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Bayesian Factorizations of Big Sparse Tensors
Jing ZHOU, Anirban BHATTACHARYA, Amy H. HERRING, and David B. DUNSON

It has become routine to collect data that are structured as multiway arrays (tensors). There is an enormous literature on low rank and sparse
matrix factorizations, but limited consideration of extensions to the tensor case in statistics. The most common low rank tensor factorization
relies on parallel factor analysis (PARAFAC), which expresses a rank k tensor as a sum of rank one tensors. In contingency table applications
in which the sample size is massively less than the number of cells in the table, the low rank assumption is not sufficient and PARAFAC
has poor performance. We induce an additional layer of dimension reduction by allowing the effective rank to vary across dimensions of
the table. Taking a Bayesian approach, we place priors on terms in the factorization and develop an efficient Gibbs sampler for posterior
computation. Theory is provided showing posterior concentration rates in high-dimensional settings, and the methods are shown to have
excellent performance in simulations and several real data applications.

KEY WORDS: Bayesian; Categorical data; Contingency table; Log-linear model; Low rank; PARAFAC; Sparsity; Tensor factorization.

1. INTRODUCTION

In many application areas, it is standard to collect high-
dimensional categorical data, which can be organized as a con-
tingency table. Contingency tables correspond to a multiway
array or tensor, with each cell containing a count of the num-
ber of individuals having a particular combination of values for
the categorical variables being measured. In contingency table
analyses, the focus is typically on inferring associations among
the different variables, but challenges arise when there are many
variables, so that the number of cells in the table is vastly big-
ger than the sample size. Usual log-linear modeling approaches
have difficulty scaling to such settings; even when sparsity is
imposed, the number of possible terms in the model is so mas-
sive that computation becomes intractable. This article proposes
a solution to this problem using a novel class of Bayesian tensor
factorizations.

For subjects i = 1, . . . , n, data consist of multivariate cat-
egorical response vectors, yi = (yi1, . . . , yip)T, with yij ∈
{1, . . . , dj } for j = 1, . . . , p. Letting Pr(yi1 = c1, . . . , yip =
cp) = πc1...cp denote the probability mass function, the tensor of
interest is π = {πc1...cp } ∈ �d1×···×dp , with �d1×···×dp the space
of p-way probability tensors having dj rows in the jth direction.
Probability tensors have nonnegative elements that sum to one
across all the cells, with the total number of cells being

∏p

j=1 dj .
When p is not small, we obtain

∏p

j=1 dj � n, so that the vast
majority of the cells of the table have zero counts.

To combat this data sparsity, it is necessary to substantially
reduce dimensionality in estimating π . The usual way to accom-
plish this is through a low rank assumption. Unlike for matrices,
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there is no unique definition of rank but the most common con-
vention is to define the rank k of a tensor π as the smallest value
of k such that π can be expressed as

π =
k∑
h=1

ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h , (1)

which is the sum of k rank one tensors, each an outer prod-
uct of vectors1 for each dimension (Kolda and Bader 2009).
Expression (1) is commonly referred to as parallel factor anal-
ysis (PARAFAC) (Harshman 1970; Bro 1997). For k small, the
number of parameters is massively reduced from

∏p

j=1 dj to
k
∑p

j=1 dj ; as the low rank assumption often holds approxi-
mately, this leads to an effective approach in many applications,
and a rich variety of algorithms are available for estimation.

However, the decrease in degrees of freedom from exponen-
tial in p to linear in p is not sufficient when p is big. Large p small
n problems arise routinely, and a usual solution outside of tensor
settings is to incorporate sparsity. For example, in linear regres-
sion, many of the coefficients are set to zero (Tibshirani 1996;
Scott and Berger 2010), while in estimation of large covariance
matrices, sparse factor models are used that assume few factors
and many zeros in the factor loadings matrices (West 2003; Car-
valho et al. 2008). In contingency table analyses, sparsity can be
imposed by setting many coefficients to zero in a saturated log-
linear model, but as p grows it rapidly becomes computationally
impossible to consider even all possible two-way interactions.
Instead, a salient feature of the proposed approach is the ability
to recover near sparse models in the log-linear parameterization
by inducing shrinkage on the log-linear parameters. We remark
here that in factorization (1), including zeros in the component
vectors {ψ (j )

h } is not a viable solution, particularly as we do not
want to enforce exact zeros in blocks of the tensor π .

Our notion is as follows. For component h (h = 1, . . . , k),
we partition the dimensions into two mutually exclusive
subsets Sh ∪ Sch = {1, . . . , p}. The proposed sparse PARAFAC

1For p = 2, ψ (1) ⊗ ψ (2) = ψ (1)ψ (2)T. In general, (ψ (1) ⊗ · · · ⊗ ψ (p))c1 ...cp =
ψ

(1)
c1 . . . ψ

(p)
cp .
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(sp-PARAFAC) factorization is then

π =
k∑
h=1

ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h , ψ

(j )
h = ψ

(j )
0 for j ∈ Sch. (2)

Hence, instead of having to introduce a separate vector ψ (j )
h for

every h and j, we allow there to be more degrees of freedom
used to characterize the tensor structure in certain directions than
in others by setting a large fraction of the ψ (j )

h s to a baseline

factor ψ (j )
0 . If j ∈ Sch for h = 1, . . . , k, then the jth variable is

independent of the other variables with Pr(yij = cj ) = ψ
(j )
0cj

. By
including j ∈ Sch for some but not all h ∈ {1, . . . , k} one can
use fewer degrees of freedom in characterizing the interaction
between the jth factor and the other factors. In practice, we will
learn {Sh} using a Bayesian approach, as the appropriate lower
dimensional structure is typically not known in advance.

We conjecture that many categorical datasets can be con-
cisely represented via (2), with results substantially improved
over usual PARAFAC factorizations due to the second layer
of dimension reduction. Contingency table analysis is routine
in practice; refer to Agresti (2002) and Fienberg and Rinaldo
(2007). However, in stark contrast to the well developed liter-
ature on linear regression and covariance matrix estimation in
big data settings, very few flexible methods are scalable be-
yond small tables. Our interest is in situations where the di-
mensionality p is comparable or even larger than the number of
samples n.

2. SPARSE FACTOR MODELS FOR TABLES

2.1 Model and Prior

We focus on a Bayesian implementation of sp-PARAFAC
in (2). Let Sr−1 = {x ∈ �r : xj ≥ 0,

∑r
j=1 xj = 1} denote

the (r − 1)-dimensional probability simplex. Dunson and
Xing (2009) proposed the following probabilistic PARAFAC
factorization.

Pr(yi1 = c1, . . . , yip = cp) = πc1...cp =
k∑
h=1

νh

p∏
j=1

λ
(j )
hcj
, (3)

where ν = {νh} ∈ Sk−1 and λ(j )
h = (λ(j )

h1 , . . . , λ
(j )
hdj

) ∈ Sdj−1 is a
vector of probabilities of yij = 1, . . . , dj in component h. Intro-
ducing a latent subpopulation index zi ∈ {1, . . . , k} for subject
i, the elements of yi are conditionally independent given zi with
Pr(yij = cj | zi = h) = λ

(j )
hcj

, and marginalizing out the latent
index zi leads to a mixture of product multinomial distribution
for yi . Placing Dirichlet priors on the component vectors leads to
a simple and efficient Gibbs sampler for posterior computation.
We will refer to this model (3) as standard PARAFAC.

This approach has excellent performance in small to moder-
ate p problems, but as p increases there is an inevitable break-
down point. The number of parameters increases linearly in p,
as for other PARAFAC factorizations, so problems arise as p
approaches the order of n or p � n. For example, we are par-
ticularly motivated by epidemiology studies collecting many
categorical predictors, such as occupation type, demographic
variables, and single nucleotide polymorphisms. For continuous
response vectors yi ∈ �p, there is a well developed literature on
Gaussian sparse factor models that are adept at accommodating

p � n data (West 2003; Lucas et al. 2006; Carvalho et al. 2008;
Bhattacharya and Dunson 2011). These models include many
zeros in the loadings matrices to induce additional dimension
reduction on top of the low rank assumption. Pati et al. (2014)
provided theoretical support through characterizing posterior
concentration.

