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Simplex Factor Models for Multivariate Unordered
Categorical Data

Anirban BHATTACHARYA and David B. DUNSON

Gaussian latent factor models are routinely used for modeling of dependence in continuous, binary, and ordered categorical data. For
unordered categorical variables, Gaussian latent factor models lead to challenging computation and complex modeling structures. As an
alternative, we propose a novel class of simplex factor models. In the single-factor case, the model treats the different categorical outcomes
as independent with unknown marginals. The model can characterize flexible dependence structures parsimoniously with few factors, and as
factors are added, any multivariate categorical data distribution can be accurately approximated. Using a Bayesian approach for computation
and inferences, a Markov chain Monte Carlo (MCMC) algorithm is proposed that scales well with increasing dimension, with the number
of factors treated as unknown. We develop an efficient proposal for updating the base probability vector in hierarchical Dirichlet models.
Theoretical properties are described, and we evaluate the approach through simulation examples. Applications are described for modeling
dependence in nucleotide sequences and prediction from high-dimensional categorical features.

KEY WORDS: Classification; Contingency table; Factor analysis; Latent variable; Nonparametric Bayes; Nonnegative tensor factorization;
Mutual information; Polytomous regression.

1. INTRODUCTION

Multivariate unordered categorical data are routinely encoun-
tered in a variety of application areas, with interest often in
inferring dependencies among the variables. For example, the
categorical variables may correspond to a sequence of A, C,
G, T nucleotides or responses to questionnaire data on race,
religion, and political affiliation for an individual. We shall use
yi = (yi1, . . . , yip)T to denote the multivariate observation for
the ith subject, with yij 2 {1, . . . , dj }.

Complicated dependence can potentially be expressed in
terms of simpler conditional independence relationships via
graphical models (Dawid and Lauritzen 1993). Such models
have been used for continuous (Lauritzen 1996; Dobra et al.
2004), categorical (Whittaker 1990; Madigan and York 1995),
and mixed-scale variables (Pitt, Chan, and Kohn 2006; Dobra
and Lenkoski 2011). Although graphical models are popular due
to their flexibility and interpretability, computation is daunting
since the size of the model space grows exponentially with p.
Even with highly efficient search algorithms (Jones et al. 2005;
Carvalho and Scott 2009; Dobra and Massam 2010; Lenkoski
and Dobra 2011, among others), it is only feasible to visit a tiny
subset of the model space even for moderate p. Accurate model
selection in this context is difficult when p is moderate to large
and the number of samples is not enormous because, in such
cases, even the highest posterior probability models receive very
small weight and there will typically be a large number of models
having essentially identical performance according to any given
model selection criteria (Akaike information criterion [AIC],
Bayesian information criterion [BIC], etc). Dobra and Lenkoski
(2011) advocated model averaging to avoid the inferences to
depend explicitly on the choice of the underlying graph.
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In parallel to the development of graphical models, factor
models (West 2003; Carvalho et al. 2008) have been widely
used for modeling of high-dimensional variables and dimen-
sion reduction. While Gaussian graphical models work with the
precision matrix, factor models provide a framework for reg-
ularized covariance matrix estimation. Factor models and gen-
eralizations such as structural equation models (Bollen 1989)
can accommodate mixtures of continuous, binary, and ordered
categorical data through an underlying Gaussian latent factor
structure (Muthén 1983). Such models link each observed yij to
an underlying continuous variable zij , with ordinal yij arising
via thresholding of zij . For multivariate binary yi , a multivariate
Gaussian distribution on zi = (zi1, . . . , zip)T induces the mul-
tivariate probit model (Ashford and Sowden 1970; Chib and
Greenberg 1998; Ochi and Prentice 1984). Multivariate probit
models can accommodate nominal data with dj > 2 by intro-
ducing a vector of variables zij = (zij1, . . . , zijdj

)T underlying
yij , with yij = l if zij l = max zij (Aitchison and Bennett 1970;
Zhang, Boscardin, and Belin 2008). The latent zi’s are usually
modeled as

Pp

j=1 dj -dimensional Gaussian with covariance 6,
with at least p diagonal elements of 6 constrained to be one
for identifiability. This constraint makes sampling from the full
conditional posterior of6 difficult. Zhang, Boscardin, and Belin
(2006) used a parameter-expanded Metropolis–Hastings algo-
rithm to obtain samples from a correlation matrix for multi-
variate probit models. Zhang, Boscardin, and Belin (2008) ex-
tended their algorithm to multivariate multinomial probit mod-
els. An alternative to probit models is to define a generalized
linear model for each of the individual outcomes, while includ-
ing shared normal latent traits to induce dependence (Sammel,
Ryan, and Legler 1997; Dunson 2000, 2003; Moustaki and Knott
2000).

For unordered categorical variables, the data could be alter-
natively presented in the form of a p-way contingency table of
dimension d1 × · · · × dp. There is a vast literature on analysis of

© 2012 American Statistical Association
Journal of the American Statistical Association

March 2012, Vol. 107, No. 497, Theory and Methods
DOI: 10.1080/01621459.2011.646934

362

D
ow

nl
oa

de
d 

by
 [D

uk
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

4:
15

 2
1 

Ja
nu

ar
y 

20
16

 



Bhattacharya and Dunson: Simplex Factor Models 363

contingency tables dating back to the nineteenth century. Fien-
berg and Rinaldo (2007) provided an excellent chronological
overview of the development of log-linear models, maximum
likelihood estimation, and asymptotic tests for goodness of fit.
While log-linear models (Bishop, Fienberg, and Holland 1975)
have been extensively used to model interactions among related
categorical variables, asymptotic tests based on log-linear mod-
els face multiple difficulties in the case of sparse contingency
tables—refer to the discussion in Section 3 of Fienberg and Ri-
naldo (2007). In a Bayesian framework, such problems can be
avoided by specifying priors of the log-linear model parame-
ters; Massam, Liu, and Dobra (2009) provided a detailed study
of a useful class of conjugate priors. Posterior model search in
log-linear models using traditional Markov chain Monte Carlo
(MCMC) methods tends to bog down quickly as dimension-
ality increases. Dobra and Massam (2010) proposed a mode-
oriented stochastic search method to more efficiently explore
high posterior probability regions in decomposable, graphical,
and hierarchical log-linear models.

Each of the above-mentioned methods are flexible and have
their own distinct advantages. Graphical log-linear models are
often preferred for ease of interpretation, while the underlying
variable methods are useful for mixed data types, which com-
monly arise in social science applications. However, these meth-
ods face major computational challenges for large contingency
tables. Dunson and Xing (2009) developed a nonparametric
Bayes approach using Dirichlet process (Ferguson 1973, 1974)
mixtures of product multinomials to directly model the joint
distribution of multivariate unordered categorical data. They as-
sumed that (yi1, . . . , yip)T are conditionally independent, given a
univariate latent class index zi 2 {1, 2, . . . ,1}. The prior spec-
ification is completed by assuming a stick-breaking process
prior on the distribution of zi and independent Dirichlet priors
for the component-wise position-specific probability vectors.
Marginalizing over the distribution of zi induces dependence
among the p variables. This approach extends latent structure
analysis (Lazarsfeld and Henry 1968; Goodman 1974) to the
infinite mixture case and is conceptually related to nonnegative
tensor decompositions (Shashua and Hazan 2005; Kim and Choi
2007). The direct modeling of the joint distribution of the cate-
gory probabilities in a sparse manner enables efficient posterior
computation, thereby allowing their method to efficiently scale
up to high dimensions.

Although the Dunson and Xing (2009) approach can handle
large contingency tables, the assumption of conditional inde-
pendence, given a single latent class index, seems restrictive.
Although their prior has full support and hence they can flex-
ibly approximate any joint distribution of yi , in practice, even
relatively simple dependence structures may require allocation
of individuals to different classes, leading to a large effective
number of parameters. Hence, in applications involving moder-
ate to large p and modest sample size n, the Dunson and Xing
(2009) approach may face difficulties.

In this article, we propose a new class of simplex factor mod-
els for multivariate unordered categorical data in which the de-
pendence among the high-dimensional variables is explained in
terms of relatively few latent factors. This is akin to Gaussian
factor models, but factors on the simplex are more natural for
nominal data. Methods for factor selection are discussed and
the proposed approach is shown to have large support and to

lead to consistent estimation of joint or conditional distributions
for categorical variables. The Dunson and Xing (2009) model is
obtained as a particular limiting case of the proposed model, as
is the product multinomial model. The joint distribution of the
multivariate nominal variables induced from the simplex factor
model is shown to correspond to a multilinear singular value de-
composition (SVD) (or higher-order SVD [HOSVD]) (De Lath-
auwer, De Moor and Vandewalle 2000) of probability tensors,
which is regarded as a natural generalization of the matrix SVD
in the tensor literature. A simple-to-implement data-augmented
MCMC algorithm is proposed for posterior computation that
scales well to higher dimensions. The methods are illustrated
through simulated and real-data examples.

2. MODEL AND PRIOR SPECIFICATION

2.1 The Simplex Factor Model

Let yi = (yi1, . . . , yip)T denote a vector of responses and/or
predictors. If yi 2 <p, then a common approach is to jointly
model the yi’s via a normal linear factor model:

yi = µ +3ηi + ϵi , ϵi ∼ Np(0,6), i = 1, . . . , n, (1)

where µ 2 <p is an intercept term,3 is a p × k factor loadings
matrix, ηi 2 <k are latent factors, and ϵi is an idiosyncratic error
with covariance 6 = diag(σ 2

1 , . . . , σ 2
p ). When ηi ∼ Nk(0, Ik),

marginally, yi ∼ Np(µ,&), with & = 33T +6, a decomposi-
tion which uses at most p(k + 1) free parameters instead of the
p(p + 1)/2 parameters in an unstructured covariance matrix.

