Linear Algebraic Structure of Word Senses, with Applications to Polysemy

Sanjeev Arora Yuanzhi Li Yingyu Liang Tengyu Ma Andrej Risteski *

Abstract

Word embeddings are ubiquitous in NLP and information retrieval, but it’s unclear what they represent when the word is polysemous, i.e., has multiple senses. Here it is shown that multiple word senses reside in linear superposition within the word embedding and can be recovered by simple sparse coding.

The success of the method—which applies to several embedding methods including word2vec—is mathematically explained using the random walk on discourses model (Arora et al., 2015). A novel aspect of our technique is that each word sense is also accompanied by one of about 2000 “discourse atoms” that give a succinct description of which other words co-occur with that word sense. Discourse atoms seem of independent interest, and make the method potentially more useful than the traditional clustering-based approaches to polysemy.

1 Introduction

Word embeddings represent the “sense” of a word as a real-valued vector. Their construction typically uses Firth’s hypothesis that a word’s sense is captured by the distribution of other words around it (Firth, 1957). Classical vector space models (see the survey (Turney et al., 2010)) use simple linear algebra on the matrix of word-word co-occurrence counts, whereas recent neural network and energy-based models such as word2vec use nonconvex optimization (Mikolov et al., 2013a;b). Word embeddings are useful in many NLP tasks, and seem involved in neural encoding of semantics (Mitchell et al., 2008).

However, it has been unclear what embeddings represent when words have multiple word senses (polysemy). The monolithic approach of representing a word by a single word vector, with its inner information extracted only via inner product, is felt to fail in capturing this finer structure (Griffiths et al., 2007).

The current paper goes beyond this monolithic view, by describing how multiple senses of a word actually reside within the word embedding in linear superposition, and can be recovered by simple sparse coding. The linear structure is revealed in Section 2 via a surprising experiment.

Our work is inspired by the discovery that word analogies can be solved by linear algebraic methods (Mikolov et al.) (2013b). However, the mathematical explanation of the efficacy of our method (see Section 3 and Section 6) uses a recent random walk on discourses model of (Arora et al.) (2015). The sparse coding also works—with some loss in precision—for other recent embeddings such as word2vec and GloVe as well as the older vector space methods such as PMI (Church and Hanks, 1990). These methods are known to be interrelated; see (Levy and Goldberg, 2014; Arora et al., 2015).

Our experiments use 300-dimensional embeddings created using a Wikipedia corpus of 3 billion tokens (Wikimedia, 2012) by the method of (Arora et al., 2015), but the details of the embeddings method are not needed except in Section 6

*Princeton University, Computer Science Department. {arora,yuanzhil,yingyul,tengyu,risteski}@cs.princeton.edu. This work was supported in part by NSF grants CCF-0832797, CCF-1117309, CCF-1302518, DMS-1317308, Simons Investigator Award, and Simons Collaboration Grant. Tengyu Ma was also supported by Simons Award for Graduate Students in Theoretical Computer Science.
1.1 Related work

Automatic learning of word senses (Word Sense Induction) usually is done via a variant of the exemplar approach of Yarowsky (1995) (see also Schutze (1998) and Reisinger and Mooney (2010)), which identifies multiple word senses by clustering neighboring words. Firth’s hypothesis explains its success, since the senses are different if and only if their contexts involve different word distributions. Extensions of this idea can be used to represent polysemous words using more complicated representations than a single vector (e.g., Murphy et al. 2012; Huang et al. 2012).

Word sense disambiguation (WSD) is a more general (and more difficult) problem of identifying the sense of a word used in each occurrence during a document, and will not be considered in the current paper. But our techniques may help create resources used in WSD such as annotated corpora or WordNet (Fellbaum 1998) that are lacking in many languages.

Our approach uses only 300-dimensional word embeddings, and no other information about the original corpus. Another difference from the above exemplar approaches is that the senses of different words recovered by our method are interconnected via the notion of atoms of discourse, a new notion introduced in Section 3.

The idea of applying sparse coding to word embeddings has been tried before as a way of getting representations that are more useful in other NLP tasks (Faruqui et al. 2015), but not in connection with polysemy.

2 Linear structure of word senses

Consider a polysemous word, say tie, which can refer to an article of clothing, or a drawn match, or a physical act. Let’s take the viewpoint — simplistic yet instructive — that it is a single lexical token that represents unrelated words tie1, tie2, ... Now we describe a surprising experiment that suggests that the embedding for “tie” should be approximately a weighted sum of the (hypothetical) embeddings of tie1, tie2,

The experiment consists of creating an artificial polysemous word \(w_{\text{new}} \) by combining two random (and hence presumably unrelated) words \(w_1, w_2 \), where \(w_1 \) is more frequent than \(w_2 \). Every occurrence of \(w_1 \) or \(w_2 \) now counts as an occurrence of \(w_{\text{new}} \). Next, an embedding is computed for \(w_{\text{new}} \) using the above method while preserving all other word embeddings but deleting embeddings for \(w_1, w_2 \). This experiment was repeated with a wide range of values for the ratio between the frequencies of \(w_1 \) and \(w_2 \). It was always found that the new vector \(v_{w_{\text{new}}} \) lies close to the subspace spanned by \(v_{w_1} \) and \(v_{w_2} \); the cosine of their angle is on average 0.97 with standard deviation 0.02. Thus \(v_{w_{\text{new}}} \approx \alpha v_{w_1} + \beta v_{w_2} \). The question is how do \(\alpha, \beta \) depend upon the ratio of frequencies of \(w_1, w_2 \). Figure 1 shows that \(\alpha \approx 1 \) whereas \(\beta \) is roughly linear with the logarithm of the frequency ratio, with a Pearson correlation coefficient of −0.67. This logarithmic behavior is very good, because it allows the less dominant/frequent sense to have a superproportionate contribution to \(v_{w_{\text{new}}} \), thus making it detectable in principle despite noise/error.

A mathematical explanation for this experiment using the model by Arora et al. (2015) appears in Section 3 but it is not needed in the other sections.

3 Word senses and atoms of discourse

The above experiment suggests that \(v_{\text{tie}} \) is approximated by a weighted sum of the (hypothetical) embeddings of tie1, tie2, etc., but this fact alone seems insufficient to extract the senses since \(v_{\text{tie}} \) can be expressed thus in infinitely many ways. To make further progress we recall that the embedding method of Arora et al. (2015) is based upon a generative model of language that involves a random walk on discourses. The model interprets any arbitrary unit vector \(c \) in \(\mathbb{R}^d \) as representing a discourse (“what is being talked about”), where \(d \) is also the dimension of the word embeddings. Each word \(w \) is also represented by a vector \(v_w \in \mathbb{R}^d \), which

\(^1\)Recall the old controversy about whether paint is used in different senses in paint the wall versus paint a mural. It is, if we equate word sense with distribution of neighboring words.
Figure 1: Plot of the coefficients of α and β for 100 artificial polysemous words versus the ratio of the frequencies of w_1 and w_2 (plotted on a log scale), where $v_{w_{\text{new}}} \approx \alpha v_{w_1} + \beta v_{w_2}$.