Our sp-PARAFAC factorization provides an analog of sparse
factor models in the tensor setting. We let

πc1...cp =
k∑
h=1

νh
∏
j∈Sh

λ
(j )
hcj

∏
j∈Sch

λ
(j )
0cj
, (4)

where |Sh| � p (|S| denotes the cardinality of a set S) and the
λ

(j )
0 vectors are fixed in advance; we consider two cases:

(i) λ(j )
0 =

(
1

dj
, . . . ,

1

dj

)T

and

(ii) λ(j )
0 =

(
1

n

n∑
i=1

1(yij = 1), . . . ,
1

n

n∑
i=1

1(yij = dj )

)T

,

corresponding to a discrete uniform and empirical estimates
of the marginal category probabilities. By fixing the base-
line dictionary vectors {λ(j )

0 } in advance, and allocating a
large subset of the variables within each cluster h to the
baseline component, we dramatically reduce the size of the
model space. In particular, the probability tensor π in (4)
can be parameterized as θπ = (ν, {Sh}1≤h≤k, {λ(j )

h }1≤h≤k,j∈Sh ),
where ν ∈ Sk−1, Sh ⊂ {1, . . . , p}, λ(j )

h ∈ Sdj−1. Thus, the ef-
fective number of model parameters is now reduced to (k −
1) +∑k

h=1 |Sh| +∑k
h=1

∑
j∈Sh (dj − 1), which is substantially

smaller than the (k − 1) +∑p

j=1 k(dj − 1) parameters in the
original specification, provided |Sh| � p for all h = 1, . . . k.
The size of Sh is penalized via a sparsity favoring prior on
|Sh| in (5) below. We will illustrate that this can lead to huge
differences in practical performance.

Completing a Bayesian specification with priors for the un-
known parameter vectors and expressing the model in hierar-
chical form, we have2

yij ∼ Mult
({1, . . . , dj }; λ(j )

zi1
, . . . , λ

(j )
zidj

)
,

Pr(zi = h) = νh = Vh
∏
l<h

(1 − Vl),

λ
(j )
h = (1 − ζjh)λ(j )

0 + ζjhλ̃
(j )
h ,

ζjh ∼ Bernoulli(τh), λ̃
(j )
h ∼ Diri(aj1, . . . , ajdj ),

Vh ∼ Beta(1, α), α ∼ Gamma(aα, bα),

τh ∼ Beta(1, γ ). (5)

It is implicit that the probability statements in any row are made
conditionally on parameters appearing in later rows. Clearly, the
hierarchical prior in (5) is supported on the space of probabil-
ity tensors with a sp-PARAFAC decomposition as in (4), since
(5) is equivalent to letting the subset-size |Sh| ∼ Binom(p, τh)
and drawing a random subset Sh uniformly from all sub-
sets of {1, . . . , p} of size |Sh| in (4). A stick-breaking prior

2Mult({1, . . . , d}; λ1, . . . , λd ) denotes a discrete distribution on {1, . . . , d} with
probabilities λ1, . . . , λd associated to each atom.
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(Sethuraman 1994) is chosen for the component weights {νh},
taking a nonparametric Bayes approach that allows k = ∞, with
a hyperprior placed on the concentration parameter α in the
stick-breaking process to allow the data to inform more strongly
about the component weights. The probability of allocation τh
to the active (nonbaseline) category in component h is cho-
sen as Beta(1, γ ), with γ > 1 favoring allocation of many of
the λ(j )

h ’s to the baseline category λ(j )
0 . In the limiting case as

γ → ∞, the joint probability tensor π becomes an outer prod-
uct of the baseline probabilities for the individual variables,
π = λ

(1)
0 ⊗ · · · ⊗ λ

(p)
0 . On the other hand, as γ → 0, one re-

duces back to standard PARAFAC (3).
Line 2 of expression (5) is key in inducing the second level

of dimensionality reduction in our Bayesian sparse PARAFAC
factorization. The inclusion of the baseline component that does
not vary with h massively reduces the number of parameters,
and can additionally be argued to have minimal impact on the
flexibility of the specification. The λ(j )

h ’s are incorporated within∏p

j=1 λ
(j )
hcj

, which for large p is highly concentrated around its

mean since the λ(j )
h ’s are independent across j. This is a manifes-

tation of the concentration of measure phenomenon (Talagrand
1996), which roughly states that a random variable that de-
pends in a smooth way on the influence of many independent
variables, but not too much on any one of them, is essentially

constant. For example, if θj
iid∼ U (0, 1) and � = ∏p

j=1 θj , then
E(�) = (1/2)p and var(�) = (1/3)p, which rapidly converges
to zero. This implies that replacing a large randomly chosen sub-
set of the λ(j )

h ’s by λ(j )
0 should have minimal impact on modeling

flexibility.

2.2 Induced Prior in Log-Linear Parameterization

An important challenge is accommodating higher order inter-
actions, which play an important role in many applications (e.g.,
genetics), but are typically assumed to equal zero for tractabil-
ity. As p grows, it is challenging to even accommodate two-way
interactions in traditional categorical data models (log-linear, lo-
gistic regression) due to an explosion in the number of terms. In
contrast, the tensor factorization does not explicitly parameter-
ize interactions, but indirectly induces a shrinkage prior on the
terms in a saturated log-linear model. One can then reparameter-
ize in terms of the log-linear model in conducting inferences in
a post model-fitting step. Focusing on binary variables for ease
of exposition (dj = d = 2 for all j) and working with the cor-
ner parameterization for log-linear models (see Massam, Liu,
and Dobra 2009, Sec. 2), we illustrate the induced priors on the
main effects and interactions below. Details of transforming to
the log-linear parameterization are provided in Appendix A.

We first focus on a case where p = 3 and dj = d = 2 for
j = 1, 2, 3. Given a 2 × 2 × 2 tensor π , we can equivalently
characterize π in terms of its log-linear parameterization

β = (β1, β2, β3, β12, β13, β23, β123)T,

consisting of three main effect terms β1, β2, β3, three second-
order interaction terms β12, β13, β23, and one third order in-
teraction term β123. We generate 104 random probability ten-
sors π (t) = (π (t)

c1c2c3
), t = 1, . . . , 104, distributed according to

(5), where we fix the baseline λ(j )
0 = (1/2, 1/2)T for all j. Given

each prior sample π (t), we transform to the log-linear parame-

terization to obtain a sample β (t) from the induced prior on β,
which allows us to estimate the marginal densities of the main
effects and interactions and also their joint distributions. In par-
ticular, since γ plays an important role in placing weights on
the baseline component, we would like to see how our induced
priors differ with different γ values.

In our simulation exercise, we fix three values of γ , namely,
γ = 1, 5, 20. Note that γ = 1 corresponds to a U (0, 1) prior on
τh. For different values of γ , we show the histograms of one
main effect term β1, one two-way interaction β12 and the three-
way interaction β123 in Figure 1. Table 1 additionally reports
summary statistics.

In high-dimensional regression, yi = xT
i β + εi , there has

been substantial interest in shrinkage priors, which drawβj a pri-
ori from a density concentrated at zero with heavy tails. Such pri-
ors strongly shrink the small coefficients to zero, while limiting
shrinkage of the larger signals (Park and Casella 2008; Carvalho,
Polson, and Scott 2010; Polson and Scott 2010; Hans 2011;
Armagan, Dunson, and Lee 2013a). In Figure 1, the induced
prior on any of the log-linear model parameters is symmetric
about zero, with a large spike very close to zero, and heavy
tails. Thus, we have indirectly induced a shrinkage prior on the
main effects and interactions through our tensor decomposi-
tion approach. In addition, the prior automatically shrinks more
aggressively as the interaction order increases. Such greater
shrinkage of interactions is commonly recommended (Gelman
et al. 2008). Importantly, we do not zero out small interactions
but allow many small coefficients, which is an important dis-
tinction in applications, such as genomics, having many small
signals. The hyperparameter γ serves as a penalty controlling
the degree of shrinkage. We note that greedy methods like iter-
ative hard thresholding or their convex relaxations like the lasso
can only produce exactly sparse models.

