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Abstract

Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse
methods including Vector Space Methods (VSMs) such as Latent Semantic Analysis (LSA), generative
text models such as topic models, matrix factorization, neural nets, and energy-based models. Many of
these use nonlinear operations on co-occurrence statistics, such as computing Pairwise Mutual Informa-
tion (PMI). Some use hand-tuned hyperparameters and term reweighting.

Often a generative model can help provide theoretical insight into such modeling choices, but there
appears to be no such model to “explain” the above nonlinear models. For example, we know of no
generative model for which the correct solution is the usual (dimension-restricted) PMI model.

This paper gives a new generative model, a dynamic version of the loglinear topic model of Mnih and
Hinton (2007), as well as a pair of training objectives called RAND-WALK to compute word embeddings.
The methodological novelty is to use the prior to compute closed form expressions for word statistics.
These provide an explanation for the PMI model and other recent models, as well as hyperparameter
choices.

Experimental support is provided for the generative model assumptions, the most important of which
is that latent word vectors are spatially isotropic.

The model also helps explain why linear algebraic structure arises in low-dimensional semantic em-
beddings. Such structure has been used to solve analogy tasks by Mikolov et al. (2013a) and many
subsequent papers. This theoretical explanation is to give an improved analogy solving method that
improves success rates on analogy solving by a few percent.

1 Introduction

Vector representations of words (word embeddings) try to capture relationships between words as distance or
angle, and have many applications in computational linguistics and machine learning. They are constructed
by various models, all built around the unifying philosophy that the meaning of the word is defined by
“the company it keeps” (Firth, 1957)—namely, co-occurrence statistics. The simplest methods use word
vectors that explicitly represent co-occurrence statistics. Reweighting heuristics are known to improve these
methods, as is dimension reduction (Deerwester et al., 1990). Some reweightings are nonlinear; e.g., taking
the square root of co-occurrence counts (Rohde et al., 2006), or the logarithm, or the related pairwise mutual
information (PMI) (Church and Hanks, 1990). These are called Vector space models (VSMs); a survey
appears in (Turney et al., 2010).

Neural network language models are another approach (Hinton, 1986; Rumelhart et al., 1988; Bengio et al.,
2006; Collobert and Weston, 2008); the word vector is simply the neural network’s internal representation for
the word. This method was sharpened and clarified via word2vec, a family of energy based models in (Mikolov
et al., 2013b;c). The first of these papers also made the surprising discovery that despite being produced
via nonlinear methods, these word vectors exhibit linear structure, which allows easy solutions to analogy
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questions of the form “man:woman::king :??.” Specifically, queen happens to be the word whose vector vqueen
is most similar to the vector vking − vman + vwoman. (Note that the two vectors may only make an angle of,
say, 45 degrees, but that is still a significant overlap in 300-dimensional space.)

This surprising result caused a flurry of follow-up work, including a matrix factorization approach (Pen-
nington et al., 2014), and experimental evidence in Levy and Goldberg (2014b) that these newer methods
are related to the older PMI based models, but featuring new hyperparameters and/or term reweightings.

Another approach to word embeddings uses latent variable probabilistic models of language, such as Latent
Dirichlet Allocation (LDA) and its more complicated variants (see the survey (Blei, 2012)), and some neurally
inspired nonlinear models (Mnih and Hinton, 2007; Maas et al., 2011). It is worth noting that LDA evolved
out of efforts in the 1990s to provide a generative model that “explains” the success of linear methods like
Latent Semantic Analysis (Papadimitriou et al., 1998; Hofmann, 1999).

But there has been no corresponding latent variable generative model “explanation” for the PMI family
of models: in other words, a latent variable model whose maximum likelihood (MLE) solutions approximate
those seen in the PMI models.

Let’s clarify this question. The simplest PMI method considers a symmetric matrix whose each row/column

is indexed by a word. The entry for (w,w′) is PMI(w,w′) = log p(w,w′)
p(w)p(w′) , where p(w,w′) is the empirical

probability of words w,w′ appearing within a window of size q in the corpus, say q = 10, and p(w) is the
marginal probability of w. (More complicated models could involve asymmetric PMI matrices with context
words, and also do term reweighting.) Word vectors are obtained by low-rank SVD on this matrix or its
reweightings. In particular, the PMI matrix is found to be closely approximated by a low rank matrix:
there exist word vectors in say 300 dimensions— which is much smaller than the number of words in the
dictionary— such that

〈vw, vw′〉 ≈ PMI(w,w′). (1.1)

(Here ≈ should be interpreted loosely.) This paper considers the question: Can we give a generative model
“explanation” of this empirical finding? Levy and Goldberg (2014b) give an argument that if there were no
dimension constraint on the solutions to the skip-gram with negative sampling model in the word2vec family,
then they would satisfy (1.1), provided the right hand side were replaced by PMI(w,w′)−β for some scalar β.
However, skip-gram is a discriminative model (due to use of negative sampling), not generative. Furthermore,
their argument does not imply anything about low-dimensional vectors (constraining the dimension in the
algorithm is important for analogy solving).

The current paper gives a probabilistic model of text generation that augments the loglinear topic model
of Mnih and Hinton (2007) with dynamics, in the form of a random walk over a latent discourse space. Our
new methodogical contribution is to derive—using the model priors—a closed-form expression that directly
explains (1.1) (see Theorem 1 and experimental results in Section 4).

Section 2.1 shows the relationship of this generative model to earlier works such as word2vec and GloVe,
and gives explanations for some hyperparameters. Section 4 shows good empirical fit to this model’s pre-
dictions. Our model is somewhat simpler than earlier models —essentially no “knob to turn”–yet the fit to
data is good.

The reason low dimension plays a key role in our theory is our assumption that the set of all word vectors
(which are latent variables of the generative model) are spatially isotropic, which means that they have no
preferred direction in space. Having n vectors be isotropic in d dimensions requires d � n. This isotropy
is needed in the calculations (i.e., multidimensional integral) that yield (1.1). It also holds empirically for
our word vectors, as shown in Section 4. Conceptually it seems related to the old semantic field theory in
linguistics (Kittay, 1990).

In fact we need small d for another interesting empirical fact. For most analogies there is only a small
difference between the best solution, and the second-best (incorrect) solution to the analogy, whereas the ap-
proximation error in relationship (1.1) —both empirically and according to our theory—is much larger. Why
does this approximation error not kill the analogy solving? In Section 3 we explain this by mathematically
showing — improving upon earlier intuitions of Levy and Goldberg (2014a) and Pennington et al. (2014)—
that the isotropy of word vectors has a “purification” effect that mitigates the effect of this approximation
error. This can also be seen as a theoretical explanation of the well-known observation (pointed out as early
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as (Deerwester et al., 1990)) that dimension reduction improves the quality of word embeddings for various
tasks. Section 3 also points out that the intuitive explanation —smaller models generalize better—doesn’t
apply.

2 Generative model and its properties

We think of corpus generation as a dynamic process, where the t-th word is produced at time t. The process
is driven by the random walk of a discourse vector which is ct ∈ <d. Its coordinates represent what is being
talked about1. Each word has a (time-invariant) latent vector vw ∈ <d that captures its correlations with
the discourse vector. To give an example, a coordinate could correspond to gender, with the sign indicating
male/female. This coordinate could be positive in vking and negative in vqueen. When the discourse vector
has a positive value of the gender coordinate, it should be more likely to produce words like “king, man,”
and when it has negative value, favor words like “queen, woman.” We model this bias with a loglinear word
production model (equivalently, product-of-experts):

Pr[w emitted at time t | ct] ∝ exp(〈ct, vw〉). (2.1)

The random walk of the discourse vector will be slow, so that nearby words are generated under similar
discourses. We are interested in co-occurrence of words near each other, so occasional big jumps in the
random walk are allowed because they have negligible effect on these probabilities.

