.21) as follows:

/(T) ex Tnm/2 P(r) (A.62)

ex r(ao+nm)/2-1 exp (- Tao/2w) (A.63)

/h I T) ex rjn/2 P(Tj I T) (A.64)

ex T-(a 1+n)/2 TJa 1 +n)/2-1 exp (- rjat/2r) (A.65)

Here, n is the number of training cases and m is the number of targets.
The resulting joint sampling density is

m m

l(r, {rj}) = l(r) IIl(Tj I r) ex P(r, {rj}) II r}/2 (A.66)
j=l j=l

Since this sampling density is biased in relation to the prior by the factor
m
I1 T".'/2, when constructing the acceptance probability we must multiply
j=l J m n m

the likelihood by the inverse of this factor, n Tj- n / 2 = n n OJ. This
j=l c=lj=l

cancels the factors of l/O'j in the target probabilities of equations (AA)
and (A.6), leaving an acceptance probability which is bounded, and can
be adjusted to be no more than one by ignoring the remaining constant
factors.

Appendix B

Obtaining the software

The implementation of Bayesian learning for neural networks described in
Appendix A is available free of charge for research and educational pur
poses. This implementation is written in C, and currently is designed for
use only on Unix systems. It does not require any special graphics or user
interface environment. The software also does not use any special Unix
facilities, but it is nevertheless likely that various modifications would be
required in order for it to run in some other environment, and I cannot
undertake to provide assistance with any such conversion.

Potential users should note that this software is intended to support
research in Bayesian neural network learning, not as a tool for routine data
analysis.

The software is available over the Internet, via my World Wide Web
home page, at URL

http://www.cs.utoronto.ca/~radford/

It can also be obtained by anonymous ftp to ftp. cs. utoronto. ca, direc
tory pub/radford. Look in the README file there for further instructions.

Unfortunately, it is difficult to say for how long the above instructions
will remain valid. If you encounter difficulties, you should be able to find an
up-to-date link at Springer-Verlag's Web page, which is currently located
at URL

http://www.springer-ny.com/

Bibliography

ACKLEY, D. H., HINTON, G. E., AND SEJNOWSKI, T. J. (1985) "A learning
algorithm for Boltzmann machines", Cognitive Science, vol. 9, pp. 147-169.

ANDERSEN, H. C. (1980) "Molecular dynamics simulations at constant pressure
and/or temperature", Journal of Chemical Physics, vol. 72, pp. 2384-2393.

BALDI, P. AND CHAUVIN, Y. (1991) "Temporal evolution of generalization during
learning in linear networks" ,Neural Computation, vol. 3, pp. 589-603.

BARNETT, V. (1982) Comparative Statistic,[J1 Inference, Second Edition, New
York: John Wiley.

BERGER, J. O. (1985) Statistical Decision Theory and Bayesian Analysis, New
York: Springer-Verlag.

BERNARDO, J. M. AND SMITH, A. F. M. (1.994) Bayesian Theory, New York:
John Wiley.

BISHOP, C. M. (1995) Neural Networks for Pattern Recognition, Oxford Univer
sity Press.

Box, G. E. P. AND TIAO, G. C. (1973) Bayesian Inference in Statistical Anal
ysis, New York: John Wiley.

BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A., AND STONE, C. J. (1984)
Classification and Regression Trees, Belmont, California: Wadsworth.

BRIDLE, J. S. (1989) "Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition", in F.
Fouglemann-Soulie and J. Heault (editors) Neuro-computing: Algorithms, Ar
chitectures and Applications, New York: Springer-Verlag.

172 Bibliography

BUNTINE, W. L. AND WEIGEND, A. S. (1991) "Bayesian back-propagation",
Complex Systems, vol. 5, pp. 603-643.

CREUTZ, M. AND GOCKSCH, A. (1989) "Higher-order hybrid Monte Carlo algo
rithms", Physical Review Letters, vol. 63, pp. 9-12.

CYBENKO, G. (1989) "Approximation by superpositions of a sigmoidal function",
Mathematics of Control, Signals, and Systems, vol. 2, pp.303-314.

DUANE, S., KENNEDY, A. D., PENDLETON, B. J., AND ROWETH, D. (1987)
"Hybrid Monte Carlo", Physics Letters B, vol. 195, pp. 216-222.

DEGROOT, M. H. (1970) Optimal Statistical Decisions, New York: McGraw~Hill.

DEVROYE, L. (1986) Non-uniform Random Variate Generation, New York: Spring
er-Verlag.

FALCONER, K. (1990) Fractal Geometry: Mathematical Foundations and Appli
cations, Chichester: John Wiley.

FELLER, W. (1966) An Introduction to Probability Theory and its Applications,
Volume II, New York: John Wiley.

FUNAHASHI, K. (1989) "On the apprmomate realization of continuous mappings
by neural networks", Neural Networks, vol. 2, pp. 183-192.

GELFAND, A. E. AND SMITH, A. F. M. (1990) "Sampling-based approaches to
calculating marginal densities", Journal of the American Statistical Associa
tion, vol. 85, pp. 398-409.

GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. (1995) Bayesian
Data Analysis, London: Chapman & Hall.