Table 1: Some discourse atoms and their nearest 9 words. By Eqn. (1) words most likely to appear in a discourse are those nearest to it.

is unknown. The model posits that discourse c defines a distribution on words of the form:

$$
\Pr[w \text{ occurs in discourse } c] \propto \exp(c \cdot v_w).
$$

(1)

The text corpus is assumed to be generated by a slow random geometric walk process on the set of all possible discourses (namely, all unit vectors). Upon arriving at a discourse c, the process generates a few words according to (1) and then hops randomly to a nearby discourse. In practice, two discourses with inner product 0.85 or higher induce very similar word distributions; those with inner product less than 0.5 are quite unrelated.

Now, Firth’s hypothesis says that word sense corresponds to different distributions on neighboring words, so it suggests that each of the senses $\text{tie}_1, \text{tie}_2, \ldots$ is associated with some discourse that has high probability of outputting “tie” using that sense and low probability of outputting “tie” using other senses. Thus the method should try to find different significant discourses (hopefully, corresponding to “clothing,” “sports matches,” etc.) that “tie” appears in. But now we have arrived at a seeming circularity: a word sense is definitive if it appears in “significant” discourse, and a discourse is “significant” if it is used to produce noticeable subset of corpus words.

The circularity can be broken since by (1) a word has high probability in a discourse if and only if its embedding has high inner product with the discourse vector. Noting further that each word has only a small number of senses, the following problem suggests itself:

Given word vectors in \mathbb{R}^d, totaling about 60,000 in this case, and a sparsity parameter k, find an over-
Table 2: Five discourse atoms linked to the words “tie” and “spring”. Each atom is represented by its nearest 6 words. The algorithm often makes a mistake in the last atom (or two), as happened here.

<table>
<thead>
<tr>
<th>tie</th>
<th>spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>trousers</td>
<td>season</td>
</tr>
<tr>
<td>blouse</td>
<td>goalless</td>
</tr>
<tr>
<td>waistcoat</td>
<td>equaliser</td>
</tr>
<tr>
<td>skirt</td>
<td>clinching</td>
</tr>
<tr>
<td>sleeved</td>
<td>scoreless</td>
</tr>
<tr>
<td>pants</td>
<td>championship</td>
</tr>
<tr>
<td>operatives</td>
<td>beginning</td>
</tr>
<tr>
<td>soprano</td>
<td>until</td>
</tr>
<tr>
<td>mezzo</td>
<td>suspension</td>
</tr>
<tr>
<td>contratto</td>
<td>earlier</td>
</tr>
<tr>
<td>baritone</td>
<td>year</td>
</tr>
<tr>
<td>coloratura</td>
<td>last</td>
</tr>
<tr>
<td>dampers</td>
<td>brakres</td>
</tr>
<tr>
<td>flower</td>
<td>flowers</td>
</tr>
<tr>
<td>creek</td>
<td>brook</td>
</tr>
<tr>
<td>humid</td>
<td>winters</td>
</tr>
<tr>
<td>pens</td>
<td>summers</td>
</tr>
<tr>
<td>finished</td>
<td>months</td>
</tr>
<tr>
<td>wiring</td>
<td>floral</td>
</tr>
<tr>
<td>electrical</td>
<td>river</td>
</tr>
<tr>
<td>wire</td>
<td>fragrant</td>
</tr>
<tr>
<td>lilies</td>
<td>piney</td>
</tr>
<tr>
<td>damper</td>
<td>piney</td>
</tr>
<tr>
<td>flowered</td>
<td>warm</td>
</tr>
<tr>
<td>elk</td>
<td>temperatures</td>
</tr>
</tbody>
</table>

Table 2: Five discourse atoms linked to the words “tie” and “spring”. Each atom is represented by its nearest 6 words. The algorithm often makes a mistake in the last atom (or two), as happened here.

complete basis of vectors A_1, A_2, \ldots, A_m (where overcomplete refers to the condition $m > d$) such that

$$v_w = \sum_{j=1}^{m} \alpha_{w,j} A_j + \eta_w$$

where at most k of the coefficients $\alpha_{w,1}, \ldots, \alpha_{w,m}$ are nonzero (so-called hard sparsity constraint), and η_w is a noise vector. Both A_j’s and $\alpha_{w,j}$’s are unknowns in this optimization, so the problem is nonconvex. This is nothing but sparse coding, useful in neuroscience [Olshausen and Field, 1997] and also in image processing, computer vision, etc. There also exist well established algorithms [Damnjanovic et al., 2010], which we used in our experiments.

Experimentation showed that the best sparsity parameter —i.e., the maximum number of allowed senses per word— is 5. Nonzero coefficients α_{ij}’s in (2) are almost always positive even though they’re unconstrained in the sparse coding. (Probably because the appearances of a word are best explained by what discourse is being used to generate it, rather than what discourses are not being used.) Furthermore, as is usual in sparse coding, the nonzero coefficients correspond to basis vectors with low pairwise inner product. Effectively, the sparse coding ends up writing v_i’s as weighted sums of five fairly different A_j’s with which it has positive inner product, and that is why in practice these A_j’s end up corresponding to different senses of the word.

The best basis size —i.e., the number of significant discourses— was found to be around 2000. This was estimated by re-running the sparse coding (k-SVD) algorithm multiple times with different random initializations, whereupon substantial overlap was found between the two bases: a large fraction of vectors in one basis were found to have a very close vector in the other. Thus combining the bases while merging duplicates yielded a basis of about the same size. Around 100 atoms are used by a large number of words or have no close by words. They are semantically meaningless and thus filtered.

We will refer to the significant discourses represented by the basis vectors as atoms of discourse. The “content” of a discourse atom can be discerned by looking at the set of nearby words (by cosine). Table 1 contains some examples of the discourse atoms, and Table 4 shows the 5 discourse atoms linked to the words “tie” and “spring.”

Hierarchy of Discourse Atoms The atoms are fairly fine-grained, but it is possible to extract more coarse-grained set of discourses. For instance, the discourse atoms found for jazz, rock, classical and country are more related to each other —involving words like “concert, song, performance” etc. — than to atoms about, say, mathematics. Again, model (1) suggests that similar discourse atoms should have higher inner product to each other, and thus sparse coding should be able to identify these similarities and create meta-discourse vectors such as music.

