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Abstract
Recent work in unsupervised representation learn-
ing has focused on learning deep directed latent-
variable models. Fitting these models by maxi-
mizing the marginal likelihood or evidence is typ-
ically intractable, thus a common approximation
is to maximize the evidence lower bound (ELBO)
instead. However, maximum likelihood training
(whether exact or approximate) does not neces-
sarily result in a good latent representation, as we
demonstrate both theoretically and empirically.
In particular, we derive variational lower and up-
per bounds on the mutual information between
the input and the latent variable, and use these
bounds to derive a rate-distortion curve that char-
acterizes the tradeoff between compression and
reconstruction accuracy. Using this framework,
we demonstrate that there is a family of models
with identical ELBO, but different quantitative
and qualitative characteristics. Our framework
also suggests a simple new method to ensure that
latent variable models with powerful stochastic
decoders do not ignore their latent code.

1. Introduction
Learning a “useful” representation of data in an unsu-
pervised way is one of the “holy grails” of current ma-
chine learning research. A common approach to this
problem is to fit a latent variable model of the form
p(x, z|θ) = p(z|θ)p(x|z, θ) to the data, where x are the
observed variables, z are the hidden variables, and θ are
the parameters. We usually fit such models by minimizing
L(θ) = KL[p̂(x) || p(x|θ)], which is equivalent to max-
imum likelihood training. If this is intractable, we may
instead maximize a lower bound on this quantity, such as
the evidence lower bound (ELBO), as is done when fitting
variational autoencoder (VAE) models (Kingma & Welling,
2014; Rezende et al., 2014). Alternatively, we can con-
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sider other divergence measures, such as the reverse KL,
L(θ) = KL[p(x|θ) || p̂(x)], as is done when fitting certain
kinds of generative adversarial networks (GANs). However,
the fundamental problem is that these loss functions only
depend on p(x|θ), and not on p(x, z|θ). Thus they do not
measure the quality of the representation at all, as discussed
in (Huszár, 2017; Phuong et al., 2018). In particular, if
we have a powerful stochastic decoder p(x|z, θ), such as
an RNN or PixelCNN, a VAE can easily ignore z and still
obtain high marginal likelihood p(x|θ), as noticed in (Bow-
man et al., 2016; Chen et al., 2017). Thus obtaining a good
ELBO (and more generally, a good marginal likelihood) is
not enough for good representation learning.

In this paper, we argue that a better way to assess the value
of representation learning is to measure the mutual infor-
mation I between the observed X and the latent Z. In
general, this quantity is intractable to compute, but we can
derive tractable variational lower and upper bounds on it.
By varying I , we can tradeoff between how much the data
has been compressed vs how much information we retain.
This can be expressed using the rate-distortion or RD curve
from information theory, as we explain in section 2. This
framework provides a solution to the problem of powerful
decoders ignoring the latent variable which is simpler than
the architectural constraints of (Chen et al., 2017), and more
general than the “KL annealing” approach of (Bowman
et al., 2016). This framework also generalizes the β-VAE
approach used in (Higgins et al., 2017; Alemi et al., 2017).

In addition to our unifying theoretical framework, we empir-
ically study the performance of a variety of different VAE
models — with both “simple” and “complex” encoders, de-
coders, and priors — on several simple image datasets in
terms of the RD curve. We show that VAEs with powerful
autoregressive decoders can be trained to not ignore their
latent code by targeting certain points on this curve. We
also show how it is possible to recover the “true generative
process” (up to reparameterization) of a simple model on
a synthetic dataset with no prior knowledge except for the
true value of the mutual information I (derived from the
true generative model). We believe that information con-
straints provide an interesting alternative way to regularize
the learning of latent variable models.
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2. Information-theoretic framework
In this section, we outline our information-theoretic view
of unsupervised representation learning. Although many of
these ideas have been studied in prior work (see section 3),
we provide a unique synthesis of this material into a single
coherent, computationally tractable framework. In section 4,
we show how to use this framework to study the properties
of various recently-proposed VAE model variants.

Unsupervised Representation Learning We will con-
vert each observed data vector x into a latent representa-
tion z using any stochastic encoder e(z|x) of our choos-
ing. This then induces the joint distribution pe(x, z) =
p∗(x)e(z|x) and the corresponding marginal posterior
pe(z) =

∫
dx p∗(x)e(z|x) (the “aggregated posterior” in

Makhzani et al. (2016); Tomczak & Welling (2017)) and
conditional pe(x|z) = pe(x, z)/pe(z).

Having defined a joint density, a symmetric, non-negative,
reparameterization-independent measure of how much in-
formation one random variable contains about the other is
given by the mutual information:

Ie(X;Z) =

∫∫
dx dz pe(x, z) log

pe(x, z)

p∗(x)pe(z)
. (1)

(We use the notation Ie to emphasize the dependence on our
choice of encoder. See appendix C for other definitions of
mutual information.) There are two natural limits the mutual
information can take. In one extreme, X and Z are indepen-
dent random variables, so the mutual information vanishes:
our representation contains no information about the data
whatsoever. In the other extreme, our encoding might just
be an identity map, in which Z = X and the mutual infor-
mation becomes the entropy in the data H(X). While in
this case our representation contains all information present
in the original data, we arguably have not done anything
meaningful with the data. As such, we are interested in
learning representations with some fixed mutual informa-
tion, in the hope that the information Z contains about X is
in some ways the most salient or useful information.

Equation 1 is hard to compute, since we do not have access
to the true data density p∗(x), and computing the marginal
pe(z) =

∫
dx pe(x, z) can be challenging. For the for-

mer problem, we can use a stochastic approximation, by
assuming we have access to a (suitably large) empirical
distribution p̂(x). For the latter problem, we can leverage
tractable variational bounds on mutual information Barber
& Agakov (2003); Agakov (2006); Alemi et al. (2017) to
get the following variational lower and upper bounds:

H −D ≤ Ie(X;Z) ≤ R (2)

H ≡ −
∫
dx p∗(x) log p∗(x) (3)

D ≡ −
∫
dx p∗(x)

∫
dz e(z|x) log d(x|z) (4)

R ≡
∫
dx p∗(x)

∫
dz e(z|x) log e(z|x)

m(z)
(5)

where d(x|z) (the “decoder”) is a variational approximation
to pe(x|z), and m(z) (the “marginal”) is a variational ap-
proximation to pe(z). A detailed derivation of these bounds
is included in Appendices D.1 and D.2.