GEMAN, S., BIENENSTOCK, E., AND DOURSAT, R. (1992) "Neural Networks and
the Bias/Variance Dilemma", Neural Computation, vol. 4, pp. 1-58.

GEMAN, S. AND GEMAN, D. (1984) "Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images", IEEE Transactions on Pattern Anal
ysis and Machine Intelligence, vol. 6, pp. 721-74l.

GEYER, C. J. AND THOMPSON, E. A. (1995) "Annealing Markov chain Monte
Carlo with applications to ancestral inference", Journal of the American Sta
tistical Association, vol. 90, pp. 909-920.

GRENANDER, U. (1981) Abstract Inference, New York: John Wiley.

HARRISON, D. AND RUBINFELD, D. L. (1978) "Hedonic housing prices and the
demand for clean air", Journal of Environmental Economics and Management,
vol. 5, pp. 81-102.

HASTIE, T. J. AND TIBSHIRANI, R. J. (1990) Generalized Additive Models, Lon
don: Chapman & Hall.

HERTZ, J., KROGH, A., AND PALMER, R. G. (1991) Introduction to the Theory
of Neural Computation, Redwood City, California: Addison-Wesley.

HINTON, G. E. AND VAN CAMP, D. (1993) "Keeping neural networks simple
by minimizing the description length of the weights", Proceedings of the Sixth
Annual ACM Conference on Computational Learning Theory, Santa Cruz,
1993, pp. 5-13.

Bibliography 173

HORNIK, K., STINCHCOMBE, M., AND WHIn:, H. (1989) "Multilayer feedforward
networks are universal approximators", Neural Networks, vol. 2, pp. 359-366.

HOROWlTZ, A. M. (1991) "A generalized guided Monte Carlo algorithm", Physics
Letters B, vol. 268, pp. 247-252.

JEFFREYS, W. H. AND BERGER, J. O. (1992) "Ockham's razor and Bayesian
analysis", American Scientist, vol. 80, pp. 64-72. See also the discussion in
vol. 80, pp. 212-214.

KENNEDY, A. D. (1990) "The theory of hybrid stochastic algorithms", in P. H.
Damgaard, et al. (editors) Probabilistic Methods in Quantum Field Theory and
Quantum Gravity, New York: Plenum Press.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. (1983) "Optimization
by simulated annealing", Science, vol. 220, pp. 671-680.

LE CUN, Y., BOSER, B., DENKER, J. S., HENDERSON, D., HOWARD, R. E.,
HUBBARD, W., AND JACKEL, L. D. (1990) "Handwritten digit recognition
with a back-propagation network", in D. S. Touretzky (editor) Advances in
Neural Information Processing Systems 2, pp. 396-404, San Mateo, California:
Morgan Kaufmann.

Lm, Y. (1994) "Robust parameter estimation and model selection for neural
network regression", in J. D. Cowan, G. Tesuaro, and J. Alspector (editors)
Advances in Neural Information Processing Systems 6, pp. 192-199. San Mateo,
California: Morgan Kaufmann.

MACKAY, D. J. C. (1991) Bayesian Methods for Adaptive Models, Ph.D thesis,
California Institute of Technology.

MACKAY, D. J. C. (1992a) "Bayesian interpolation", Neural Computation, vol. 4,
pp. 415-447.

MACKAY, D. J. C. (1992b) "A practical Bayesian framework for backpropagation
networks", Neural Computation, vol. 4, pp" 448-472.

MACKAY, D. J. C. (1992c) "The evidence framework applied to classification
networks", Neural Computation, vol. 4, pp. 720-736.

MACKAY, D. J. C. (1994a) "Bayesian non-linear modeling for the energy pre
diction competition", ASHRAE Transactions, vol. 100, pt. 2, pp. 1053-1062.

MACKAY, D. J. C. (1994b) "Hyperparameters: Optimise, or integrate out?",
in G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa
Barbara, 1993, Dordrecht: Kluwer.

MACKENZIE, P. B. (1989) "An improved hybrid Monte Carlo method", Physics
Letters B, vol. 226, pp. 369-371.

MCCULLAGH, P. AND NELDER, J. A. (1983) Generalized Linear Models, London:
Chapman & Hall.

MARINARI, E. AND PARISI, G. (1992) "Simulated tempering: A new Monte Carlo
Scheme", Europhysics Letters, vol. 19, pp. 451-458.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H.,
AND TELLER, E. (1953) "Equation of state calculations by fast computing
machines", Journal of Chemical Physics, vol. 21, pp. 1087-1092.

174 Bibliography

NEAL, R. M. (1992a) "Bayesian mixture modeling", in C. R. Smith, G. J. Erick
son, and P. O. Neudorfer (editors) Maximum Entropy and Bayesian Methods:
Proceedings of the 11th International Workshop on Maximum Entropy and
Bayesian Methods of Statistical Analysis, Seattle, 1991, Dordrecht: Kluwer
Academic Publishers.

NEAL, R. M. (1992b) "Bayesian training of backpropagation networks by the
hybrid Monte Carlo method", Technical Report CRG-TR-92-1, Dept. of Com
puter Science, University of Toronto.