A similar loglinear model appears in Mnih and Hinton (2007) but without the random walk. The linear
chain CRF of Lafferty et al. (2001) is more general. The dynamic topic model of Blei and Lafferty (2006)
utilizes topic dynamics, but with a linear word production model. Belanger and Kakade (2015) have proposed
a dynamic model for text using Kalman Filters. The novelty here over such past works is a theoretical analysis
in the method of moments tradition. Assuming a prior on the random walk we analytically integrate out
the hidden random variables and compute a simple closed form expression that approximately connects the
model parameters to the observable joint probabilities (see Theorem 1); this is reminiscent of analysis of
similar random walk models in finance (Black and Scholes, 1973).

Model details. Let n denote the number of words, d denote the ambient dimension of the discourse space,
where d = Ω(log2 n) and d = O(

√
n). Inspecting (2.1) suggests word vectors need to have varying lengths, to

fit the empirical finding that word probabilities satisfy a power law. We assume that the ensemble of word
vectors consists of i.i.d draws generated by v = s · v̂, where v̂ is from the spherical Gaussian distribution2 and
s is a random scalar with expectation and standard deviation less than

√
d/κ and absolute bound of κ

√
d

for constant κ. (Dynamic range of word probabilities will roughly equal exp(κ2), so think of κ as constant
like 5.)

We assume that each coordinate of the hidden discourse vectors {ct} lies in [− 1√
d
, 1√

d
]. The random walk

can be in any form so long as the stationary distribution C of the random walk is uniform on [− 1√
d
, 1√

d
]d,

and at each step the movement of the discourse vector is at most O(1/ log2 n) in `1 norm3. This is still fast
enough to let the walk mix quickly in the space.

Our main theorem gives simple closed form approximations for p(w), the probability of word w in the
corpus, and p(w,w′), the probability that two words w,w′ occur next to each other (the same analysis works
for pairs that appear in a small window, say of size 10). Recall that PMI(w,w′) = log(p(w,w′)/p(w)p(w′))

1This is a different interpretation of the term “discourse” than in some other settings in computational linguistics.
2This generative assumption about word vectors is purely for ease of exposition. It can be replaced with “deterministic”

properties that are verified in the experimental section: (i) for most c the sum
∑

w exp(〈vw, c〉) is close to some constant Z
(Lemma 1) (ii) facts about singular values etc. stated before Theorem 2.

The deterministic versions have the advantage of being compatible with known structure among the word vectors —e.g.,
clusters, linear relationships etc.—that would be highly unlikely if the vectors were truly drawn from the Gaussian prior.

3 More precisely, the proof extends to any symmetric product distribution over the coordinates satisfying Ec

[
|c|2
]

= 1
d
, |c|∞ ≤

2√
d

a.s., and the steps are such that for all ct, Ep(ct+1|ct)[exp(4κ|ct+1 − ct|1 logn)] ≤ 1 + ε2 for some small ε2.
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and we assume the window size q = 2 in the theorem below, and remark the extension to general q in the
remarks that follow.

Theorem 1. There is a constant Z > 0, and some ε = ε(n, d) that goes to 0 as d→∞ such that with high
probability over the choice of word vectors, for any two different words w and w′,

log p(w,w′) =
‖vw + vw′‖22

2d
− 2 logZ ± ε, (2.2)

log p(w) =
‖vw‖22

2d
− logZ ± ε. (2.3)

Jointly these imply:

PMI (w,w′) =
〈vw, vw′〉

d
±O(ε). (2.4)

Remarks. (1) Since the word vectors have `2 norm of the order of
√
d, for two typical word vectors

vw, vw′ , ‖vw + vw′‖22 is of the order of Θ(d). Therefore the noise level ε is very small compared to the
leading term 1

2d‖vw + vw′‖22. For PMI however, the noise level O(ε) could be comparable to the leading
term, and empirically we also find higher error here. (2) When window size q > 2, both equation (2.2)

and (2.4) need to be corrected with adding constant log
(
q(q−1)

2

)
on the right hand sides. This is also

consistent with the shift β for fitting PMI in Levy and Goldberg (2014b) as remarked below. (3) Levy
and Goldberg (2014b) showed that without dimension constraints, the solution to skip-gram with negative
sampling satisfies PMI (w,w′) = 〈vw, vw′〉 − β for a constant β. Our result justifies via a generative model
why this should be satisfied even for low dimensional word vectors. (4) Variants of (2.2) were hypothesized
and empirically supported also in (Globerson et al., 2007) and (Maron et al., 2010).

Proof sketch of Theorem 1 Here we describe a proof sketch, while the complete proof is provided in
Appendix A.

Let w and w′ be two arbitrary words. We start with integrating out the hidden variables c:

p(w,w′) =

∫
c,c′

p(c, c′) [p(w|c)p(w′|c′)] dcdc′ =

∫
c,c′

p(c, c′)
exp(〈vw, c〉)

Zc

exp(〈vw′ , c′〉)
Zc′

dcdc′ (2.5)

where c and c′ are the hidden discourse variables that control the emission of two words w,w′, and Zc =∑
w exp(〈vw, c〉) is the partition function that is the implied normalization in equation (2.1). Integrals

like (2.5) would normally be difficult, because of the partition functions. However, in our case we can prove
that the values of the partition functions Zc’s typically don’t vary much.

Lemma 1. There exists Z such that with high probability (1− 4 exp(−d0.2)) over the choice of vw’s and c,

(1− o(1))Z ≤ Zc ≤ (1 + o(1))Z (2.6)

Using this lemma, we get that the right-hand side of (2.5) equals

1± o(1)

Z2

∫
c,c′

p(c, c′) exp(〈vw, c〉) exp(〈vw′ , c′〉)dcdc′ (2.7)

Our model assumptions state that c and c′ cannot be too different. To leverage that, we rewrite (2.7) a
little, and get that it equals

1± o(1)

Z2

(∫
c

exp(〈vw, c〉)p(c)dc
∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′
)

=
1± o(1)

Z2

(∫
c

exp(〈vw, c〉)p(c)A(c)dc

)

4



where A(c) :=

∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′. We claim that A(c) = (1±o(1)) exp(〈vw′ , c〉). Doing some algebraic

manipulations,

A(c) =

∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′ = exp(〈vw′ , c〉)
∫
c′

exp(〈vw′ , c′ − c〉)p(c′|c)dc′.

By the fact that the directions of the vectors vw are Gaussian distributed, one can show that the maximum
absolute value of any coordinate of vw is ‖vw‖∞ = O(κ log n). Furthermore, by our model assumptions,
‖c− c′‖1 = O(1/ log2 n). So

〈vw, c− c′〉 ≤ ‖vw‖∞‖c− c′‖1 = o(1)

and thus A(c) = (1± o(1)) exp(〈vw′ , c〉). Doing this calculation carefully, we have

p(w,w′) =
1± o(1)

Z2

∫
c

p(c) exp(〈vw + vw′ , c〉)dc.

Since c has a product distribution, by Taylor expanding exp(〈v, c〉) (considering the coordinates of v as
variables) and bounding the terms with order higher than 2, we can show that

p(w,w′) =
(1± o(1))

Z2
exp(‖vw + vw′‖22/2d)

leading to the desired bound on log p(w,w′) for the case when the window size q = 2. The bound on log p(w)
can be shown similarly.

What remains is to prove Lemma 1. Note that for fixed c, when word vectors have Gaussian priors
assumed as in the our model, Zc =

∑
w exp(〈vw, c〉) is a sum of independent random variables. Using proper

concentration of measure tools4, it can be shown that the variance of Zc are relatively small compared to its
mean Evw [Zc], and thus Zc concentrates around its mean. So it suffices to show that Evw [Zc] for different c
are close to each other.

