
Probabilistic Models of Discrete Data: Notes on

Matt Taddy’s Work on Inverse Regression

Scribe: Tom Blazejewski

March 16, 2016

This week we looked at two papers, ‘Distributed multinomial regression’
and ‘Mutlinomial inverse regression for text analysis’. Both papers are by Matt
Taddy and reader responses suggested that they found the work interesting.

Before we began, Ido asked why the work is even called ‘inverse regression’
and Prof. Blei (shortened to PDB) stated that in classical regression, we use X
to predict Y whereas in ‘inverse regression’, we use Y to predict X while also
learning something about Y .

Let’s first set up some definitions we’ll find useful for the rest of the lecture.

• ~ci - word count for document i

• cij - count of word j in document i

• ~vi - features of document i

• mi - total # of features in document i

• d - # of words in vocabulary

• n - # of documents

The model we intend to fit according to Taddy’s work (the inverse regression
model is):

ci|vi,mi ∼ Mult(~qi,mi)

(where q is a point on simplex, a distribution on words)

qij (word i in document j) ∝ exp{ηij}

(like a softmax)

and ηij is a linear model, ηij = αj + ~ϕT
j ~vi

This is noted as a GLM for multiple responses. PDB notes that if we feel
invested in learning about statistics history, it is worth reading about multi-
response GLMs in Breiman and Friedman. Of particular interest is an empirical
study part of that paper.

1

Back to our model, ~ϕj is a vector which can encode sentiments. If we are
interested in investigating political discourse, there might be a difference in
seeing ‘healthcare’ or ‘social’ in left/right sides of aisle.

There’s also a normalizer,

Λi =
d∑

k=1

exp{ηik}

which is different for each document, and that makes sense, as each document
will have different contents.

We see that already here, there is a connection to word embeddings where we
fix v and ~ϕj is the embedding we’re looking for. There’s also a similar problem,
with a log-normalizer that is no fun to calculate and which is here also tied
together across corpora.

Here, Kui comments that it doesn’t seem exactly like word embedding, and
PDB specifies that the connection is pretty close if you consider v as a ‘context’,
especially in the sense that Levy/Goldberg uses, i.e. filling a matrix with counts.

Jaan then says that the context is a document here, not a window, and
suggests you could do something like this with a window where each 10 words
is considered a separate ‘document’. Ben suggests that this is maybe more
capturing information about a document, and not quite a context. PDB notes
that it is also important they are using other info about document, too.

Taking a cue from something that Adji had noted in her reading response,
PDB notes that ϕi would be unknown for word embeddings and that it is
interesting that Taddy ultimately allows for a random effect part in his model.

Maja adds at this point that it seems a little unsatisfactory that we are not
actually embedding the categorical/binary labels we are using in this model. She
suggests that it might be better to use distributed representations vs. simply
labeling politicians as Democrats/Republicans.

In any case, this model has been discussed for a bit, but we are actually
pivoting toward a change in model from the currently presented model (model
M) to one based on Poisson distributions (model P).

PDB notes that while we’ll briefly go over some key facts about Poisson
distributions here, if there are any remaining questions, he has traditionally
enjoyed the Bayesian Data Analysis 3 ed. textbook as a more comprehensive
resource.

Poisson:

p(x|α) =
1

x!
αx exp{−α} (1)

Here, x is a count and α is a positive rate/intensity. We are recommended
as an exercise to turn this into its exponential family form.

Then here, Taddy suggests:

cij ∼ Poi(exp{ηij})

2

This is a new model, but it relates to the original one. It is equivalent to:

• first, drawing mi from Poisson whose rate is Λi... (mi ∼ Poi(Λi))

• then, draw ci with mi... (ci|mi ∼ Mult(~qi,mi))

This equivalence is true due to two facts that are probably worth knowing.

Fact 1 Let’s say we have a collection of Poisson variables (xi ∼ Poi(ri)).

• The sum of xi’s is a Poisson variable (
∑

xi ∼ Poi(
∑

ri)

◦ PDB uses this in his own work, with Paisley, Gopalan to develop
auxiliary variables.

Fact 2 If you condition on its sum

x|
∑

j xj = m ∼ Mult(~π,m) with πi ∝ ri

John then says that this would be true if xi were independent, but in our
case, we would expect the words to be highly dependent. PDB says we’re not
there yet and this is just to show that everything we’ve said so far is true. That
we are able to legitimately connect both models.

So two models, then: one is implicitly conditioned on the sum, and the other
is a Poisson model where we draw a sum and use the first model.

Now it gets a little fuzzy, but fundamentally the goal is to estimate ϕj ’s and
parameters of models. In an example case, we want to figure out how much
Republicans/Democrats are going to say a given word, say ‘walnut’.