NEAL, R. M. (1993a) "Bayesian learning via stochastic dynamics", in C. L. Giles,
S. J. Hanson, and J. D. Cowan (editors),' Advances in Neural Informdtion
Processing Systems 5, pp. 475-482, San Mateo, California: Morgan Kaufmann.

NEAL, R. M. (1993b) "Probabilistic inference using Markov Chain Monte Carlo
methods", Technical Report CRG-TR-93-1, Department of Computer Science,
University of Toronto. Available in Postscript via the World Wide Web, at
URL http://www . cs. utoronto. cal ""'radfordl

NEAL, R. M. (1994) "An improved acceptance procedure for the hybrid Monte
Carlo algorithm", Journal of Computational Physics, vol. 111, pp. 194-203.

NEAL, R. M. (in press) "Sampling from multimodal distributions using tempered
transitions", to appear in Statistics and Computing.

PEITGEN, H.-O. AND SAUPE, D. (editors) (1988) The Science of Fractal Images,
New York: Springer-Verlag.

PRESS, S. J. (1989) Bayesian Statistics: Principles, Models, and Applications,
New York: John Wiley.

QUINLAN, R. (1993) "Combining instance-based and model-based learning", Ma
chine Learning: Proceedings of the Tenth International Conference, Amherst,
Massachusetts, 1993, Morgan Kaufmann.

RASMUSSEN, C. E. (1996) "A practical Monte Carlo implementation of Bayesian
learning", in D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (editors)
Advances in Neural Information Processing Systems 8, MIT Press.

RIPLEY, B D. (1987) Stochastic Simulation, New York: John Wiley.

RIPLEY, B. D. (1981) Spatial Statistics, New York: John Wiley.

RIPLEY, B. D. (1994a) "Flexible non-linear approaches to classification", in
V. Cherkassky, J. H. Friedman, and H. Wechsler (editors) From Statistics to
Neural Networks: Theory and Pattern Recognition Applications, pp. 105-126,
Springer-Verlag.

RIPLEY, B. D. (1994b) "Neural networks and related methods for classification"
(with discussion), Journal of the Royal Statistical Society B, vol. 56, pp. 409-
456.

RIPLEY, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge Uni
versity Press.

RISSANEN, J. (1986) "Stochastic complexity and modeling", Annals of Statistics,
vol. 14, pp.1080-1100.

Bibliography 175

ROBERT, C. P. (1995) The Bayesian Choice, New York: Springer-Verlag.

ROSSKY, P. J., DOLL, J. D., AND FRIEDMAN, H. L. (1978) "Brownian dynam
ics as smart Monte Carlo simulation", Journal-of Chemical Physics, vol. 69,
pp. 4628-4633.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. (1986a) "Learning
representations by back-propagating errors, Nature, vol. 323, pp. 533-536.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. (1986b) "Learn
ing internal representations by error propagation", in D. E. Rumelhart and
J. L. McClelland (editors) Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1: Foundations, Cambridge, Mas
sachusetts: MIT Press.

RUMELHART, D. E., MCCLELLAND, J. L., AND THE PDP RESEARCH GROUP
(1986) Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, Cambridge, Massachusetts: MIT Press.

SAMORODNITSKY, G. AND TAQQU, M. S. (1994) Stable Non-Gaussian Random
Processes: Stochastic Models with Infinite Variance, New York: Chapman &
Hall.

SCHMITT, S. A. (1969) Measuring Uncertalinty: An Elementary Introduction to
Bayesian Statistics, Reading, Massachussets: Addison-Wesley.

SMITH, A. F. M. AND ROBERTS, G. O. (UI93) "Bayesian computation via the
Gibbs sampler and related Markov chain Monte Carlo methods" (with discus
sion), Journal of the Royal Statistical Society B, vol. 55, pp. 3-23 (discussion,
pp. 53-102).

STONE, M. (1974) "Cross-validatory choice and assessment of statistical predic
tions" (with discussion), Journal of the Royal Statistical Society B, vol. 36,
pp. 111-147.

SZELISKI, R. (1989) Bayesian Modeling of Uncertainty in Low-level Vision, Bos
ton: Kluwer.

Szu, H. AND HARTLEY, R. (1987) "Fast simulated annealing", Physics Letters
A, vol. 122, pp. 157-162.

TIERNEY, 1. (1994) "Markov chains for exploring posterior distributions", Annals
of Statistics, vol. 22, pp. 1701-1762.

THODBERG, H. H. (1996) "A review of Bayesian neural networks with an appli
cation to near infrared spectroscopy", IEEE Transactions on Neural Networks,
vol. 7, pp. 56-72.

TOUSSAINT, D. (1989) "Introduction to algorithms for Monte Carlo simulations
and their application to QCD", Compute!- Physics Communications, vol. 56,
pp.69-92.

WAHBA, G. (1990) Spline Models for Observational Data, Society for Industrial
and Applied Mathematics.

WILLIAMS, C. K. I. AND RASMUSSEN, C. E. (1996) "Gaussian processes for
regression", in D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (editors)
Advances in Neural Information Processing Systems 8, MIT Press.