By some experimentation, best results involve sparse coding on discourse atoms using hard sparsity 2 and allowing a basis of size 200, which turn out to be meta-discourse vectors. Figure 2 shows such an example using atoms for scientific fields; more examples can be found in the full version. A discourse about an interdisciplinary science like biochemistry turns out to be approximately linear combinations of two meta-discourses of biology and chemistry.
Figure 2: Some atoms of discourse (small circles) related to scientific fields and their meta-atoms (large circles) found by the second level sparse coding. The connecting line corresponds to discourse atoms that use the meta atoms in the coding. Thus the atom for biochemistry is found to be expressed using a linear combination of the meta discourse vectors of chemistry and biology (plus noise).

Related work Atoms of discourse may be reminiscent of results from other automated methods for obtaining a thematic understanding of text, such as topic modeling, described in the survey (Blei, 2012). The meta atoms are highly reminiscent of past results from hierarchical topic models (Griffiths and Tenenbaum, 2004). Indeed, the model (1) used to compute the word embeddings is related to a log-linear topic model from (Mnih and Hinton, 2007). However, the discourses here are computed via sparse coding on word embeddings, which is very distinct from topic modeling. The atoms are also reminiscent of coherent “word clusters” detected in past using Brown clustering, or even sparse coding (Murphy et al., 2012). The novelty in the current paper is a clear interpretation of the sparse coding results—as atoms of discourse—as well as its use to capture different word senses.

4 Outputting Relevant Sentences

To use this method to construct a dictionary (like WordNet) in a completely automated way, one would want, for each polysemous word some representative sentences illustrating its various senses. This can be done as follows. Noting that sentences in general correspond to more than one discourse atom (simply because number of possible things one could talk about exceeds 2000, the number of atoms) let us define the semantic representation of a sentence to be the best rank-3 approximation (via Principal Component Analysis) to the subspace spanned by the word embeddings of its words. For a given polysemous word we take its five atoms as well as atoms for its inflectional forms (e.g., past tense, plural etc., generated by (Manning et al., 2014)). This yields between 10 to 20 atoms for the word, whereupon each sentence is scored with respect to each atom by an appropriate cosine similarity between the atom and the semantic representation of the sentence. Finally output the top few sentences with highest scores. Table 3 presents the sentences found for the word “ring”. More examples can be found in the full version.
The spectrum of any commutative ring with the Zariski topology (that is, the set of all prime ideals) is compact.

The inner 15-point ring is guarded with 8 small bumpers or posts.

Allowing a Dect phone to ring and answer calls on behalf of a nearby mobile phone.

The inner plastid-dividing ring is located in the inner side of the chloroplast’s inner.

Goya (wrestler), ring name of Mexican professional wrestler Gloria Alvarado Nava.

The Chalk Emerald ring, containing a top-quality 37-carat emerald, in the U.S. National Museum of Natural History.

Typically, elf circles were fairy rings consisting of a ring of small mushrooms.

Table 3: Relevant fragments from top 7 sentences identified by the algorithm for the word “ring.” The math sense in the first sentence was missing in WordNet. More examples in the full version.

5 A Quantitative Test

While the main purpose of the paper is to show the linear algebraic structure of word senses within existing embeddings, it would be good to have some quantification of the efficacy of our approach. This runs into well-known difficulties, as reflected in the changing SENSEVAL tests over the years [Navigli and Vannella 2013]. Some metrics involve a custom similarity score based upon WordNet that is hard to interpret and may not be available for other languages. Here a new simple test is proposed, which has the advantage of being easy to understand, as well as having the property that it can be administered to humans.

The testbed uses 200 polysemous words and their 704 senses according to WordNet. Each “sense” is represented by a set of 8 related words; these were collected from WordNet and online dictionaries by college students who were told to identify most relevant other words occurring in the online definitions of this word sense as well as in the accompanying illustrative sentences. These are considered as ground truth representation of the word sense. These 8 words are typically not synonyms; e.g., for the tool/weapon sense of “axe” they were: “handle, harvest, cutting, split, tool, wood, battle, chop.”

Figure 3: Precision and recall in the polysemy test. (A) For each polysemous word, a set of $m = 20$ senses containing the ground truth senses of the word are presented. Human subjects are told that on average each word has 3.5 senses and were asked to choose the senses they thought were true. Our method selects k senses for $k = 1, 2, \ldots, 6$. For each k, it was run 5 times (standard deviations over the runs are < 0.02 and thus not plotted). (B) The performance of our method for $k = 4$ and $m = 20, 30, \ldots, 70$.

The quantitative test is analogous to a police line up: the algorithm is given a random one of these 200 polysemous words and a set of m senses which contain the true sense for the word as well as some distractors.
(randomly picked senses from other words). The algorithm (or human) has to identify the word’s true senses in this set.

We adapt our method to take this test as follows: 1) find five atoms of the polysemous word and its inflectional forms to obtain candidate 10-20 discourse atoms; 2) for each atom, find top two senses with highest normalized similarities; 3) return the top k senses among all those found. The similarity between a sense (represented by a set L of 8 words vectors) and an atom a of the word w is the quadratic mean of the inner products between a and vectors in L, plus the root mean square of the inner products between w and vectors in L, i.e., \(\sqrt{\sum_{u \in L}(a^Tv)^2/|L|} + \sqrt{\sum_{u \in L}(v_w^Tv_u)^2/|L|} \). The normalized similarity is obtained from this by subtracting the average similarity between the sense and an arbitrary atom.

The precision (fraction of senses that were correct) and recall (fraction of ground truth senses that were recovered) for different m and k are presented in Figure 3. For $m = 20$ and $k = 4$, our algorithm succeeds with precision 63% and recall 70%, and performance remains reasonable for $m = 50$. Giving the same test to humans\footnote{Human subjects are graduate students from science or engineering majors at major U.S. universities. Non-native speakers have 7 to 10 years of English language use/learning.} for $m = 20$ (see the left figure) suggests that the performance is similar to that of non-native speakers.

Word embeddings derived from other related methods can be used, but the performance is shifted down a bit. For $m = 20$ and $k = 3$, the precision/recall are shifted down as follows: GloVe 0.3%/0.76%, word2vec(CBOW) 2.3%/4.9%, NNSE ([Murphy et al., 2012], matrix factorization on PMI to rank 300) 23%/23%.

6 The mathematical explanation

Now we theoretically explain the empirical results in Section 2 of our experiment of creating an artificial polysemous word. A new word created by combining two unrelated words w_1 and w_2 turns out to have an embedding $\alpha v_1 + \beta v_2$, where $\alpha \approx 1$ and $\beta(r)$ is well-correlated with $1 - c \log(1/r)$ for some small constant c.