Using the fact that the word vector directions have a Gaussian distribution, Evw [Zc] turns out to only
depend on the norm of c (which are fairly concentrated around 1). More precisely,

E
vw

[Zc] = f(‖c‖22) (2.8)

where f is defined as f(α) = nEs[exp(s2α/2)] and s has the same distribution as the norms of the word
vectors. We sketch the proof of this. In our model, vw = sw · v̂w, where v̂w is a unit Gaussian vector, and
sw is the norm of vw. Then

E
vw

[Zc] = n E
vw

[exp(〈vw, c〉)] = n E
sw

[
E

vw|sw
[exp(〈vw, c〉) | sw]

]
where the second line is just an application of the law of total expectation, if we pick the norm of the
(random) vector vw first, followed by its direction. Conditioned on sw, 〈vw, c〉 is a Gaussian random variable
with variance ‖c‖22s2w/d. Hence, Evw [Zc] = nEs[exp(s2‖c‖22/2)], as we needed.

Using more concentration inequalities, we have that the typical c has ‖c‖2 = 1 ± o(1) and therefore it
can be shown that f(‖c′‖22) ≈ f(‖c‖22). In summary, we connected Zc with Zc′ by

Zc ≈ E
vw

[Zc] = f(‖c‖22) ≈ f(‖c′‖22) = E
vw

[Zc′ ] ≈ Zc′

Bounding the amount of approximation in each step carefully will lead to the desired result as in Lemma 1.
Finally we note that the concentration bounds crucially use the fact that d is sufficiently small (O(

√
n)), so

the low-dimensionality is necessary for our main result.

4Note this is quite non-trivial: the random variable exp(〈vw, c〉) is not subgaussian nor bounded, since the scaling of w and c
is such that 〈vw, c〉 is Θ(1), and therefore exp(〈vw, c〉) is in the non-linear regime. In fact, the same concentration phenomenon
does not happen for w. The occurrence probability of word w is not necessarily concentrated because the `2 norm of vw can
vary a lot in our model, which allows the words to have a large dynamic range.
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2.1 RAND-WALK training objective and relationship to other models

To get a training objective out of Theorem 1, we reason as follows. Let L be the corpus size, and Xw,w′ the
number of times words w,w′ co-occur within a context of size 10 in the corpus. If the random walk mixes
fairly quickly, then the set of Xw,w′ ’s over all word pairs is distributed (up to a very close approximation)

as a multinomial distribution Mul(L, {pw,w′}) where pw,w′ ∝ ‖vw + vw′‖22 .
Then by a simple calculation (see Appendix B), the maximum likelihood values for the word vectors

correspond to

min
{vw},C

∑
w,w′

Xw,w′

(
log(Xw,w′)− ‖vw+vw′‖22 − C

)2
(Objective SN) (2.9)

As usual, empirical performance is improved by weighting down very frequent word pairs, which is done by
replacing the weighting Xw,w′ by its truncation min{Xw,w′ , Xmax} where Xmax is a constant such as 100.
This is possibly because the very frequent words like “the” do not fit our model. We call this objective
with the truncated weights the SN objective (Squared Norm). A similar objective PMI can be obtained
from (2.4), using the same weighting of terms as above. (This is an approximate MLE, using that the error
between the emprical and true value of PMI(w,w′) is driven by this error in Pr(w,w′), not Pr[w],Pr[w′].)

Both objectives involve something like Weighted SVD which is NP-hard, but empirically seems solvable
in our setting via AdaGrad.

Connection to GloVe Compare (2.9) with the objective used by GloVe (Pennington et al., 2014):∑
w,w′

f(Xw,w′)(log(Xw,w′)− 〈vw, vw′〉 − sw − sw′ − C)2 (2.10)

with f(Xw,w′) = min{X3/4
w,w′ , 100}. Their weightings and the need for bias terms sw, sw′ , C were experimen-

tally derived; here they are all predicted and given meanings due to Theorem 1. In particular, our objective
has essentially no “knobs to turn.”

Connection to word2vec(CBOW) The CBOW model in word2vec posits that the probability of a word
wk+1 as a function of the previous k words w1, w2, . . . , wk is

Pr
[
wk+1

∣∣ {wi}ki=1

]
∝ exp(〈vwk+1

,
1

k

k∑
i=1

vwi〉).

Assume a simplified version of our model, where a small window of k words is generated as follows: sample
c ∼ C, where C is a uniformly random unit vector, then sample (w1, w2, . . . , wk) ∼ exp(〈

∑k
i=1 vwi , c〉)/Zc.

Furthermore, assume Zc = Z for any c.

Lemma 2. In the simplified version of our model, the Maximum-a-Posteriori (MAP) estimate of c given

(w1, w2, . . . , wk) is
∑k
i=1 vwi

‖
∑k
i=1 vwi‖

2
2

.

Proof. The c maximizing Pr [c| (w1, w2, . . . , wk)] is the maximizer of Pr [c] Pr [(w1, w2, . . . , wk) |c]. Since
Pr [c] = Pr [c′] for any c, c′, and we have Pr [(w1, w2, . . . , wk) |c] = exp(〈

∑
i vwi , c〉)/Z, the maximizer is

clearly c =
∑k
i=1 vwi

‖
∑k
i=1 vwi‖

2
2

.

Thus using the MAP estimate of ct gives essentially the same expression as CBOW apart from the
rescaling. (Empirical works often omit rescalings due to computational efficiency.)
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3 Linear algebraic structure of concept classes

As mentioned, word analogies like “a:b::c:??”can be solved via a linear algebraic expression:

argmin
d
‖va − vb − vc + vd‖22 , (3.1)

where vectors have been normalized so that ‖vd‖2 = 1. (A less linear variant of (3.1) called 3COSMUL can
slightly improve success rates (Levy and Goldberg, 2014a).) This suggests that the semantic relationships
in question are characterized by a straight line: for each such relationship R there is a direction µR in space
such that va − vb lies along roughly along µR. Below, we mathematically prove this fact. In Section 4
this explanation is empirically verified, as well as used to improve success rates at analogy solving by a few
percent,

Previous papers have also tried to prove the existence of such a relationship among word vectors from
first principles, and we now sketch what was missing in those attempts. The basic issue is approximation
error: the difference between the best solution and the 2nd best solution to (3.1) is typically small, whereas
the approximation error in the objective in the low-dimensional solutions is larger. Thus in principle the
approximation error could kill the method (and the emergence of linear relationship) but it doesn’t. (Note
that expression (3.1) features 6 inner products, and all may suffer from this approximation error.)

Prior explanations Pennington et al. (2014) try to invent a model where such linear relationships should
occur by design. They posit that queen is a solution to the analogy “man:woman::king:??” because

p(χ | king)

p(χ | queen)
≈ p(χ | man)

p(χ | woman)
, (3.2)

where p(χ | king) denotes the conditional probability of seeing word χ in a small window of text around
king. (Relationship (3.2) is intuitive since both sides will be ≈ 1 for gender-neutral χ, e.g., “walks” or
“food”, will be > 1 when χ is, e.g., “he, Henry” and will be < 1 when χ is, e.g., “dress, she, Elizabeth.”
This was also observed by Levy and Goldberg (2014a).) Then they posit that the correct model describing
word embeddings in terms of word occurrences must be a homomorphism from (<d,+) to (<+,×), so vector
differences map to ratios of probabilities. This leads to the expression

pw,w′ = 〈vw, vw′〉+ bw + bw′ ,

and their method is a (weighted) least squares fit for this expression. One shortcoming of this argument
is that the homomorphism assumption assumes the linear relationships instead of explaining them from a
more basic principle. More importantly, the empirical fit to the homomorphism has nontrivial approximation
error, high enough that it does not imply the desired strong linear relationships.

Levy and Goldberg (2014b) show that empirically, skip-gram vectors satisfy

〈vw, vw′〉 ≈ PMI(w,w′) (3.3)

up to some shift. They also give an argument suggesting this relationship must be present if the solution is
allowed to be very high-dimensional. Unfortunately that argument doesn’t extend at all to low-dimensional
embeddings. But again, empirically the approximation error is high.