The induced priors on the main effects and interactions are
not analytically tractable and it seems difficult to obtain expres-
sions for P (|βj | < t) and P (|βjj ′ | < t) for small t to theoret-
ically compare the induced degree of shrinkage. However, if
we truncate the stick-breaking prior in (5) to a finite number
of components and set the baseline λ(j )

0 = (1/2, 1/2)T for all j,
then the induced shrinkage priors on the main effects and inter-
actions have an explicit point mass at zero and we can compare
the mass at zero to compare the degree of shrinkage. Under this
setting, we provide expressions for P (βj = 0) and P (βjj ′ = 0)
in Proposition 2.1 below. A proof can be found in Appendix A.

Proposition 2.1. Suppose dj = 2 for all j. If the stick-
breaking prior in (5) is truncated to K components and the base-
line λ(j )

0 = (1/2, 1/2)T for all j, then for any 1 ≤ j �= j ′ ≤ p,

P (βj = 0) =
(

γ

1 + γ

)K
,

P (βjj ′ = 0) = 2

(
γ

1 + γ

)K
−
(

γ

2 + γ

)K
. (6)

For fixed γ , both P (βj = 0) and P (βjj ′ = 0) become zero in
the limit asK → ∞, so that the point mass at zero vanishes. Sec-
ond, for fixed K, P (βj = 0) and P (βjj ′ = 0) are both increasing
functions of γ , implying that larger values of γ induce more
shrinkage. Third, for fixed K and γ , P (βj = 0) ≤ P (βjj ′ =
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Figure 1. Histograms of induced priors for one main effect β1, one two-way interaction β12, and the three-way interaction β123. Top row:
γ = 1; middle row: γ = 5; bottom row: γ = 20.

0), implying the two-way interaction terms are shrunk more
aggressively compared to the main effects. A similar result is
true for any higher-order interactions as evident from the proof.
Finally, all of these conform to the findings from the simulation

Table 1. Summary statistics of induced priors on coefficients in
log-linear model parameterization

γ Coefficient Mean Std.dev Min Max Skewness Kurtosis

1 β1 0.014 0.831 −6.765 6.389 0.210 9.109
1 β12 −0.002 0.340 −2.895 3.105 −0.025 16.583
1 β123 0.002 0.196 −2.223 2.632 0.525 24.686
5 β1 −0.002 0.485 −5.648 5.433 0.031 27.980
5 β12 0.000 0.124 −2.085 2.244 0.495 93.438
5 β123 0.000 0.051 −1.214 0.745 −3.701 159.360
20 β1 0.002 0.246 −3.109 5.669 2.474 99.554
20 β12 0.000 0.042 −1.126 1.819 9.488 632.790
20 β123 0.000 0.009 −0.664 0.214 −44.051 3014.000

study which leads us to believe that the results are true in greater
generality.

Our next set of simulations involve larger values of p, where
the necessity of the regularization implied by γ becomes strik-
ingly evident. Let βm = (β1, . . . , βp)T denote the p-dimensional
vector consisting of all the main effects. Our object of in-
terest now is the induced joint prior distribution of βm. In
particular, we focus on two univariate functionals of βm: (i)
the l1 norm ‖βm‖1 = ∑p

j=1 |βj |, and (ii) the numerical spar-
sity s(βm) = (‖βm‖1/‖βm‖2)2. For x ∈ Rp, ‖x‖1 and s(x) are
continuous functions of x which are commonly used as sur-
rogate measures of sparsity (Lopes 2013). In particular, it
follows from the Cauchy–Schwatrz inequality that s(x) is a
sharp lower bound to ‖x‖0, the number of nonzero entries
in x.

We consider two values of p, namely p = 50 and p = 200,
and sample 5 × 104 draws from the prior (5) in each case. Trans-
forming the prior draws of π to the log-linear parameterization
β, we plot histograms of the induced density of ‖βm‖1 in Fig-
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1566 Journal of the American Statistical Association, December 2015

Figure 2. Histograms of ‖βm‖1 for p = 50 (left panel) and p = 200 (right panel). The top row corresponds to the standard PARAFAC model
and the bottom row to the sp-PARAFAC model with γ = 0.1p.

ure 2 and that of s(βm) in Figure 3. In each of the two figures,
the top row corresponds to γ = 0 so that the sp-PARAFAC for-
mulation reduces back to the standard PARAFAC (3), while the
bottom row corresponds to the sp-PARAFAC with γ /p set to
a constant κ ∈ (0, 1). Figures 2 and 3 reveal a highly undesir-
able property of the standard PARAFAC in high dimensions,
where the entire distributions of ‖βm‖1 and s(βm) shift to the
right with increasing p, with E‖βm‖1,E s(βm) � p. The in-
duced prior on βm for the standard PARAFAC clearly lacks any
automatic multiplicity adjustment property (Scott and Berger
2010), and would bias inferences for moderate to large values
of p. On the other hand, under the sp-PARAFAC model with
γ = κp, the induced priors on ‖βm‖1 and s(βm) are robust to
increasing p, as evident from the bottom rows of Figures 2 and
3. The choice γ = κp acts as a penalty on the size of the non-
null group, forcing the prior to concentrate on smaller subsets;
see Castillo and van der Vaart (2012) for a similar choice of the
hyperparameter in a regression setting and also Remark 3.2 in
Section 3.3.

3. POSTERIOR CONCENTRATION

3.1 Preliminaries

In this section, we provide theoretical justification to the pro-
posed sp-PARAFAC procedure in high dimensional settings by
studying the concentration properties of the posterior with grow-
ing sample size. When the parameter space is finite dimensional,
it is well known that the posterior contracts at the parametric
rate of n−1/2 under mild regularity conditions (Ghosal, Ghosh,
and van der Vaart 2000). However, we are interested in the
asymptotic framework of the dimension p = pn growing with
the sample size n, potentially at a faster rate, reflecting the ap-
plications we are interested in. There is a small but increasing
literature on asymptotic properties of Bayesian procedures in
models with growing dimensionality, with most of the focus
being on linear models or generalized linear models belong-
ing to the exponential family; refer to Ghosal (1999, 2000),
Belitser and Ghosal (2003), Jiang (2007), Armagan et al.
(2013b), Bontemps (2011), and Castillo and van der Vaart

Figure 3. Histograms of the numerical sparsity s(βm) for p = 50 (left panel) and p = 200 (right panel). The top row corresponds to the
standard PARAFAC model and the bottom row to the sp-PARAFAC model with γ = 0.1p.
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(2012) among others. In all these cases, the object of interest
is a vector of high-dimensional regression coefficients or more
generally, the conditional distribution f (y | x) of a univariate
response y given high-dimensional predictors x. However, we
are concerned here with estimation of the high-dimensional joint
probability tensor π .

Let Fn denote the class of all d1 × · · · × dpn probability ten-
sors; we shall assume d1 = · · · = dpn = d in the sequel for nota-
tional convenience. Letπ (0n) ∈ Fn be a sequence of true tensors.
We observe y1, . . . , yn ∼ π (0n) and set y(n) = (y1, . . . , yn). We
denote the prior distribution onFn induced by the sp-PARAFAC
formulation by Pn and the corresponding posterior distribution
by Pn(· | y(n)).

For two probability tensorsπ (1) andπ (2) ∈ Fn, theL1 distance
is defined as

∥∥π (1) − π (2)
∥∥

1 =
d∑

c1=1

. . .

d∑
cpn=1

∣∣π (1)
c1...cpn

− π (2)
c1...cpn

∣∣.
For a sequence of numbers εn → 0 and a constantM > 0 inde-
pendent of εn, let

Un = {
π :

∥∥π − π (0n)
∥∥

1 ≤ Mεn
}

(7)

denote a ball of radius Mεn around π (0n) in the L1 norm. We
seek to find a minimum possible sequence εn such that

lim
n→∞ Pn

(
Uc
n | y(n)

) → 0, a.s.π (0n). (8)

3.2 Assumptions

In this section, we state our assumptions on the true data
generating model and briefly discuss their implications.