Here $r = \frac{Pr[w_2]}{Pr[w_1]} \leq 1$ is the frequency ratio. The theoretical analysis also uncovers word-specific parameters that determine β, somewhat explaining the spread seen in the empirical values.

The embeddings of Arora et al. (2015) involve method-of-moments on (1), yielding an optimization reminiscent of the classical PMI method:

\[
\sum_{w_1, w_2} Pr(w_1, w_2) \cdot (PMI(w_1, w_2) - \langle v_{w_1}, v_{w_2} \rangle)^2
\]

where $Pr(w_1, w_2)$ is the empirical probability that words w_1, w_2 occur within distance 5 (say) of each other in the corpus, and $PMI(w_1, w_2) = \log(Pr[w_1, w_2]/Pr[w_1] Pr[w_2])$. (A similar but more complicated explanation can be done using their SN model, which is empirically better.)

For simplicity assume the word vectors originally perfectly fit the PMI model. That is, for any word χ other than w_1, w_2, $PMI(\chi, w_1) = \langle \chi, v_1 \rangle$ and $PMI(\chi, w_2) = \langle \chi, v_2 \rangle$.\footnote{In general the fitting has errors, and the proof can be carried through if the errors are independent gaussian.}

Moreover, by definition of the merging, we have $Pr(w) = Pr(w_1) + Pr(w_2) = (1 + r) Pr(w_1) = (1 + \frac{1}{r}) Pr(w_2)$.

Furthermore, since w_1 and w_2 are unrelated, and the co-occurrence matrix is sparse, the set of words χ that appear with both w_1, w_2 in the corpus is far smaller than the set of words that appear with exactly one of them. (Indeed, if nonzero entries constitute a p fraction of some matrix, then in two randomly picked rows, one expects only p^2 fraction of the entries to be nonzero in both.) So the argument below will assume that each χ appears with at most one of w_1, w_2 but not both. Let T_1 be the set of words such that $Pr(\chi, w_1)$ is non-zero and $Pr(\chi, w_2)$ is zero in the corpus, and define T_2 vice versa. Therefore, for $\chi \in T_1$, we have that $Pr(\chi, w) = Pr(\chi, w_1)$, and $PMI(\chi, w) = PMI(\chi, w_1) - \log(1 + r)$. Similarly for $\chi \in T_2$, we have $PMI(\chi, w) = PMI(\chi, w_2) - \log(1 + 1/r)$.\footnote{In general the fitting has errors, and the proof can be carried through if the errors are independent gaussian.}
From now on, with a slight abuse of notation, we use χ to denote both a word and its corresponding word vector. Training the vector v for the new word w under the PMI model (3) requires minimizing:

$$f(z) = \sum_{\chi} \Pr(\chi, w) \cdot (\text{PMI}(\chi, w) - \langle \chi, z \rangle)^2$$

Denoting $\kappa_1 = \log(1 + r)$ and $\kappa_2 = \log(1 + 1/r)$ we will show that

$$\text{argmin}_f(z) \approx (1 - \kappa_1 c_1) v_1 + (1 - \kappa_2 c_2) v_2$$

where c_1 and c_2 are two small constants respectively. Here the crucial fact is that κ_2 scales logarithmically in $1/r$ when r is very small. Therefore, even if $r = .01$, κ_2 is only $\ln(100) < 5$, and the coefficient before v_2 is likely to remain positive and non-trivial.

To establish (4), we first simplify $f(z)$ using the assumptions that no word belongs to T_1 and T_2 to

$$f(z) = \sum_{\chi \in T_1} \Pr(\chi, w_1) \cdot (\text{PMI}(\chi, w_1) - \langle \chi, z \rangle - \kappa_1)^2 + \sum_{\chi \in T_2} \Pr(\chi, w_2) \cdot (\text{PMI}(\chi, w_2) - \langle \chi, z \rangle - \kappa_2)^2.$$

Clearly without the constant shifts κ_1 and κ_2, f_1 and f_2 are minimized at $z = v_1$ and $z = v_2$ respectively. Our argument essentially consists of showing that the minimizers of f_1 and f_2 are scalings of v_1 and v_2, where the scaling factors depend on κ_1 and κ_2; and that the minimizer of the sum of f_1 and f_2 is approximately the sum of the minimizers.

Before getting into details, we state at a high level two additional properties/assumptions about the word vectors. Since w_1 and w_2 are unrelated, their vectors v_1 and v_2 will be considered orthogonal. Furthermore, we assume that for the words that co-appear with w_1, their vectors are pretty correlated with v_1, and their components orthogonal to v_1 behave like random vectors (similar assumption holds for w_2). Mathematically, for $\chi \in T_1$, $\chi = (\chi, v_1)v_1/\|v_1\|^2 + \xi$ where ξ is a small Gaussian vector in the orthogonal complement of v_1. As a consequence, the weighted covariance matrix in the quadratic terms in f_1 is simplified:

$$\Sigma_1 := \sum_{\chi \in T_1} \Pr(\chi, w_1) \chi \chi^T = (\gamma_1 - \tau_1)v_1 v_1^T + \tau_1 I$$

where $\gamma_1 = \sum_{\chi \in T_1} \Pr(\chi, w_1)\langle \chi, v_1 \rangle^2/\|v_1\|^4$ is the (re-scaled) variance of Σ_1 along direction v_1, and where τ_1 is expected to be $\approx \gamma_1/d$, which is much smaller than γ_1.

Now we are ready to simplify $f_1(z)$. We pick a (scaled) orthogonal basis R that is more convenient to work with, such that, $Rv_1 = e_1$ and $Rv_2 = e_2$. Letting $z' = Rz$,

$$f_1(z) = (e_1 - z')^T A (e_1 - z') + 2\kappa_1 t_1^z (e_1 - z') + C = (e_1 - t_1' - z')^T A (e_1 - t_1' - z') + C_1$$

with C, C_1 constants, $t_1 = \sum_{\chi \in T_1} \Pr(\chi, w_1) R \chi \approx b_1 e_1$, $A = R^{-T} \Sigma_1 R^{-1} = \text{diag}(\gamma_1, \gamma_1/\|v_1\|^2, \ldots)$, and $t_1' = t_1 \kappa_1/\gamma_1 = \kappa_1 b_1/\gamma_1 \cdot e_1$. We denote $c_1 = b_1/\gamma_1$ and argue that c_1 is expected to be a small constant. Indeed $\frac{b_1}{\gamma_1\|v_1\|^2} = \frac{\sum_{\chi \in T_1} \Pr(\chi, w_1) \langle \chi, v_1 \rangle^2}{\sum_{\chi \in T_1} \Pr(\chi, w_1)\langle \chi, v_1 \rangle}$ is expected to be close to the average of $1/\langle \chi, v_1 \rangle$ of χ’s with large $\Pr(\chi, w_1)$, which should be a scaling of $1/\|v_1\|^2$. Let $t_{1,j}'$ be the j-th coordinate of t_1',

$$f_1(z) = g_1(z') = \gamma_1 (1 - \kappa_1 c_1 - z'_1)^2 + \tau_1 \cdot \sum_{j \neq 1} (z'_j - t_{1,j}')^2$$