176 Bibliography

WOLPERT, D. H. (1993) "On the use of evidence in neural networks", in C. L.
Giles, S. J. Hanson, and J. D. Cowan (editors), Advances in Neural Information
Processing Systems 5, pp. 539-546, San Mateo, California: Morgan Kaufmann.

YOUNG, A. S. (1977) "A Bayesian approach to prediction using polynomials",
Biometrika, vol. 64, pp. 309-317.

VAPNIK, V. (1982) Estimation of Dependencies Based on Empirical Data, trans
lated by S. Kotz, New York: Springer-Verlag.

Index

0-1 loss, 5

absolute error loss, 5, 104, 106
activation function, 11, 31, 75, 153
additive models, 148-150
adjustment values, 39, 157
alpha values, 101,157
artificial intelligence, 2, 10
auto correlations, 24, 81-85,90,97,

106
Automatic Relevance

Determination (ARD), 15-17,
102, 113-116,148

I-level vs. 2-level priors for, 123
alternative to compare with, 114
magnitudes of weights when

using, 120,123, 136,141-142
prior distributions for, 114-115,

125
tests on LED display problem,

116-122
tests on robot arm problem,

122-125

backpropagation, 13, 70, 111, 163

Bayes' Rule, 5
Bayesian learning, see Bayesian

statistics; learning, Bayesian
Bayesian statistics, 3

books about, 3
controversy regarding, 2, 5

bias (for a unit), 11, 155
prior distribution for, 158

bias-variance tradeoff, 8
Boltzmann distribution, see

canonical distribution
Boltzmann machine, 25
Boston housing data, 127

computational performance on,
134

cross-validation tests on,
132-136

messy aspects of, 127-129
neural network models for,

129-132
predictive performance on, 131,

132, 134-136
preliminary tests on, 129-132
Quinlan's results on, 133, 134

Brownian functions, 35-37

178 Index

candidate state, 26
canonical distribution, 57, 69

invariance under Hamiltonian
dynamics, 59

over phase space, 57
CART (Classification and

Regression Trees), 116, 119
Cauchy distribution, 35, 43, 46
Central Limit Theorem, 32
central region, 36, 52-53
classification models, 12, 14, 31,

150, 155
coin tossing, 3-6
committee (of networks), 21
complex models, see model,

complexity of
computational expense

of Bayesian learning using
Gaussian approximation, 88,
152

of Bayesian learning using
hybrid Monte Carlo, 87-88,
152

of cross-validation, 13
of rejection sampling from the

prior, 19
computational performance

on Boston housing data, 134
on forensic glass data, 138
on LED display problem, 119
on robot arm problem, 87-88,

113, 123, 125
conjugate prior, 67
covariance function, 37, 146
cross validation, 13, 119, 127, 129

DELVE project, 152
derivatives

erroneous computation of, 73
of log likelihood, 162-164
of log prior density, 162
of potential energy, 58, 70, 93

detailed balance, 24, 27
dissipation of energy, 78
dogs, weights of, 7

domain of attraction, 43, 159

early stopping, 112
energy function, 27, 57-58, 68

approximations to, 92
entropy-based priors, 15
equilibrium distribution, 24

confirming convergence to, 81,
87, 106, 143

getting close to, 76
error on training cases, 12
estimator, 3

bias and variance of, 8, 9
MAP, 6
maximum likelihood, 4
penalized likelihood, 4

evaluation of learning methods,
99-100, 126-127, 152

evidence approach, 20, 86, 108, 114
criticism of, 20

extrapolation, 52

forensic glass data, 136
computational performance on,

138
neural network models for,

137-138
predictive performance on,

139-143
Ripley's results on, 139

fractional Brownian functions,
39-40

hyperparameter controlling, 52
with." < 1,49

free energy (of window), 95
frequentist statistics, 3

Gamma distribution, 39, 67, 101,
156

Gaussian approximation, see
posterior distribution,
Gaussian approximation to

Gaussian distribution, 4, 21, 27,
43, 159

example of sampling from, 62

Gaussian process, 31-42, 146
Brownian, 38
convergence to, 33, 36
covariance function for, 37, 146
direct implementation of, 43,

146
fractional Brownian, 39-40, 146
smooth,38

Gibbs sampling, 25-26
ergodicity of, 26
for neural network model, 26
invariance for, 25
use in Bayesian inference, 26
use in hybrid Monte Carlo, 60
use in stochastic dynamics, 59

Hamiltonian dynamics, 58-59
invariance of canonical

distribution under, 59
simulation of, 59, 61

Hamiltonian function, 57
handwriting recognition, 8
heatbath method, see Gibbs

sampling
heteroscedasticity, 66, 128
hidden features, 11, 34, 43, 45, 50,

146
hidden layers

infinite number, 50-51, 147
more than one, 48-51, 147

hidden unit, 10, 153
step function, 31, 35, 37, 46, 48
tanh, 30,36, 38,46

hierarchical models, 6, 14,51-53,
147-150

as alternative to comparing
several models, 127, 148

determining input relevance, 16
finding additive structure, 148
other uses of, 52, 150

hybrid Monte Carlo, 56, 60-63, 150
compared with other methods,

62-63, 88-91
demonstration on robot arm

data, 76-84

Index 179

ergodicityof, 61
for bivariate Gaussian, 62-63
for Gaussian process model, 151
for neural network model,