Assumption 3.1. The true sequence of probability tensors
π (0n) are of the form

π (0n)
c1...cpn

=
kn∑
h=1

ν0h

∏
j∈S0h

λ
(0j )
hcj

∏
j∈Sc0h

λ
(j )
0cj
, 1 ≤ cj ≤ d, 1 ≤ j ≤ pn,

(A0)
where λ(j )

0 ∈ Sd−1 are assumed to be fixed and known.

We now provide some intuition for assumption (A0). Letting
S0 = ∪knh=1S0h, we can rewrite the expansion of π (0n) in (A0) as

π (0n)
c1...cpn

=
kn∑
h=1

ν0h

∏
j∈S0

λ̄
(0j )
hcj

∏
j∈Sc0

λ
(j )
0cj
, (9)

where

λ̄
(0j )
h =

{
λ

(0j )
h if j ∈ S0h,

λ
(j )
0 if j ∈ S0\S0h.

In (9), the term
∏
j∈Sc0 λ

(j )
0cj

doesn’t involve h and can be factored
out completely. Assumption (A0) thus posits that the variables
in Sc0 are marginally independent and the entire dependence
structure is driven by the variables in S0. We shall refer to S0

and Sc0 as the nonnull and null group of variables respectively.
Let qn = |S0| and define a mapping j → ej from {1, . . . , qn}

to the ordered elements of S0, so that e1 ≤ · · · ≤ eqn . As j varies
between 1 to qn, ej ranges over the elements of S0. Denote by

ψ (0n) the dqn joint probability tensor for the variables {yij : j ∈
S0}, so that

ψ (0n)
c1...cqn

= Pr(yie1 = c1, . . . , yieqn = cn) =
kn∑
h=1

ν0h

qn∏
j=1

λ̄
(0ej )
hcj

.

(10)

Thus, after factoring out the marginally independent variables in
Sc0, (A0) implies a standard PARAFAC expansion (10) for ψ (0n)

with kn many components. Since any nonnegative tensor admits
a standard PARAFAC distribution (Lim and Comon 2009), we
can always write an expansion of ψ (0n) as in (10).

The next set of assumptions are provided below.3

Assumption 3.2. In addition to (A0), π (0n) satisfies

(A1) The number of components kn = O(1).
(A2) Letting sn = max1≤h≤kn |S0h|, one has sn = O(logpn).
(A3) There exists a constant ε0 ∈ (0, 1) such that λ(0j )

hc ≥ ε0 for
all 1 ≤ h ≤ kn, 1 ≤ c ≤ d, j ∈ S0h.

(A1) and (A2) imply that the size of the nonnull group is much
smaller than pn, since qn = |S0| ≤ ∑kn

h=1 |Sh| ≤ knsn � pn.
Some discussion is in order for condition (A3). First, note

that we can choose ε0 in a way so that λ̄(0j )
hc ≥ ε0 for all

h, c, and j ∈ S0. Hence, (A3) implies a lower bound on the
joint probability ψ (0n) in (10). Such a lower bound on a com-
pactly supported target density is a standard assumption in
Bayesian nonparametric theory; see for example, van der Vaart
and van Zanten (2008). However, unlike univariate or multi-
variate density estimation in fixed dimensions where the den-
sity can be assumed to be bounded below by a constant, we
need to precisely characterize the decay rate of the lower bound
of the joint probability. Since ψ (0n) is a dqn probability ten-
sor, minc1,...csn

ψ (0n)
c1...csn

≤ (1/d)qn = exp(−snkn log d). Assump-
tion (A3) implies that

min
c1,...csn

ψ (0n)
c1...csn

≥ exp(−qn log(1/ε0)) = exp(−c0sn) (11)

for some constant c0 > 0.

3.3 Main Result

We are now in a position to state a theorem on posterior
convergence rates.

Theorem 3.1. Assume the true sequence of tensorsπ (0n) ∈ Fn
satisfy assumptions (A0) – (A3) and sn logpn/n → 0. Also, as-
sume the sp-PARAFAC model is fitted with the stick-breaking
prior truncated to kn many components and γ = κp2

n for
some constant κ ∈ (0, 1) in (5). Then, (8) is satisfied with
εn = √

sn logpn/n in (7).

A proof of Theorem 3.1 can be found in Appendix B. As an
implication of Theorem 3.1, ifpn = nd for some constant d, then
the posterior contracts at the near parametric rate

√
(log n)c/n

for some constant c > 0. Moreover, consistent estimation is pos-
sible even if pn is exponentially large as long as pn ≤ exp(

√
n).

3For sequences an, bn, we write an = o(bn) if an/bn → 0 as n → ∞ and an =
O(bn) if an ≤ Cbn for all large n.
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In particular, with pn = exp(nδ/2) for δ < 1, the posterior con-
tracts at least at the rate n−(1−δ)/2.

Remark 3.1. We assume the number of components kn known
in Theorem 3.1 for ease of exposition, with our main focus on
dimensionality reduction. Adapting to an unknown number of
components in mixture models is a well-studied problem; see,
for example, Ge and Jiang (2006), Pati, Dunson, and Tokdar
(2013), and Shen, Tokdar, and Ghosal (2013). For the infinite
stick-breaking prior on the mixture components, one can use the
sieving technique developed in Pati, Dunson, and Tokdar (2013)
to estimate deviation bounds for the tail sum of a stick-breaking
process.

Remark 3.2. We need γ = κp2
n in Theorem 3.1 to assure

that the probability mass function of the induced beta-Bernoulli
prior on |Sh| satisfies P (|Sh| = s) � e−Cs logpn for small s; refer
to the proof of Theorem 3.1 for further details. Classes of priors
on the model size proportional to e−Cs logpn are referred to as
complexity priors in Castillo and van der Vaart (2012) and com-
monly used in high-dimensional Bayesian asymptotics, where
the prior probability of a particular model size s is inversely
proportional to the (pns ) many models of size s. See also Section
2.1 of Arias-Castro and Lounici (2012) for an usage of a similar
prior in a high-dimensional regression context.

The choice γ = κpn leads to P (|Sh| = s) behaving like e−Cs

for small s, which is not sufficient given the current proof tech-
nique. However, for numerical stability, we recommend the
choice γ = κpn in all practical applications involving large pn,
with κ = 0.2 used as a default choice in all our examples.

4. POSTERIOR COMPUTATION

Under model (5), we can easily proceed to draw posterior
samples from a Gibbs sampler since all the full conditionals
have recognizable forms. We integrate out the ζjhs to obtain
λ

(j )
h ∼ (1 − τh)δ

λ
(j )
0

+ τhDiri(aj1, . . . , ajdj ) and therefore do not
update the ζjhs. The algorithm iterates through the following
steps:

1. For variable j = 1, . . . , p and latent class h =
1, . . . , k∗, where k∗ = max{z1, . . . , zn}, update λ

(j )
h ≡

(λ(j )
h1 , . . . , λ

(j )
hdj

) from a two component mixture distribu-
tion, having a point mass at the baseline probability:(
λ

(j )
h

∣∣− ) = w
(j )
0h δλ(j )

0

+w(j )
1hDiri

(
aj1 +

n∑
i=1

1(yij = 1, zi = h),

. . . , ajdj +
n∑
i=1

1(yij = dj , zi = h)

)
, (12)

where w(j )
0h and w(j )

1h are the mixture weights:

w
(j )
0h = (1 − τh)

∏dj
c=1 λ

(j )
∑n

i=1 1(zi=h,yij=c)
0c

(1 − τh)
∏dj
c=1 λ

(j )
∑n

i=1 1(zi=h,yij=c)
0c

+τh �(
∑dj

c=1 ajc)∏dj

c=1 �(ajc)
·
∏dj

c=1 �

(
ajc+

∑n
i=1 1(zi=h,yij=c)

)
�

(∑dj

c=1 ajc+
∑n

i=1 1(zi=h)
)

,

w
(j )
1h = 1 − w

(j )
0h .