Now consider the case in which yij 2 {1, . . . , dj } for j =
1, . . . , p, and the different observations are unordered categor-
ical variables. Let ηi = (ηi1, . . . , ηik)T 2 Sk−1, with Sk−1 the
(k − 1)-dimensional simplex. The ηi’s will play the role of the
latent factors but they lie on the simplex instead of being in <k .
In addition, for each j, let (j )

h = (λ(j )
h1 , . . . , λ

(j )
hdj

)T be a proba-

bility vector for h = 1, . . . , k. The (j )
h ’s can be interpreted as

loadings for factor h and outcome j, but we have a vector in-
stead of a single element, as we would have in the case in which
yij 2 <. With these components, we let:

pr(yij = cj | ηi ,3 ) =
kX

h=1

λ
(j )
hcj
ηih (2)

pr(yi1 = c1, . . . , yip = cp | ηi ,3 ) =
pY

j=1

pr(yij = cj | ηi ,3 ),

(3)

where 3 = ( (j )
h ). We refer to the model defined in Equations (2)

and (3) as a simplex factor model. The formulation is conceptu-
ally related to mixed membership models (Pritchard, Stephens,
and Donnelly 2000; Barnard et al. 2003; Blei, Ng, and Jor-
dan 2003; Erosheva, Fienberg, and Joutard 2007), which have
found widespread applications in text modeling, population ge-
netics, and machine learning. In particular, the latent Dirichlet
allocation (LDA) model (Blei et al. 2003) for text modeling
arises as a special case of our model when p = 1. We can think
of (j )

h as the vector of probabilities of yij = 1, 2, . . . , dj , re-
spectively, in ancestral population or pure species h, with none
of the individuals being pure and ηih being the weight on the
hth component for the ith individual. When k = 1, the sim-
plex factor model reduces to the product multinomial model
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representing global independence. As k increases, the complex-
ity of the model increases.

To obtain further insight, we represent the simplex factor
model in the following hierarchical form, which will also be
used for posterior computation:

yij ∼ multinomial
(
{1, . . . , dj }, λ(j )

zij 1, . . . , λ
(j )
zij dj

)
,

pr(zij = h) = ηih, h = 1, . . . , k. (4)

Clearly, marginalizing out zij in (4) gives (2). The zij ’s can be
considered as local latent class indices for the jth variable and the
ith subject. The simplex factor model allows these local indices
zij ’s to vary across j for a particular subject, resulting in a more
flexible and parsimonious (in terms of number of components
k) specification compared with that in Dunson and Xing (2009),
where a univariate latent class index is used.

Marginalizing out ηi in Equation (3) induces dependence
among the yij ’s. Letting πc1...cp

= pr(yi1 = c1, . . . , yip = cp |
3 ), one has

πc1...cp
=
Z pY

j=1

pr(yij = cj | ηi ,3 )dQ(ηi)

=
kX

h1=1

. . .

kX

hp=1

gh1...hp

pY

j=1

λ
(j )
hj cj

, (5)

with Q denoting the distribution of ηi and gh1,...,hp
=

EQ(ηih1 , . . . , ηihp
).

2.2 Relationship With Tensor Decompositions

It is useful at this point to consider relationships between (5)
and the literature on tensor decompositions, which shall be used
in particular to illustrate the differences between our model and
the Dunson and Xing (2009) model. Let Td1...dp

denote the set of
all tensors of dimension d1 × · · · × dp, and5 d1...dp

⊂ Td1...dp
de-

note the set of probability tensors so that 2 5 d1...dp
implies

=
{
πc1...cp

≥ 0, cj = 1, . . . , dj ,

j = 1, . . . , p :
d1X

c1=1

. . .

dpX

cp=1

πc1...cp
= 1

}
.

A decomposed tensor (Kolda 2001) is a tensor D 2 Td1...dp
such

that D = u(1) ⊗ u(2), . . . ,⊗u(p), where u(j ) 2 <dj and ⊗ de-
notes the outer product so that Dc1,...,cp

= u(1)
c1

u(2)
c2

, . . . , u
(p)
cp

. One
notion of the rank of a tensor is the minimal r such that D can be
expressed as a sum of r decomposed (or rank 1) tensors. Such
a decomposition is often referred to as a PARAFAC decompo-
sition (Harshman 1970), which is one way of generalizing the
matrix SVD. Tucker (1966) proposed a different decomposition
for three-way data, which was later extended to arbitrary tensors
by De Lathauwer et al. (2000). The Tucker decomposition or
HOSVD aims to decompose a tensor D 2 Td1...dp

as

Dc1...cp
=

d1X

h1=1

. . .

dpX

hp=1

gh1,...,hp
u

(1)
h1c1

, . . . , u
(p)
hpcp

, (6)

where G = {gh1...hp
} 2 Td1...dp

is called a core tensor and its
entries control interaction between the different components.

Wang and Ahuja (2005) and Kim and Choi (2007) empiri-
cally noted that the HOSVD achieves better data compression
and requires fewer components compared with the PARAFAC
model as it uses all combinations of the mode vectors u

(j )
h ’s,

h = 1, . . . , k.
The product multinomial mixture model of Dunson and Xing

(2009) induces a decomposition of a probability tensor as

πc1...cp
=

kX

h=1

νhλ
(1)
hc1

, . . . , λ
(p)
hcp

, (7)

where νh = pr(zi = h) and (j )
h 2 Sdj −1. Note that (7) is dif-

ferent from a usual PARAFAC decomposition because of the
nonnegativity constraints on and the (j )

h ’s. In the subse-
quent discussion, a nonnegativity matrix/tensor has all entries
nonnegativity. The classical nonnegativity matrix factorization
(NMF) problem seeks the best approximation of a nonnega-
tive matrix A 2 <m×n

+ as a product of nonnegative matrices
W 2 <m×k

+ and V 2 <k×n
+ for some k ≤ min{m, n}. Gregory

and Pullman (1983) were among the first to consider NMF and
introduced the notion of nonnegative rank of a matrix, which is
the minimal r such that a nonnegative matrix can be written as
a sum of rank 1 nonnegative matrices. Cohen and Joel (1993)
generalized many properties of the usual rank to the case of
nonnegative rank. Along the lines of NMF, one can similarly
envision nonnegative versions of the PARAFAC and HOSVD
decompositions for tensors (Shashua and Hazan 2005; Kim and
Choi 2007).

We note that (7) is a form of nonnegative PARAFAC de-
composition, while the simplex factor model in (5) induces a
nonnegative HOSVD on the space of probability tensors. Let

2 T +
d1...dp

be a nonnegative tensor. Define the nonnegative
PARAFAC rank r+PF( ) of to be the minimum k such that

admits a decomposition as in (7) with (j )
h 2 Sdj −1 and 2 <k .

Similarly, define the nonnegative HOSVD rank r+HS( ) of to
be the minimum k such that can be expressed as in (5) with

(j )
h 2 Sdj −1 and G 2 T +

k...k . In considering a nonnegative de-
composition, assuming (j )

h 2 Sdj −1 is not restrictive since we
can always scale nonnegative weights to lie to the simplex and
adjust the scale in or G. In the special case when is a
probability tensor, 2 Sk−1 is a probability vector and G is a
probability tensor.

If we start with k = r+PF( ) in (7), then we can clearly ex-
press as in (5) using the same k by simply letting gh1...hp

=
νh1(h1 = h, . . . , hp = h). Conversely, suppose we start with
a nonnegative HOSVD of as in (5) with k = r+HS( ) and
the core tensor G 2 5 k...k having r+PF(G) = r . Then, there ex-
ist u(j )

l 2 Sk−1, l = 1, . . . , r and q 2 Sr−1 such that gh1...hp
=

Pr
l=1 qlu

(1)
lh1

, . . . , u
(p)
lhp

. Substituting this expression for gh1...hp
in

(5), one has

πc1...cp
=

kX

h1=1

. . .

kX

hp=1

gh1...hp
λ

(1)
h1c1

, . . . , λ
(p)
hpcp

=
rX

l=1

ql

{ pY

j=1

( kX

h=1

λ
(j )
hcj

u
(j )
lh

)}
=

rX

l=1

qlv
(1)
lc1

, . . . , v
(p)
lcp

,

(8)
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Bhattacharya and Dunson: Simplex Factor Models 365

where v
(j )
lcj

=
Pk

h=1 λ
(j )
hcj

u
(j )
lh . Thus, starting with a nonnegative

HOSVD of , we have expanded it in nonnegative PARAFAC
form. Clearly, r ≥ k; otherwise, the minimality of k is con-
tradicted. Moreover, very little is known about upper bounds
on PARAFAC ranks of tensors. The most general result is for
third-order tensors where the upper bound is O(k2); hence, r can
potentially be much larger than k, requiring very many parame-
ters for the PARAFAC expansion compared with the HOSVD.
We summarize the above facts in the following theorem.

Theorem 2.1. Let 2 5 d1...dp
and let k = r+HS( ). Then, k ≤

r+PF( ) ≤ r+PF(G), where G is a core tensor in the minimal HOSVD
expansion of . Moreover, among all such minimal expansions
in k components, if G has minimal nonnegative PARAFAC rank,
then r+PF( ) = r+PF(G).