64-66, 68-73
invariance for, 61, 98
other variants of, 151
with partial gradients, 91-95
with persistence, 71,97-98
with windows, 95-96, 118, 138
with windows and partial

gradients together, 96-97, 106,
123, 131, 134

hyperbolic tangent (tanh), 11, 75
hyperparameters, 6, 20, 156

common, 67, 102, 115, 156
controlling noise level, 12, 68
controlling prior variance, 14,

66, 101
Gibbs sampling for, 67, 83,

159-161
in additive models, 149
in ARD models, 16, 102
integration over, 20
maximization with respect to,

20
other ways of handling, 65

infinite networks, 15, 17, 30, 103,
145, 147

initial distribution, 23
initial phase, 76-79, 102, 106, 118
input unit, 10, 153
invariant distribution, 24
irrelevant inputs, 15

kriging, 146
Kullback-Leibler divergence, 22

Langevin Monte Carlo, 61-63
compared with hybrid Monte

Carlo, 63, 88
large networks, 102-113
lattice field theory, 56
leapfrog method, 59-60

180 Index

for simple system, 71
stability of, 62, 71, 79
with individual stepsizes, 70

learning
about parameters, 4
Bayesian, 3, 4,13, 17,18
for neural networks, 12, 13
frequentist, 3
in daily life, 1
theories of, 1

LED display problem, 116
Breiman's results on, 117
computational performance on,

119
neural network models for,

117-118
predictive performance on,

119-120
likelihood function, 4, 5, 13, 19
local minima, 13, 21
logistic regression models, 155
loss function, 5

Markov chain, 23
construction of, 25
describing prior of infinite-layer

network, 51
ergodic, 24
reversible, 24

Markov chain Monte Carlo, 22-28
for neural network model, 55-98
reviews of, 23

masses, 58, 70
relation to stepsizes, 70

maximum a posteriori probability
(MAP) estimate, 6, 111

maximum likelihood, 4, 8, 12
for network applied to robot

arm problem, 111-112
maximum penalized likelihood, 4,

6, 13,111
median (guessing), 104, 106
method of sieves, 9
Metropolis algorithm, 26-28

compared with hybrid Monte
Carlo, 63, 88

ergodicityof, 27
for neural network model, 28
invariance for, 27
use in hybrid Monte Carlo, 61

Minimum Description Length, 22
mixture models, 9
ML-II,20
model (probabilistic), 3

based on multilayer perceptron,
12, 149

complexity of, 2, 7-9, 21, 51,
103, 145

hierarchical, 6
nonparametric, 10, 30
parameters of, 3
posterior probability of, 148

model parameter, see parameters
momentum variable, 57, 69
Monte Carlo estimate, 17, 23

based on dependent sample, 24
for mean of predictive

distribution, 64, 85
for median of predictive

distribution, 106
for predictive distribution, 20
variance of, 24, 85

multi-fractals, 146
multi-leap, 92
multilayer perceptron, 10, 153

approximations using, 11,30
models defined using, 12, 155
posterior distribution for, 19, 64
prior distributions for, 14-15,

29, 53
multiple inputs, 40, 42
multiple outputs, 33, 34, 45

neural networks, 10
applications of, 2, 12
as models of the brain, 2
large vs. small, 46-48, 103-104
multilayer perceptron, 10, 153

noise level, 12, 66, 155

for robot arm problem, 76
prior distribution for, 68, 158

non-Gaussian stable process, 43-48
convergence to, 44

nonparametric models, 10
normalization of inputs, 115-116,

128, 137

Occam's Razor, 2, 7, 9
offset (for a unit), 155

prior distribution for, 158
on-line learning, 91
output unit, 11, 153
overfitting, 8, 13, 30, 103, 104, 108,

112-113, 135

parameters (of a model), 3, 6
for a multilayer perceptron, 11,

64
partial gradients, see hybrid Monte

Carlo, with partial gradients
performance, see computational

performance; predictive
performance

persistence, see hybrid Monte
Carlo, with persistence

phase space, 57
preservation of volume, 59, 60

philosophy of induction, 2, 7, 9
Poisson process, 45, 147
polynomial models, 9
position variable, 57, 68
posterior distribution, 5, 17, 19

expectations with respect to, 23
for neural network model, 13,

19, 64
Gaussian approximation to,

19-22, 55-56, 151
modes of, 19-22, 150, 151

precision values, 67, 101, 156
prediction

Bayesian, 5, 6
frequentist, 4, 6
uncertainty of, 6, 9, 18, 108
using weighted average, 21

Index 181

predictive distribution, 5, 6, 14
for Gaussian process model, 33,

146
for neural network model, 13,

19, 20, 33, 64, 84, 108
found using Markov chain

Monte Carlo, 64, 84-87
median of, 104, 106
visualizing, 84

predictive performance
on Boston housing data, 131,

132, 134-136
on forensic glass data, 139-143
on LED display problem,

119-120
on robot arm problem, 85-87,

104, 107, 125
prior distribution, 4, 5

Cauchy, 105
choice of, 15, 51
combined Gaussian and

non-Gaussian, 49
for a multilayer perceptron,

14-15,29-53, 156-158
Gaussian, 14, 16, 17, 31, 104
improper, 7, 75, 105
limit for infinite network, 32-34,