2. Let ηhj ∈ {0, 1} be a binary allocation variable indicating
the component λ(j )

h is drawn from in (12), with ηhj = 0 if
λ

(j )
h is updated from the baseline component. Update τh,
h = 1, . . . , k∗ from a Beta full conditional:

τh|− ∼ Beta

⎛
⎝1 +

p∑
j=1

1(ηhj = 1), γ +
p∑
j=1

1(ηhj = 0)

⎞
⎠.
(13)

3. The full conditional of Vh, h = 1, . . . , k∗ only requires
the updated information on latent class allocation for all
subjects:

Vh|− ∼ Beta

(
1 +

n∑
i=1

1(zi = h), α +
n∑
i=1

1(zi > h)

)
.

(14)

4. Sample zi , i = 1, . . . , n from the multinomial full condi-
tional with

Pr(zi = h|−) =
νh
∏p

j=1 λ
(j )
hyij∑k∗

l=1 νl
∏p

j=1 λ
(j )
lyij

, (15)

where νh = Vh
∏
l<h(1 − Vl).

5. Update α from the Gamma full conditional:

α|− ∼ Gamma

(
aα + k∗, bα −

k∗∑
h=1

log(1 − Vh)

)
. (16)

These steps are simple to implement and we gain effi-
ciency by updating the parameters in blocks. For example, in-
stead of updating λ(j )

h one at a time, we sample λ ≡ {λ(j )
h , h =

1, . . . , k∗, j = 1, . . . , p} jointly with corresponding parameters
in matrix form. In all our examples, we ran the chain for 25,000
iterations, discarding the first 10,000 iterations as burn-in and
collecting every fifth sample post burn-in to thin the chain. Mix-
ing and convergence were satisfactory based on the examination
of trace plots and the run time scaled linearly with n and p. We
also carried out sensitivity analysis by multiplying and dividing
the hyperparamaters aα, bα , and γ in (5) by a factor of 2, with
the conclusions remained unchanged from the default setting
aα = bα = 1 and γ = 0.2p.

5. SIMULATION STUDIES

5.1 Estimating Sparse Interactions

We first conduct a replicated simulation study to assess
the estimation of sparse interactions using the proposed sp-
PARAFAC model. We simulated 100 dependent binary vari-
ables yij ∈ {0, 1}, j = 1, . . . , p = 100 (dj = d = 2) for i =
1, . . . , n = 100 subjects from a log-linear model having up to
three-way interactions:

log

(
πc1...cp

π0...0

)
=

3∑
s=1

∑
S⊂{1,...,p}:|S|=s

βS1(cS=1). (17)

For example, if S = {1, 2, 4}, then βS = β1,2,4 and 1(cS=1) =
1(c1=1,c2=1,c4=1) with 1(·) denoting the indicator function. To
mimic the situation where only a few interactions are present,
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Figure 4. Posterior means and 95% credible intervals for all main
effects and interactions in S∗ compared with the true coefficients.

we restrict to S ⊂ S∗ = {2, 4, 12, 14} and set all interactions
except

β = (β2, β4, β12, β14, β2,4, β2,12, β4,12, β4,14, β12,14,

×β2,4,12, β4,12,14)T

to zero. This data-generating mechanism induces dependence
among the variables in S∗, while rendering the other variables
to be marginally independent. Figure 4 reports the posterior
means and 95% credible intervals for all main effects and inter-
actions for the variables in S∗ averaged across 100 simulation
replicates along with the true coefficients. As illustrated in Fig-
ure 4, averaging across the simulation replicates and different
parameters, the 95% credible intervals cover the true parameter
values 80% of the time.

Next, we study performance in estimating the dependence
structure. Cramer’s V is a popular statistic measuring the
strength of association or dependence between two (nominal)
categorical variables in a contingency table, ranging from 0
(no association) to 1 (perfect association). Let ρjj ′ denote the
Cramer’s V statistics for variables j and j ′, so that

ρ2
jj ′ = 1

min{dj , dj ′ } − 1

dj∑
cj=1

dj ′∑
cj ′=1

(
π

(jj ′)
cj cj ′ − π

(j )
cj π

(j ′)
cj ′
)2

π
(j )
cj π

(j ′)
c(j ′ )

, (18)

where π (jj ′)
ll′ = Pr(yij = l, yij ′ = l′) and π (j )

l = Pr(yij = l). Un-
der the log-linear model (17), ρ = (ρjj ′) is a sparse matrix
with the Cramer’s V for all pairs except those in S∗ × S∗ be-
ing zero. This is an immediate consequence of the fact that if
(j, j ′) /∈ S∗ × S∗, then yij and yij ′ are independent.

We compare estimation of the off-diagonal entries of ρ under
the sp-PARAFAC model with the empirical Cramer’s V ma-
trix ρ̂. We can clearly convert posterior samples for the model
parameters to posterior samples for ρjj ′ through (18). The em-

pirical estimator is obtained by replacing π (jj ′)
cj cj ′ and π (j )

cj by their
empirical estimators. The left panel in Figure 5 shows the pos-
terior summaries (averaged across simulation replicates) of the
Cramer’s V values for all possible dependent pairs along with
the true Cramer’s V values (which can be calculated from (17)).
In the right panel of Figure 5, we overlay kernel density estima-
tors of posterior samples (in gray) and the empirical estimators
(in red) of the Cramer’s V values for all null pairs across all
simulation replicates. Note the axes are also marked in gray and
red for the respective cases. The sp-PARAFAC method clearly
outperforms the empirical estimator convincingly, with the pos-
terior density for the null pairs highly concentrated near zero
while the empirical estimator has a mean Cramer’s V value of
0.08 across the null pairs.

Furthermore, we can obtain power and Type I error rates for
the nonnull and null variables respectively by computing the
percentage of detected significance over the simulation repli-
cates, with a coefficient declared significant if the 95% credible
interval does not contain zero. Focusing on the power and Type
I error of the main effects and interactions in S∗, most of the
error rates are appealing barring a few cases (see Tables 2 and
3). It is not surprising that the approach may face difficulty as-
sessing the exact interaction structure among a set of associated
variables based on limited data. Further, given the Cramer’s V
results in the right panel of Figure 5, the Type I error for any
variable not in S∗ should be very small or zero. As an example,
we tested the main effects and all possible interactions for posi-
tions 20, 30, 40, and 50. The Type I error rates are zero for all of
them.

Figure 5. Left: Posterior summaries of the Cramer’s V values for all dependent pairs versus the true Cramer’s V values; Right: Estimated
density of Cramer’s V combining all null pairs under sp-PARAFAC vs. empirical estimation.
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Table 2. Power for non-null variables based on 100 simulations

β2 β4 β12 β14 β2,4 β2,12 β4,12 β4,14 β12,14 β2,4,12 β4,12,14

Power 0.97 0.9 1 1 0.95 0.99 0.98 0.97 0.99 0 0
True coefficient 1 −1.5 2 1.5 −0.5 0.5 −0.5 −0.5 0.5 0.25 0.5

5.2 Comparison with Standard PARAFAC

We now conduct a simulation study to compare estimation
of the Cramer’s V matrix ρ under the proposed approach to the
standard PARAFAC model in (3). We considered 100 simula-
tion replicates, with data in each replicate consisting of p = 100
categorical variables for n = 100 subjects, with each variable
having four possible levels (dj = d = 4). Two simulation set-
tings were considered to induce dependence between the vari-
ables in S∗ = {2, 4, 12, 14}: (i) via multiple subpopulations as
in the simulation study in Dunson and Xing (2009), and (ii) via a
nominal GLM model Pr(yij = c) = exp( yi(j )βc)

1+∑4
c=2 exp( yi(j )βc)

for j ∈ S∗,

where yi(j )βc is a linear combination of all variables that are
associated with the jth variable excluding the jth variable. The
remaining variables were independently generated from a dis-
crete uniform distribution.