Our explanation. The current paper has given a generative model to theoretically explain the emergence
of relationship (3.3), but, as noted after Theorem 1, the issue of high approximation error does not go away
either in theory or in the empirical fit. We now show that the isotropy of word vectors (assumed in the
theoretical model and verified empirically) implies that even a weak version of (3.3) is enough to imply the
emergence of the observed linear relationships in low-dimensional embeddings.

A side product of this argument will be a mathematical explanation of the superiority –empirically well-
established— of low-dimensional word embeddings over high-dimensional ones in this setting. (Many people
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seem to assume this superiority follows theoretically from generalization bounds: smaller models generalize
better. But that theory doesn’t apply here, since analogy solving plays no role in the training objective.
Generalization theory does not apply easily to such unsupervised settings, and there is no a priori guarantee
that a more succinct solution will do better at analogy solving —just as there is no guarantee it will do well
in some other arbitrary task.)

This argument will assume the analogy in question involves a relation that obeys Pennington et al.’s
suggestion in (3.2). Namely, for such a relation R there exists function νR(·) depending only upon R such
that for any a, b satisfying R there is a noise function ξa,b,R(·) for which:

p(χ | a)

p(χ | b)
= νR(χ) · ξa,b,R(χ) (3.4)

For different words χ there is huge variation in (3.4), so the multiplicative noise may be large.
Our goal is to show that the low-dimensional word embeddings have the property that there is a vector

µR such that for every pair of words a, b in that relation, va− vb = µR + noise vector, where the noise vector
is small. (This is the mathematical result missing from the earlier papers.)

Taking logarithms of (3.4) gives:

log

(
p(χ | a)

p(χ | b)

)
= log(νR(χ)) + ζa,b,R(χ) (3.5)

Theorem 1 implies that the left side simplifies to log
(
p(χ|a)
p(χ|b)

)
= 1

d 〈vχ, va − vb〉+ εa,b(χ) where ε captures

the small approximation errors induced by the inexactness of Theorem 1. This adds yet more noise! Denoting
by V the n× d matrix whose rows are the vχ vectors, we rewrite (3.5) as:

V (va − vb) = d log(νR) + ζ ′a,b,R (3.6)

where log(νR) in the entry-wise log of vector νR and ζ ′a,b,R = d(ζa,b,R − εa,b,R) is the noise.
In essence, (3.6) is a linear regression with n � d and we hope to recover va − vb. Here V , the design

matrix in the regression, is the matrix of all word vectors, which in our model (as well as empirically) satisfies
an isotropy condition. This makes it random-like, and thus solving the regression by left-multiplying by V †,
the pseudo-inverse of V , ought to “denoise” effectively. We now show that it does.

Our model assumed the set of all word vectors is drawn from a scaled Gaussian, but the next proof will
only need the following weaker properties. (1) The smallest non-zero singular values of V is larger than
some constant c1 times the average of the squared singular values, namely, ‖V ‖F /

√
d. (Empirically we find

c1 ≈ 1/3 holds; see Section 4.) (2) The left singular vectors behave like random vectors with respect to ζ ′a,b,R
—i.e., have inner product at most c2‖ζ ′a,b,R‖/

√
n for some constant c2. (3) The max norm of a row in V is

O(
√
d).

Theorem 2 (Noise reduction). Under the conditions of the previous paragraph, the noise in the dimension-

reduced semantic vector space satisfies ‖ζ̄a,b,R‖2 . ‖ζ ′a,b,R‖2
√
d
n . As a corollary, the relative error in the

dimension-reduced space is
√
d/n factor smaller.

Proof. The proof uses the standard analysis of linear regression. Let V = PΣQT be the SVD of V and
let σ1, . . . , σd be the left singular values of V (the diagonal entries of Σ). For notational ease we omit the
subscript in ζ̄ and ζ since they are not relevant for this proof. We have V † = QΣ−1PT and therefore
ζ̄ = V †ζ ′ = QΣ−1PT ζ ′. By the second assumption we have ‖PT ζ ′‖∞ ≤ c2√

n
‖ζ ′‖2 and therefore ‖PT ζ ′‖22 ≤

c22d
n · ‖ζ

′‖22. Furthermore, ‖ζ̄‖2 ≤ σ−1d ‖PT ζ‖2. But, we claim σ−1d ≤
√

1
c1n

: indeed,
∑d
i=1 σ

2
i = O(nd),

since the average squared norm of a word vector is d. The claim then follows from the first assumption.

Continuing, we get σ−1d ‖PT ζ‖2 ≤
√

1
c1n

√
c22d
n ‖ζ ′‖

2
2 = c2

√
d√

c1n
‖ζ ′‖2 as desired. The last statement follows

because the norm of the “signal” (which is d log(νR) originally, and is V †d log(νR) = va− vb after dimension
reduction) also gets reduced by a factor of

√
n.
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Figure 1: The partition function Zc. The figure shows the histogram of Zc for 1000 random vectors c of
appropriate norm, as defined in the text. The x-axis is normalized by the mean of the values. The values Zc
for different c concentrate around the mean, mostly in [0.9, 1.1]. This concentration phenomenon is predicted
by our analysis.

4 Experimental verification

In this section, we provide experiments empirically supporting our generative model.

Corpus All word embedding vectors are trained on the English Wikipedia (March 2015 dump). It is
pre-processed by standard approach (removing non-textual elements, sentence splitting, and tokenization),
leaving about 3 billion tokens. Words that appeared less than 1000 times in the corpus are ignored, resulting
in a vocabulary of 68, 430. The co-occurrence is then computed using windows of 10 tokens to each side of
the focus word.

Training method Our embedding vectors are trained by optimizing the SN objective (2.9) using Ada-
Grad (Duchi et al., 2011) with initial learning rate of 0.05 and 100 iterations. The PMI objective derived
from (2.4) was also used. SN has average (weighted) term-wise error of 5%, and PMI has 17%. We observed
that SN vectors typically fit the model better and have better performance, which can be explained by larger
errors in PMI, as implied by Theorem 1. So, we only report the results for SN.

For comparison, GloVe and two variants of word2vec (skip-gram and CBOW) vectors are trained. GloVe’s
vectors are trained on the same co-occurrence as SN with the default parameter values5. word2vec vectors
are trained using a window size of 10, with other parameters set to default values6.

4.1 Model verification

Experiments were run to test our modeling assumptions. First, we tested two counter-intuitive properties:
the isotropy property of the word vectors (see Theorem 2) and the concentration of the partition function Zc
for different discourses c (see Theorem 1). For comparison we also tested these properties for word2vec and
GloVe vectors, though they are trained by different objectives. Finally, we tested the linear relation between
the squared norms of our word vectors and the logarithm of the word frequencies, as implied by Theorem 1.

Isotropy For the isotropy condition, the quadratic mean of the singular values is 34.3, while the minimum
non-zero singular value of our word vectors is 11. Therefore, the ratio between them is a small constant,
consistent with our model. The ratios for GloVe, CBOW, and skip-gram are 1.4, 10.1, and 3.1, respectively,
which are all small constants.

5http://nlp.stanford.edu/projects/glove/
6https://code.google.com/p/word2vec/
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Figure 2: The linear relationship between the squared norms of our word vectors and the logarithms of
the word frequencies. Each dot in the plot corresponds to a word, where x-axis is the natural logarithm of
the word frequency, and y-axis is the squared norm of the word vector. The Pearson correlation coefficient
between the two is 0.75, indicating a significant linear relationship, which strongly supports our mathematical
prediction, that is, equation (2.3) of Theorem 1.

Partition function Our proofs predict the concentration of the partition function Zc =
∑
w′ exp(c>w′)

for a random discourse vector c (see Lemma 1). This is verified empirically by picking a uniformly random
direction, of norm ‖c‖ = 4/µw, where µw is the average norm of the word vectors7. Figure 1(a) shows the
histogram of Zc for 1000 such randomly chosen c’s for our vectors. The values are concentrated, mostly in
the range [0.9, 1.1] times the mean. Concentration is also observed for other types of vectors, especially for
GloVe and CBOW.