From a statistical perspective, the decomposition in (8) shows
that the simplex factor model can provide sparser solutions in
scenarios where the Dunson and Xing (2009) model may re-
quire many components to adequately explain the dependence
structure. The Dunson and Xing (2009) model induces a global
clustering phenomenon by forcing all the variables for a partic-
ular subject to be allocated to the same cluster. This can lead
to introduction of too many clusters to accommodate small id-
iosyncracies within the variables or the subjects might be inap-
propriately grouped together, obscuring local differences. The
simplex factor model instead allows the different variables to
be allocated to different clusters via the dependent local cluster
indices zij .

2.3 Prior Specification and Properties

To complete a Bayesian specification of the simplex fac-
tor model, a natural choice is to draw the ηi’s and the
different (j )

h ’s from independent Dirichlet priors. We let
ηi ∼ Diri(αν1, . . . ,ανk), where α > 0 and = (ν1, . . . , νk)T =
E(ηi) 2 Sk−1 is a vector of probabilities. To obtain a parsimo-
nious representation in which the first few components (sub-
populations) tend to be assigned most of the weight, we let
νh = ν∗

h5l<h(1 − ν∗
l ) with ν∗

k = 1 and place a beta(1,β) prior
on ν∗

h, h = 1, . . . , k − 1. This corresponds to the stick-breaking
formulation (Sethuraman 1994) of the Dirichlet process trun-
cated to the first k terms and is widely used for posterior compu-
tation in Dirichlet process mixture models (Ishwaran and James
2001). In this case, k can be viewed as an upper bound on the
number of components as higher-indexed components will tend
to have νh ≈ 0, so one obtains ηih ≈ 0 with high probability
for all i and the k-component model adaptively collapses on a
lower-dimensional model. In practice, such collapsing will be
driven by the extent to which the data support a model with
fewer components. The model can be expressed in hierarchical
form as

yij ∼ multinomial
(
{1, . . . , dj }, λ(j )

zij 1, . . . , λ
(j )
zij dj

)
,

(j )
h ∼ Diri(aj1, . . . , ajdj

), pr(zij = h) = ηih,

ηi ∼ Diri(α ), νh = ν∗
h

Y

l<h

(1 − ν∗
l ), ν∗

h ∼ beta(1,β). (9)

The hierarchical prior specification on ηi has similarities to a
finite-dimensional version of the hierarchical Dirichlet process
(Teh et al. 2006), although the motivation here is slightly dif-
ferent. Essentially, we have a Dirichlet random-effects model

with an unknown mean for the subject-specific random effects
ηi’s, with dependence being induced by marginalizing out the
ηi’s.

The Dirichlet latent factor distribution allows evaluation of
gh1...hp

= EQ(ηih1 . . . ηihp
) in (5) analytically

gh1...hp
= 0(α)
0(α + p)

kY

h=1

0{ανh + τh(h1, . . . , hp)}
0(ανh)

, (10)

where τh(h1, . . . , hp) = {#j : hj = h} for h = 1, . . . , k. When
evident from the context, we shall drop the arguments and use
τh. Clearly,

Pk
h=1 τh = p.

With π
(j )
cj

= pr(yij = cj | ,3 ) and π
(jj 0)
cj cj 0 = pr(yij =

cj , yij 0 = cj 0 | ,3 ), one has

π (j )
cj

=
kX

h=1

νhλ
(j )
hcj

(11)

π (jj 0)
cj cj 0 = α

α + 1

 
kX

h=1

νhλ
(j )
hcj

! 
kX

h=1

νhλ
(j 0)
hcj 0

!

+ 1
α + 1

kX

h=1

νhλ
(j )
hcj
λ

(j 0)
hcj 0 . (12)

Now let us consider a few limiting cases; the main results are
summarized below.

Proposition 2.2. For any fixed k, (i) in the limit as α ! 1,
the simplex factor model (9) simplifies to a product multinomial
model with pr(yij = cj ) =

Pk
h=1 νhλ

(j )
hcj

independently for j =
1, . . . , p; and (ii) in the limit as α ! 0, model (9) simplifies to
the Dunson and Xing (2009) model.

Thus, by putting a hyperprior on α, we can allow the data
to inform about α and the posterior to concentrate near either
of these two simplifications in cases where the simple structure
is warranted. Next, we show that the proposed prior has large
support on the space of probability tensors, so any dependence
structure can be accurately approximated.

Theorem 2.3. Let Q(k)
π denote the prior induced on

5 d1...dp
through the k-component simplex factor model in (9)

and N ϵ( 0) denote an L1 neighborhood around an arbitrary
probability tensor 0 2 5 d1...dp

. Then, for any 0 2 5 d1...dp
and

ϵ > 0, there exists k such that Q(k)
π {N ϵ( 0)} > 0.

Since the space of probability tensors is isomorphic to a com-
pact Euclidean space, a straightforward extension of theorem
4.3.1 of Ghosh and Ramamoorthi (2003) ensures that the pos-
terior concentrates in arbitrary small neighborhoods of any true
data-generating distribution 0 with increasing sample size.

3. POSTERIOR COMPUTATION AND INFERENCE

3.1 MCMC Algorithm for Posterior Computation

Let y = (yij ), = (ηi), and z = (zi). We use a com-
bination of Gibbs sampling and independence chain
Metropolis–Hastings sampling to draw samples from the pos-
terior distribution of (3 , z, , ∗,α) for the hierarchical model
specified in (9). We place a gamma(aα, bα) prior on α to allow
the data to inform more strongly about sparsity in the ηi vec-
tors. In particular, for small α, the tendency will be to assign
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one element of ηi to a value close to 1, while for larger α, the
ηi vectors will be closer to for different subjects. We recom-
mend aα = bα = 1 as a default value favoring high weights on
few components. In addition, we let aj1 = · · · = ajdj

= 1, for
j = 1, . . . , p, to induce a uniform prior for the category prob-
abilities in each class for each outcome type. This default prior
specification can be modified in cases in which one has prior
information on the category probabilities and/or the number of
subpopulations.

The conditional posteriors for all the parameters other than
∗ and α can be derived in closed form using standard algebra

and the sampler cycles through the following steps:

Step 1. For h = 1, . . . , k, update (j )
h from the following Dirich-

let full conditional posterior distribution

π
( (j )

h | −
)

∼ Diri

0

@aj1 +
X

i:zij =h

1(yij = 1), . . . , ajdj

+
X

i:zij =h

1(yij = dj )

1

A .

Step 2. Update zij from the multinomial full conditional poste-
rior distribution, with

pr(zij = h | −) =
ηihλ

(j )
hyijPk

l=1 ηilλ
(j )
lyij

.

Step 3. Update ηi from the Dirichlet full conditional posterior:

π (ηi | −) ∼ Diri

0

@αν1 +
pX

j=1

1(zij = 1), . . . ,ανk

+
pX

j=1

1(zij = k)

1

A .

Step 4. Update α using a Metropolis random walk on log(α).
Step 5. Update {ν∗

h} using the following approach.
Let mil =

Pp

j=1 1(zij = l), ml =
Pn

i=1 mil , ml+ =Pn
i=1

P
l0>l mil0 and nls = {#i : mil > s} for nonnegative

integers s. Letting m∗
l = max1≤i≤n mil , one has nls = 0 for

s ≥ m∗
l . Further, let ν̃

(h)
h = 5l<h(1 − ν∗

l ) and ν̃
(h)
l =

νl/(1 − ν∗
h) for l > h, and define c

(h)
l = αν̃

(h)
l . The condi-

tional posterior of ν∗
h marginalizing out the ηi’s is given by

π (ν∗
h | −) / (1 − ν∗

h)β−1
nY

i=1

kY

l=h

0(ανl + mil)
0(ανl)

= (1 − ν∗
h)β−1

kY

l=h

Y

i:mil 6=0

mil−1Y

s=0

(ανl + s). (13)

We assume the default choice β = 1. Since the expression for
νl contains ν∗

h for l = h and (1 − ν∗
h) for l > h, the condi-

tional posterior of ν∗
h in (13) is an analytically intractable mix-

ture of beta densities. However, we show that π (ν∗
h | −) can

be accurately approximated by a single beta distribution. One
can thus use an appropriate beta density as a proposal in a

Metropolis–Hastings step, with the beta parameters estimated
numerically on a fine grid via moment matching. However, the
grid-based method is computationally costly, since the expres-
sion in (13) needs to be computed at every point on the grid.
We propose an approach to provide analytic expressions for the
parameters of the approximating beta density. The analytic solu-
tion produces high acceptance rates, and there is a dramatic gain
in computational time, whose effect is increasingly pronounced
with large n and/or p. We mention below the choices of the
parameters of the approximating beta density in the different
cases, with justification provided in the Appendix.

If mh > 0 and mh+ = 0, we use a beta(â, 1) density with

â = 1 +
m∗

h−1X

s=0

nhs

{
1 − s

c
(h)
h

log
(
1 + c

(h)
h /s

)}
(14)

to approximate π (ν∗
h | −). Similarly, if mh = 0 and mh+ > 0, a

beta(1, b̂) density with

b̂ = 1 +
kX

l=h+1

m∗
l −1X

s=0

nls

{
1 − s

c
(h)
l

log
(
1 + c

(h)
l /s

)}
(15)

is used to approximate π (ν∗
h | −).

If mh > 0 and mh+ > 0, we prove the following fact.

Proposition 3.1. If mh > 0 and mh+ > 0, then π (ν∗
h | −) is

unimodal and limν∗
h!0 π (ν∗

h | −) = 0, limν∗
h!1 π (ν∗

h | −) = 0.