36,43-45
meaning of, 15,29
non-Gaussian, 16, 43, 44, 104,

147
random generation from, 17, 18,

30,36,45,147
scaling with number of units,

32,44,75,159
vague, 7, 17,67, 105, 114, 137,

143, 150
probabilistic model, see model
proposal distribution, 26-27,61, 90

quantum chromodynamics, 56

random walks (problem of), 27, 28,
6.2-63, 79, 89, 97, 150

redundancy in training set, 92

182 Index

regression models, 12, 14, 17,31,
155

regularization, 4, 52
rejection rate, 72, 73, 81, 90, 91,

96-98
rejection sampling, 19

for high-level hyperparameters,
160

for posterior of network model,
19, 74, 166-167

robot arm problem, 75
computational performance on,

87-88, 113, 123, 125
demonstration of

implementation on, 76-84
large networks applied to,

104-113
MacKay's results on, 86, 88, 108
maximum likelihood applied to,

111-112
neural network models for,

75-76, 104-106, 122
predictive performance on,

85-87, 104, 107, 125
tests of ARD on, 122-125

sampling phase, 76, 81-84, 102,
106,118

second derivatives
of log likelihood, 164
of log posterior density, 19, 164
of log prior density, 166
of potential energy, 72

sigma values, 156
simulated annealing, 26, 65, 143
smart Monte Carlo, 62
smooth functions, 14, 15, 36, 37
smoothing splines, 146
softmax model, 12, 14, 117, 138,

155
software implementing Bayesian

neural network learning
demonstration of, 74-88
design decisions for, 65-66
details regarding, 153-167

how to obtain, 169
verifying correctness of, 73-74

squared error loss, 5, 14, 17, 84,
104,106

stable distributions, 43, 159
stationary distribution, see

invariant distribution
statistical physics, 22, 26
step function, 31, 35
stepsize, 60, 61

for Langevin Monte Carlo, 63
heuristic choice of, 72-73,

164-166
relation to masses, 70
selection of, 62, 66, 71-73

stepsize adjustment factor, 72, 106
choice of, 77, 79, 133

stochastic dynamics, 58-60
compared with hybrid Monte

Carlo, 90-91
ergodicity of, 59
for neural network model, 65
systematic error in, 60

structural risk minimization, 9
super-transitions, 77, 102

t-distribution, 44, 52, 101, 128,
156, 157

targets, 12, 64, 155
binary, 156
discrete, 12, 156
real-valued, 12, 155

temperature, 57
tempering, 143, 151
test case, 13, 64
tests of performance, 99-100,

126-127, 152
time (fictitious), 58
timing figures, 74, 102
training cases, 12, 64
trajectory, 59

computed using partial
gradients, 92-93

error in H along, 62, 79

optimal length of, 59, 62, 79-81,
106, 133

variation of quantities along, 79,
106

transition probabilities, 23
tuning (of implementation), 66

underfitting, 13, 103, 108

vague prior, see prior distribution,
vague

validation set, 13-14, 112, 113

weight (on a connection), 10, 155
prior distribution for, 157

weight decay, 13, 14, 113
width values, 157
windows, see hybrid Monte Carlo,

with windows

Index 183

Lecture Notes in Statistics
For infonnation about Volumes 1 to 67
please contact Springer-Verlag

Vol. 68: M. Taniguchi, Higher Order Asymptotic Theory for
Time Series Analysis. viii, 160 pages, 1991.

Vol. 69: N.J.D. Nagelkerke, Maximum Likelihood
Estimation of Functional Relationships. V, 110 pages, 1992.

Vol. 70: K. lida, Studies on the Optimal Search Plan. viii,
130 pages, 1992.

Vol. 71: E.M.R.A. Engel, A Road to Randomness in
Physical Systems. ix, 155 pages, 1992.

Vol. 72: J.K. Lindsey, The Analysis of Stochastic Processes
using GUM. vi, 294 pages, 1992.

Vol. 73: B.C. Arnold, E. Castillo, 1.-M. Sarabia,
Conditionally Specified Distributions. xiii, 151 pages, 1992.

Vol. 74: P. Barone, A. Frigessi, M. Piccioni, Stochastic
Models, Statistical Methods, and Algorithms in Image
Analysis. vi, 258 pages, 1992.

Vol. 75: P.K. Goel, N.S. Iyengar (Eds.), Bayesian Analysis
in Statistics and Econometrics. xi, 410 pages, 1992.

Vol. 76: L. Bondesson, Generalized Gamma Convolutions
and Related Classes of Distributions and Densities. viii, 173
pages, 1992.

Vol. 77: E. Mammen, When Does Bootstrap Work?
Asymptotic Results and Simulations. vi, 196 pages, 1992.