H is the data entropy which measures the complexity of
our dataset, and can be treated as a constant outside our
control. D is the distortion as measured through our en-
coder, decoder channel, and is equal to the reconstruction
negative log likelihood. R is the rate, and depends only
on the encoder and variational marginal; it is the average
relative KL divergence between our encoding distribution
and our learned marginal approximation. (It has this name
because it measures the excess number of bits required to
encode samples from the encoder using an optimal code
designed for m(z).) For discrete data1, all probabilities in
X are bounded above by one and both the data entropy and
distortion are non-negative (H ≥ 0, D ≥ 0). The rate is
also non-negative (R ≥ 0), because it is an average KL
divergence, for either continuous or discrete Z.

Phase Diagram The positivity constraints and the sand-
wiching bounds (Equation (2)) separate the RD-plane into
feasible and infeasible regions, visualized in Figure 1. The
boundary between these regions is a convex curve (thick
black line). We now explain qualitatively what the differ-
ent areas of this diagram correspond to. For simplicity, we
will consider the infinite model family limit, where we have
complete freedom in specifying e(z|x), d(x|z) and m(z)
but consider the data distribution p∗(x) fixed.

The bottom horizontal line corresponds to the zero distortion
setting, which implies that we can perfectly encode and
decode our data; we call this the auto-encoding limit. The
lowest possible rate is given by H , the entropy of the data.
This corresponds to the point (R = H,D = 0). (In this
case, our lower bound is tight, and hence d(x|z) = pe(x|z).)
We can obtain higher rates at zero distortion, or at any
other fixed distortion by making the marginal approximation
m(z) a weaker approximation to pe(z), and hence simply
increasing the cost of encoding our latent variables, since
only the rate and not the distortion depends on m(z).

The left vertical line corresponds to the zero rate setting.
Since R = 0 =⇒ e(z|x) = m(z), we see that our en-
coding distribution e(z|x) must itself be independent of x.

1If the input space is continuous, we can consider an arbitrarily
fine discretization of the input.
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Figure 1. Schematic representation of the phase diagram in the
RD-plane. The distortion (D) axis measures the reconstruction
error of the samples in the training set. The rate (R) axis mea-
sures the relative KL divergence between the encoder and our own
marginal approximation. The thick black lines denote the feasible
boundary in the infinite model capacity limit.

Thus the latent representation is not encoding any informa-
tion about the input and we have failed to create a useful
learned representation. However, by using a suitably pow-
erful decoder, d(x|z), that is able to capture correlations
between the components of x we can still reduce the dis-
tortion to the lower bound of H , thus achieving the point
(R = 0, D = H); we call this the auto-decoding limit.
(Note that since R is an upper bound on the non-negative
mutual information, in the limit that R = 0, the bound must
be tight, which guarantees that m(z) = pe(z).) We can
achieve solutions further up on the D-axis, while keeping
the rate fixed, simply by making the decoder worse, and
hence our reconstructions worse, since only the distortion
and not the rate depends on d(x|z).

Finally, we discuss solutions along the diagonal line. Such
points satisfyD = H−R, and hence both of our bounds are
tight, so m(z) = pe(z) and d(x|z) = pe(x|z). (Proofs of
these claims are given in Sections D.3 and D.4 respectively.)

So far, we have considered the infinite model family limit.
If we have only finite parametric families for each of
d(x|z),m(z), e(z|x), we expect in general that our bounds
will not be tight. Any failure of the approximate marginal
m(z) to model the true marginal pe(z), or the decoder

d(x|z) to model the true likelihood pe(x|z), will lead to
a gap with respect to the optimal black surface. However,
our inequalities must still hold, which suggests that there
will still be a one dimensional optimal frontier, D(R), or
R(D) where optimality is defined to be the tightest achiev-
able sandwiched bound within the parametric family. We
will use the term RD curve to refer to this optimal surface
in the rate-distortion (RD) plane.

Furthermore, by the same arguments as above, this surface
should be monotonic in both R and D, since for any solu-
tion, with only very mild assumptions on the form of the
parametric families, we should always be able to makem(z)
less accurate in order to increase the rate at fixed distortion
(see shift from red curve to blue curve in fig. 1), or make
the decoder d(x|z) less accurate to increase the distortion at
fixed rate (see shift from red curve to green curve in fig. 1).
Since the data entropy H is outside our control, this surface
can be found by means of constrained optimization, either
minimizing the distortion at some fixed rate (see section 4),
or minimizing the rate at some fixed distortion.

Connection to β-VAE Alternatively, instead of consid-
ering the rate as fixed, and tracing out the optimal dis-
tortion as a function of the rate D(R), we can perform
a Legendre transformation and can find the optimal rate
and distortion for a fixed β = ∂D

∂R , by minimizing
mine(z|x),m(z),d(x|z)D + βR. Writing this objective out
in full, we get

min
e(z|x),m(z),d(x|z)

∫
dx p∗(x)

∫
dz e(z|x)[

− log d(x|z) + β log
e(z|x)
m(z)

]
.

(6)

If we set β = 1, (and identify e(z|x)→ q(z|x), d(x|z)→
p(x|z),m(z) → p(z)) this matches the ELBO objective
used when training a VAE (Kingma & Welling, 2014), with
the distortion term matching the reconstruction loss, and the
rate term matching the “KL term” (ELBO = −(D + R)).
Note, however, that this objective does not distinguish be-
tween any of the points along the diagonal of the optimal
RD curve, all of which have β = 1 and the same ELBO.
Thus the ELBO objective alone (and the marginal likeli-
hood) cannot distinguish between models that make no use
of the latent variable (autodecoders) versus models that
make large use of the latent variable and learn useful repre-
sentations for reconstruction (autoencoders), in the infinite
model family, as noted in Huszár (2017); Phuong et al.
(2018).

In the finite model family case, ELBO targets a single point
along the rate distortion curve, the point with slope 1. Ex-
actly where this slope 1 point lies is a sensitive function
of the model architecture and the relative powers of the
encoder, decoder and marginal.
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If we allow a general β ≥ 0, we get the β-VAE objective
used in (Higgins et al., 2017; Alemi et al., 2017). This
allows us to smoothly interpolate between auto-encoding
behavior (β � 1), where the distortion is low but the rate
is high, to auto-decoding behavior (β � 1), where the
distortion is high but the rate is low, all without having to
change the model architecture. Notice however that if our
model family was rich enough to have a region of its RD-
curve with some fixed slope (e.g. in the extreme case, the
β = 1 line in the infinite model family limit), the β-VAE
objective cannot uniquely target any of those equivalently
sloped points. In these cases, fully exploring the frontier
would require a different constraint.