Suppose $\chi = v_1 + \xi$ with ξ having similar norm as v_1, then indeed it holds that $\gamma_1 = \sum_{\chi \in T_1} \Pr(\chi, w_1)$ while $\tau_1 = \sum_{\chi \in T_1} \Pr(\chi, w_1)/d$.
Therefore, the minimizer of \(g_1 \) is approximately \(z'_1 = 1 - \kappa_1 c_1 \) and \(z'_j = t'_{1,j} \approx 0 \) and then the minimizer for \(f_1 \) is approximately equal to

\[
(1 - \kappa_1 c_1)R^{-1} c_1 = (1 - \kappa_1 c_1)v_1
\]

Similarly, the minimizer of \(f_2 \) is approximately a scaling of \(v_2 \) (with corresponding \(c_2 \)). Furthermore, \(f(z) \) can be simplified as

\[
f(z) = f_1(z) + f_2(z) = g_1(z') + g_2(z') = \\
\gamma_1(1 - \kappa_1 c_1 - z'_1)^2 + \gamma_2(1 - \kappa_2 c_2 - z'_2)^2 + \tau_1(t'_{2,j} - z'_2) + \tau_2(t'_{2,j} - z'_1) + \tau_1 \cdot \text{rest}_1 + \tau_2 \cdot \text{rest}_2
\]

where \(\text{rest}_\ell = \sum_{j \neq 1, 2} (z'_j - t'_{1,j}) \), for \(\ell = 1, 2 \). Therefore we see that \(\text{rest}_\ell \) forces \(z'_3, \ldots, z'_d \) to be close to either \(t'_{1,j} \) or \(t'_{2,j} \), both of which are small \(0 \). For coordinate \(z'_1 \) and \(z'_2 \), when \(\tau_2 \ll \gamma_1 \) and \(\tau_1 \ll \gamma_2 \), the minimizer of \(f(z') \) is approximately \(z'_1 = 1 - \kappa_1 c_1 \) and \(z'_2 = 1 - \kappa_2 c_2 \). Therefore, we obtain that the minimizer of \(g_1(z') + g_2(z') \) is approximately \(z' = (1 - \kappa_1 c_1)e_1 + (1 - \kappa_2 c_2)e_2 \), and consequently,

\[
\arg\min_z f(z) \approx (1 - \kappa_1 c_1)v_1 + (1 - \kappa_2 c_2)v_2
\]

Finally we argue that \(\tau_1 \) is indeed expected to be (much) smaller than \(\gamma_2 \). As discussed above, \(\tau_1 \) is approximately \(\gamma_1/d \) and therefore when \(\gamma_1/\gamma_2 < d \), which further translates to roughly \(\Pr(w_1)/\Pr(w_2) < d \), we will have \(\tau_1 < \gamma_2 \). Moreover, in the case when \(\tau_1 \) is comparable to \(\gamma_2 \) or much larger, we can still analytically solve the minimizer of \(f(z') \), and obtain that \(z'_1 = \frac{\gamma_1(1 - \kappa_1 c_1) + \tau_1 t'_{1,j}}{\gamma_1 + \gamma_2} \) and \(z'_2 = \frac{\gamma_2(1 - \kappa_2 c_2) + \tau_2 t'_{2,j}}{\gamma_2 + \gamma_1} \), and consequently, \(v \approx z'_1v_1 + z'_2v_2 \).

7 Conclusions

Word embeddings obtained from \cite{Arora et al. 2015}—and also several earlier methods—have been shown to contain information about the different senses of the word that is extractable via simple sparse coding. Currently it seems to do better with nouns than other parts of speech, and improving this is left for future work. One novel aspect of our approach is that each word sense is also accompanied by one of about 2000 discourse vectors that give a succinct description of which other words appear in the neighborhood with that sense. This makes the method potentially more useful for other tasks in Natural Language Processing, as well as automated creation of WordNets in other languages. The method can be more useful —and accurate—in a semi-automated mode, since human helpers are better at recognizing a presented word sense than at coming up with a complete list. Thus instead of listing only 5 senses per word as given by the sparse coding, the algorithm can ask a human helper to examine the list of 20 closest discourse atoms (and sample sentences as in Section 4) which usually gives high recall rate for senses that were missing in the top 5. This semi-supervised version seems promising as a fast way to create WordNets for other languages.

As mentioned in Section 2, the use of logarithm in these new embedding methods as well as the old PMI method seems key to the success of our approach, because the logarithm allows less frequent senses to have a superproportionate weight in the linear superposition. This may have relevance of neuroscience, where word embeddings have been used in fMRI studies to map what the subject is thinking about \cite{Mitchell et al. 2008}. The words in that study were largely monosemous, and the more nuanced word embeddings and discourse vectors introduced in this work may be useful in further explorations, especially since sparse coding as well as logarithms are thought to be neurally plausible.

References

\footnote{\cite{[t_{1,3}, \ldots, t_{1,d}]} was proved to be negligible in \(\ell_2 \) norm.}

A Word vector training method

The data set used was the English Wikipedia (Wikimedia, 2012). The data was preprocessed by a standard approach (Mahoney, 2008), including removing non-textual elements, sentence splitting, and tokenization, yielding a corpus with about 3 billion tokens. Words that appeared less than 1000 times in the corpus were ignored, leaving a vocabulary of size 68430. The co-occurrences were then computed within a window size of 10. The 300 dimensional word vectors were trained by optimizing the objective function SN derived in (Arora et al., 2015):

$$\min_{\{v_w\}, C} \sum_{w,w'} X_{w,w'} \left(\log(X_{w,w'}) - \|v_w + v_{w'}\|_2^2 - C\right)^2$$

where v_w is the vector for the word w and $X_{w,w'}$ is the co-occurrence of the words w, w'. The optimization method was AdaGrad (Duchi et al., 2011).

This objective is closely related to the old PMI model of Church and Hanks (1990).