We approximate π (ν∗
h | −) by a beta(â, b̂) density in this

case, where â = max(ã + 1, 1), b̂ = max(b̃ + 1, 1), and ã, b̃ are
obtained by solving a 2 × 2 linear system E(ã, b̃)T = (d1, d2)T,
with e11 = 1/2, e12 = −1/2, e21 = 1/6, e22 = −1/3 and

d1 =
Z 1

0
2ν∗

h logπ (ν∗
h | −)dν∗

h −
Z 1

0
logπ (ν∗

h | −)dν∗
h

d2 =
Z 1

0
3(ν∗

h)2 logπ (ν∗
h | −)dν∗

h −
Z 1

0
2ν∗

h logπ (ν∗
h | −)dν∗

h.

A one-step improvement is obtained next by running a mode
search of the log posterior from the estimated (ã, b̃) pair above
and subsequently adjusting those values to have the right mode.
Since π (ν∗

h | −) is unimodal in this case, the mode search can
be done very efficiently using the Newton–Rapson algorithm.

3.2 Adaptive Selection of the Number of Factors

In practical problems, one typically expects a small number
of factors k relative to the number of outcomes p. The stick-
breaking prior on induces a sparse formulation a priori, so
relatively few components with high weights are encouraged.
Accordingly, one can start with a conservative upper bound
k∗ on the number of factors and the sparsity favoring prior en-
sures that the posterior will concentrate on a few components
if the truth is approximately sparse. However, an overly con-
servative upper bound wastes substantial computational time.
For Gaussian factor models, Lopes and West (2004) compared
a number of alternatives to select the number of factors, rec-
ommending a reversible-jump MCMC approach that requires a
preliminary run for each choice of the number of factors, which
is very computationally intensive. Since we are not interested in
inference on the number of factors and our sole consideration
is computational efficiency, we outline below a simple adaptive
scheme to discard the redundant factors in a tuning phase and
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Bhattacharya and Dunson: Simplex Factor Models 367

continue with a smaller number of factors for the remainder
of the chain. This results in considerable computational gains
in high dimensions; however, for moderate values of p (e.g.,
p ≤ 20), one can set p to be the truncation level and ignore the
adaptive scheme.

We reserve Ttune many iterations at the beginning of the chain
for tuning. At iteration t, letting K (t)

eff
⊂ {1, . . . , k} to denote the

unique values among the zij ’s, one clearly has mh > 0 if and
only if h 2 K (t)

eff
. We define the effective number of factors k̃(t) as

|K (t)
eff

|. The inherent sparse structure of the simplex factor model
favors small values of k̃(t). Starting with a conservative guess for
k, we monitor the value of k̃(t) every 50 iterations in the tuning
phase. If there are no redundant factors, that is, mh > 0 for
all h, we add a factor and initialize the additional parameters
for ,3 , ∗ from the prior. Otherwise, we delete the redundant
components and retain the elements of ,3 , ∗ corresponding
to h 2 K (t)

eff
. In either case, we normalize the samples for and

∗ to ensure they lie on the simplex. We continue the chain with
the updated number of factors and the modified set of parameters
for the next 50 iterations before making the next adaptation. At
the end of the tuning phase, we fix the number of factors for
the remainder of the chain at the value corresponding to the last
adaptation. In all our examples, we let Ttune = 5000 and choose
the initial number of factors as 20 or 10.

3.3 Inference

One can estimate the marginal distribution of the yij ’s
and conduct inferences on the dependence structure based on
the MCMC output and using the expressions for the lower-
dimensional marginals in Equations (11) and (12). To con-
duct inference on dependence between yij and yij 0 for j 6= j 0 2
{1, . . . , p}, we consider the pairwise normalized mutual infor-
mation matrix M = (mjj 0), with mjj 0 = Ijj 0/{HjHj 0}0.5 and

Ijj 0 =
djX

cj =1

dj 0X

cj 0=1

π (jj 0)
cj cj 0 log

(
π

(jj 0)
cj cj 0

π
(j )
cj
π

(j 0)
cj 0

)

,

Hj = −
djX

cj =1

π (j )
cj

log
{
π (j )

cj

}
.

The mutual information Ijj 0 is a general measure of dependence
between a pair of random variables (YJ , Yj 0 ), with Ijj 0 = 0 if
and only if Yj and Yj 0 are independent. Using our Bayesian ap-
proach, one can obtain samples from the posterior distribution
of mjj 0 for all j 6= j 0 pairs. In particular, posterior summaries
of the p × p association matrix can be used to infer on the
association between pairs of variables accounting for uncer-
tainty in other variables. Dunson and Xing (2009) pointed out
that in large model spaces, it is more computationally tractable
to consider pairwise marginal dependencies as compared with
learning the entire graph of conditional dependencies. Dunson
and Xing (2009) and Dobra and Lenkoski (2011) used the pair-
wise Cramer’s V association matrix as a measure of dependence.
We also computed the pairwise Cramer’s V association matrix
for all our examples and obtained similar dependence structures
as found by the mutual information criterion. In the analysis
of the Rochdale data in Section 4, we present results for both
measures of association and in the subsequent simulated and

real-data examples, we only provide the results for the mutual
information criterion as the conclusions were similar.

In many practical examples, one routinely encounters a high-
dimensional vector of nominal predictors yi along with nom-
inal response variables ui , with interest in building predictive
models for ui given yi . For example, yi might correspond to a
nucleotide sequence, with ui being the existence/nonexistence
of some special feature within the gene sequence. By using a
simplex factor model for the joint distribution of the response
and predictors, one obtains a very flexible approach for classi-
fication from categorical predictors that may have higher-order
interactions. Such a joint model also trivially allows imputation
of missing values under the missing at-random assumption or
any other informative missingness.

4. ANALYSIS OF ROCHDALE DATA

Dobra and Lenkoski (2011) used copulas to extend traditional
Gaussian graphical models to allow mixed outcomes. They ap-
plied their general class of copula Gaussian graphical models
(CGGM) to analyze the Rochdale data, a 28 contingency table
popular in the social science literature. In this section, we illus-
trate various aspects of making inference with the simplex factor
model on this well-known dataset and compare our results with
the CGGM.

The Rochdale dataset was previously analyzed in Whittaker
(1990). It is a social survey dataset aimed to assess the rela-
tionship among factors influencing women’s economic activ-
ity. The dataset consists of eight related binary variables coded
a, b, . . . , h for n = 665 women. A detailed account of the dif-
ferent variables can be found in Dobra and Lenkoski (2011). The
resulting 28 contingency table is sparse, with 165 cell counts of
zero. The top 10 cell counts are all greater than 20.

Whittaker (1990) used log-linear models to analyze this
dataset and argued against using higher-order interactions in-
volving more than two variables. He considered two log-linear
models, one being the all two-way interaction model, and
the minimal sufficient statistics for the other one consisted of
14 two-way marginals in equation 5.1 of Dobra and Lenkoski
(2011). Dobra and Lenkoski (2011) analyzed this dataset using
their proposed CGGM and also compared it with a copula full
model where the underlying graph was not updated and was
fixed at the full graph.

The simplex factor model was run for 50,000 iterations, with
the first 30,000 iterations discarded as burn-in and every fifth
sample post burn-in was collected. We started with 10 factors
and the adaptive algorithm selected four factors, with more than
85% acceptance rate for all elements of ∗. The posterior mean
of α was 0.10, with a 95% credible interval of (0.03–0.20).

According to Whittaker (1990), the strongest pairwise in-
teraction in this dataset is for the pair (b, d), followed by
(b, h), (e, f ), and (a, g). Dobra and Lenkoski (2011) obtained
strongest associations for the pairs (b, d), (b, h), (a, g), (e, f ),
and (c, g) according to Cramer’s V statistic. They also noted that
conditioning on the full graph in the copula full model leads to
severe underestimation of all the pairwise Cramer’s V associa-
tions. From the MCMC output, we obtained posterior samples
for the pairwise normalized mutual information and the pair-
wise Cramer’s V. Figure 1 shows posterior summaries of the
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368 Journal of the American Statistical Association, March 2012

Figure 1. Results for Rochdale data—posterior means (second column), and 2.5 and 97.5 percentiles (first and third column, respectively) of
the pairwise normalized mutual information matrix (top row) and the pairwise Cramer’s V association matrix (bottom row). (The online version
of this figure is in color.)

pairwise associations for these two measures. From Figure 1,
it is evident that both measures obtained a similar dependence
structure and the top four pairs according to either of the two
measures were (b, d), followed by (b, h), (a, g), and (c, g). The
posterior means of the Cramer’s V values in Figure 1(e) for these
four pairs were 0.21, 0.10, 0.09, and 0.09, respectively, which
are very similar to those obtained by the CGGM (Dobra and
Lenkoski 2011, table 5.5). The variable a denotes wife’s eco-
nomic activity and is of interest in determining the variables that
share association with a. The variables having largest Cramer’s
V association to a were g, c, and d, with the posterior means for
the pairs (a, g), (a, c), and (a, d) given by 0.09, 0.08, and 0.04,
respectively. Again, the same ordering was discovered by the
CGGMs. Overall, our results were very much in agreement with
those obtained by the CGGMs, with the only notable difference
being (a, c) ranking over (e, f ) for both the measures in our
case.

The MCMC was also run with the set of 10 factors for the
entire length of the chain with a beta(1, 1) prior on β. The results
were robust, with the same ordering of the pairwise Cramer
V’s obtained as in the previous case. As discussed before, the
stick-breaking prior on the ν∗

h drives the νh’s for the redundant
components close to zero, thereby making the procedure robust
with respect to the choice of the number of factors as long as
there are sufficiently many factors.