3. Related Work
Improving VAE representations. Many recent papers
have introduced mechanisms for alleviating the problem
of unused latent variables in VAEs. Bowman et al. (2016)
proposed annealing the weight of the KL term of the ELBO
from 0 to 1 over the course of training but did not consider
ending weights that differed from 1. Higgins et al. (2017)
proposed the β-VAE for unsupervised learning, which is a
generalization of the original VAE in which the KL term is
scaled by β, similar to this paper. However, their focus was
on disentangling and did not discuss rate-distortion tradeoffs
across model families. Recent work has used the β-VAE
objective to tradeoff reconstruction quality for sampling
accuracy (Ha & Eck, 2018). Chen et al. (2017) present a
bits-back interpretation (Hinton & Van Camp, 1993). Modi-
fying the variational families (Kingma et al., 2016), priors
(Papamakarios et al., 2017; Tomczak & Welling, 2017), and
decoder structure (Chen et al., 2017) have also been pro-
posed as a mechanism for learning better representations.

Information theory and representation learning. The
information bottleneck framework leverages information
theory to learn robust representations (Tishby et al., 1999;
Shamir et al., 2010; Tishby & Zaslavsky, 2015; Alemi et al.,
2017; Achille & Soatto, 2016; 2017). It allows a model
to smoothly trade off the minimality of the learned repre-
sentation (Z) from data (X) by minimizing their mutual
information, I(X;Z), against the informativeness of the
representation for the task at hand (Y ) by maximizing their
mutual information, I(Z;Y ). Tishby & Zaslavsky (2015)
plot an RD curve similar to the one in this paper, but they
only consider the supervised setting.

Maximizing mutual information to power unsupervised rep-
resentational learning has a long history. Bell & Sejnowski
(1995) uses an information maximization objective to derive
the ICA algorithm for blind source separation. Slonim et al.
(2005) learns clusters with the Blahut-Arimoto algorithm.
Barber & Agakov (2003) was the first to introduce tractable

variational bounds on mutual information, and made close
analogies and comparisons to maximum likelihood learning
and variational autoencoders. Recently, information the-
ory has been useful for reinterpreting the ELBO (Hoffman
& Johnson, 2016), and understanding the class of tractable
objectives for training generative models (Zhao et al., 2018).

Recent work has also presented information maximization
as a solution to the problem of VAEs ignoring the latent code.
Zhao et al. (2017) modifies the ELBO by replacing the rate
term with a divergence from the aggregated posterior to the
prior and proves that solutions to this objective maximize
the representational mutual information. However, their
objective requires leveraging techniques from implicit varia-
tional inference as the aggregated posterior is intractable to
evaluate. Chen et al. (2016) also presents an approach for
maximizing information but requires the use of adversarial
learning to match marginals in the input space. Concurrent
work from Phuong et al. (2018) present a similar framework
for maximizing information in a VAE through a variational
lower bound on the generative mutual information. Eval-
uating this bound requires sampling the generative model
(which is slow for autoregressive models) and computing
gradients through model samples (which is challening for
discrete input spaces). In Section 4, we present a similar
approach that uses a tractable bound on information that can
be applied to discrete input spaces without sampling from
the model.

Generative models and compression. Rate-distortion
theory has been used in compression to tradeoff the size
of compressed data with the fidelity of the reconstruction.
Recent approaches to compression have leveraged deep
latent-variable generative models for images, and explored
tradeoffs in the RD plane (Gregor et al., 2016; Ballé et al.,
2017; Johnston et al., 2017). However, this work focuses
on a restricted set of architectures with simple posteriors
and decoders and does not study the impact that architecture
choices have on the marginal likelihood and structure of the
representation.

4. Experiments
Toy Model In this section, we empirically show a case
where the usual ELBO objective can learn a model which
perfectly captures the true data distribution, p∗(x), but
which fails to learn a useful latent representation. How-
ever, by training the same model such that we minimize
the distortion, subject to achieving a desired target rate R∗,
we can recover a latent representation that closely matches
the true generative process (up to a reparameterization),
while also perfectly capturing the true data distribution. In
particular, we solve the following optimization problem:
mine(z|x),m(z),d(x|z)D+ |σ−R| where σ is the target rate.
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(Note that, since we use very flexible nonparametric models,
we can achieve pe(x) = p∗(x) while ignoring z, so using
the β-VAE approach would not suffice.)

We create a simple data generating process that consists
of a true latent variable Z∗ = {z0, z1} ∼ Ber(0.7) with
added Gaussian noise and discretization. The magnitude
of the noise was chosen so that the true generative model
had I(x; z∗) = 0.5 nats of mutual information between
the observations and the latent. We additionally choose a
model family with sufficient power to perfectly autoencode
or autodecode. See Appendix E for more detail on the data
generation and model.

Figure 2 shows various distributions computed using three
models. For the left column (2a), we use a hand-engineered
encoder e(z|x), decoder d(x|z), and marginal m(z) con-
structed with knowledge of the true data generating mech-
anism to illustrate an optimal model. For the middle (2b)
and right (2c) columns, we learn e(z|x), d(x|z), and m(z)
using effectively infinite data sampled from p∗(x) directly.
The middle column (2b) is trained with ELBO. The right
column (2c) is trained by targeting R = 0.5 while minimiz-
ing D.2 In both cases, we see that p∗(x) ≈ g(x) ≈ d(x)
for both trained models (2bi, 2ci), indicating that optimiza-
tion found the global optimum of the respective objectives.
However, the VAE fails to learn a useful representation, only
yielding a rate of R = 0.0002 nats,3 while the Target Rate
model achieves R = 0.4999 nats. Additionally, it nearly
perfectly reproduces the true generative process, as can be
seen by comparing the yellow and purple regions in the
z-space plots (2aii, 2cii) – both the optimal model and the
Target Rate model have two clusters, one with about 70%
of the probability mass, corresponding to class 0 (purple
shaded region), and the other with about 30% of the mass
(yellow shaded region) corresponding to class 1. In contrast,
the z-space of the VAE (2bii) completely mixes the yellow
and purple regions, only learning a single cluster. Note that
we reproduced essentially identical results with dozens of
different random initializations for both the VAE and the
penalty VAE model – these results are not cherry-picked.