B Sparse coding method

We used the well-known k-SVD algorithm (Aharon et al., 2006). The basis were initialized with randomly picked word vectors, and then the representation and the basis were alternatingly updated; see (Elad, 2010; Damnjanovic et al., 2010). The basis size was set to be 2000, and the sparsity was set to 5, which means that each word vector is approximated by a linear combination of at most 5 atoms.

The above algorithm was run 5 times with different random initializations. The underlying theory suggests that a set of meaningful atoms should be stable across different runs. This is indeed empirically observed: around $2/3$ of the atoms in one basis had atoms in the other bases, which had inner product larger than 0.85. An inner product larger than 0.85 means that the two atoms are near-duplicates: for example, the 10 nearest words will tend to be the same. Therefore, a basis with stable atoms were obtained by merging the bases obtained in different runs, i.e. removing the duplicates and removing the unstable atoms (more precisely, those atoms that did not have a neighbor with inner product larger than 0.2 in other bases). The resulting basis had 2376 atoms.

About 10% of atoms were found to be semantically meaningless. Some corresponded to systematic bias in the word vectors or the corpus; a telltale sign is that they were used in the representations of a large number of words. The 25 most popular atoms (in terms of how many words pick them in their representations) were removed. Some other atoms contained user names of many Wikipedia editors or last names of people whose first name is “Albert”. Words near such atoms are unlikely to have large inner products with each other. By checking such a condition, such atoms were identified and removed. The details are similar to those under the heading “outputting coherent word groups.” At the end, 2095 atoms were left.

Each word vector is then represented as a linear combination of at most five atoms, where the representation is computed by the same k-SVD algorithm. As an example, Table 4 shows the atoms linked to the words “chair” and “bank”.

C Hierarchy of discourse atoms

Here are two more examples for meta-atoms. One example consists of meta-atoms for transportation, racing, and sports, and is shown in Figure 4. Note that bike racing and general racing both belong to racing and sports. The other example consists of the food meta-atom, and is shown in Figure 5.

D Outputting relevant sentences

First, for each sentence in the corpus, define its semantic representation to be the best rank-3 approximation to the subspace spanned by the word embeddings of its component words (filtering out frequent words like
Table 4: Five discourse atoms linked to the words “chair” and “bank” by our method. Each atom is represented by and its nearest 6 words. The algorithm often makes a mistake in the last atom (or two), as happened here.

<table>
<thead>
<tr>
<th>Atom 1187</th>
<th>739</th>
<th>590</th>
<th>1322</th>
<th>1457</th>
</tr>
</thead>
<tbody>
<tr>
<td>sitting</td>
<td>committee</td>
<td>graduating</td>
<td>urology</td>
<td>protesters</td>
</tr>
<tr>
<td>seated</td>
<td>chaired</td>
<td>studied</td>
<td>neurology</td>
<td>demonstrators</td>
</tr>
<tr>
<td>standing</td>
<td>chairing</td>
<td>graduated</td>
<td>obstetrics</td>
<td>crowds</td>
</tr>
<tr>
<td>sits</td>
<td>consultative</td>
<td>doctorate</td>
<td>gynecology</td>
<td>protesters</td>
</tr>
<tr>
<td>beside</td>
<td>committees</td>
<td>graduate</td>
<td>ophthalmology</td>
<td>gathered</td>
</tr>
<tr>
<td>sit</td>
<td>convened</td>
<td>studying</td>
<td>neurosurgery</td>
<td>crowd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom 599</th>
<th>1308</th>
<th>209</th>
<th>1653</th>
<th>1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank</td>
<td>believe</td>
<td>river</td>
<td>masjid</td>
<td>hermetic</td>
</tr>
<tr>
<td>hsbc</td>
<td>own</td>
<td>tributaries</td>
<td>chowk</td>
<td>occult</td>
</tr>
<tr>
<td>banks</td>
<td>why</td>
<td>tributary</td>
<td>bazar</td>
<td>freemasonry</td>
</tr>
<tr>
<td>citibank</td>
<td>actual</td>
<td>rivers</td>
<td>moti</td>
<td>aleister</td>
</tr>
<tr>
<td>banking</td>
<td>understand</td>
<td>watershed</td>
<td>bagh</td>
<td>thelema</td>
</tr>
<tr>
<td>banco</td>
<td>working</td>
<td>flows</td>
<td>mahal</td>
<td>esoteric</td>
</tr>
</tbody>
</table>

Figure 4: Meta-atoms for transportation, racing, and sports. The figure shows the atoms that uses them, where atoms/meta-atoms are tagged manually. The table shows the top 4 nearest words and tags for some atoms.

<table>
<thead>
<tr>
<th>Atom 722</th>
<th>407</th>
<th>1164</th>
<th>1623</th>
<th>114</th>
<th>1932</th>
<th>633</th>
</tr>
</thead>
<tbody>
<tr>
<td>helicopter</td>
<td>sedan</td>
<td>sportscar</td>
<td>race</td>
<td>giro</td>
<td>skating</td>
<td>cheerleading</td>
</tr>
<tr>
<td>helicopters</td>
<td>hatchback</td>
<td>drivers</td>
<td>podums</td>
<td>vuelta</td>
<td>skater</td>
<td>softball</td>
</tr>
<tr>
<td>sikorsky</td>
<td>sedans</td>
<td>motorsport</td>
<td>races</td>
<td>uci</td>
<td>skaters</td>
<td>volleyball</td>
</tr>
<tr>
<td>aircraft</td>
<td>hardtop</td>
<td>racing</td>
<td>laps</td>
<td>ttt</td>
<td>isu</td>
<td>frisbee</td>
</tr>
<tr>
<td>tag</td>
<td>aircraft</td>
<td>car model</td>
<td>sports car</td>
<td>general racing</td>
<td>bike racing</td>
<td>skating</td>
</tr>
</tbody>
</table>

Figure 4: Meta-atoms for transportation, racing, and sports. The figure shows the atoms that uses them, where atoms/meta-atoms are tagged manually. The table shows the top 4 nearest words and tags for some atoms.