The color plot on the left in Figure 6 shows the true pairwise
Cramer’s V values under simulation setting (i) (only the top-left
20 × 20 sub matrix of ρ is shown for clarity). Figure 6 (right)
and Figure 7 represent one of the replicates, in which the right
plot in Figure 6 shows the Cramer’s V under the standard non-
sparse PARAFAC method, while Figure 7 shows the Cramer’s V
using our method with the two different choices (i) and (ii) of the
baseline components. It is obvious that our approach has much
better estimates for not only the true dependent pairs but also the
true nulls. Results for simulation (ii) shown in Figure 8 again
show superiority of our sparse improvement to PARAFAC.

6. APPLICATION

6.1 Splice-Junction Gene Sequences

We applied the method to the splice-junction gene sequences,
abbreviated as splice data below. The dataset is publicly avail-
able at the UCI machine learning repository. Splice junctions
are points on a DNA sequence at which “superfluous” DNA is

removed during the process of protein creation in higher organ-
isms. These data consist of A, C, G, T nucleotides at p = 60 po-
sitions for N = 3175 sequences. Since the sample size is much
larger than the number of variables, we compared our approach
with the standard PARAFAC in two scenarios, first a small ran-
domly selected subset (of size n = 2p = 120) of the full dataset,
and second, the full dataset itself. Using two different sample
sizes in this manner allows for a study of the new and existing
methods and a comparison to a gold standard (a sufficiently large
dataset). We ran the analysis to estimate the pairwise positional
dependence structure under the standard PARAFAC method and
the proposed approach with discrete uniform baseline compo-
nent. As is apparent in Figure 10, both methods have similar
performance when n � p. However, when the sample size is
modest compared to the dimensionality, Figure 9 clearly demon-
strates the advantage of our proposed method in identifying the
dependence structure and pushing the independent pairs to zero,
thereby obtaining a closer approximation to the gold standard
(Figure 10).

6.2 The Public Use Microdata Sample (PUMS)

The PUMS data contains a sample of actual responses to
the American Community Survey (available at http://www2.
census.gov/acs2010 1yr/pums/csv pnc.zip). The dataset in-
cludes behavioral, sociodemographic, and sociological vari-
ables in which 44 categorical variables are derived from the
original survey data. There are 38,549 valid subjects without
missing values. We used a similar strategy to that used for

Table 3. Type I error for null variables based on 100 simulations

β2,14 β2,4,14 β2,12,14 β2,4,12,14

Type I error 0.97 0 0.68 0
True coefficient 0 0 0 0

Figure 6. Simulation setting (i)—Left: True Cramer’s V matrix; Right: Posterior means of Cramer’s V using standard PARAFAC. Top 20 × 20
submatrix shown.
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Figure 7. Posterior means of Cramer’s V under simulation setting (i) using proposed method—Left: with λ(j )
0 being discrete uniform; Right:

with λ(j )
0 being empirical estimates of the marginal category probabilities. Top 20 × 20 submatrix shown.

Figure 8. Posterior means of Cramer’s V under simulation setting (ii)—Left: using standard PARAFAC; Middle: under proposed method
using empirical marginal with Diri(1, . . . ,1) prior for λ0; Right: using proposed method with discrete uniform λ0. Top 20 × 20 submatrix shown.

Figure 9. Posterior quantiles of Cramer’s V with 120 sequences of splice data—Upper panel: under standard PARAFAC; Bottom panel: under
proposed method.
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Figure 10. Posterior quantiles of Cramer’s V with 3,175 sequences of splice data—Upper panel: under standard PARAFAC; Bottom panel:
under proposed method.

the splice data to compare the performance with the standard
PARAFAC method under a small sample case and a full sample
case. A total of 100 subjects were first randomly selected to de-
termine the association among the 44 social variables. Empirical
marginal probabilities with a Dirichlet(1, . . . ,1) prior were used
in our model, because we believe that the underlying indepen-
dent variables are not following the discrete uniform distribution
and we need to avoid the zero count problem in some categories.
Comparing Figure 12 with Figure 11, the sp-FARAFAC again
proves its advantage in detecting more true signals and shrinking
the noise.

7. DISCUSSION

We have proposed a sparse modification to the widely-used
PARAFAC tensor factorization, and have applied this in a
Bayesian context to improve analyses of ultra sparse huge con-
tingency tables. Given the compelling success in this application
area, we hope that the proposed notion of sparsity will have a
major impact in other areas, including tensor completion prob-
lems in machine learning. There is an enormous literature on
low rank and sparse matrix factorizations, and the sp-PARAFAC
should facilitate scaling of such approaches to many-way ta-
bles while dealing with the inevitable curse of dimensionality.

Figure 11. Posterior quantiles of Cramer’s V with 100 subjects of PUMS – Upper panel: under standard PARAFAC; Bottom panel: under
proposed method.

D
ow

nl
oa

de
d 

by
 [

D
uk

e 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

4:
10

 2
1 

Ja
nu

ar
y 

20
16

 



Zhou et al.: Bayesian Factorizations of Big Sparse Tensors 1573

Figure 12. Posterior quantiles of Cramer’s V with 38,549 subjects of PUMS—Upper panel: under standard PARAFAC; Bottom panel: under
proposed method.

Although we take a Bayesian approach, we believe that frequen-
tist penalized optimization methods can also exploit our same
concept of sparsity in learning a compressed characterization of
a huge array based on limited data.

APPENDIX A

Transformation to Log-Linear Parameterization

Let V := {1, . . . , p} denote the set of variables. Since we focus
on binary variables, we can assume without loss of generality that
yj ∈ {1, 2} for all j ∈ V . We summarize some basic facts regarding
the log-linear parameterization of the joint probability tensor π of
binary variables y1, . . . , yp . For any F ⊆ V , let c(F ) denote the cell
with c(F )

j = 2 if j ∈ F and c(F )
j = 1 if j ∈ F c. We specifically denote

the cell corresponding to F = ∅ by c∗, so that c∗ = (1, 1, . . . , 1). In
the corner parameterization (Massam, Liu, and Dobra 2009, Sec. 2),

logπc(S) =
∑
E⊆S

βE,

for any S ⊆ V , where βE denotes the interaction term corresponding
to the variables in E. Clearly, in this parameterization, we have p main
effects (|E| = 1),

(
p

2

)
two-way interactions (|E| = 2) and so on. In

this corner parameterization, the main effects and interactions can be
recovered from the joint probability tensor as

βS =
∑
E⊆S

(−1)|S\E| logπc(E) . (A.1)

It follows from (A.1) that any main effect βj = log{πc({j})/πc∗ } and any
two-way interaction

βjj ′ = log

{
πc({j,j ′ })πc∗

πc({j})πc({j ′ })

}
.

For example, in our p = 3 example in Section 2.2, β1 = log{π211/π111}
and β12 = log{ π221 π111

π121 π211
}.

Proof of Proposition 2.1. We first calculate P (βj = 0) for j ∈ V .
Since the induced prior on the main effects are exchangeable, the
probabilities are the same for all j ∈ V and it suffices to calculate
P (β1 = 0). From the previous subsection, we have β1 = log(πc({1}) ) −
log(πc∗ ), where c({1}) is the cell (2, 1, . . . , 1). Clearly, the cells c({1}) and
c∗ only differ in the first coordinate corresponding to the first variable.
Recalling that the stick-breaking prior is assumed to be truncated to K
components, we have from (5) that

πc({1}) = π21...1 =
K∑
h=1
ηhλ

(1)
h2 ,

πc∗ = π11...1 =
K∑
h=1
ηhλ

(1)
h1 ,

where ηh = νh
∏

j �=1 λ
(j )
h1 is the same in both expressions since c({1})

and c∗ only differ in the first coordinate. From the above display, it is
clear that β1 = 0 (with positive probability) if and only if variable 1
is assigned to the baseline group for all h = 1, . . . , K , whence λ(1)

h1 =
λ

(1)
01 = 1/2 and λ(1)

h2 = λ
(1)
02 = 1/2. Letting τ = (τ1, . . . , τK ), we there-

fore have P (β1 = 0 | τ ) = ∏K

h=1(1 − τh), since given τ , each variable
is assigned to the baseline group inside the hth component with prob-
ability (1 − τh). The unconditional probability P (β1 = 0) = EP (β1 =
0 | τ ) = {γ /(1 + γ )}K , since τh’s are independent Beta(1, γ ). �

We next calculate P (βjj ′ = 0) for j �= j ′ ∈ V . Using the exchange-
ability argument, it is enough to calculate P (β12 = 0). We have from
(A.1) that β12 = log(πc({1,2}) ) − log(πc({1}) ) − log(πc({2}) ) + log(πc∗ ). We
can write

πc({1,2}) = π221...1 =
K∑
h=1

η′
hλ

(1)
h2λ

(2)
h2 ,

πc∗ = π111...1 =
K∑
h=1

η′
hλ

(1)
h1λ

(2)
h1
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πc({1}) = π211...1 =
K∑
h=1

η′
hλ

(1)
h2λ

(2)
h1 ,

πc({2}) = π121...1 =
K∑
h=1

η′
hλ

(1)
h1λ

(2)
h2 ,

where η′
h = νh

∏
j �=1,2 λ

(j )
h1 . We claim that P (β12 = 0) = P (A1 ∪ A2),

where Al , l = 1, 2 denotes the event that variable l is assigned to the
baseline group for all h = 1, . . . , K . The identity follows since we can
write (a) β12 = [log(πc({1,2}) ) − log(πc({2}) )] − [log(πc({1}) ) − log(πc∗ )] or
(b) β12 = [log(πc({1,2}) ) − log(πc({1}) )] − [log(πc({2}) ) − log(πc∗ )]. If A1

holds, both [log(πc({1,2}) ) − log(πc({2}) )] and [log(πc({1}) ) − log(πc∗ )]
are zero, while if A2 holds, both [log(πc({1,2}) ) − log(πc({1}) )] and
[log(πc({2}) ) − log(πc∗ )] are zero. We have P (A1) = P (A2) = {γ /(1 +
γ )}K from the first part, and P (A1 ∩ A2) = E

∏K

h=1(1 − τh)2 =
{γ /(2 + γ )}K .

It follows from the above proof that P (β1 = 0) = P (A1), while
P (β12 = 0) = P (A1 ∪ A2), which clearly implies that P (β1 = 0) ≤
P (β12 = 0), that is, the two-way interactions are shrunk more heav-
ily compared to the main effects. The proof also clearly suggests that
this phenomena extends to any order of interaction.

APPENDIX B

Proof of Theorem 3.1. We verify the conditions of Theorem 4 in
Yang and Dunson (2013), which is a minor modification of Theorem
2.1 appearing in Ghosal, Ghosh, and van der Vaart (2000). Let εn → 0
be such thatnε2

n → ∞ and
∑

n≥ exp(−nε2
n) ≤ ∞. Suppose there exist a

sequence of sets Pn ⊂ Fn and a constantC > 0 such that the following
hold: 4

1. logN (εn;Pn, ‖ · ‖1) ≤ nε2
n;

2. Pn(Fn ∩ Pc
n) ≤ exp{−(2 + C)nε2

n}; and
3. Pn(π : ‖ log π

π (0n) ‖∞ ≤ ε2
n) ≥ exp(−Cnε2

n).

Then, the posterior contracts at the rate εn, that is, (8) is satisfied.
We now proceed to verify conditions (1)–(3). We define,

Pn

=
⎧⎨
⎩
π ∈ Fn : πc1 ...cp = ∑kn

h=1 ν
∗
h

∏
j∈S∗

h
λ

(∗j )
hcj

∏
j∈S∗c

h
λ

(j )
0cj

;

ν ∈ S (kn−1), |S∗
h | ≤ Asn, h = 1, . . . , kn

⎫⎬
⎭ ,

(B1)

where S (r−1) denotes the (r − 1)-dimensional probability simplex and
A > 0 is an absolute constant. We shall use C to denote an absolute
constant whose meaning may change from one line to the next.

To estimateN (εn;Pn, ‖ · ‖1), we make use of the following Lemma,
which follows in a straightforward manner by repeated uses of the
triangle inequality.

Lemma B.1. Let π (1), π (2) ∈ Fn with

π (i) =
kn∑
h=1

νihλ
(1)
ih ⊗ . . .⊗ λ

(pn)
ih , i = 1, 2.

Then,

∥∥∥π (1) − π (2)
∥∥∥

1
≤

kn∑
h=1

|ν1h − ν2h|

4Given a metric space (X , d), let N (ε;X , d) denote its ε-covering number, that
is, the minimum number of d-balls of radius ε needed to cover X .

+
kn∑
h=1

ν2h

⎛
⎝ pn∑
j=1

d∑
c=1

|λ(j )
1hc − λ

(j )
2hc|

⎞
⎠ .

Lemma B.1 implies that if π (1), π (2) ∈ Pn with S∗
1h = S∗

2h = S∗
h , then

∥∥∥π (1) − π (2)
∥∥∥

1
≤

kn∑
h=1

|ν1h − ν2h|

+
kn∑
h=1

ν2h

⎛
⎝∑
j∈S∗

h

d∑
c=1

|λ(j )
1hc − λ

(j )
2hc|

⎞
⎠ .

Based on the above observation, we create an εn-net of Pn as follows:
In (B.1), (i) vary S∗

h over all possible subsets of {1, . . . , pn} with |S∗
h | ≤

Asn for h = 1, . . . , kn, (ii) for h ∈ {1, . . . kn} and j ∈ S∗
h , vary λ(∗j )

h

over an εn/(2Adsn)-net of S (d−1) and (iii) vary ν∗ over an εn/(2kn)-net
of S (kn−1).

For a fixed h, there are
∑Asn

s=0

(
p

s

)
subsets of size smaller then or equal

to Asn. Using the inequality
(
p

s

) ≤ (pe/s)s for s ≤ p/2, the number of
possible subsets in (i) can be bounded above by exp(Cknsn logpn).
Hence,

N (εn;Pn, ‖ · ‖1)

≤ exp(Cknsn logpn)N (εn/(2Adsn);Sd−1, ‖ · ‖1)2Adsnkn

×N (εn/(2kn);Skn−1, ‖ · ‖1).

Using the fact that N (δ,Sr−1, ‖ · ‖1) ≤ (C/δ)r (Vershynin 2010),
the right-hand side in the above display can be bounded above by
exp(Csn logpn) = exp(nε2

n), since kn = O(1).
We now bound Pn(Fn ∩ Pc

n). Recall that in the sp-PARAFAC model,
the induced prior on the subset size |Sh| is Bin(pn, τh), with τh ∼
Beta(1, γ ). Now,

Pn((Fn ∩ Pc
n) ≤ Pr(∃h ∈ {1, . . . , kn} s.t. |Sh| ≥ Asn)

≤ knP (|S1| > Asn).

Integrating τ1, the distribution of |S1| is a beta-Bernoulli distribution
with probability mass function

Pr(|S1| = s) =
(
p

s

)
1

B(1, γ )

∫ 1

τ=0
τ s(1 − τ )pn−s(1 − τ )γ−1dτ

=
(
pn

s

)
B(1 + s, γ + pn − s)

B(1, γ )

= 1

γ

pn!

(pn − s)!

(γ + pn − s − 1)!

(γ + pn)!
,

for s = 0, 1, . . . , pn. B(·, ·) denotes the Beta function in the above
display. Hence, for s ≥ 1,

Pr(|S1| = s)

Pr(|S1| = s − 1)
= (pn − s + 1)

(pn − s + γ )
.

Now, letting γ = p2
n, one has for any pn ≥ 2 and 1 ≤ s ≤ pn/2,

1

4pn
≤ (pn − s + 1)

(pn − s + γ )
≤ 1

pn
.

In general, for γ = κp2
n, we can bound this from both sides by C/pn.