MNIST: RD curve In this section, we show how com-
paring models in terms of rate and distortion separately is
more useful than simply observing marginal log likelihoods,
and allows a detailed ablative comparison of individual ar-
chitectural modifications. We use the static binary MNIST

2Note that the target value R = I(x; z∗) = 0.5 is computed
with knowledge of the true data generating distribution. However,
this is the only information that is “leaked” to our method, and in
general it is not hard to guess reasonable targets for R for a given
task and dataset.

3This is an example of VAEs ignoring the latent space. As
decoder power increases, even β = 1 is sufficient to cause the
model to collapse to the autodecoding limit.

dataset from Larochelle & Murray (2011)4.

We examine several VAE model architectures that have been
proposed in the literature. In particular, we consider sim-
ple and complex variants for the encoder and decoder, and
three different types of marginal. The simple encoder is
a CNN with a fully factored 64 dimensional Gaussian for
e(z|x); the more complex encoder is similar, but followed
by 4 steps of mean-only Gaussian inverse autoregressive
flow (Kingma et al., 2016), with each step implemented as a
3 hidden layer MADE (Germain et al., 2015) with 640 units
in each hidden layer. The simple decoder is a multilayer
deconvolutional network; the more powerful decoder is a
PixelCNN++ (Salimans et al., 2017) model. The simple
marginal is a fixed isotropic Gaussian, as is commonly used
with VAEs; the more complicated version has a 4 step 3 layer
MADE (Germain et al., 2015) mean-only Gaussian autore-
gressive flow (Papamakarios et al., 2017). We also consider
the setting in which the marginal uses the VampPrior from
(Tomczak & Welling, 2017). We will denote the particular
model combination by the tuple (+/−,+/−,+/− /v), de-
pending on whether we use a simple (−) or complex (+) (or
(v) VampPrior) version for the (encoder, decoder, marginal)
respectively. In total we consider 2 × 2 × 3 = 12 models.
We train them all to minimize the β-VAE objective in Equa-
tion 6. Full details can be found in Appendix F. Runs were
performed at various values of β ranging from 0.1 to 10.0,
both with and without KL annealing (Bowman et al., 2016).

Figure 3a(i) shows the converged RD location for a total
of 209 distinct runs across our 12 architectures, with differ-
ent initializations and βs on the MNIST dataset. The best
ELBO we achieved was Ĥ = 80.2 nats, at R = 0. This
sets an upper bound on the true data entropy H for the static
MNIST dataset. The dashed line connects (R = 0, D = Ĥ)
to (R = Ĥ,D = 0), This implies that any RD value
above the dashed line is in principle achievable in a pow-
erful enough model. The stepwise black curves show the
monotonic Pareto frontier of achieved RD points across
all model families. The grey solid line shows the corre-
sponding convex hull, which we approach closely across
all rates. The 12 model families we considered here, ar-
guably a representation of the classes of models considered
in the VAE literature, in general perform much worse in
the auto-encoding limit (bottom right corner) of the RD
plane. This is likely due to a lack of power in our current
marginal approximations, and suggests more experiments
with powerful autoregressive marginals, as in van den Oord
et al. (2017).

Figure 3a(iii) shows the same data, but this time focusing on
the conservative Pareto frontier across all architectures with
either a simple deconvolutional decoder (blue) or a complex

4https://github.com/yburda/iwae/tree/
master/datasets/BinaryMNIST

https://github.com/yburda/iwae/tree/master/datasets/BinaryMNIST
https://github.com/yburda/iwae/tree/master/datasets/BinaryMNIST
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(a) Optimal (hand-constructed) (b) VAE (c) Target Rate

Figure 2. Toy Model illustrating the difference between fitting a model by maximizing ELBO (b) vs minimizing distortion for a fixed rate (c).
Top (i): Three distributions in data space: the true data distribution, p∗(x), the model’s generative distribution, g(x) =

∑
z m(z)d(x|z),

and the empirical data reconstruction distribution, d(x) =
∑

x′
∑

z p̂(x
′)e(z|x′)d(x|z). Middle (ii): Four distributions in latent space:

the learned (or computed) marginal m(z), the empirical induced marginal e(z) =
∑

x p̂(x)e(z|x), the empirical distribution over z
values for data vectors in the set X0 = {xn : zn = 0}, which we denote by e(z0) in purple, and the empirical distribution over z values
for data vectors in the set X1 = {xn : zn = 1}, which we denote by e(z1) in yellow. Bottom: Three K ×K distributions: (iii) e(z|x),
(iv) d(x|z) and (v) p(x′|x) =

∑
z e(z|x)d(x

′|z).

autoregressive decoder (green). Notice the systematic fail-
ure of simple decoder models at the lowest rates. Besides
that discrepancy, the frontiers largely track one another at
rates above 22 nats. This is perhaps unsurprising consid-
ering we trained on the binary MNIST dataset, for which
the measured pixel level sampling entropy on the test set is
approximately 22 nats. When we plot the same data where
we vary the encoder (ii) or marginal (iv) from simple to
complex, we do not see any systematic trends. Figure 3b
shows the same raw data, but we plot -ELBO=R+D versus
R. Here some of the differences between individual model
families’ performances are more easily resolved.

MNIST: Samples To qualitatively evaluate model perfor-
mance, Figure 4 shows sampled reconstructions and genera-
tions from some of the runs, which we have grouped into
rough categories: autoencoders, syntactic encoders, seman-
tic encoders, and autodecoders. For reconstruction, we pick
an image x at random, encode it using z ∼ e(z|x), and then
reconstruct it using x̂ ∼ d(x|z). For generation, we sample
z ∼ m(z), and then decode it using x ∼ d(x|x). In both
cases, we use the same z each time we sample x, in order
to illustrate the stochasticity implicit in the decoder. This is
particularly important to do when using powerful decoders,
such as autoregressive models.

In Figures 4a and 4b, we study the effect of changing β
(using KL annealing from low to high) on the same -+v
model, corresponding to a VAE with a simple encoder, a

powerful PixelCNN++ decoder, and a powerful VampPrior
marginal.

• When β = 1.10 (right column), the model obtains
R = 0.0004, D = 80.6, ELBO=-80.6 nats, which is
an example of an autodecoder. The tiny rate indicates
that the decoder ignores its latent code, and hence the
reconstructions are independent of the input x. For
example, when the input is x = 8 (bottom row), the re-
construction is x̂ = 3. However, the generated images
in fig. 4b sampled from the decoder look good. This is
an example of an autodecoder.