Squared norms v.s. word frequencies Figure 2 shows a scatter plot for the squared norms of our
vectors and the logarithms of the word frequencies. A linear relationship is observed (Pearson correlation
0.75), thus supporting Theorem 1. The correlation is stronger for high frequency words, possibly because
the corresponding terms have higher weights in the training objective.

4.2 Performance on analogy tasks

We compare the performance of our word vectors on analogy tasks, specifically the two testbeds GOOGLE
and MSR (Mikolov et al., 2013a;c). The former contains 7874 semantic questions such as “man:woman::king :??”,
and 10167 syntactic ones such as “run:runs::walk :??.” The latter has 8000 syntactic questions for adjectives,
nouns, and verbs.

To solve these tasks, we use linear algebraic query8. That is, first normalize the vectors to unit norm
and then solve “a:b::c:??” by

argmin
d
‖va − vb − vc + vd‖22 . (4.1)

The algorithm succeeds if the best d happens to be correct.
The performance of different methods is presented in Table 1. Our vectors achieve performance compa-

rable to the others. On semantic tasks, our vectors achieve similar accuracy as GloVe, while word2vec has
lower performance. On syntactic tasks, they achieve accuracy 0.04 lower than GloVe and skip-gram, while

7Note that our model uses the inner products between the discourse vectors and word vectors, so it is invariant if the
discourse vectors are scaled by s while the word vectors are scaled by 1/s for any s > 0. Therefore, one needs to choose the

norm of c properly. We assume ‖c‖µw =
√
d/κ ≈ 4 for a constant κ = 5 so that it gives a reasonable fit to the predicted

dynamic range of word frequencies according to our theory; see model details in Section 2.
8One can instead use the 3COSMUL in (Levy and Goldberg, 2014a), which increases the accuracy by about 3%. But it is

not linear while our focus here is the linear algebraic structure.
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Relations SN GloVe CBOW skip-gram

G
semantic 0.84 0.85 0.79 0.73
syntactic 0.61 0.65 0.71 0.68
total 0.71 0.73 0.74 0.70

M

adjective 0.50 0.56 0.58 0.58
noun 0.69 0.70 0.56 0.58
verb 0.48 0.53 0.64 0.56
total 0.53 0.57 0.62 0.57

Table 1: The accuracy on two word analogy task testbeds: G (the GOOGLE testbed); M (the MSR testbed).
Performance is close to state of the art despite using a generative model with provable properties.

relation 1 2 3 4 5 6 7

1st 0.65 ± 0.07 0.61 ± 0.09 0.52 ± 0.08 0.54 ± 0.18 0.60 ± 0.21 0.35 ± 0.17 0.42 ± 0.16
2nd 0.02 ± 0.28 0.00 ± 0.23 0.05 ± 0.30 0.06 ± 0.27 0.01 ± 0.24 0.07 ± 0.24 0.01 ± 0.25

relation 8 9 10 11 12 13 14

1st 0.56 ± 0.09 0.53 ± 0.08 0.37 ± 0.11 0.72 ± 0.10 0.37 ± 0.14 0.40 ± 0.19 0.43 ± 0.14
2nd 0.00 ± 0.22 0.01 ± 0.26 0.02 ± 0.20 0.01 ± 0.24 0.07 ± 0.26 0.07 ± 0.23 0.09 ± 0.23

Table 2: The verification of relation directions on the GOOGLE testbed. For each relation, take vab = va−vb
for pairs (a, b) in the relation, and then calculate the top singular vectors of the matrix formed by these
vab’s. The row with label “1st”/“2nd” shows the cosine similarities of individual vab to the 1st/2nd singular
vector (the mean and standard deviation).

CBOW typically outperforms the others. This is not suprising since our model is tailored for modeling se-
mantics, and lacks specific features for syntactic relations. For example, a word “she” can affect the context
by a lot and can determine if the next word is “thinks” rather than “think.” Incorporating such features in
the model is left for future work.

4.3 Directions corresponding to relations

The theory in Section 3 predicts the existence of a direction for a relation. To verify this, we took vab = va−vb
for word pairs (a, b) in a relation, calculated the top singular vectors of the matrix formed by these vab’s, and
computed the cosine similarity of individual vab to the singular vectors. Table 2 shows the mean similarities
and standard deviations on the first and second singular vectors. This shows that most (va − vb)’s are close
to the first singular vector, which is approximately the vector for the relation. Their similarities to the
second singular vectors are centered around 0 with larger deviations, indicating that these components look
like random noise, in line with our model.

Next, we indicate how to use this linear structure to improve analogy solving.

Cheating solver for analogy testbeds As a proof of concept we first design cheating way to improve
performance on the analogy testbed. This uses the fact that the same semantic relationship (e.g., masculine-
feminine, singular-plural) is tested many times in the testbed. If a relation R is represented by a direction
µR then the cheating algorithm can learn this direction (via rank 1 SVD) after seeing a few examples of the
relationship. Then use the following method of solving “a:b::c:??”: look for a word d such that vc − vd has
the largest projection on µR, the relation direction for (a, b). This can boost success rates by about 10%.

The testbed can try to combat such cheating by giving analogy questions in a random order. But the
cheating algorithm can just cluster the presented analogies to learn which of them rest the same relation.
Thus the final algorithm, named analogy solver with relation direction by clustering (RD-c), is: take all
vectors va−vb for all the word pairs (a, b) presented among the analogy questions and do k-means clustering
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SN GloVe CBOW skip-gram

w/o RD 0.71 0.73 0.74 0.70
RD-c (k = 20) 0.74 0.77 0.79 0.75
RD-c (k = 30) 0.79 0.80 0.82 0.80
RD-c (k = 40) 0.76 0.80 0.80 0.77

Table 3: The accuracy of RD-c algorithm (i.e., the cheater method) on the GOOGLE testbed. The algorithm
is described in the text. For comparison, the row “w/o RD” shows the accuracy of the old method without
using relation direction.

SN GloVe CBOW skip-gram

w/o RD 0.71 0.73 0.74 0.70
RD-nn (k = 10) 0.71 0.74 0.77 0.73
RD-nn (k = 20) 0.72 0.75 0.77 0.74
RD-nn (k = 30) 0.73 0.76 0.78 0.74

Table 4: The accuracy of RD-nn algorithm on the GOOGLE testbed. The algorithm is described in the
text. For comparison, the row “w/o RD” shows the accuracy of the old method without using relation
direction.

on them; for each (a, b), estimate the relation direction by taking the first singular vector of its cluster, and
substitute that for va − vb in (4.1) when solving the analogy. Table 3 shows the performance on GOOGLE
with different values of k; e.g. using our SN vectors and k = 30 leads to 0.79 accuracy. Thus future designers
of analogy testbeds should remember not to test the same relationship too many times! This still leaves
other ways to cheat, such as learning the directions for interesting semantic relations from other collections
of analogies.

Non-cheating solver for analogy testbeds Now we show that even if a relationship is tested only once
in the testbed, there is a way to use the above structure. Given “a:b::c:??,” the solver first finds the top
300 nearest neighbors of a and those of b, and then finds among these neighbors the top k pairs (a′, b′) so
that the cosine similarities between va′ − vb′ and va − vb are largest. Finally, the solver uses these pairs
to estimate the relation direction (via rank 1 SVD), and substitute this (corrected) estimate for va − vb in
(4.1) when solving the analogy. This algorithm is named analogy solver with relation direction by nearest
neighbors (RD-nn).

Table 4 shows its performance, which consistently improves over the old method by about 3%.

5 Conclusions

A simple generative model has been given to “explain” the classical PMI based word embedding models,
as well as recent variants involving energy-based models and matrix factorization. Though our RAND-
WALK training objective has almost no “knobs to turn”, the model fits surprisingly well with the word pair
co-occurrence data and solves analogies almost as well as prior discriminative models.