Noting that Pr(|S1| = 0) = C/p3
n, we have

Pr(|S1| = s) = C

p3
n

s∏
j=1

Pr(|S1| = j )

Pr(|S1| = j − 1)
,

implying there exists constants c1, c2 > 0 such that

e−c1(s+3) logpn ≤ Pr(|S1| = s) ≤ e−c2(s+3) logpn , (B2)

for 0 ≤ s ≤ pn/2. In particular, the upper bound holds for all 0 ≤ s ≤
pn, since (pn − s + 1)/(pn − s + γ ) ≤ C/pn for all s. Hence, for n
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large enough so that sn ≥ 3,

P(|S1| > Asn) ≤
pn∑

j=Asn+1

exp(−Cj logpn) ≤ exp(−Csn logpn)

≤ exp(−nε2
n).

We finally show that (3) holds. Recall the decomposition of π (0n)

from (9). A probability tensor π following a sp-PARAFAC model with
a truncated stick-breaking prior on ν can be parameterized as

θπ =
(
ν, {Sh}1≤h≤kn , {λ(j )

h }1≤h≤kn,j∈Sh
)
,

where ν ∈ Skn−1, Sh ⊂ {1, . . . , pn}, λ(j )
h ∈ Sd−1. Consider the follow-

ing subset A of the parameter space,

A =
{
Sh = S0, 1 ≤ h ≤ kn;

kn∑
h=1

|νh − ν0h| ≤ ε2
n

2ec0sn
;

×
d∑
c=1

∣∣∣λ(j )
hc − λ̄

(0j )
hc

∣∣∣ ≤ ε2
nε0

4qn
, 1 ≤ h ≤ kn, j ∈ S0

}
.

We now show that θπ ∈ A implies log ‖π/π (0n)‖∞ ≤ ε2
n , so that

Pn(log ‖π/π (0n)‖∞ ≤ ε2
n) can be bounded below by Pn(A). First, ob-

serve that since Sh = S0 for all h on A, π/π (0n) = ψ/ψ (0n), whereψ (0n)

is as in (10) and ψ is the dqn joint probability tensor implied by the
sp-PARAFAC model for the variables {yij : j ∈ S0},

ψc1 ...cqn
=

kn∑
h=1

νh
∏
j∈S0

λ
(ej )
hcj
.

Hence,

log
∥∥∥ π

π (0n)

∥∥∥
∞

= log

∥∥∥∥ ψ

ψ (0n)

∥∥∥∥
∞

≤ log

(
1 +

∥∥∥∥
(
ψ

ψ (0n)
− 1

)∥∥∥∥
∞

)

≤
∥∥∥∥
(
ψ

ψ (0n)
− 1

)∥∥∥∥
∞
,

where the penultimate step follows from an application of triangle
inequality and the last step uses log(1 + x) ≤ x for x ≥ 0. For any
c1, . . . , csn , by an application of triangle inequality,

∣∣∣ψc1 ...csn
− ψ (0n)

c1 ...csn

∣∣∣ ≤
kn∑
h=1

|νh − ν0h|

+
kn∑
h=1

ν0h

∣∣∣∣∣∣
qn∏
j=1

λ
(ej )
hcj

−
qn∏
j=1

λ̄
(0ej )
hcj

∣∣∣∣∣∣ . (B3)

We now state a Lemma to facilitate bounding the second term of the
above display.

Lemma B.2. Let v1, . . . vr ∈ (ε0, 1 − ε0) for some ε0 > 0. Let δ > 0
be such that rδ < ε0/2. Then, if u1, . . . , ur satisfy |uj − vj | ≤ δ for all
j = 1, . . . , r , then

|u1 . . . ur − v1 . . . vr | ≤ 2rδ

ε0
v1 . . . vr .

Apply Lemma B.2 with r = qn, uj = λ̄
(0ej )
hcj

and δ = ε2
nε0/(4qn)

(clearly rδ/ε0 = ε2
n/4 < 1/2) to obtain that for any 1 ≤ h ≤

qn, |∏qn
j=1 λ

(ej )
hcj

−∏qn
j=1 λ̄

(0ej )
hcj

| ≤ (ε2
n/2)

∏qn
j=1 λ̄

(0ej )
hcj

. Substituting this
bound in (B.3), we have on A,

|ψc1 ...csn
− ψ (0n)

c1 ...csn
|

ψ
(0n)
c1 ...csn

≤
∑kn

h=1 |νh − ν0h|
e−c0sn

+
(
ε2
n

/
2
)∑kn

h=1 ν0h
∏qn

j=1 λ̄
(0ej )
hcj

ψ
(0n)
c1 ...csn

≤ ε2
n.

For the two terms in the above display after the first inequality, we used
the lower bound (11) for the first term along with

∑kn
h=1 |νh − ν0h| ≤

ε2
n/(2e

c0sn) on A, and by definition of ψ (0n), the second term is ε2
n/2.

It thus remains to lower bound Pn(A). By independence across h,
Pr(Sh = S0, 1 ≤ h ≤ kn) = Pr(S1 = S0)kn . Further, by exchangeability
of the prior on S1, since all subsets of a particular size receive the
same prior probability, Pr(S1 = S0) = Pr(|S1| = qn)/

(
pn
qn

)
. From (B.2),

Pr(|S1| = qn ≥ exp(−Csn logpn). Using
(
pn
qn

) ≤ (pne/qn)qn , we con-
clude that Pr(S1 = S0) ≥ exp(−Csn logpn).

Recall that νh = ν∗
h

∏
l<h(1 − ν∗

l ), where ν∗
l ∼ Beta(1, α) indepen-

dently. Find numbers {ν∗
0h} such that ν0h = ν∗

0h

∏
l<h(1 − ν∗

0l). It is easy
to see that there exists a constantC > 0 such that |ν∗

h − ν∗
0h| ≤ εn/(Ckn)

for allh = 1, . . . , kn implies
∑kn

h=1 |νh − ν0h| ≤ εn. Hence, using a gen-
eral result on small ball probability estimate of Dirichlet random vectors
(Lemma 6.1 of Ghosal, Ghosh, and van der Vaart 2000), one has

Pr

(
kn∑
h=1

|νh − ν0h| ≤ ε2
n

2ec0sn

)
≥ exp{−Csn log(1/εn)}.

Another application of Lemma 6.1 of Ghosal, Ghosh, and van der Vaart
(2000) yields,

Pr

(
d∑
c=1

|λ(j )
hc − λ̄

(0j )
hc | ≤ ε2

nε0

4qn

)
≥ exp{−C log(sn/εn)}.

Combining, we get Pr(A) ≥ exp(−Csn logpn) ≥ exp(−nε2
n). Hence,

we have established (1) – (3), completing the proof.

Proof of Lemma B.2. Observe that

|u1 . . . ur − v1 . . . vr |
= |v1 . . . vr |

∣∣∣∣u1 . . . ur

v1 . . . vr
− 1

∣∣∣∣
= v1 . . . vr max

{
u1 . . . ur

v1 . . . vr
− 1, 1 − u1 . . . ur

v1 . . . vr

}
.

Now, since uh ≤ vh + δ for all h,

u1 . . . ur

v1 . . . vr
≤

r∏
h=1

(1 + δ/vh) ≤ (1 + δ/ε0)r .

Using the binomial theorem, (1 + δ/ε0)r − 1 = rδ/ε0 +∑r

h=2

(
r

h

)
(δ/ε0)h. Next, bound

(
r

h

) ≤ rh and use the fact that
rδ/ε0 < 1/2 to conclude that

∑r

h=2

(
r

h

)
(δ/ε0)h ≤ ∑∞

h=1(rδ/ε0)h ≤
2rδ/ε0.

On the other hand, using uh ≥ vh − δ for all h,

u1 . . . ur

v1 . . . vr
≥

r∏
h=1

(1 − δ/vh) ≥ (1 − δ/ε0)r ≥ 1 − rδ/ε0.

The proof is concluded by observing that

max

{
u1 . . . ur

v1 . . . vr
− 1, 1 − u1 . . . ur

v1 . . . vr

}
≤ 2rδ/ε0.

�
[Received June 2013. Revised September 2014.]
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