• When β = 0.1 (left column), the model obtains R =
156, D = 4.8 , ELBO=-161 nats. Here the model is an
excellent autoencoder, generating nearly pixel-perfect
reconstructions. However, samples from this model’s
prior, as shown in fig. 4b, are very poor quality, which
is also reflected in the worse ELBO. This is an example
of an autoencoder.

• When β = 1.0, (third column), we get R = 6.2, D =
74.1, ELBO=-80.3. This model seems to retain seman-
tically meaningful information about the input, such
as its class and width of the strokes, but maintains syn-
tactic variation in the individual reconstructions, so
we call this a semantic encoder. In particular, notice
that the input “2” is reconstructed as a similar “2” but
with a visible loop at the bottom (top row). This model
also has very good generated samples. This semantic
encoding arguably typifies what we want to achieve in
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(a) Distortion vs Rate (b) ELBO (R+D) vs Rate

Figure 3. Rate-distortion curves on MNIST. (a) We plot the best (R,D) value obtained by various models, denoted by the tuple (e, d,m),
where e ∈ {−,+} is the simple Gaussian or complex IAF encoder, d ∈ {−,+} is the simple deconv or complex pixelCNN++ decoder,
and m ∈ {−,+, v) is the simple Gaussian, complex MAF or even more complex Vamp marginal. The top left shows all architectures
individually. The next three panels show the computed frontier as we sweep β for a given pair (or triple) of model types. (b) The same
data, but on the skew axes of -ELBO = R +D versus R. Shape encodes the marginal, lightness of color denotes the decoder, and fill
denotes the encoder.

unsupervised learning: we have learned a highly com-
pressed representation that retains semantic features of
the data. We therefore call it a “semantic encoder”.

• When β = 0.15 (second column), we get R =
120.3, D = 8.1, ELBO=-128. This model retains both
semantic and syntactic information, where each digit’s
style is maintained, and also has a good degree of
compression. We call this a “syntactic encoder”. How-
ever, at these higher rates the failures of our current
architectures to approach their theoretical performance
becomes more apparent, as the corresponding ELBO
of 128 nats is much higher than the 81 nats we obtain at
low rates. This is also evident in the visual degradation
in the generated samples (Figure 4b).

Figure 4c shows what happens when we vary the model
for a fixed value of β = 1, as in traditional VAE training.
Here only 4 architectures are shown (the full set is available
in Figure 5 in the appendix), but the pattern is apparent:
whenever we use a powerful decoder, the latent code is
independent of the input, so it cannot reconstruct well. How-
ever, Figure 4a shows that by using β < 1, we can force
such models to do well at reconstruction. Finally, Figure 4d
shows 4 different models, chosen from the Pareto frontier,
which all have almost identical ELBO scores, but which
exhibit qualitatively different behavior.

Omniglot We repeated the experiments on the omniglot
dataset, and find qualitatively similar results. See ap-
pendix B for details.

5. Discussion and further work
We have presented a theoretical framework for understand-
ing representation learning using latent variable models in
terms of the rate-distortion tradeoff. This constrained op-
timization problem allows us to fit models by targeting a
specific point on the RD curve, which we cannot do using
the β-VAE framework.

In addition to the theoretical contribution, we have con-
ducted a large set of experiments, which demonstrate the
tradeoffs implicitly made by several recently proposed VAE
models. We confirmed the power of autoregressive decoders,
especially at low rates. We also confirmed that models with
expressive decoders can ignore the latent code, and pro-
posed a simple solution to this problem (namely reducing
the KL penalty term to β < 1). This fix is much easier to
implement than other solutions that have been proposed in
the literature, and comes with a clear theoretical justification.
Perhaps our most surprising finding is that all the current
approaches seem to have a hard time achieving high rates
at low distortion. This suggests the need to develop better
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(a) Reconstructions from -+v with β = 0.1− 1.1. (b) Generations from -+v with β = 0.1− 1.1

(c) Reconstructions from 4 VAE models with β = 1. (d) Reconstructions from models with the same ELBO.

Figure 4. Here we show sampled reconstructions z ∼ e(z|x), x̂ ∼ d(x|z) and generations z ∼ m(z), x̂ ∼ d(x|z) from various model
configurations. Each row is a different sample. Column ‘data’ is the input for reconstruction. Column ‘sample’ is a single binary image
sample. Column ‘average’ is the mean of 5 different samples of the decoder holding the encoding z fixed. (a-b) By adjusting β in a fixed
model architecture, we can smoothly interpolate between nearly perfect autoencoding on the left and nearly perfect autodecoding on the
right. In between the two extremes are examples of syntactic encoders and semantic encoders. (c) By fixing β = 1 we see the behavior
of different architectures when trained as traditional VAEs. Here only 4 architectures are shown but the sharp transition from syntactic
encoding on the left to autodecoding on the right is apparent. At β = 1, only one of the 12 architectures achieved semantic encoding. The
complete version is in Figure 5 in the Appendix. (d) Here we show a set of models all with similar, competative ELBOs. While these
models all have similar ELBOs, their qualitative performance is very different, again smoothly interpolating between the perceptually
good reconstructions of the syntactic decoder, the syntactic variation of the semantic encoder, and finally two clear autodecoders. A more
complete trace can be found at Figure 6. See text for discussion.

marginal posterior approximations, which should in princi-
ple be able to reach the autoencoding limit, with vanishing
distortion and rates approaching the data entropy.

Finally, we strongly encourage future work to report rate and
distortion values independently, rather than just reporting
the log likelihood, which fails to distinguish qualitatively
different behavior of certain models.
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Supplemental Materials: Fixing a Broken ELBO

A. More results on Static MNIST

(a) (reconstructions)

(b) (generations)

Figure 5. Traditional VAE behaviors of all model families. Note the clear separation between syntactic encoders and autodecoders, both in
terms of the rate-distortion tradeoff, and in qualitative terms of sample variance. Also note that none of the 12 VAEs is a semantic encoder.
Semantic encoding seems difficult to achieve at β = 1.

Figure 6 illustrates that many different architectures can participate in the optimal frontier and that we can achieve a smooth
variation between the pure autodecoding models and models that encode more and more semantic and syntactic information.
On the left, we see three syntactic encoders, which do a good job of capturing both the content of the digit and its style,
while having variance in the decodings that seem to capture the sampling noise. On the right, we have six clear autodecoders,
with very low rate and very high variance in the reconstructed or generated digit. In between are three semantic encoders,
capturing the class of each digit, but showing a wide range of decoded style variation, which corresponds to the syntax of
MNIST digits. Finally, between the syntactic encoders and semantic encoders lies a modeling failure, in which a weak
encoder and marginal are paired with a strong decoder. The rate is sufficiently high for the decoder to reconstruct a good
amount of the semantic and syntactic information, but it appears to have failed to learn to distinguish between the two.