5. SIMULATION STUDY

We considered two simulation scenarios to assess the per-
formance of the simplex factor model. We simulated yij 2
{A,C,G, T } at p = 50 locations and a nominal response ui hav-
ing two and three levels in the two simulation cases, respec-
tively. We considered two pure species (k = 2) and simu-
lated the local subpopulation indices zij as in (9) to induce
dependence among the response and a subset of locations

J = (2, 4, 12, 14, 32, 34, 42, 44)T. The eight locations in J had
different A, C, G, T probabilities in the two pure species, while
the phenotype probabilities at the remaining 42 locations were
chosen to be the discrete uniform distribution on four points in
each species.

In the first simulation scenario, we considered n = 100 se-
quences and two randomly chosen subpopulations of sizes
60 and 40, respectively. All the zij ’s were assigned a value of 1
in the first subpopulation, and 2 in the second one. Within each
subpopulation, the nucleotides were drawn independently across
locations, with the jth nucleotide having phenotype probabilities
(λ(j )

zij A
, λ

(j )
zij C

, λ
(j )
zij G

, λ
(j )
zij T

)T. The binary response (ui 2 {1, 2}) had
category probabilities (0.92, 0.08) and (0.08, 0.92) in the two
subpopulations, respectively.

The second scenario had a more complicated dependence
structure. We considered 200 sequences and three subpop-
ulations of sizes 80, 80, and 40, respectively, with all the
local indices zij assigned a value of 1 and 2, respectively,
in the first two subpopulations. In the third subpopulation,
the zij ’s for the first 30 locations were assigned a value of
1 (zij = 1, j = 1, . . . , 30), and the remaining 20 locations a
value of 2 (zij = 2, j = 31, . . . , 50). The response variable
had three categories in this case, with category probabilities
(0.90, 0.05, 0.05), (0.05, 0.90, 0.05), and (0.05, 0.05, 0.90) in
the three subpopulations, respectively. The third subpopulation
is biologically motivated as a rare group that has local simi-
larities with each of the other groups, and thus, is difficult to
distinguish from the other two.

For each case, we generated 50 simulation replicates and the
simplex factor model was fitted separately to each dataset using
the MCMC algorithm mentioned in Section 3.1. The sampler
was run for 30,000 iterations, with a burn-in of 10,000 and
every fifth sample was collected. We obtained good mixing and
convergence for the elements of the pairwise mutual information
matrix based on examination of trace plots. Figure 2 shows the
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Bhattacharya and Dunson: Simplex Factor Models 369

Figure 2. Simulation results—posterior means of the pairwise normalized information matrix of the nominal variables in simulation cases 1
and 2. Dependence between locations (2, 4, 12, 14, 32, 34, 42, 44) and the response (last row/column). (The online version of this figure is in
color.)

posterior means of the pairwise normalized mutual information
matrix mjj 0 averaged across simulation replicates in the two
simulation scenarios, with the last row/column corresponding
to the response variable. The posterior means corresponding to
all
(9

2

)
= 36 dependent location pairs are clearly well separated

from the remaining nondependent pairs. We also provide kernel
density plots of the posterior means and upper 97.5 percentiles
of the mjj 0 across the 50 replicates for the two simulation cases
in Figure 3. For the first simulation case (top row), the density
plot for the posterior means in Figure 3(a) is bimodal, with a

tall spike near zero and a very heavy right tail, thus showing a
clear separation between the dependent and the nondependent
pairs. The second simulation also had a very heavy tail for the
posterior means in Figure 3(c), and the second mode is visible
for the upper quantile in Figure 3(d).

Next, we aim to assess out-of-sample predictive performance
for the simplex factor model. Since the subpopulations were
chosen in a random order, we chose the first 20 samples in
simulation case 1 and the first 30 samples in simulation case
2 as training sets within each replicate. We compared our

Figure 3. Simulation results—density plots of the posterior means (first column) and upper 97.5 percentiles (second column) of the p.w.
normalized mutual information mjj 0 ’s across simulation replicates in the two simulation cases.
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370 Journal of the American Statistical Association, March 2012

Figure 4. Box plots for misclassification proportions across simulation replicates for the different methods. TREE = tree-based classifier,
RF = random forest classifier, DX = Dunson–Xing method, SF = simplex factor model. The top row corresponds to simulation case 1, bottom
row to simulation case 2. The first column corresponds to overall misclassification proportion, the remaining columns indicate group-specific
misclassification proportions. (The online version of this figure is in color.)

approach with the Dunson and Xing (2009) method, a tree
classifier built in MATLAB, and the random forest ensemble
classifier (Breiman 2001), which was implemented using the
RandomForest package (Liaw and Wiener 2002) in R. We did
not consider a fully Bayesian graphical modeling approach, such
as Dobra and Lenkoski (2011), because such methods do not
scale computationally to the sized contingency tables we are
considering. Figure 4 shows box plots of the overall and group-
specific misclassification proportions for the different methods
across the simulation replicates. As expected, the misclassifica-
tion rates for simulation case 2 are higher than simulation case
1. The misclassification percentages corresponding to the sec-
ond category are slightly larger than those for the first category
in simulation case 1, which is explained by the relative sizes of

the two subpopulations. It is clear from Figure 4 that the sim-
plex factor model had better performance than the tree classifier
and the random forest classifier in both cases. The overall mis-
classification percentage and category-specific misclassification
percentages for the simplex factor model and random forest in
the two simulation scenarios are provided in Table 1.

Simulation case 1 was designed to comply with the Dunson
and Xing (2009) model, since all of the variables for a particular
subject were assigned to the same subpopulation. Accordingly,
the Dunson and Xing (2009) method had very similar perfor-
mance compared with the simplex factor model in the first case
and did better than the other two methods. However, the perfor-
mance of the Dunson and Xing (2009) method deteriorated in
simulation case 2. In this case, the subjects in the third group
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Bhattacharya and Dunson: Simplex Factor Models 371

Table 1. Misclassification percentages in the two simulation cases for the simplex factor model and random forest

Simulation case 1 Simulation case 2

Simplex factor Random forest Simplex factor Random forest

Best (2.50, 0, 3.03) (2.50, 0, 3.03) (6.47, 1.54, 0, 8.10) (8.82, 0, 0, 13.89)
Average (7.55, 5.45, 10.39) (9.90, 5.84, 15.51) (14.08, 7.15, 6.80, 37.07) (16.67, 9.30, 9.18, 41.03)
Worst (16.25, 12.00, 28.57) (35.00, 16.32, 77.77) (34.12, 14.49, 13.89, 100) (34.70, 27.14, 31.74, 100)

NOTE: Each vector represents overall and category-specific misclassification percentages, with the categories arranged according to their index. Best-, average-, and worst-case
performances across replicates are reported.

had mixed membership for the different variables and the mis-
classification rates for this group were particularly high for the
Dunson and Xing (2009) method.

6. NUCLEOTIDE SEQUENCE APPLICATIONS

We first applied our method to the p53 transcription factor-
binding motif data (Wei et al. 2006). The data have n =
574 DNA sequences consisting of A, C, G, T nucleotides
(dj = 4) at p = 20 positions. Transcription factors are proteins
that bind to specific locations within DNA sequences and regu-
late copying of genetic information from the DNA to the mRNA.
p53 is a widely known tumor suppressor protein that regulates
expression of genes involved in a variety of cellular functions.
It is of substantial biological interest to discover positional de-
pendence within such DNA sequences.

We ran the MCMC algorithm for 25,000 iterations after
the tuning phase, with a burn-in of 10,000 and collected ev-
ery fifth sample. The adaptive algorithm selected four fac-
tors and we obtained acceptance rates greater than 90% for
all the elements of ∗ using our proposed independence sam-
pler. Using a gamma(0.1, 0.1) prior for α, the posterior mean

of α was 0.11, with a 95% credible interval of (0.08–0.16).
From Proposition 2.2, the small value of α indicates that the
model favors a simpler dependence structure, as in Dunson and
Xing (2009). We actually obtained very similar results to the
Dunson and Xing (2009) method for this particular dataset.
Figure 5(a)–(c) shows the posterior means and quantiles for
the simplex factor model. Figure 5(d)–(f) shows the same for
the Dunson and Xing (2009) method. Clearly, the dependence
structure is sparse and the strongest dependence are found near
the center of the sequence, with position pairs (11, 12) and
(9, 11) having the largest normalized mutual information us-
ing both methods. The Xie and Geng (2008) approach flagged
all 190 pairs as dependent using a p-value of 0.01 or 0.05 for
edge inclusion; such overfitting can typically occur for Bayes
Nets unless the threshold on edge inclusion is very carefully
chosen.

We next applied our method to the promoter data (Frank
and Asuncion 2010) publicly available at the UCI Machine
Learning Repository. The data consist of A, C, G, T nu-
cleotides at p = 57 positions for n = 106 sequences, along
with a binary response indicating instances of promoters
and nonpromoters. There are 53 promoter sequences and 53

Figure 5. Results for the p53 data—posterior means (second column), and 2.5 and 97.5 percentiles (first and third column, respectively) of
the normalized mutual information matrix. The top row corresponds to the simplex factor model, the bottom row is for the Dunson and Xing
(2009) method. (The online version of this figure is in color.)
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Figure 6. Results for the promoter data—box plots for posterior samples of α for the 10 replicates in the first case, where training size is
20% of the sample size. The red line denotes the posterior median, and the edges of the box denote posterior 25th and 75th percentiles. (The
online version of this figure is in color.)

nonpromoter sequences in the dataset. We selected six training
sizes as 20%, 30%, 40%, 50%, 60%, and 70% of the sample
size n. For each training size, we randomly selected 10 train-
ing samples and evaluated the overall misclassification percent-
age and misclassification percentages specific to the promoter
and nonpromoter groups. We compared out-of-sample predic-
tive performance with the Dunson and Xing (2009) method,
random forest, and a tree classifier. The MCMC algorithm
for the simplex factor model was run for 30,000 iterations,
with five factors selected. Our proposed approach for updating
the ν∗

h’s again produced high acceptance rates; the mean ac-
ceptance rates averaged across all replicates for ν∗

1 − ν∗
4 were

0.85, 0.92, 0.96, and 0.97, respectively. The posterior means
for α across all replicates within each training size was greater
than 1; we have provided box plots for the posterior samples of
α across the 10 replicates corresponding to the smallest training
size in Figure 6.