is, the that carry little meaning), where the best rank-3 approximation can be computed by PCA (Principal Component Analysis). The similarity between a sentence and an atom is then defined as the cosine similarity, that is, the length of the projection of the atom onto the semantic representation of the sentence. Since there may be bias in the vectors of the words in the sentence, the relevance between an atom a and a sentence s should be normalized:

$$\text{rel}(a, s) = \frac{\|S a\|_2 - \sum_{a' \in A} \|S a'\|_2 / |A|}{|A|},$$

where S is the semantic representation of the sentence s presented as a matrix of 3 rows, and A is the set of all atoms.
To find relevant sentences for a polysemous word w, first compute the atoms for the word, and also the atoms for its in
ditional forms of w, such as the past tense of a verb. These
formational forms are found by the Stanford NLP tool
\cite{manning2014stanford}. For each atom, compute its relevance with each sentence that
contains w and contains more than 10 words, and find the sentence with the highest relevance. If two atoms
are close to each other, only one sentence needs to be output for them. So the atoms are clustered as follows:
build a graph on the atoms by adding an edge between any two atoms with inner product larger than 0.6; let each connected component of the graph be an cluster. For each cluster, sort the sentences associated
with the atoms in the cluster, and keep only the sentence with highest relevance. The top 7 sentences are
output; if there are less than 7, output all the sentences.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Atom & 6 & 1273 & 128 & 1549 & 959 & 1109 & 1280 \\
\hline
cooking & fried & cooked & fried & fried & fried & cooked & fried \\
\hline
dessert & drinks \\
\hline
fruit & fruit \\
\hline
vegetable & vegetable \\
\hline
spices & spices \\
\hline
drinks & drinks \\
\hline
\end{tabular}
\caption{Figure 5: Meta-atom for food. The figure shows the atoms that uses them, where atoms/meta-atoms are
tagged manually. The table shows the top 4 nearest words and tags for some atoms.}
\end{table}

The testbed was constructed by graduate students, who were instructed to pick typical polysemous words
and their meanings, spot uses of each word meaning in sentences in WordNet and other online dictionaries,
and select 8 related words from those sentences that can represent a “discourse” capturing the word meaning.
The final testbed consists of 200 polysemous words and their 704 meanings. The number of meanings for
one word ranges from 2 to 14, and on average is about 3.5.

The test is then as follows: given a polysemous word w and a set of m meanings which contain the true
ones for the word as well as some distractors (randomly picked meanings), identify the word’s true meanings.

The algorithm for the test begins with finding the atoms for the given polysemous word w and removing
atoms with too small coefficients. Since more frequent words tend to have more meanings, atoms with
coefficients below $0.1 + 0.2(\text{rank}(w)/N)$ are removed, where $\text{rank}(w)$ is the frequency rank of w in the
vocabulary, and N is the size of the vocabulary. So the threshold is about 0.1 for the most frequent word
and 0.3 for the least frequent. The resulting set of atoms are further augmented with the top atom of each
inflectional forms of the word, such as the past tense of a verb. These inflectional forms are found by Stanford
NLP tool \cite{manning2014stanford}.

For each atom a, the algorithm scores each meaning (represented by a list L of words) by the similarity
between the meaning and the atom. First, the meaning should be matched to the polysemous word under
1986’s No. 10, Upping St. reunited Jones for one album with former Clash band-mate Joe Strummer, who was a co-producer of the album and co-writer of a number of its songs.

Band (radio), a range of frequencies or wavelengths used in radio transmission and radar.

...... acclaimed for their first three albums. The band has also been important for the advocacy of medical and recreational use of cannabis in the United States.

Three equally sized horizontal bands of blue, red, and green, with a white crescent and an eight-pointed star centered in the red band.

Gel electrophoresis of the plasmids would normally show the negatively supercoiled form as the main band, while nicked DNA (open circular form) and the relaxed closed circular form appears as minor bands.

ZigBee - low power lightweight wireless protocol in the ISM band.

At the height of their popularity, the band’s success spurred a host of cult-like activities.

Table 5: Relevant fragments from top 7 sentences identified for the word “band.”

For a sine wave modulation, the modulation index is seen to be the ratio of the amplitude of the modulating sine wave to the amplitude of the carrier wave.

They experienced the emergence of music videos, new wave music, electronic music, synthpop, glam rock, heavy metal and the spin-off glam metal, punk rock and the spin-off pop punk, alternative rock, grunge, and hip hop.

Earthquakes, along with severe storms, volcanic activity, coastal wave attack, and wildfires, can produce slope instability leading to landslides, a major geological hazard.

sinusoidal plane-wave solutions of the electromagnetic wave equation

Slide cards under chips (in handheld games); wave hand horizontally (in games dealt face up).

The Australian flag shall triumphantly wave in the sunshine of its own blue and peerless sky, over thousands of Australia’s adopted sons.

Kristin Hersh, American singer-songwriter and guitarist (Throwing Muses and 50 Foot Wave)

Table 6: Relevant fragments from top 7 sentences identified for the word “wave.”

Table 7: Two examples from the polysemy testbed.
the discourse represented by the atom, so the word vector should also be considered. Second, since there
may be bias in the vectors for L, the score should be normalized. So the score is defined as
\[
\text{score}(a, L) = \|Ua\|_2 - \sum_{a' \in A} \|Ua'\|_2 |A| + \|Ua\|_2 - \sum_{w' \in V} \|Uv_{w'}\|_2 |V|,
\]
where U is a matrix whose rows are vectors for words in L, u is the vector for the word associated with the
atom a (the word w or its inflectional forms), A is the set of all atoms, and V is the vocabulary. The top
two meanings with highest scores for each atom are found. Take the union of all the meanings found for all
the atoms, and if a meaning is found by multiple atoms, accumulate its scores. Finally, the top k ones in
the union with highest scores are returned; if the union has less than k meanings, return all the meanings.

Comparison with human performance. We also asked 10 graduate students in science or engineering
field\footnote{These students were different from those who constructed the testbed. Non-native speakers have 7 to 10 years of English
language use/learning.} to evaluate the testbed. The testbed was randomly partitioned into 10 sub-testbeds, each consisting of
20 polysemous words. Each student was given one sub-testbed, and was asked to identify for each polysemous
word the true meanings among 20 ones that contains the true ones and some random distractors. They were
told that the number of true meanings for one word is between 2 and 14, and is 3.3 on average, but the
numbers of true meanings for individual words were unrevealed.

The results are shown in Table8 Native speakers achieved on average 85\% precision and 79\% recall, while
non-native speakers achieved 74\% precision and 54\% recall. Note that there are large variances, especially
for non-native speakers. Our algorithm with $k = 2$ achieved 76\% precision and 50\% recall, which is similar
to the average performance of non-native speakers. There results are also plotted in the main text.

F Outputting coherent word groups

A salient feature of WordNet is computing synsets for each word sense: list of synonyms. Here we mention a
technique to output semantically coherent word groups. These are not synsets per se, but in a semisupervised
setting (with a human in the loop) they might be useful to construct synsets.

The idea is to produce a list of words $L_{(a, w)}$ that forms a “dense” cluster located “near” the atom a
for atom-word pairs (a, w). Doing this for all atoms in the representation of a word and its inflectional forms
can be viewed as producing relevant words for the meanings of the word.