Vol. 78: L. Fahrmeir, B. Francis, R. Gilchrist, G. Tutz
(Eds.), Advances in GUM and Statistical Modelling:
Proceedings of the GLIM92 Conference and the 7th
Intemational Workshop on Statistical Modelling, Munich,
13-17 July 1992. ix, 225 pages, 1992.

Vol. 79: N. Schmitz, Optimal Sequentially Planned Decision
Procedures. xii, 209 pages, 1992.

Vol. 80: M. Fligner, J. Verducci (Eds.), Probability Models
and Statistical Analyses for Ranking Data. xxii, 306 pages,
1992.

Vol. 81: P. Spirtes, C. Glymour, R. Scheines, Causation,
Prediction, and Search. xxiii, 526 pages, 1993.

Vol. 82: A. Korostelev and A. Tsybakov, Minimax Theory
of Image Reconstruction. xii, 268 pages, 1993.

Vol. 83: C. Gatsonis, J. Hodges, R. Kass, N. Singpurwalla
(Editors), Case Studies in Bayesian Statistics. xii, 437 pages,
1993.

Vol. 84: S. Yamada, Pivotal Measures in Statistical
Experiments and Sufficiency. vii, 129 pages, 1994.

Vol. 85: P. Doukhan, Mixing: Properties and Examples. xi,
142 pages, 1994.

Vol. 86: W. Vach, Logistic Regression with Missing Values
in the Covariates. xi, 139 pages, 1994.

Vol. 87: J. MOller, Lectures on Random Voronoi
Tessellations.vii, 134 pages, 1994.

Vol. 88: J. E. Kolassa, Series Approximation Methods in
Statistics. Second Edition, ix, 183 pages, 1997.

Vol. 89: P. Cheeseman, RW. Oldford (Editors), Selecting
Models From Data: Al and Statistics IV. xii, 487 pages,
1994.

Vol. 90: A. Csenki, Dependability for Systems with a
Partitioned State Space: Markov and Semi-Markov Theory
and Computational Implementation. x, 241 pages, 1994.

Vol. 91: J.D. Malley, Statistical Applications ofJordan
Algebras. viii, 101 pages, 1994.

Vol. 92: M. Eerola, Probabilistic Causality in Longitudinal
Studies. vii, 133 pages, 1994.

Vol. 93: Bernard Van Cutsem (Editor), Classification and
Dissimilarity Analysis. xiv, 238 pages, 1994.

Vol. 94: Jane F. Gentleman and G.A. Whitmore (Editors),
Case Studies in Data Analysis. viii, 262 pages, 1994.

Vol. 95: Shelemyahu Zacks, Stochastic Visibility in
Random Fields. x, 175 pages, 1994.

Vol. 96: Ibrahim Rahimov, Random Sums and Branching
Stochastic Processes. viii, 195 pages, 1995.

Vol. 97: R. Szekli, Stochastic Ordering and Dependence in
Applied Probability. viii, 194 pages, 1995.

Vol. 98: Philippe Barbe and Patrice Bertail, The Weighted
Bootstrap. viii, 230 pages, 1995.

Vol. 99: C.C. Heyde (Editor), Branching Processes:
Proceedings of the First World Congress. viii, 185 pages,
1995.

Vol. 100: Wlodzimierz Bryc, The Normal Distribution:
Characterizations with Applications. viii, 139 pages, 1995.

Vol. 101: H.H. Andersen, M.Hejbjerre, D. S0rensen,
P.S.Eriksen, Linear and Graphical Models: for the
Multivariate Complex Normal Distribution. x, 184 pages,
1995.

Vol. 102: A.M. Mathai, Serge B. Provost, Takesi Hayakawa,
Bilinear Forms and Zonal Polynomials. x, 378 pages, 1995.

Vol. 103: Anestis Antoniadis and Georges Oppenheim
(Editors), Wavelets and Statistics. vi, 411 pages, 1995.

Vol. 104: Gilg V.H. Seeber, Brian J. Francis, Reinhold
Hatzinger, Gabriele Steckel-Berger (Editors), Statistical
Modelling: lOth International Workshop, lnnsbruck, July
10-14th 1995. x, 327 pages, 1995.

Vol. 105: Constantine Gatsonis, James S. Hodges, Robert E.
Kass, Nozer D. Singpurwalla(Editors), Case Studies in
Bayesian Statistics, Volume II. x, 354 pages, 1995.

Vol. 106: Harald Niederreiter, Peter Jau-Shyong Shiue
(Editors), Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing. xiv, 372 pages, 1995.

Vol. 107: Masafumi Akabira, Kei Takeuchi, Non-Regular
Statistical Estimation. vii, 183 pages, 1995.

Vol. 108: Wesley L. Schaible (Editor), Indirect Estimators in
U.S. Federal Programs. viii, 195 pages, 1995.

Vol. 109: Helmut Rieder (Editor), Robust Statistics, Data
Analysis, and Computer Intensive Methods. xiv, 427 pages,
1996.

Vol. 110: D. Bosq, Nonpararnetric Statistics for Stochastic
Processes. xii, 169 pages, 1996.

Vol. Ill: Leon Willenborg, Ton de Waal, Statistical
Disclosure Control in Practice. xiv, 152 pages, 1996.