The spatial isotropy of word vectors is both an assumption in our model, and also a new empirical
finding of our paper. We feel it may help with further development of language models. It is important
for explaining the success of solving analogies via low dimensional vectors. It also implies that semantic
relationships among words manifest themselves as special directions among word embeddings (Section 3),
which leads to a cheater algorithm for solving analogy testbeds.

Our model is tailored to capturing semantic similarity, more akin to a loglinear dynamic topic model.
In particular, local word order is unimportant. Designing similar generative models (with provable and
interpretable properties) with linguistic features is left for future work.
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A Proofs of Theorem 1

In this section we prove Theorem 1 and 2 (restated below) .

Theorem 1. Assume that the hidden contexts are at stationary distribution, with high probability over the
choice of vw’s, we have that for any two different words w and w′

log p(w,w′) =
1

2d
‖vw + vw′‖2 − 2 logZ ± o(1) (A.1)

for some fixed constant Z. Moreover,

log(p(w)) =
1

2d
‖vw‖22 − logZ ± o(1). (A.2)

Lemma 1. There exists Z such that for any context c with |‖c‖ − 1| ≤ d−0.4 , with high probability (1 −
2e−2n

0.4

)) over the choice of vw’s,

(1− o(1))Z ≤ Zc ≤ (1 + o(1))Z.

We first prove Theorem 1 using Lemma 1, and Lemma 1 will be proved in Section A.1. For the intuition
of the proof, please see Section 2 of the main paper.

Proof of Theorem 1. Let c be the hidden context that determines the probability of word w, and c′ be the
next one that determines w′. We use p(c′|c) to denote the Markov kernel (transition matrix) of the Markov
chain. Let C be the stationary distribution of context vector c. We marginalize over the contexts c, c′ and
then use the independence of w,w′ conditioned on c, c′,

p(w,w′) =

∫
c,c′

p(w|c)p(w′|c′)p(c, c′)dcdc′

=

∫
c,c′

exp(〈vw, c〉)
Zc

exp(〈vw′ , c′〉)
Zc′

p(c)p(c′|c)dcdc′

(A.3)

We first get rid of the partition function Zc using Lemma 1, which says that there exists Z such that,
with probability 1− 4 exp(−d0.2),

(1− εz)Z ≤ Zc ≤ (1 + εz)Z. (A.4)

where εz = o(1).
Let F be the event that both c and c′ satisfy (A.4)and F be its negation, and let 1F be the indicator

function for the event F . Therefore we have Pr[F ] ≥ 1− 4 exp(−d0.8).
We first decompose the integral (A.3) into the two parts according to whether event F happens,

p(w,w′) =

∫
c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

+

∫
c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc

′ (A.5)

We bound the first quantity on RHS by using (A.4) and the definition of F .

∫
c,c′

1

ZcZc′
exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

≤ (1 + εz)
2 1

Z2

∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′ (A.6)
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and for the second one we use the fact that Zc ≥ n and exp(〈vw, c〉) ≤ exp(2κ
√
d) (by assumption ‖vw‖ ≤ κ

√
d

and ‖c‖ ≤ 2), and conclude ∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc
′

≤ Pr[F ] · exp(4κ
√
d) ≤ exp(−d0.7) (A.7)

For the last inequality we use Pr[F ] ≤ 4 exp(−d0.2). Combining (A.5), (A.6) and (A.7), we obtain

p(w,w′) ≤ (1 + εz)
2 1

Z2

∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′ + exp(−d0.2)

≤ (1 + εz)
2 1

Z2

(∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ + δ0

)
where δ0 = exp(−d0.2)Z2 ≤ exp(−d0.1). This is because Z ≤ exp(2κ)n and d = ω(log2 n), and κ is a
constant.

On the other hand, we can lowerbound similarly

p(w,w′) ≥ (1− εz)2
1

Z2

∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)1Fdcdc′

≥ (1− εz)2
1

Z2

(∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ − exp(−d0.7)

)
≥ (1− εz)2

1

Z2

(∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ − δ0
)

Taking logarithm, the multiplicative error translates to a additive error

log p(w,w′) = log

(∫
c,c′

exp(〈vw, c〉) exp(〈vw′ , c′〉)p(c)p(c′|c)dcdc′ ± δ0
)
− 2 logZ + 2 log(1± εz)

For the purpose of exploiting the fact that c, c′ should be close to each other, we further rewrite log p(w,w′)
by re-organizing the integrals,

log p(w,w′) = log

(∫
c

exp(〈vw, c〉)p(c)dc
∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′ ± δ0
)
− 2 logZ + 2 log(1± εz)

= log

(∫
c

exp(〈vw, c〉)p(c)A(c, c′)dc± δ0
)
− 2 logZ + 2 log(1± εz) (A.8)

where the inner integral which is denoted by A(c, c′),

A(c, c′) :=

∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′

Note that by Lemma 3, we have that for any w ∈ W , ‖vw‖∞ ≤ 4κ log n. Therefore we have that
〈vw, c− c′〉 ≤ ‖vw‖∞‖c− c′‖1 ≤ 4κ log n‖c− c′‖1.

Then we can bound A(c, c′) by
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A(c, c′) =

∫
c′

exp(〈vw′ , c′〉)p(c′|c)dc′

= exp(〈vw′ , c〉)
∫
c′

exp(〈vw′ , c′ − c〉)p(c′|c)dc′

≤ exp(〈vw′ , c〉)
∫
c′

exp(4κ|c′ − c|1 log n)p(c′|c)

= exp(〈vw′ , c〉) E
p(c′|c)

[exp(4κ|c′ − c|1 log n)]

≤ (1 + ε2) exp(〈vw′ , c〉)

For the lower bound of A(c, c′), we first observe that

E
p(c′|c)

[exp(4κ|c′ − c|1 log n)] + E
p(c′|c)

[exp(−4κ|c′ − c|1 log n)] ≥ 2

Therefore it follows model assumption that

E
p(c′|c)

[exp(−4κ|c′ − c|1 log n)] ≥ 1− ε2

Therefore,

A(c, c′) = exp(〈vw′ , c〉)
∫
c′

exp(〈vw′ , c′ − c〉)p(c′|c)dc′

≥ exp(〈vw′ , c〉)
∫
c′

exp(−4κ‖c′ − c‖ log n)p(c′|c)dc′

= exp(〈vw′ , c〉) E
p(c′|c)

[exp(−4κ‖c′ − c‖ log n)]

≥ (1− ε2) exp(〈vw′ , c〉)

Therefore, we obtain that A(c, c′) = (1 ± ε2) exp(〈vw′ , c〉). Plugging the estimation of A(c, c′) into the
equation A.8, we obtain that

log p(w,w′) = log

(∫
c

exp(〈vw, c〉)p(c)A(c, c′)dc± δ0
)
− 2 logZ + 2 log(1± εz)

= log

(∫
c

exp(〈vw, c〉)p(c)(1± ε2) exp(〈vw′ , c〉)dc± δ0
)
− 2 logZ + 2 log(1± εz)

= log

(∫
c

exp(〈vw, c〉)p(c) exp(〈vw′ , c〉)dc± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log

(∫
c

exp(〈vw + vw′ , c〉)p(c)dc± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log

(
E
c∼C

[exp(〈vw + vw′ , c〉)]± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

Now it suffices to compute Ec∼C [exp(〈vw + vw′ , c〉)]. Let t = vw + vw′ . By our assumption, C is a product
distribution across the coordinates. Therefore we can write

E
c∼C

[exp(〈vw + vw′ , c〉)] =

d∏
i=1

E
ci

exp(tici)
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Using lemma 4 for tici ≤ 1( we used the fact that ti ≤ 8κ log n for all t = vw + vw′ , ci ≤ 2√
d

(see

Lemma 3); In our setting κ is a constant, d = ω((log n)2)), we can estimate Eci exp(tici) by

E
ci

exp(tici) = 1 +
t2i
2d

+O(t4i /d
2)

Using the fact that x− x2

2 ≤ ln(1 + x) ≤ x.

logE
c

[exp(〈vw + vw′ , c〉)] =

d∑
i=1

logE
ci

exp(tici) =

d∑
i=1

log

(
1 +

t2i
2d

+O(t4i /d
2)

)

=

d∑
i=1

t2i
2d

+O(t4i /d
2)

= ‖t‖2/(2d) +O(‖t‖44/d2)

Putting altogether, we have that

log p(w,w′) = log

(
E
c∼C

[exp(〈vw + vw′ , c〉)]± δ0
)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= ‖vw + vw′‖2/(2d) +O(‖vw + vw′‖44/d2) +O(δ′0)− 2 logZ ± 2εz ± ε2
= (1 + δ)‖vw + vw′‖2/(2d)− 2 logZ ± 2εz ± ε2

where δ′0 = δ0 · (Ec∼C [exp(〈vw + vw′ , c〉)])−1 = o(1) and δ = d−0.4, where in the last step we used Lemma
3 that ‖vw + vw′‖44/d2 < ‖vw + vw′‖2/d1.6.

