
Lecture 9: More Bayesian nonparametrics
04-01-2016
Scribe: Benjamin Bloem-Reddy

Plan for lecture:

Basic ideas behind CRMs
HDP, hierarchical models
Discuss Zhou & Carin (2015)

Summary of the reader responses to Zhou & Carin (2015):

Difficult
Satisfying
A lot of material

Construction of the DP through CRMs
We spent much of last class talking about the Dirichlet Process (DP) and its
connection to the Chinese Restaurant Process (CRP). The DP is a special case of a
completely random measure (CRM). CRMs underlie most Bayesian nonparametric
models that are currently in use.

Recall from last week that a DP is a random discrete probability measure and can be
written as

G (∙) := p δ (∙)  with θ ∈ Ω and  p = 1.

Let’s relax constraint that G is a probability measure (i.e., we no longer require that 
p = 1). G is now a random measure. Another (useful) characterization is as a

stochastic process.

Let Ω  denote the space on which G is defined, with measurable sets A ⊆ Ω . Then
G is said to be completely random if G(A ) is independent from G(A ) for all 
A ,A ⊂ Ω  such that A ∩A = ∅. Roughly speaking, for disjoint sets A ,A  of 
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Ω , G(A ) and G(A ) are independent random variables (the randomness comes
from the fact that G is random). (Note to the Measure Theoretic Police: G is a
stochastic process indexed by the σ-algebra A when this is true for all sets in A.)

A property of any CRM is that it is a nonhomogeneous Poisson process (PP) with
Levy measure μ(dω). As a reminder, the number of points in any set A ⊆ Ω is 
N(A) ∼ Poisson(μ(A)). Technicalities aside, we can think of μ(⋅) as the
intensity of the PP. (A great reference is Kingman’s monograph Poisson Processes.)

In the BNP world, CRMs serve almost exclusively as infinite-dimensional priors on 
Ω. Their PP construction lives on a product space Ω := Ω ×R , which factors as
follows:

Ω is the space where the latent parameters live. For example, in a DP mixture of
two-dimensional normals with fixed covariance, Ω is where the component
means live, so Ω =R .
R  is the “weight space” of the CRM.

The PP has Levy measure μ(dω dp), and a realization of the PP is a set of weighted
atoms (points) {ω , p } , where the total number of atoms N(Ω ) may be
infinite. We can use these points to construct a random measure:

G(∙) := p δ (∙)

(See the illustration in Jordan’s paper from last class.)

Note that G is itself a realization of a draw from a distribution defined by the Levy
measure μ(⋅).

How are these useful in BNP modeling? Typically, it boils down to specifying 
μ(dω dp), which is most often assumed to be homogeneous: 
μ(dω dp) = G (dω)ν(dp). G  is often a probability distribution on Ω (and we will
make that assumption for the rest of lecture), which will yield draws of the
parameters in a hierarchical model, and ν(⋅) is the Levy measure for a PP on R .

Most of the different BNP models are differentiated by these two ingredients. G  is
chosen to be appropriate as a prior for the parameters of the data likelihood; ν is
chosen according to whether the data are being modeled with latent clusters, latent
features, etc.
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Scribe’s note: One of the things that has made BNP models so useful/popular for a
wide range of applications is that these ingredients are largely modular in that
models can often be constructed as a set of blocks; the important properties that
make the individual blocks appealing from an interpretability and tractability
perspective often carry through with little or no modification needed.

For μ(⋅) to be useful in a latent variable model, we need it to satisfy:

μ(dω dp) = ∞ (infinite number of points on any set A ⊆ Ω)
min{p, 1} μ(dω dp) < ∞

When μ(dω dp) = G (dω)ν(dp) and G  is a probability distribution, these
requirements simplify to be requirements on ν(⋅).

(Note to the MTP: These are stronger requirements than what is needed to ensure
that μ(⋅) is well-defined, but if we want it to be useful, e.g. we can almost surely
normalize the CRM for a latent cluster model, or an observation expresses an almost
surely finite number of features in a latent feature model, the finite first moment
property is necessary. See Gonzalo’s note on Piazza for why the second condition
emplies that p < ∞.)

Some examples of CRMs that have appeared in the BNP literature:

Beta process: μ(dω dp) := cp (1 − p) dp G (dω) where 
Ω = Ω× [0, 1]. This process underlies the Indian Buffet Process and most
BNP latent feature models, in which Ω is the space of features, and an
observation in our data expresses a feature ω  with probability p . Note that 
μ(⋅) satisfies both of the conditions above, so it will produce an infinite number
of atoms with a finite total weight, which ensures that each observation
expresses a finite number of features. References are Hjort (1990) and Thibeaux
& Jordan (2007).
(Pause for input from Gonzalo: connection to pure jump processes on R, in
particular the Poisson process and the Gamma process. The beta process on R
has been used as a prior for survival analysis and was the subject of Hjort
(1990).)
Gamma process: ν(dω dp) := cp e dp G (dω), where Ω = Ω×R .
This process underlies many BNP latent cluster models. Note that the second
condition above is satisfied and implies that the total mass of a Gamma process
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is finite, which is crucial for construction of the DP.
Dirichlet process: Draw a Gamma process G = p δ  and normalize by
the total mass T := p . The result is a Dirichlet process 
= = δ , where = 1. The DP is characterized by the

fact that it is the only normalized CRM that is conjugate to itself, which makes
posterior inference easy and enables useful hierarchical constructions such as
the HDP.

Hierarchical Dirichlet Processes (HDP)
Suppose we have grouped data that we would like to model with its own distribution
over latent objects, e.g. topics, but we would like the groups to share the set of
latent objects. One way to do that is to pass a DP in as the base measure to another
DP.

Written out:

G ∼ DP (γ H )
G ∣G ∼ DP (αG ), for j = 1, 2, ...
θ ∣G ∼ G , for i = 1, 2, ...,n
x ∣θ ∼ f(⋅∣θ )

Parameters:

H : base distribution
γ,α: scaling parameters

As a mixed membership model:

draw a distribution, G , over mixture components (e.g. topics, communities,
etc.).
for each j = 1, 2, ..., draw a j-specific distribution G  that has the same atom
locations as G , but assigns different weight to each atom
for each observation x  in group j, draw a parameter θ  from the discrete
distribution with probability p
feed that parameter into the likelihood, f(x∣θ ) to draw an observation x .

The key property that makes this useful as a hierarchical model is that G  is
discrete, so each G  has the same set of atoms, which ensures that each group j
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has a distribution over the same set of latent objects. If G  is a continuous
distribution, then each G  will have different atoms and we couldn’t interpret any of
the clusters to be shared across groups.

Effects of the scaling parameters: γ controls how many occupied clusters are
shared across groups; if it is large, not many clusters will be occupied in multiple
groups. α controls, in each group, how many clusters are occupied.

(Dave drew a picture of the Chinese Restaurant Franchise.)

Zhou & Carin (2015)
Next week.
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