The simplex factor model had superior performance com-
pared with the other three methods across all training sizes.
In particular, for the training size = 20, the average misclas-
sification percentages (overall, promoters, nonpromoters) for
the Dunson and Xing (2009) method and random forest were
(23.41, 26.24, 19.69) and (25.53, 29.92, 19.30), respectively,
while the same for our method were (14.35, 15.41, 12.16).
Table 2 provides the average-, best-, and worst-case misclas-
sification percentages for the simplex factor model and random
forest corresponding to the smallest and largest training sizes.
From Table 2, the misclassification percentage for the nonpro-

moter group was smaller compared with that of the promoter
group. For the smallest training size of 21, the simplex factor
model provides an improvement of more than 14% in terms of
the misclassification percentages for the promoter group. We
also plot the average-, best-, and worst-case overall misclassi-
fication proportions across different training sizes for the com-
peting methods in Figure 7 and the average misclassification
proportions specific to the promoter and nonpromoter groups in
Figure 8. It is clearly seen from Figures 7 and 8 that the simplex
factor model provides the best performance across all training
sizes.

We performed sensitivity analysis for the prior on α by choos-
ing a gamma(1, 1) prior instead of gamma(0.1, 0.1), with the re-
sults unchanged. We also multiplied and divided the prior mean
by a factor of 2 and did not observe any notable changes. For ν∗

h ,
the uniform prior was found to be a reasonable default choice,
as in most practical cases, one expects to have few dominant
components in the case of contingency tables. That said, one
can alternatively place a beta(1,β) prior on ν∗

h , with a gamma
prior assigned to β.

The additional flexibility of our model over the nonparametric
Bayes method of Dunson and Xing (2009) produces improved
performance in classification for the promoter data, and our
approach also does better than sophisticated frequentist methods
such as the tree classifier and random forest. We also applied
our classification method to the splice data (publicly available
at the UCI Machine Learning Repository) and obtained similar
conclusions.

Table 2. Results for the promoter data—misclassification percentages (overall, among promoters, among nonpromoters) for the smallest and
largest training sizes for the simplex factor model and random forest

Training size = 21 Training size = 74

Simplex factor Random forest Simplex factor Random forest

Best (8.24, 0, 0) (15.29, 0, 0) (0, 0, 0) (6.25, 0, 0)
Average (14.35, 15.41, 12.16) (25.53, 29.92, 19.30) (7.81, 10.14, 4.79) (12.50, 17.84, 6.37)
Worst (30.59, 53.32, 35.56) (44.71, 80.85, 64.44) (15.62, 21.05, 17.65) (15.62, 33.33, 23.53)

NOTE: Best-, average-, and worst-case performances across 10 training samples for each training size are reported.

D
ow

nl
oa

de
d 

by
 [D

uk
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

4:
15

 2
1 

Ja
nu

ar
y 

20
16
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Figure 7. Results for the promoter data—misclassification proportions (overall) for the different methods versus training size (ranging from
20% to 70% of the sample size n = 106). The rows correspond to average-, worst- and best-case performances, respectively, across 10 training
sets for each training size. (The online version of this figure is in color.)

7. DISCUSSION

In a variety of problems, one now encounters data where the
dimensionality of the outcome is comparable or even larger than
the number of subjects. In such scenarios, one needs to make
sparsity assumptions for meaningful inference. For continuous
outcomes, one might consider sparse modeling of the covari-

ance matrix via factor models or alternatively use Gaussian
graphical models for sparse modeling of the precision matrix.
However, the scope of either of these two frameworks is not
solely limited to continuous variables. In more general terms,
graphical models aim to model conditional dependencies among
the variables, while factor models model marginal dependence

Figure 8. Results for the promoter data—average misclassification proportions (for the promoter and nonpromoter group, respectively) for
the different methods versus training size (ranging from 20% to 70% of the sample size n = 106). (The online version of this figure is in color.)
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relationships. In this article, we have proposed a sparse
Bayesian factor modeling approach for multivariate nom-
inal data that aims to explain dependence among high-
dimensional nominal variables in terms of few latent factors
that reside on a simplex. Posterior computation is straight-
forward and scales linearly with n and p. The proposed
method can be thus used in high-dimensional problems,
which is an advantage over graphical model-based approaches,
which face computational challenges in scaling up to high
dimensions.

An interesting extension of our proposed approach is joint
modeling of a vector of nominal predictors and a continuous
response, and more generally mixtures of different data types,
as such situations are often encountered in biological and social
sciences. To elaborate, let yi = (yi1, . . . , yip)T denote a vec-
tor of observations as before, where the yij ’s now are allowed
to be of different types, such as binary, count, ordinal, con-
tinuous, etc. Letting γi = (γi1, . . . , γip)T 2 {1, 2, . . . ,1}p de-
note a multivariate latent class index for subject i, one can
let

yij ∼ K j (θγij j ), j = 1, . . . , p, γi ∼ G, G ∼ 5, (16)

where G is the joint distribution of the multivariate categorical
variable γi . The different yij ’s are assumed to be conditionally
independent, given the latent class index γi , and a prior 5 on
the distribution G of the latent class indices induces depen-
dence among the yij ’s. In a Dirichlet process mixture modeling
framework, one usually has a single cluster index γi for the dif-
ferent data types, which forces individuals to be allocated to the
same cluster across all data types. This often leads to blowing
up of the number of clusters and degraded performance; see,
for example, Dunson (2009). We can instead allow for sepa-
rate but dependent clustering across the different domains by
letting 5 correspond to the simplex factor prior. One can also
include covariate information by stacking together the covari-
ates xi and the response yi in a vector zi = (yi, xi) and jointly
model zi as above, with inference based on the induced con-
ditional distribution of yi | xi obtained from the joint model.
Müller, Erkanli, and West (1996) considered such joint models
in a nonparametric Bayes frame work using Dirichlet process
mixtures.

There has been a recent surge of interest in developing flex-
ible Bayesian density regression models where the entire con-
ditional distribution of the response y, given the predictors x,
is allowed to change flexibly with x; see, for example, Griffin
and Steel (2006); Dunson, Pillai, and Park (2007); Dunson and
Park (2008); Chung and Dunson (2009); Rodriguez and Dunson
(2011). It would be interesting to consider extensions of these
models for multivariate categorical response variables by allow-
ing predictor-dependent weights, for example, using the probit
stick-breaking process (Chung and Dunson 2009; Rodriguez
and Dunson 2011). Pati and Dunson (2011) developed theoreti-
cal tools for studying posterior consistency with a broad class of
predictor-dependent stick-breaking priors; see also Norets and
Pelenis (2011). Along those lines, one can envision extensions
of our baseline posterior consistency results to the uncountable
collection of probability tensors { (x) : x 2 X }.

APPENDIX

Proof of Proposition 2.2

From Equation (10), one has

gh1 ...hp
=
Q

h:τh 6=0(ανh)(ανh + 1), . . . , (ανh + τh − 1)

α(α + 1), . . . , (α + p − 1)
.

Dividing the numerator and the denominator in the above expression
by αp , it is evident that limα!1 gh1,...,hp

= 5k
h=1ν

τh
h = νh1 , . . . , νhp

,
which corresponds to the product multinomial model.

On the other hand,

gh...h = (ανh)(ανh + 1), . . . , (ανh + p − 1)
α(α + 1), . . . , (α + p − 1)

.

Clearly, limα!0 gh...h = νh, and thus in the limit,
Pk

h=1 gh...h = 1. As
G is a probability tensor for every value of α, the nondiagonal elements
must converge to 0 as α ! 0. Hence, in this limiting case, G becomes
super-diagonal and thus corresponds to the Dunson and Xing (2009)
model.

Proof of Theorem 2.3

Fix 0 2 5 d1 ...dp
and ϵ > 0. For 2 5 d1 ...dp

, the L1 distance be-
tween and 0 is defined as

∣∣∣∣ − 0
∣∣∣∣

1 =
d1X

c1=1

. . .

dpX

cp=1

∣∣πc1...cp
− π 0

c1···cp

∣∣.