Note that εz, ε2 are on the order of o(1), and δ(‖vw + vw′‖2/(2d)) = o(1) for all w and w′ by Lemma 3,
we obtain the desired bound,

log p(w,w′) =
1

2d
‖vw + vw′‖2 − 2 logZ ± o(1).

Lemma 3. With high probability over the choice of vw’s, we have that for any w ∈ W and any i, (vw)i ≤
4κ log n, and for any pair of words w,w′,

‖vw + vw′‖44/d2 < ‖vw + vw′‖2/d1.6

Proof. Recall that we assume vw are generated independently as vw = sw · v̂w where sw ≤ κ
√
d for some

constant κ and v̂w is from a spherical Gaussian distribution (each coordinate is i.i.d N(0, 1/d)).
Let’s do each of the claims separately.
For a standard Gaussian distribution, we know that

Pr
[
|(v̂w)i| ≥ 4d−0.5 log n

]
≤ e− 16

2 log2 n

Since sw ≤ κ
√
d, we know that

Pr [|(sw · v̂w)i| ≥ 4κ log n] ≤ e− 16
2 log2 n

Union bounding, we have that with probability 1− dne− 16
2 log2 n = 1− o(1) (recall that d < n0.5), for all

words w, for every coordinate i, (vw)i ≤ 4κ log n.
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The second claim is not much more difficult. For standard Gaussian distribution, we know that

Pr
[
|(v̂w)i| ≥ d−0.3/κ

]
≤ e−

d0.4

2κ2

Since sw ≤ κ
√
d, we know that

Pr
[
|(sw · v̂w)i| ≥ d0.2

]
≤ e−

d0.4

2κ2

Taking a union bound, we have: with probability 1 − dne−
d0.4

2κ2 (note in our setting dne−
d0.4

2κ2 = o(1) for
large enough d), for all words w and their coordinate i, |(vw)i| ≤ d0.2. In this case we have:

(vw + vw′)4i /d
2 ≤ (vw + vw′)2i /d

1.6

which easily implies the claim we want.

Lemma 4. If a real random variable X is symmetric and E[X2] = 1/d and |X| ≤ 2/
√
d a.s. Then for

t <
√
d/10, we have

1 +
t2

2d
≤ E
X

exp(tX) ≤ 1 +
t2

2d
+

4

3

(
t√
d

)4

Proof. By the moment generating function of X, we have

E
X

exp(tX) =

∞∑
j=0

tj

(j)!
E[Xj ]

Therefore by the assumption that X is symmetric and E[X2] = 1
d , we have that

E
X

exp(tX) ≥ 1 +
t2

2d

On the other hand, using the fact that |X| < 2√
d

a.s.

E
X

exp(tX) =

∞∑
j=0

t2j

(2j)!
E[X2j ] = 1 +

t2

2d
+

∞∑
j=2

1

(2j)!

(
2t√
d

)2j

≤ 1 +
t2

2d
+

4

3

(
t√
d

)4

where the last inequality is because we choose t <
√
d/10: t√

d
< 1/10; hence

∞∑
j=2

1

(2j)!

(
2t√
d

)2j

≤
(

t√
d

)4 ∞∑
j=0

(
1

5

)2j

≤ 4

3

(
t√
d

)4

A.1 Analyzing partition function Zc

In this section, we prove Lemma 1. We basically first prove that for the means of Zc are all (1 + o(1))-close
to each other, and then prove that Zc is concentrated around its mean. It turns out the concentration part
is non trivial because the random variable of concern, exp(〈vw, c〉) is not well-behaved in terms of the tail.
Note that exp(〈vw, c〉) is NOT sub-gaussian for any variance proxy. This essentially disallows us to use an
existing concentration inequality directly. We get around this issue by considering the truncated version of
exp(〈vw, c〉), which is bounded, and have similar tail properties as the original one, in the regime that we
are concerning.
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Proof of Lemma 1. Recall that by definition

Zc =
∑
w

exp(〈vw, c〉).

We fix context c and view vw as random variables throughout this proof. For convenience, we denote the
norm of c by ` = ‖c‖. Recall that vw is composed of vw = sw · v̂w, where sw is the scaling and v̂w is from
spherical Gaussian with covariance 1

dId×d and thus almost a unit vector.
Just as a warm-up, we lowerbound the mean of Zc as follows:

E[Zc] = nE [exp(〈vw, c〉)] ≥ nE [1 + 〈vw, c〉] = n

On the other hand, to upperbound the mean of Zc, we condition on the scaling sw,

E[Zc] = nE[exp(〈vw, ṽc〉)]
= nE [E [exp(〈vw, ṽc〉) | sw]]

Note that conditioned on sw, we have that 〈vw, ṽc〉 is a Gaussian random variable with variance σ2 =
‖c‖2s2w/d. Therefore,

E [exp(〈vw, ṽc〉) | sw] =

∫
x

1

σ
√

2π
exp(− x2

2σ2
) exp(x)dx

=

∫
x

1

σ
√

2π
exp(− (x− σ2)2

2σ2
+ σ2/2)dx

= exp(σ2/2)

It follows that

E[Zc] = E[exp(σ2/2)] = E[exp(s2w‖c‖2/2)] = E[exp(s2‖c‖2/2)]

Let Z := E[exp(|s|2/2d)]. By Proposition 5, we have that 1− o(d−0.4) ≤ ‖c‖ ≤ 1 + o(d−0.4). Therefore,
for any c,

E[Zc] = E[exp(s2‖c‖2/2d)] ≤ E[exp(s2/2) · exp(o(d−0.4)s2/2d)] ≤ (1 + o(d−0.4)κ2/2)Z = (1 + o(1))Z

Similarly we can prove that E[Zc] ≥ (1− o(1))Z for any c.
We calculate the variance of Zc as follows:

V[(Zc − EZc)2] =
∑
w

V
[
exp(〈vw, c〉)2

]
≤ nE[exp(2〈vw, c〉)]

= nE [E [exp(2〈vw, c〉) | sw]]

By a very similar calculation as above, using the fact that 〈vw, c〉 is a Gaussian random variable with variance
σ2 = `2‖sw‖2/d,

E
[
exp(〈vw, c〉2) | sw

]
=

∫
x

1

σ
√

2π
exp(− x2

2σ2
) exp(2x)dx

=

∫
x

1

σ
√

2π
exp(− (x− 2σ2)2

2σ2
+ 2σ2)dx

= exp(2σ2)

Therefore, we have that
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E[(Zc − EZc)2] ≤ nE [E [exp(2〈vw, ṽc〉) | sw]]

= nE
[
exp(2σ2)

]
= nE

[
exp(2`2‖sw‖2/d)

]
≤ Λn

For Λ = exp(8κ2) being a constant. Therefore, the standard deviation of Zc is
√

Λn is much less than n.
Also note that E[Zc] ≥ n, therefore we should expect with good probability over the choice of vw’s, we have
that Zc is within E[Zc]±

√
Λn = E[Zc](1 + o(1)).