Vol. 112: Doug Fischer, Hans-J. Lenz (Editors), Leaming
from Data. xii, 450 pages, 1996.

Vol. 113: Rainer Schwabe, Optimum Designs for Multi
Factor Models. viii, 124 pages, 1996.

Vol. 114: C.c. Heyde, Yu. V. Prohorov, R. Pyke, and S. T.
Rachev (Editors), Athens Conference on Applied
Probability and Time Series Analysis Volume I: Applied
Probability In Honor of l.M. GaoL viii, 424 pages, 1996.

Vol. 115: P.M. Robinson, M. Rosenblatt (Editors), Athens
Conference on Applied Probability and Time Series
Analysis Volume II: Time Series Analysis In Memory of
E.l. Hannan. viii, 448 pages, 1996.

Vol. 116: Genshiro Kitagawa and Will Gersch, Smoothness
Priors Analysis of Time Series. x, 261 pages, 1996.

Vol. 117: Paul Glasserman, Karl Sigman, David D. Yao
(Editors), Stochastic Networks. xii, 298,1996.

Vol. 118: Radford M. Neal, Bayesian Learning for Neural
Networks. xv, 183, 1996.

Vol. 119: Masanao Aoki, Arthur M. Havenner, Applications
of Computer Aided Time Series Modeling. ix, 329 pages,
1997.

Vol. 120: Maia Berkane, Latent Variable Modeling and
Applications to Causality. vi, 288 pages, 1997.

Vol. 121: Constantine Gatsonis, James S. Hodges, Robert E.
Kass, Robert McCulloch, Peter Rossi, Nozer D.
Singpurwalia (Editors), Case Studies in Bayesian Statistics,
Volume III. xvi, 487 pages, 1997.

Vol. 122: Timothy G. Gregoire, David R Brillinger, Peter J.
Diggle, Estelle Russek-Cohen, William G. Warren, Russell
D. Wolfinger (Editors), Modeling Longitudinal and
Spatially Correlated Data. x, 402 pages, 1997.

Vol. 123: D. Y. Lin and T. R. Fleming (Editors),
Proceedings of the First Seattle Symposium in Biostatistics:
Survival Analysis. xiii, 308 pages, 1997.

Vol. 124: Christine H. MUller, Robust Planning and
Analysis of Experiments. x, 234 pages, 1997.

Vol. 125: Valerii V. Fedorov and Peter Hackl, Model
oriented Design of Experiments. viii, 117 pages, 1997.

Vol. 126: Geert Verbeke 'and Geert Molenberghs, Linear
Mixed Models in Practice: A SAS-Oriented Approach. xiii,
306 pages, 1997.

Vol. 127: Harald Niederreiter, Peter Hellekalek, Gerhard
Larcher, and Peter Zinterhof(Editors), Monte Carlo and
Quasi-Monte Carlo Methods 1996, xii, 448 pages, 1997.

Vol. 128: L. Accardi and C.C. Heyde (Editors), Probability
Towards 2000, x, 356 pages, 1998.

Vol. 129: WOlfgang Hardie, Gerard Kerkyacharian,
Dominique Picard, and Alexander Tsybakov, Wavelets,
Approximation, and Statistical Applications, xvi, 265 pages,
1998.

Vol. 130: Bo-Cheng Wei, Exponential Family Nonlinear
Models, ix, 240 pages, 1998.

Vol. 131: Joel L. Horowitz, Semiparametric Methods in
Econometrics, ix, 204 pages, 1998.

Vol. 132: Douglas Nychka, Walter W. Piegorsch, and
Lawrence H. Cox (Editors), Case Studies in Environmental
Statistics, viii, 200 pages, 1998.

Vol. 133: Dipak Dey, Peter Miiller, and Debajyoti Sinha
(Editors), Practical Nonparametric and Semiparametric
Bayesian Statistics, xv, 408 pages, 1998.

Vol. 134: Yu. A. Kutoyants, Statistical Inference For Spatial
Poisson Processes, vii, 284 pages, 1998.

Vol. 135: Christian P. Robert, Discretization and MCMC
Convergence Assessment, x, 192 pages, 1998.

Vol. 136: Gregory C. Reinsel, Raja P. Velu, Multivariate
Reduced-Rank Regression, xiii, 272 pages, 1998.

Vol. 137: V. Seshadri, The Inverse Gaussian Distribution:
Statistical Theory and Appl ications, xi, 360 pages, 1998.

Vol. 138: Peter Hellekalek, Gerhard Larcher (Editors),
Random and Quasi-Random Point Sets, xi, 352 pages, 1998.

Vol. 139: Roger B. Nelsen, An Introduction to Copulas, xi,
232 pages, 1999.

Vol. 140: Constantine Gatsonis, Robert E. Kass, Bradley
Carlin, Alicia Carriquiry, Andrew Gelman, Isabella
Verdinelli, Mike West (Editors), Case Studies in Bayesian
Statistics, Volume IV, xvi, 456 pages, 1999.

Vol. 141: Peter MiilIer, Brani Vidakovic (Editors), Bayesian
Inference in Wavelet-Based Models, xi, 394 pages, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