B. Results on OMNIGLOT
Figure 7 plots the RD curve for various models fit to the Omniglot dataset (Lake et al., 2015), in the same form as the
MNIST results in Figure 3. Here we explored βs for the powerful decoder models ranging from 1.1 to 0.1, and βs of 0.9,
1.0, and 1.1 for the weaker decoder models.

On Omniglot, the powerful decoder models dominate over the weaker decoder models. The powerful decoder models with
their autoregressive form most naturally sit at very low rates. We were able to obtain finite rates by means of KL annealing.
Our best achieved ELBO was at -90.37 nats, set by the ++- model with β = 1.0 and KL annealing. This model obtains
R = 0.77, D = 89.60, ELBO = −90.37 and is nearly auto-decoding. We found 14 models with ELBOs below 91.2 nats
ranging in rates from 0.0074 nats to 10.92 nats.

Similar to Figure 4 in Figure 8 we show sample reconstruction and generated images from the same ”-+v” model family
trained with KL annealing but at various βs. Just like in the MNIST case, this demonstrates that we can smoothly interpolate
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(a) (reconstructions)

(b) (generations)

Figure 6. Exploring the frontier. Here we show the reconstructions (a) and generated samples (b) from a collection of runs that all lie on
the frontier of realizable rate distortion tradeoffs.

between auto-decoding and auto-encoding behavior in a single model family, simply by adjusting the β value.

C. Generative mutual information
Given any four distributions: p∗(x) – a density over some data space X , e(z|x) – a stochastic map from that data to a new
representational space Z, d(x|z) – a stochastic map in the reverse direction from Z to X , and m(z) – some density in the
Z space; we were able to find an inequality relating three functionals of these densities that must always hold. We found
this inequality by deriving upper and lower bounds on the mutual information in the joint density defined by the natural
representational path through the four distributions, pe(x, z) = p∗(x)e(z|x). Doing so naturally made us consider the
existence of two other distributions d(x|z) and m(z). Let’s consider the mutual information along this new generative path.

pd(x, z) = m(z)d(x|z) (7)

Id(X;Z) =

∫∫
dx dz pd(x, z) log

pd(x, z)

pd(x)pd(z)
(8)

Just as before we can easily establish both a variational lower and upper bound on this mutual information. For the lower
bound (proved in Section D.5), we have:

E ≡
∫
dz p(z)

∫
dx p(x|z) log q(z|x)

p(z)
≤ Id (9)

Where we need to make a variational approximation to the decoder posterior, itself a distribution mapping X to Z. Since we
already have such a distribution from our other considerations, we can certainly use the encoding distribution q(z|x) for this
purpose, and since the bound holds for any choice it will hold with this choice. We will call this bound E since it gives the
distortion as measured through the encoder as it attempts to encode the generated samples back to their latent representation.

We can also find a variational upper bound on the generative mutual information (proved in Section D.6):

G ≡
∫
dz m(z)

∫
dx d(x|z) log d(x|z)

q(x)
≥ Id (10)
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(a) Distortion vs Rate (b) -ELBO (R+D) vs Rate

(c) Distortion vs Rate Breakout

Figure 7. Results on Omniglot. Otherwise same description as Figure 3. (a) Rate-distortion curves. (b) The same data, but on the skew
axes of -ELBO = R+D versus R. (c) Rate-distortion curves by encoder, decoder, and marginal family.
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(a) Omniglot Reconstructions: z ∼ e(z|x), x̂ ∼ d(x|z) (b) Omniglot Generations: z ∼ m(z), x̂ ∼
d(x|z)

Figure 8. We can smoothly move between pure autodecoding and autoencoding behavior in a single model family by tuning β. (a)
Sampled reconstructions from the -+v model family trained at given β values. Pairs of columns show a single reconstruction and the mean
of 5 reconstructions. The first column shows the input samples. (b) Generated images from the same set of models. The pairs of columns
are single samples and the mean of 5 samples. See text for discussion.

(a) (reconstructions)

(b) (generations)

Figure 9. Exploring the Omniglot frontier. Here we show the reconstructions and generated samples from a whole collections of runs
that all lie on the frontier of relealizable rate distortion tradeoffs. We do this primarily to illustrate that many different architectures can
participate and that we can achieve a smooth variation between the pure generative models and models that encode larger and larger rates.



Fixing a Broken ELBO

This time we need a variational approximation to the marginal density of our generative model, which we denote as q(x).
We call this bound G for the rate in the generative model.

Together these establish both lower and upper bounds on the generative mutual information:

E ≤ Id ≤ G. (11)

In our early experiments, it appears as though additionally constraining or targeting values for these generative mutual
information bounds is important to ensure consistency in the underlying joint distributions. In particular, we notice a
tendency of models trained with the β-VAE objective to have loose bounds on the generative mutual information when β
varies away from 1.

C.1. Rearranging the Representational Lower Bound

In light of the appearance of a new independent density estimate q(x) in deriving our variational upper bound on the mutual
information in the generative model, let’s actually use that to rearrange our variational lower bound on the representational
mutual information.∫

dx p∗(x)

∫
dz e(z|x) log e(z|x)

p∗(x)
=

∫
dx p∗(x)

∫
dz e(z|x) log e(z|x)

q(x)
−
∫
dx p∗(x) log

p∗(x)

q(x)
(12)

Doing this, we can express our lower bound in terms of two reparameterization independent functionals:

U ≡
∫
dx p∗(x)

∫
dz e(z|x) log d(x|z)

q(x)
(13)

S ≡
∫
dx p∗(x) log

p∗(x)

q(x)
= −

∫
dx p∗(x) log q(x)−H (14)

This new reparameterization couples together the bounds we derived both the representational mutual information and the
generative mutual information, using q(x) in both. The new function S we’ve described is intractable on its own, but when
split into the data entropy and a cross entropy term, suggests we set a target cross entropy on our own density estimate q(x)
with respect to the empirical data distribution that might be finite in the case of finite data.

