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This week, we discussed the paper by Zhou and Carin [1] on Negative Binomial Process (NBP) and its

application. We started from introducing the Negative Binomial distribution and related stochastic processes

(Poisson and Multinomial Processes). Then we discussed the NBP itself and its application’s (actually it is

NBP’s extension’s) application.

1 Negative Binomial Distribution

To discuss the Negative Binomial Process, we should first introduce the Negative Binomial distribution.

In the paper [1], the authors pointed out two constructions for this distributions. For simplicity, I will just

call them the ”Gamma-Poisson” construction and ”Poisson-Logarithmic” construction.

1.1 The Gamma-Poisson construction

Suppose we have a Poisson distribution with probability mass function as follows

f(m) =
λme−λ

m!
,m ∈ Z+. (1)

We add some priors on λ and m: λ ∼ Gamma(r, p
1−p ), m ∼ Pois(λ). Marginalizing out λ gives out

Negative Binomial distribution:

f(m|r, p) =
Γ(r +m)

m!Γ(r)
(1− p)rpm. (2)

Here r > 0 is called the dispersion parameter and p ∈ (0, 1) is the probability of success for a single round

of an experiment.

When r is an positive integer, the mass f(m|r, p) has some special meaning that it could be view as the

probability of having made exactly m successful trials before the r-th failure, if the trials are successful i.i.d

with probability p.

1.2 The Poisson-Logarithmic construction

Alternatively, we could generate a Negative Binomial distribution in the following way: First we draw

an integer l from a Poisson distribution: l ∼ Pois(−r log(1− p)). Then we draw l variables ut ∼ Log(p) for
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t = 1, ..., l (i.i.d.), and then sum them to get m =
l∑
t=1

ut. After that, we will have m ∼ NB(r, p). Here the

distribution Log (Logarithmic distribution) is:

f(k) = − pk

k log(1− p)
, k ∈ Z+. (3)

The joint distribution of (m, l) given r and p is called the Poisson-Logarithmic bivariate distribution:

where m ∈ Z+ and l ∈ [1,m],

PoisLog(m, l|r, p) = NB(m|r, p)CRT(l|m, r). (4)

Here CRT stands for Chinese Restaurant Table.

In [1], we know the equivalence between these two constructions:

Theorem 1 (The equivalence of two constructions for the Negative Binomial distribution). PoisLog(m, l|r, p) =

Pois(l|−r log(1−p))SumLog(m|l, p), where SumLog(m|l, p) is the distribution of m given l, p from ut ∼ Log(p)

for t = 1, ..., l (i.i.d.), and m =
l∑
t=1

ut.

2 Poisson and Multinomial Processes

First, we define X ∼ PP(G), i.e. X(A) ∼ Pois(G(A)) for any subset A ⊆ Ω, where G is a complete

random measure.

Also, we define Y ∼ MP(Y (Ω), G
G(Ω) ), i.e. (Y (A1), ..., Y (An)) ∼ Mult(Y (Ω), (G(A1)

G(Ω) , ...,
G(An)
G(Ω) )) for any

partition (A1, ..., An) of Ω, and Y (Ω) ∼ Pois(G(Ω)) .

Then we will have that X and Y are equivalent in distribution. With this property, we could see that

Poisson Processes just unite the problems of count and mixture modeling perfectly.

3 Negative Binomial Process

Then we could define the Negative Binomial Process (NBP). Same as the Negative Binomial distribution,

we also have two constructions for NBP.

3.1 The Gamma-Poisson construction

Say we draw a rate measure G ∼ GaP(J(1−p)
p , G0). And then we draw Xj ∼ PP(G) for j = 1, ..., J ,

meaning that Xj(ωk) ∼ Pois(G(ωk)) for each atom ωk.

Define X =
J∑
j=1

Xj . Then we say that X is drawn from a Negative Binomial Process: X ∼ NBP(G0, p).

We have the property that X(A) ∼ NB(G(A), p) for any subset A ⊆ Ω.

In class, we had an interesting discussion on the parameter J . It seems weird why (or how) we specify

such a parameter. However, in theory, it does not matter much how we set the parameter J . Because that

though the number of Xj increases as we increase J , the weights on the rate measure G will become smaller

since J(1−p)
p is larger.
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3.2 The Poisson-Loagarithmic construction

Draw K+ ∼ Pois(−γ0 log(1 − p)), where γ0 = G0(Ω) is the total mass. Define the new rate measure

g0(dω) = G0(dω)
γ0

. Generate (nk, ωk) ∼ Log(nk|p)g0(ωk) for k = 1, ...,K+. Then X =
K+∑
k=1

nkδωk
comes from

the Negative Binomial process NBP(G0, p).

We could show that this construction is equivalent to the construction in Section 3.1.

4 Extension of NBP for Mixed Membership Models

Draw G ∼ GaP(c,G0), then draw Xj ∼ NBP(G, pj) for j = 1, ..., J . This is called a gamma-NB process.

It could be used in modeling grouped data and it can be reduced to an HDP. For mixed membership modeling,

we could generate topics from the distribution G0 and then the NBP will determine the distributions over

topics. Xj (for j = 1, .., J) are documents and and they are drawn from the same rate measure. One key

point of using NBP to model grouped data is that we could unite the traditional mixture models (or mixed

membership models) like DP (or HDP) with count modeling together without having the over-dispersion

issue of directly introducing Poisson to mixture models. This build a bridge for us to go from mixture

modeling to count modeling. On the other hand, the new construction for NB and NBP will make the

inference for them easier. We had some discussions on this, but did not go into details.
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