However, observe that exp(〈vw, c〉) is not sub-Gaussian or bounded. This disallows us to apply the usual
concentration inequalities. The rest of the proof deals with this issue in a slightly more specialized manner.

Let’s define Fw be the event that exp(〈vw, c〉) < d0.2. Observe that F is a very high probability event
with Pr[Fw] ≥ 1− exp(−d0.2/κ2) . Let random variable Xw have the same distribution as exp(〈vw, c〉)|Fw .

We prove concentration inequality for Z ′c =
∑
wXw. Observe that mean of Z ′c is lowerbounded

E[Z ′c] = nE [exp(〈vw, c〉)|Fw ] ≥ n exp(E [〈vw, c〉|Fw ]) = n

and the variance is upperbounded by

V[Z ′c] ≤ nE
[
exp(〈vw, c〉)2|Fw

]
≤ 1

Pr[Fw]
E
[
exp(〈vw, c〉)2

]
≤ 1

Pr[Fw]
Λn ≤ 1.1Λn

where the second line uses the fact that

E
[
exp(〈vw, c〉)2

]
= Pr[Fw]E

[
exp(〈vw, c〉)2|Fw

]
+ Pr[Fw]E

[
exp(〈vw, c〉)2|Fw

]
≥ Pr[Fw]E

[
exp(〈vw, c〉)2|Fw

]
.

Moreover, by definition, for any w, |Xw| ≤ d0.2. Therefore by Bernstein’s inequality, we have that

Pr
[
|Z ′c − E[Z ′c]| > 4

√
Λn+ 12n0.7

]
≤ e−2n

0.4

By the fact that E[Z ′c] ≥ n, we have that for ε = n−0.3 ≤ d−0.6 (we use the fact that d < n0.5)

Pr [|Z ′c − E[Z ′c]| > εE[Z ′c]] ≤ 2e−2n
0.4

Let F = ∩wFw be the union of all Fw. We have that by definition, Z ′c have the same distribution as
Zc|F . Therefore, we have that

Pr[|Zc − E[Z ′c]| > εE[Z ′c] | F ] ≤ 2e−2n
0.4

and therefore

Pr[|Zc − E[Z ′c]| > εE[Z ′c]] ≤
1

Pr[F ]
· Pr[|Zc − E[Z ′c]| > εE[Z ′c] | F ] ≤ 2e−2n

0.4

Finally we show that E[Z ′c] are close to each other as well. We take c that satisfies that ‖c‖ = 1± d−0.4
and consider E[Zc] = E[exp(〈v, c〉)|F ] , where v is from the same distribution where vw is generated, and F
is the event that exp(〈v, c〉) ≤ d0.2. Note that random variable exp(〈v, c〉)|F is really rational invariant with
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respect to c. Therefore we have that E[Z ′c] = E[exp(〈v, ‖c‖z〉)|F ], where z is any unit vector in the space,
and F ′ is the event that exp(〈v, z〉) ≤ d0.2.

E[Z ′c1 ] ≤ E[exp(〈v, ‖c‖z〉)|F ′] ≤ E[exp(〈v, z〉)|F ′] sup{exp(〈v, (‖c‖ − 1)z〉)|F ′} (A.9)

= E[exp(〈v, ‖c‖z〉)|F ′] exp(d−0.2) (A.10)

= (1 + o(1))E[exp(〈v, ‖c‖z〉)|F ′] (A.11)

Similarly we can prove that

E[Z ′c1 ] ≥ (1− o(1))E[exp(〈v, ‖c‖z〉)|F ′] (A.12)

Therefore, let Z = E[exp(〈v, ‖c‖z〉)|F ′], we have the desired result.

Proposition 5. When c ∼ C is at stationary distribution of the random walk, we have that

Pr
c∼C

[
|‖c‖ − 1| > 2d−0.4

]
≤ 2 exp(−d0.2)

Proof. By assumption, each coordinate of c is independent with E[c2i ] = 1
d and |ci|2 ≤ 4

d , so the Proposition
5 follows from standard Chernoff bound.

B Maximum likelihood estimator for co-occurrence

In this section, we present a simple calculation to provide justification for the weighting in our training
objective. Let L to be the corpus size, and W be the set of all words. We assume that the co-occurrence
counts Xw,w′ for word pairs are generated according to a multinomial distribution Mul(m, p(w,w′)w,w′∈W ).
Denoting {Xw,w′} the set of random variables corresponding to co-occurrence counts for all of the word pairs
(w,w′) and {pw,w′} the set of corresponding probabilities, we show that log Pr[{Xw,w′}|{p(w,w′)}] is of the
form:

log Pr[{Xw,w′}|{p(w,w′)}] ≈ C − 1

2L

∑
w,w′

Xw,w′ (xw,w′ − log(Xw,w′))
2

where C is a constant that depends on the data but not {pw,w′}, xw,w′ = log(Lp(w,w′)), and the approxi-
mation ignores the lower order terms obtained from the Taylor expansion.

More, precisely:

Theorem 3. Suppose the random variables {Xw,w′} are generated from Mul(m, p(w,w′)w,w′∈W ). Then:

log Pr[{Xw,w′} | {p(w,w′)}] = C − 1

2L

∑
w,w′

Xw,w′(xw,w′ − logXw,w′)2


+O

 1

L
Xa,b(xa,b − logXa,b)

2 +
1

L

∑
w,w′

Xw,w′(xw,w′ − logXw,w′)3 +
1

L2

∑
w,w′

Xw,w′(xw,w′ − logXw,w′)

2


where xw,w′ = log(Lp(w,w′)), and C only depends on X but not p, and (a, b) is an arbitrary pair such that

Xa,b 6= 0. Typically, the terms inside the big-oh are much smaller than 1
2L

(∑
w,w′ Xw,w′(xw,w′ − logXw,w′)2

)
.

Proof. For any pair (a, b) such that Xa,b 6= 0, it holds that:

log Pr [{Xw,w′} | {p(w,w′)}] = log

C1

 ∏
(w,w′)6=(a,b)

p(w,w′)Xw,w′

1−
∑

(w,w′)6=(a,b)

p(w,w′)

Xa,b
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where C1 is the number of documents of size L such that co-occurence count of each w,w′ is Xw,w′ .
Substituting xw,w′ = log[Lp(w,w′)], we have:

log Pr [{Xw,w′} | {p(w,w′)}] = logC1 − L logL+
1

L

 ∑
(w,w′)6=(a,b)

Xw,w′xw,w′


+Xa,b log

1−
∑

(w,w′)6=(a,b)

pw,w′

 (B.1)

The last term can be expanded as follows. Let ξ denote O([xw,w′ − logXw,w′ ]3).

log

1−
∑

(w,w′)6=(a,b)

pw,w′


= log

1− 1

L

∑
(w,w′)6=(a,b)

exw,w′


= log

1− 1

L

∑
(w,w′)6=(a,b)

Xw,w′exw,w′−logXw,w′


= log

1− 1

L

∑
(w,w′)6=(a,b)

Xw,w′
(
1 + [xw,w′ − logXw,w′ ] + [xw,w′ − logXw,w′ ]2/2 + ξ

)
= log

Xa,b −
1

L

∑
(w,w′) 6=(a,b)

Xw,w′
(
[xw,w′ − logXw,w′ ] + [xw,w′ − logXw,w′ ]2/2 + ξ

)
= logXa,b + log

1− 1

LXa,b

∑
(w,w′)6=(a,b)

Xw,w′
(
[xw,w′ − logXw,w′ ] + [xw,w′ − logXw,w′ ]2/2 + ξ

)
= logXa,b −

1

LXa,b

∑
(w,w′)6=(a,b)

Xw,w′
(
[xw,w′ − logXw,w′ ] + [xw,w′ − logXw,w′ ]2/2 + ξ

)

+O

 1

L2X2
a,b

 ∑
(w,w′) 6=(a,b)

Xw,w′(xw,w′ − logXw,w′)

2
 .

Putting this into (B.1), we get the final bound.
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