Suppose 0 has nonnegative PARAFAC rank k, so 0 can be expressed
as:

0 =
kX

h=1

ν0h3 0h, 3 0h = (1)
0h ⊗ · · · ⊗ (p)

0h ,

where 0 2 Sk−1 and (1)
0h , . . . ,

(p)
0h are probability vectors of dimen-

sions d1, . . . , dp for each h 2 {1, . . . , k}. The prior probability assigned
to an ϵ-sized L1-neighborhoodN ϵ( 0) of 0 by a k-component simplex
factor model is given by:

Q(k)
π

{
N ϵ( 0)

}
=
Z

1
(
|| − 0||1 < ϵ

)

dQ(k)
π

(
,α,

(j )
h , h = 1, . . . , k; j = 1, . . . , p

)
, (A.1)

where

πc1 ...cp
=

kX

h1=1

. . .

kX

hp=1

gh1 ...hp

pY

j=1

λ
(j )
hj cj

,

with gh1 ...hp
, as in Equation (10). Using Proposition 2.2 and standard

algebra, it can be shown that for any ϵ > 0, there exist α̃ > 0 and
ϵ̃ > 0 such that

α < α̃, || − 0||1 < ϵ̃,
∣∣∣∣ (j )

h − (j )
0h

∣∣∣∣
1 < ϵ̃ 8 h, j

implies that || − 0||1 < ϵ. Hence, to prove that (A.1) is positive, it
suffices to show that 12501000:

Q(k)
π

(
α < α̃, || − 0||1 < ϵ̃,

∣∣∣∣ (j )
h − (j )

0h

∣∣∣∣
1

< ϵ̃, h = 1, . . . , k; j = 1, . . . , p
)

> 0,

which immediately follows from the prior specification in (9).
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Updating ν

We drop the h superscript in c
(h)
l for notational convenience. Let

f (ν∗
h) =

nY

i=1

kY

l=h

0(ανl + mil)
0(ανl)

=

2

4
Y

i:mih 6=0

0(chν
∗
h + mih)

0(chν
∗
h)

3

5

×

2

4
kY

l=h+1

Y

i:mil 6=0

0{cl(1 − ν∗
h) + mil}

0{cl(1 − ν∗
h)}

3

5 (A.2)

denote the unnormalized conditional posterior, and define φ(ν∗
h) =

log f (ν∗
h). When mh > 0 and mh+ = 0,

π (ν∗
h | −) /

Y

i:mih 6=0

mih−1Y

s=0

(chν
∗
h + s),

so limν∗
h
!0 π (ν∗

h | −) = 0, 0 < limν∗
h
!1 π (ν∗

h | −) < 1, and π (ν∗
h |

−) is convex. Similarly, if mh = 0 and mh+ > 0, then 0 <

limν∗
h
!0 π (ν∗

h | −) < 1, limν∗
h
!1 π (ν∗

h | −) = 0, and π (ν∗
h | −) is con-

vex. In both these cases, the conditional posterior of ν∗
h can be approx-

imated by a single beta density.
When mh > 0 and mh+ > 0,

φ(ν∗
h) =

kX

l=h

X

i:mil 6=0

mil−1X

s=0

log(ανl + s)

=
kX

l=h

1X

s=0

log(ανl + s)nls =
1X

s=0

nhs log(chν
∗
h + s)

+
1X

s=0

kX

l=h+1

nls log{cl(1 − ν∗
h) + s}.

As ν∗
h ! 0,

P1
s=1 nhs log(chν

∗
h + s) +

P1
s=0

Pk

l=h+1 nls log
{cl(1 − ν∗

h) + s} converges to a finite limit. Since mh > 0, nh0 > 0 and
thus limν∗

h
!0 nh0 log(chν

∗
h) = −1, implying limν∗

h
!0 φ(ν∗

h) = −1.
Similarly, limν∗

h
!1 φ(ν∗

h) = −1, since mh+ > 0 implies that there
exists h0 > h such that nh0s > 0. Hence, limν∗

h
!0,1 φ(ν∗

h) = −1 and
thus limν∗

h
!0,1 π (ν∗

h | −) = 0.
We now show that π (ν∗

h | −) has a unique mode by considering the
first and second derivatives of φ. We have

φ0(ν∗
h) =

1X

s=0

nhs

ch

(chν
∗
h + s)

−
1X

s=0

kX

l=h+1

nls

cl

{cl(1 − ν∗
h) + s}

,

(A.3)

and

φ
00
(ν∗

h) = −
1X

s=0

nhs

{
ch

(chν
∗
h + s)

}2

−
1X

s=0

kX

l=h+1

nls

{
cl

{cl(1 − ν∗
h) + s}

}2

. (A.4)

Once again, using the fact that nh0 > 0 and there exists h0 > h such that
nh00 > 0, one can prove that limν∗

h
!0 φ

0(ν∗
h) = 1 and limν∗

h
!1 φ

0(ν∗
h) =

−1. One can then find ϵ > 0 such that φ0(ν∗
h) > 0 for ν∗

h < ϵ and
φ0(ν∗

h) < 0 for ν∗
h > 1 − ϵ. Since φ0 is a continuous function, by the

intermediate value theorem, there exists ν∗
0h 2 (0, 1) such thatφ0(ν∗

0h) =
0. Since φ

00
(ν∗

h) < 0 on (0, 1), φ0 is monotonically decreasing and hence
ν∗

0h is the unique mode of π (ν∗
h | −).

Next, we discuss an approach to avoid the grid approximation
and obtain analytic expressions for the parameters of the approxi-
mating beta distribution. When mh > 0 and mh+ = 0, we want to
find a ≥ 1 such that a beta(a, 1) approximates π (ν∗

h | −). Define
f̃ (ν∗

h) = f (ν∗
h)/f (1) so that f̃ (1) = 1. Hence, the above problem

can be equivalently posed as approximating f̃ (ν∗
h) by (ν∗

h)a−1. SinceR 1
0 log{(ν∗

h)a−1}dν∗
h = −(a − 1), we let â = 1 −

R 1
0 φ̃(ν∗

h)dν∗
h , where

φ̃(x) = log f̃ (x), which leads to the expression in (14). Observe that
log(1 + ch/s) ≤ ch/s; hence, â ≥ 1. The analysis for the case where
mh = 0 and mh+ > 0 proceeds along similar lines, where we define
f̃ (ν∗

h) = f (ν∗
h)/f (0) and find b̂ so that f̃ (ν∗

h) ≈ (1 − ν∗
h)b−1.

When mh > 0 and mh+ > 0, the analysis proceeds
slightly differently. We want a, b ≥ 1 such that π (ν∗

h | −) ≈
{1/beta(a, b)}(ν∗

h)a−1(1 − ν∗
h)b−1. Comparing the first three moments

of logπ (ν∗
h | −) to the log beta(a, b) density, we build the 2 × 2 linear

system mentioned in Section 3.1 to estimate a, b. The formulas for
d1, d2 can be obtained from the following expressions

Z 1

0
logπ (ν∗

h | −)dν∗
h = log c +

1X

s=0

kX

l=h

nls 0(cl, s)

Z 1

0
2ν∗

h logπ (ν∗
h | −)dν∗

h = log c + 2
1X

s=0

nhs 1(ch, s)

+ 2
1X

s=0

kX

l=h+1

nls{ 0(cl, s) −  1(cl, s)}

Z 1

0
3(ν∗

h)2 logπ (ν∗
h | −)dν∗

h = log c + 3
1X

s=0

kX

l=h

nls 2(cl, s)

+ 3
1X

s=0

kX

l=h+1

nls{ 0(cl, s) − 2 1(cl, s)},

where

 0(c, s) =
Z 1

0
log(cx + s)dx = s

c
log(c + s) + log(c + s)

− 1 − s

c
log(s)

 1(c, s) =
Z 1

0
x log(cx + s)dx = − s2

2c2
log(c + s)

+ 1
2

log(c + s) + s

2c
− 1

4
− s2

2c2
log(s)

 2(c, s) =
Z 1

0
x2 log(cx + s)dx = s3

3c3
log(c + s)

+ 1
3

log(c + s) − s2

3c2
+ s

6c
− 1

9
− s3

3c3
log(s).

[Received October 2010. Revised May 2011.]

D
ow

nl
oa

de
d 

by
 [D

uk
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

4:
15

 2
1 

Ja
nu

ar
y 

20
16

 



376 Journal of the American Statistical Association, March 2012

REFERENCES
Aitchison, J., and Bennett, J. (1970), “Polychotomous Quantal Response by

Maximum Indicant,” Biometrika, 57(2), 253–262. [362]
Ashford, J. R., and Sowden, R. R. (1970), “Multivariate Probit Analysis,” Bio-

metrics, 26, 535–546. [362]
Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D., and Jordan,

M. (2003), “Matching Words and Pictures,” Journal of Machine Learning
Research, 3, 1107–1135. [363]

Bishop, Y., Fienberg, S., and Holland, P. (1975), Discrete Multivariate Analysis:
Theory and Practice, New York: Springer. [362]

Blei, D., Ng, A., and Jordan, M. (2003), “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, 3, 993–1022. [363]

Bollen, K. (1989), Structural Equations With Latent Variables, New York: Wi-
ley. [362]

Breiman, L. (2001), “Random Forests,” Machine Learning, 45(1), 5–32. [369]
Carvalho, C., Lucas, J., Wang, Q., Nevins, J., and West, M. (2008), “High-

Dimensional Sparse Factor Modelling: Applications in Gene Expression Ge-
nomics,” Journal of the American Statistical Association, 103, 1438–1456.
[362]

Carvalho, C., and Scott, J. (2009), “Objective Bayesian Model Selection in
Gaussian Graphical Models,” Biometrika, 96(3), 1–16. [362]

Chib, S., and Greenberg, E. (1998), “Analysis of Multivariate Probit Models,”
Biometrika, 85, 347–361. [362]

Chung, Y., and Dunson, D. (2009), “Nonparametric Bayes Conditional Distribu-
tion Modeling With Variable Selection,” Journal of the American Statistical
Association, 104(488), 1646–1660. [374]

Cohen, J. E., and Rothblum, U. G. (1993), “Nonnegative Ranks, Decomposi-
tions, and Factorizations of Nonnegative Matrices,” Linear Algebra and Its
Applications, 190, 149–168. [364]

Dawid, A., and Lauritzen, S. (1993), “Hyper Markov Laws in the Statistical
Analysis of Decomposable Graphical Models,” The Annals of Statistics,
21(3), 1272–1317. [362]

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000), “A Multilinear
Singular Value Decomposition,” SIAM Journal on Matrix Analysis and
Applications, 21(4), 1253–1278. [363,364]