“Dense” and “near” are quantified as follows: the list of words $L_{(a, w)}$ is τ-dense if for all words w', the
30-th percentile of the normalized inner products of w' with the rest of the words in $L_{(a, w)}$ is at least τ.
$L_{(a, w)}$ is d-near a, if all the words in $L_{(a, w)}$ have normalized inner product at least d. Given fixed τ and d,
the algorithm greedily builds the cluster of words $L_{(a, w)}$ by iteratively adding the vertex which maximizes a
weighted sum of the 30-th percentile of the inner product to the vertices already in $L_{(a, w)}$ and the inner
product with a. (Precisely, when adding the i-th word, maximize over all words w': $\tau_{w'} + 0.5 \cdot (1 + 4/i) \cdot d_{w'}$,
where $\tau_{w'}$ is the 30th percentile of the inner product of w' to the vertices already in $L_{(a, w)}$ and $d_{w'}$ the
inner product of w' with a.) The algorithm stops when the vertex added results in violating the density or
nearness parameters. The lists are further capped to be no longer than 8 words. τ is initially set to 0.45
and d to 0.5, and gradually decreased until a word list of length at least 3 is constructed. Table9 shows the
results for 3 words (we take as pairs the word itself, along with the top 3 atoms in the representation, as
well as the top atom in the representation of the inflected forms).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & native speaker & non-native speaker \\
\hline
precision & 0.88 & 0.80 & 0.84 & 0.80 & 0.95 & 0.51 & 0.72 & 0.94 & 0.72 & 0.81 \\
recall & 0.79 & 0.66 & 0.79 & 0.83 & 0.87 & 0.33 & 0.56 & 0.58 & 0.53 & 0.68 \\
\hline
\end{tabular}
\caption{Human performance on the polysemy testbed.}
\end{table}
It is observed that many of the words found are related to existing synsets in WordNet. When they are not, they could suggest new relations that WordNet happens not to encode but perhaps should. In other words, the method may point the way to a more densely connected network among the words, which would be more valuable for NLP applications requiring word sense discrimination and disambiguation.

G Performance of some other types of semantic vectors

Our approach can also be applied to other types of semantic vectors, including those computed on other data sets, and those computed by other methods. Here we provide results for four other types of semantic vectors:

- **COMMON**: computed using the objective function SN on a subset of a large data set called common crawl [Buck et al., 2014]. This subset contains about 50 billion tokens.
- **GLOVE**: computed using the approach in [Pennington et al., 2014] on the English Wikipedia data.
- **CBOW**: computed using the approach in [Mikolov et al., 2013a] on the English Wikipedia data.
- **NNSE**: precomputed vectors by [Murphy et al., 2012].

These also yield meaningful atoms, some examples of which are shown in Table S6. Of course, it should be not surprising that the technique applies to these methods, since recent work [Levy and Goldberg, 2014; Arora et al., 2015] suggests they are quite related.

The word embeddings from these methods their corresponding atoms are also evaluated on the polysemy testbed, and the performances are plotted in Figure 6. GLOVE vectors achieve similar results to ours. COMMON and CBOW have slight worse performance, and NNSE has the worst.
<table>
<thead>
<tr>
<th>Atom</th>
<th>365</th>
<th>402</th>
<th>754</th>
<th>1140</th>
<th>1766</th>
</tr>
</thead>
<tbody>
<tr>
<td>ferrari</td>
<td>regulations</td>
<td>preaching</td>
<td>variational</td>
<td>importers</td>
<td>warmachine</td>
</tr>
<tr>
<td>lamborghini</td>
<td>stricter</td>
<td>christ</td>
<td>deconvolution</td>
<td>exporter</td>
<td>warhammer</td>
</tr>
<tr>
<td>supercar</td>
<td>stringent</td>
<td>gospel</td>
<td>nonlinear</td>
<td>wholesaler</td>
<td>khador</td>
</tr>
<tr>
<td>roadster</td>
<td>enforce</td>
<td>bible</td>
<td>regularization</td>
<td>exporters</td>
<td>everblight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>479</th>
<th>707</th>
<th>933</th>
<th>937</th>
<th>1246</th>
</tr>
</thead>
<tbody>
<tr>
<td>yale</td>
<td>advocating</td>
<td>species</td>
<td>instagram</td>
<td>hyperbola</td>
<td>timezone</td>
</tr>
<tr>
<td>harvard</td>
<td>activism</td>
<td>endemic</td>
<td>twitter</td>
<td>parabola</td>
<td>dst</td>
</tr>
<tr>
<td>swarthmore</td>
<td>advocates</td>
<td>genus</td>
<td>facebook</td>
<td>tangent</td>
<td>cest</td>
</tr>
<tr>
<td>princeton</td>
<td>advocacy</td>
<td>subspecies</td>
<td>tumblir</td>
<td>parallelogram</td>
<td>cet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>269</th>
<th>542</th>
<th>1638</th>
<th>2802</th>
<th>3083</th>
</tr>
</thead>
<tbody>
<tr>
<td>protestantism</td>
<td>cheeks</td>
<td>probabilistic</td>
<td>knife</td>
<td>wheel</td>
<td>hegemony</td>
</tr>
<tr>
<td>catholicism</td>
<td>forehead</td>
<td>heuristic</td>
<td>blade</td>
<td>lever</td>
<td>colonialism</td>
</tr>
<tr>
<td>other_religions</td>
<td>lips</td>
<td>empirical</td>
<td>spear</td>
<td>spindle</td>
<td>imperialism</td>
</tr>
<tr>
<td>christianity</td>
<td>buttocks</td>
<td>theory</td>
<td>claw</td>
<td>spinning</td>
<td>republics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>147</th>
<th>194</th>
<th>970</th>
<th>1464</th>
<th>1739</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemicals</td>
<td>exporters</td>
<td>graphics</td>
<td>toe</td>
<td>amounts</td>
<td>notify</td>
</tr>
<tr>
<td>substances</td>
<td>businessmen</td>
<td>landscapes</td>
<td>hem</td>
<td>amount</td>
<td>inform</td>
</tr>
<tr>
<td>pesticides</td>
<td>merchants</td>
<td>visuals</td>
<td>heel</td>
<td>chunk</td>
<td>assist</td>
</tr>
<tr>
<td>solvents</td>
<td>artisans</td>
<td>portraits</td>
<td>cuff</td>
<td>quantities</td>
<td>instruct</td>
</tr>
</tbody>
</table>

Table 10: Examples of discourse atoms and their nearest 4 words for different semantic vectors.

Figure 6: Precision and recall in the polysemy test. For each polysemous word, a set of m meanings are presented, and the algorithm returns k meanings. The figure plots results of different methods for $m = 20$, $k = 1, 2, \ldots, 10$.