Together we have an equivalent way to formulate our original bounds on the representaional mutual information

U − S = H −D ≤ Irep ≤ R (15)

We believe this reparameterization offers and important and potential way to directly control for overfitting. In particular,
given that we compute our objectives using a finite sample from the true data distribution, it will generically be true that
KL[p̂(x) || p∗(x)] ≥ 0. In particular, the usual mode we operate in is one in which we only ever observe each example once
in the training set, suggesting that in particular an estimate for this divergence would be:

KL[p̂(x) || p∗(x)] ∼ H(X)− logN. (16)

Early experiments suggest this offers a useful target for S in the reparameterized objective that can prevent overfitting, at
least in our toy problems.

D. Proofs
D.1. Lower Bound on Representational Mutual Information

Our lower bound is established by the fact that Kullback-Leibler (KL) divergences are positive semidefinite

KL[q(x|z) || p(x|z)] =
∫
dx q(x|z) log q(x|z)

p(x|z)
≥ 0

which implies for any distribution p(x|z):∫
dx q(x|z) log q(x|z) ≥

∫
dx q(x|z) log p(x|z)
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Ie = Ie(X;Z) =

∫∫
dx dz pe(x, z) log

pe(x, z)

p∗(x)pe(z)

=

∫
dz pe(z)

∫
dx pe(x|z) log

pe(x|z)
p∗(x)

=

∫
dz pe(z)

[∫
dx pe(x|z) log pe(x|z)−

∫
dx pe(x|z) log p∗(x)

]
≥
∫
dz pe(z)

[∫
dx pe(x|z) log d(x|z)−

∫
dx pe(x|z) log p∗(x)

]
=

∫∫
dx dz pe(x, z) log

d(x|z)
p∗(x)

=

∫
dx p∗(x)

∫
dz e(z|x) log d(x|z)

p∗(x)

=

(
−
∫
dx p∗(x) log p∗(x)

)
−
(
−
∫
dx p∗(x)

∫
dz e(z|x) log d(x|z)

)
≡ H −D

D.2. Upper Bound on Representational Mutual Information

The upper bound is established again by the positive semidefinite quality of KL divergence.

KL[q(z|x) || p(z)] ≥ 0 =⇒
∫
dz q(z|x) log q(z|x) ≥

∫
dz q(z|x) log p(z)

Ie = Ie(X;Z) =

∫∫
dx dz pe(x, z) log

pe(x, z)

p∗(x)pe(z)

=

∫∫
dx dz pe(x, z) log

e(z|x)
pe(z)

=

∫∫
dx dz pe(x, z) log e(z|x)−

∫∫
dx dz pe(x, z) log pe(z)

=

∫∫
dx dz pe(x, z) log e(z|x)−

∫
dz pe(z) log pe(z)

≤
∫∫

dx dz pe(x, z) log e(z|x)−
∫
dz pe(z) logm(z)

=

∫∫
dx dz pe(x, z) log e(z|x)−

∫∫
dx dz pe(x, z) logm(z)

=

∫∫
dx dz pe(x, z) log

e(z|x)
m(z)

=

∫
dx p∗(x)

∫
dz e(z|x) log e(z|x)

m(z)
≡ R

D.3. Optimal Marginal for Fixed Encoder

Here we establish that the optimal marginal approximation p(z), is precisely the marginal distribution of the encoder.

R ≡
∫
dx p∗(x)

∫
dz e(z|x) log e(z|x)

m(z)

Consider the variational derivative of the rate with respect to the marginal approximation:

m(z)→ m(z) + δm(z)

∫
dz δm(z) = 0
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δR =

∫
dx p∗(x)

∫
dz e(z|x) log e(z|x)

m(z) + δm(z)
−R

=

∫
dx p∗(x)

∫
dz e(z|x) log

(
1 +

δm(z)

m(z)

)
∼
∫
dx p∗(x)

∫
dz e(z|x)δm(z)

m(z)

Where in the last line we have taken the first order variation, which must vanish if the total variation is to vanish. In particular,
in order for this variation to vanish, since we are considering an arbitrary δm(z), except for the fact that the integral of this
variation must vanish, in order for the first order variation in the rate to vanish it must be true that for every value of x, z we
have that:

m(z) ∝ p∗(x)e(z|x),
which when normalized gives:

m(z) =

∫
dx p∗(x)e(z|x),

or that the marginal approximation is the true encoder marginal.

D.4. Optimal Decoder for Fixed Encoder

Next consider the variation in the distortion in terms of the decoding distribution with a fixed encoding distribution.

d(x|z)→ d(x|z) + δd(x|z)
∫
dx d(x|z) = 0

δD = −
∫
dx p∗(x)

∫
dz e(z|x) log(d(x|z) + δd(x|z))−D

= −
∫
dx p∗(x)

∫
dz e(z|x) log

(
1 +

δd(x|z)
d(x|z)

)
∼ −

∫
dx p∗(x)

∫
dz e(z|x)δd(x|z)

d(x|z)

Similar to the section above, we took only the leading variation into account, which itself must vanish for the full variation
to vanish. Since our variation in the decoder must integrate to 0, this term will vanish for every x, z we have that:

d(x|z) ∝ p∗(x)e(z|x),

when normalized this gives:

d(x|z) = e(z|x) p∗(x)∫
dx p∗(x)e(z|x)

which ensures that our decoding distribution is the correct posterior induced by our data and encoder.

D.5. Lower bound on Generative Mutual Information

The lower bound is established as all other bounds have been established, with the positive semidefiniteness of KL
divergences.

KL[d(z|x) || q(z|x)] =
∫
dz d(z|x) log d(z|x)

q(z|x)
≥ 0

which implies for any distribution q(z|x):∫
dz d(z|x) log d(z|x) ≥

∫
dz d(z|x) log q(z|x)
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Igen = Igen(X;Z) =

∫∫
dx dz pd(x, z) log

pd(x, z)

pd(x)pd(z)

=

∫
dx pd(x)

∫
dz pd(z|x) log

pd(z|x)
m(z)

=

∫
dx pd(x)

[∫
dz pd(z|x) log pd(z|x)−

∫
dz pd(z|x) logm(z)

]
≥
∫
dx pd(x)

[∫
dz pd(z|x) log e(z|x)−

∫
dz pd(z|x) logm(z)

]
=

∫∫
dx dz pd(x, z) log

e(z|x)
m(z)

=

∫
dz m(z)

∫
dx d(x|z) log e(z|x)

m(z)

≡ E

D.6. Upper Bound on Generative Mutual Information

The upper bound is establish again by the positive semidefinite quality of KL divergence.