Dobra, A., Hans, C., Jones, B., Nevins, J., Yao, G., and West, M. (2004),
“Sparse Graphical Models for Exploring Gene Expression Data,” Journal
of Multivariate Analysis, 90(1), 196–212. [362]

Dobra, A., and Lenkoski, A. (2011), “Copula Gaussian Graphical Models,” The
Annals of Applied Statistics, 5, 969–993. [362,367,369]

Dobra, A., and Massam, H. (2010), “The Mode Oriented Stochastic Search
(MOSS) Algorithm for Log-Linear Models With Conjugate Priors,” Statis-
tical Methodology, 7(3), 240–253. [362]

Dunson, D. B. (2000), “Bayesian Latent Variable Models for Clustered Mixed
Outcomes,” Journal of the Royal Statistical Society, Series B, 62(2),
355–366. [362]

—— (2003), “Dynamic Latent Trait Models for Multidimensional Longitudinal
Data,” Journal of the American Statistical Association, 98(463), 555–563.
[362]

—— (2009), “Nonparametric Bayes Local Partition Models for Random Ef-
fects,” Biometrika, 96(2), 249. [374]

Dunson, D. B., and Park, J. (2008), “Kernel Stick-Breaking Processes,”
Biometrika, 95(2), 307. [374]

Dunson, D. B., Pillai, N., and Park, J. (2007), “Bayesian Density Regres-
sion,” Journal of the Royal Statistical Society, Series B, 69(2), 163–
183. [374]

Dunson, D. B., and Xing, C. (2009), “Nonparametric Bayes Modeling of Mul-
tivariate Categorical Data,” Journal of the American Statistical Association,
104(487), 1042–1051. [363,364,365,367,369,370,371,372,374]

Erosheva, E., Fienberg, S., and Joutard, C. (2007), “Describing Disability
Through Individual-Level Mixture Models for Multivariate Binary Data,”
The Annals of Applied Statistics, 1(2), 502–537. [363]

Ferguson, T. S. (1973), “A Bayesian Analysis of Some Nonparametric Prob-
lems,” The Annals of Statistics, 1, 209–230. [363]

—— (1974), “Prior Distributions on Spaces of Probability Measures,” The
Annals of Statistics, 2, 615–629. [363]

Fienberg, S., and Rinaldo, A. (2007), “Three Centuries of Categorical Data
Analysis: Log-Linear Models and Maximum Likelihood Estimation,” Jour-
nal of Statistical Planning and Inference, 137(11), 3430–3445. [362]

Frank, A., and Asuncion, A. (2010), “UCI Machine Learning Repository,” avail-
able at http://archive.ics.uci.edu/ml. Irvine, CA: School of Information and
Computer Science, University of California. [371]

Ghosh, J., and Ramamoorthi, R. (2003), Bayesian Nonparametrics, New York:
Springer-Verlag. [365]

Goodman, L. A. (1974), “Explanatory Latent Structure Assigning Both Identi-
fiable and Unidentifiable Models,” Biometrika, 61, 215–231. [363]

Gregory, D., and Pullman, N. (1983), “Semiring Rank: Boolean Rank and
Nonnegative Rank Factorizations,” Journal of Combinatorics, Information
& System Sciences, 8(3), 223–233. [364]

Griffin, J., and Steel, M. (2006), “Order-Based Dependent Dirichlet Processes,”
Journal of the American Statistical Association, 101(473), 179–194. [374]

Harshman, R. (1970), “Foundations of the PARAFAC Procedure: Mod-
els and Conditions for an ‘Explanatory’ Multi-Modal Factor Analy-
sis,” UCLA Working Papers in Phonetics, 16 (1), 84, Los Angeles,
CA: UCLA. [364]

Ishwaran, H., and James, L. (2001), “Gibbs Sampling Methods for Stick-
Breaking Priors,” Journal of the American Statistical Association, 96(453),
161–173. [365]

Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., and West, M. (2005),
“Experiments in Stochastic Computation for High-Dimensional Graphical
Models,” Statistical Science, 20(4), 388–400. [362]

Kim, Y., and Choi, S. (2007), “Nonnegative Tucker Decomposition,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2007—CVPR’07, pp. 1–8. [363,364]

Kolda, T. (2001), “Orthogonal Tensor Decompositions,” SIAM Journal on Ma-
trix Analysis and Applications, 23(1), 243–255. [364]

Lauritzen, S. (1996), Graphical Models, Oxford: Oxford University Press. [362]
Lazarsfeld, P., and Henry, N. (1968), Latent Structure Analysis, Boston, MA:

Houghton Mifflin. [363]
Lenkoski, A., and Dobra, A. (2011), “Computational Aspects Related to Infer-

ence in Gaussian Graphical Models With the G-Wishart Prior,” Journal of
Computational and Graphical Statistics, 20(1), 140–157. [362]

Liaw, A., and Wiener, M. (2002), “Classification and Regression by Random
Forest,” R News, 2(3), 18–22. [369]

Lopes, H., and West, M. (2004), “Bayesian Model Assessment in Factor Anal-
ysis,” Statistica Sinica, 14(1), 41–68. [366]

Madigan, D., and York, J. (1995), “Bayesian Graphical Models for Discrete
Data,” International Statistical Review, 63(2), pp. 215–232. [362]

Massam, H., Liu, J., and Dobra, A. (2009), “A Conjugate Prior for Discrete Hier-
archical Log-Linear Models,” The Annals of Statistics, 37(6A), 3431–3467.
[362]

Moustaki, I., and Knott, M. (2000), “Generalized Latent Trait Models,” Psy-
chometrika, 65(3), 391–411. [362]

Müller, P., Erkanli, A., and West, M. (1996), “Bayesian Curve Fitting Using
Multivariate Normal Mixtures,” Biometrika, 83(1), 67. [374]

Muthén, B. (1983), “Latent Variable Structural Equation Modeling With Cate-
gorical Data,” Journal of Econometrics, 22(1–2), 43–65. [362]

Norets, A., and Pelenis, J. (2011), “Posterior Consistency in Conditional Density
Estimation by Covariate Dependent Mixtures,” Technical report, Princeton,
NJ: Princeton University. [374]

Ochi, Y., and Prentice, R. (1984), “Likelihood Inference in a Correlated Probit
Regression Model,” Biometrika, 71(3), 531–543. [362]

Pati, D., and Dunson, D. (2011), “Posterior Consistency in Conditional Distri-
bution Estimation,” Working Paper, Durham, NC: Department of Statistical
Science, Duke University. [374]

Pitt, M., Chan, D., and Kohn, R. (2006), “Efficient Bayesian Inference for
Gaussian Copula Regression Models,” Biometrika, 93(3), 537–554. [362]

Pritchard, J., Stephens, M., and Donnelly, P. (2000), “Inference of Pop-
ulation Structure Using Multilocus Genotype Data,” Genetics, 155(2),
945. [363]

Rodriguez, A., and Dunson, D. (2011), “Nonparametric Bayesian Models
Through Probit Stick-Breaking Processes,” Bayesian Analysis, 6, 145–178.
[374]

Sammel, M., Ryan, L., and Legler, J. (1997), “Latent Variable Models for
Mixed Discrete and Continuous Outcomes,” Journal of the Royal Statistical
Society, Series B, 59(3), 667–678. [362]

Sethuraman, J. (1994), “A Constructive Definition of Dirichlet Priors,” Statistica
Sinica, 4(2), 639–650. [365]

Shashua, A., and Hazan, T. (2005), “NonNegative Tensor Factorization With
Applications to Statistics and Computer Vision,” in Proceedings of the 22nd
International Conference on Machine Learning, p. 799. [363,364]

Teh, Y., Jordan, M., Beal, M., and Blei, D. (2006), “Hierarchical Dirich-
let Processes,” Journal of the American Statistical Association, 101(476),
1566–1581. [365]

Tucker, L. (1966), “Some Mathematical Notes on Three-Mode Factor Analysis,”
Psychometrika, 31(3), 279–311. [364]

Wang, H., and Ahuja, N. (2005), “Rank-R Approximation of Tensors: Us-
ing Image-as-Matrix Representation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2005—CVPR’05,
pp. 346–353. [364]

Wei, C., Wu, Q., Vega, V., Chiu, K., Ng, P., Zhang, T. et al. (2006), “A Global
Map of p53 Transcription-Factor Binding Sites in the Human Genome,”
Cell, 124(1), 207–219. [371]

D
ow

nl
oa

de
d 

by
 [D

uk
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

4:
15

 2
1 

Ja
nu

ar
y 

20
16

 



Bhattacharya and Dunson: Simplex Factor Models 377

West, M. (2003), “Bayesian Factor Regression Models in the ‘Large p, Small
n’ Paradigm,” Bayesian Statistics, 7(2003), 723–732. [362]

Whittaker, J. (1990), Graphical Models in Applied Multivariate Statistics, New
York: Wiley. [362,367]

Xie, X., and Geng, Z. (2008), “A Recursive Method for Structural Learning
of Directed Acyclic Graphs,” Journal of Machine Learning Research, 9,
459–483. [371]

Zhang, X., Boscardin, W. J., and Belin, T. R. (2006), “Sampling Cor-
relation Matrices in Bayesian Models With Correlated Latent Vari-
ables,” Journal of Computational and Graphical Statistics, 15(4), 880–
896. [362]

—— (2008), “Bayesian Analysis of Multivariate Nominal Measures Using
Multivariate Multinomial Probit Models,” Computational Statistics & Data
Analysis, 52, 3297–3708. [362]

D
ow

nl
oa

de
d 

by
 [D

uk
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

4:
15

 2
1 

Ja
nu

ar
y 

20
16

 