KL[p(x|z) || r(x)] ≥ 0 =⇒
∫
dx p(x|z) log p(x|z) ≥

∫
dx p(x|z) log r(x)

Igen = Igen(X;Z) =

∫∫
dx dz pd(x, z) log

pd(x, z)

pd(x)m(z)

=

∫∫
dx dz pd(x, z) log

d(x|z)
pd(x)

=

∫∫
dx dz pd(x, z) log d(x|z)−

∫∫
dx dz pd(x, z) log pd(x)

=

∫∫
dx dz pd(x, z) log d(x|z)−

∫
dx pd(x) log pd(x)

≤
∫∫

dx dz pd(x, z) log d(x|z)−
∫
dx pd(x) log q(x)

=

∫∫
dx dz pd(x, z) log d(x|z)−

∫∫
dx dz pd(x, z) log q(x)

=

∫∫
dx dz pd(x, z) log

d(x|z)
q(x)

=

∫
dz m(z)

∫
dx d(x|z) log d(x|z)

q(x)
≡ G

E. Toy Model Details
Data generation. The true data generating distribution is as follows. We first sample a latent binary variable, z ∼ Ber(0.7),
then sample a latent 1d continuous value from that variable, h|z ∼ N (h|µz, σz), and finally we observe a discretized value,
x = discretize(h;B), where B is a set of 30 equally spaced bins. We set µz and σz such that R∗ ≡ I(x; z) = 0.5 nats, in
the true generative process, representing the ideal rate target for a latent variable model.

Model details. We choose to use a discrete latent representation with K = 30 values, with an encoder of the form
e(zi|xj) ∝ − exp[(we

i xj − bei )2], where z is the one-hot encoding of the latent categorical variable, and x is the one-hot
encoding of the observed categorical variable. Thus the encoder has 2K = 60 parameters. We use a decoder of the same
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form, but with different parameters: d(xj |zi) ∝ − exp[(wd
i xj − bdi )2]. Finally, we use a variational marginal, m(zi) = πi.

Given this, the true joint distribution has the form pe(x, z) = p∗(x)e(z|x), with marginal m(z) =
∑

x pe(x, z) and
conditional pe(x|z) = pe(x, z)/pe(z).

F. Details for MNIST and Omniglot Experiments
We used the static binary MNIST dataset originally produced for (Larochelle & Murray, 2011)5, and the Omniglot dataset
from Lake et al. (2015); Burda et al. (2015).

As stated in the main text, for our experiments we considered twelve different model families corresponding to a simple and
complex choice for the encoder and decoder and three different choices for the marginal.

Unless otherwise specified, all layers used a linearly gated activation function activation function (Dauphin et al., 2017),
h(x) = (W1x+ b2)σ(W2x+ b2).

F.1. Encoder architectures

For the encoder, the simple encoder was a convolutional encoder outputting parameters to a diagonal Gaussian distribution.
The inputs were first transformed to be between -1 and 1. The architecture contained 5 convolutional layers, summarized in
the format Conv (depth, kernel size, stride, padding), followed by a linear layer to read out the mean and a linear layer with
softplus nonlinearity to read out the variance of the diagonal Gaussiann distribution.

• Input (28, 28, 1)

• Conv (32, 5, 1, same)

• Conv (32, 5, 2, same)

• Conv (64, 5, 1, same)

• Conv (64, 5, 2, same)

• Conv (256, 7, 1, valid)

• Gauss (Linear (64), Softplus (Linear (64)))

For the more complicated encoder, the same 5 convolutional layer architecture was used, followed by 4 steps of mean-only
Gaussian inverse autoregressive flow, with each step’s location parameters computed using a 3 layer MADE style masked
network with 640 units in the hidden layers and ReLU activations.

F.2. Decoder architectures

The simple decoder was a transposed convolutional network, with 6 layers of transposed convolution, denoted as Deconv
(depth, kernel size, stride, padding) followed by a linear convolutional layer parameterizing an independent Bernoulli
distribution over all of the pixels:

• Input (1, 1, 64)

• Deconv (64, 7, 1, valid)

• Deconv (64, 5, 1, same)

• Deconv (64, 5, 2, same)

• Deconv (32, 5, 1, same)

• Deconv (32, 5, 2, same)
5https://github.com/yburda/iwae/tree/master/datasets/BinaryMNIST

https://github.com/yburda/iwae/tree/master/datasets/BinaryMNIST
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• Deconv (32, 4, 1, same)

• Bernoulli (Linear Conv (1, 5, 1, same))

The complicated decoder was a slightly modified PixelCNN++ style network (Salimans et al., 2017)6. However in place of
the original RELU activation functions we used linearly gated activation functions and used six blocks (with sizes (28× 28)
– (14× 14) – (7× 7) – (7× 7) – (14× 14) – (28× 28)) of two resnet layers in each block. All internal layers had a feature
depth of 64. Shortcut connections were used throughout between matching sized featured maps. The 64-dimensional latent
representation was sent through a dense lineary gated layer to produce a 784-dimensional representation that was reshaped
to (28× 28× 1) and concatenated with the target image to produce a (28× 28× 2) dimensional input. The final output (of
size (28× 28× 64)) was sent through a (1× 1) convolution down to depth 1. These were interpreted as the logits for a
Bernoulli distribution defined on each pixel.

F.3. Marginal architectures

We used three different types of marginals. The simplest architecture (denoted (-)), was just a fixed isotropic gaussian
distribution in 64 dimensions with means fixed at 0 and variance fixed at 1.

The complicated marginal (+) was created by transforming the isotropic Gaussian base distribution with 4 layers of mean-only
Gaussian autoregressive flow, with each steps location parameters computed using a 3 layer MADE style masked network
with 640 units in the hidden layers and relu activations. This network resembles the architecture used in Papamakarios et al.
(2017).

The last choice of marginal was based on VampPrior and denoted with (v), which uses a mixture of the encoder distributions
computed on a set of pseudo-inputs to parameterize the prior (Tomczak & Welling, 2017). We add an additional learned set
of weights on the mixture distributions that are constrained to sum to one using a softmax function: m(z) =

∑N
i=1 wie(z|φi)

where N are the number of pseudo-inputs, w are the weights, e is the encoder, and φ are the pseudo-inputs that have the
same dimensionality as the inputs.

F.4. Optimization

The models were all trained using the β-VAE objective (Higgins et al., 2017) at various values of β. No form of explicit
regularization was used. The models were trained with Adam (Kingma & Ba, 2015) with normalized gradients (Yu et al.,
2017) for 200 epochs to get good convergence on the training set, with a fixed learning rate of 3× 10−4 for the first 100
epochs and a linearly decreasing learning rate towards 0 at the 200th epoch.
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