We can look at gradients w.r.t. ηij and then through chain rule get to
original parameters in model M.

LM =
∑

i

~cTi ~ni −mi log(
∑

j

exp{ηij})

Here in the first term, we are multiplying an unnormalized log-probability
by the number of times we see the word and summing across all documents.
This should make sense. In the second term, we are using mi log-normalizers
because each time we see a word, we have a contribution from a normalized and
unnormalized probability.

This equation is very difficult to compute. If we take the gradient with the
log(sum(exp)), then all gradients depend on other ηik’s. This is a common ML
problem.

In his articles, Taddy makes a point here, that if we add a constant to
this equation, we do not change the gradient. You can add µi to ηi and the
log-likelihood does not change with ηij .

3

Now, taking the same idea about being able to add constant µi without
changing gradients, let’s look at a possible likelihood for the Poisson model
(Model P). The first term (cij(ηij + µi)) comes from the equation I labeled as
(1). Note that the η is from log(exp(ηij)) and the factorial drops out.

LP =
d∑

j=1

n∑

i=1

~cTi ~ni −mi log(
∑

j

exp{ηij})

Note that whereas in the multinomial model (model M) we do not model
zeroes, here we do. However, we are now sensitive to an intercept term. Maja
asks what is the difference between this intercept and α. PDB responds that the
intercept here is for the document. Maja then posits that it would potentially
be preferable to just include this in the model so that the term could actually
be worked out while modeling. PDB says that that is an idea but that the
parameterization in its current form is useful and we’ll get to details in a bit.

Now if we look at the derivative...

dLP

dµi

= mi −
∑

j

exp{ηij + µi}

We can rewrite this as, mi − exp{µi}
∑

j exp{ηij}.
So our gradient on ηij basically depends on µi. So let’s say we want to just

plug in the µi so that it is set to its MLE.
Then µ∗

i = log mi∑
j
exp{ηij}

.

The big point, then, is that when µi = µ∗
i , this likelihood (from model P)

is equivalent to the one from model M.
Ben says there’s a sleight of hand about to happen here, because of the use of

µi as an implicit parameter. We are calling for the use of a sufficient statistic for
µi and then losing µi. So it’s a sleight of hand because the models are becoming
equivalent through an implicit conditioning on µi if we set µi to be based on m,
which is all we needed from the data to set µ originally. The model equivalence
is motivated then abrogated.

Now if we think about this in terms of recommendation systems, the log of
the rate of the Poisson is αj + ~ϕjvi+µi. The αj term would correspond to item
intercepts and the µi would correspond to user intercepts.

If ϕj is zero everywhere, and αj is also zero, µi would just be indicating
how many words to pepper out. It would be like, ‘I have words at random to
pepper out and if I am small, there will not be many words and if I am big,
I will pepper out many words.’ The word ‘pepper’ is used several more times
here and ultimately connected to an analogy with actual pepper granules being
ground up and falling uniformly into bins (words).

Now depending on the sentiment, ϕv will affect rates of words, pulling some
up, others down. And in general, α is going to be high for words like ‘the’, ‘and’,
‘pepper’, ‘or’. Meanwhile, µi is just going to indicate how long a document is,
with no info about word distribution.

4

In a case of political sentiment, we might expect ‘social’ to be brought up
by ϕ when we are talking about left-wing politics and ‘taxes’ to be brought up
when considering right-wing politics.

As reasonable as this all sounds, ηij is still dependent on ηik. This is therefore
a calculation that is hard to distribute across many computers (and that is what
Matt Taddy wants to do). So what we do is we just set µ̂i = logmi and then
we don’t look back. It’s wrong, and it’s not the MLE, but it allows us to do
distributed calculations by crowbarring in some independence. In a minor form
of consolation, the estimate is true in some very basic models.

At this point, PDB notes that he is not sure whether it is really the best
estimate, and we return to that later. But so anyway, let’s say that we set
ηij = αj + ~ϕT

j vi and we have µ̂i = logmi.
So the contribution to the log likelihood is:

ℓ(αj , ~ϕj) =

n∑

i=1

cij(αj + ~ϕj~vi)−mi exp{αj + ~ϕT
j vi}

A few notes: we removed µ̂i because no dependence. The mi is coming from
exp(µ̂i) where µ̂i = logmi.

And now this is simply a Poisson regression.

cij ∼ Poi(exp{αj + ~ϕj~vi + logmi})

We could include logmi but we don’t have to. And the big result is that we
can run this regression across many different computers for each word. Further
contributions from Taddy include some regularization and a few other bells
and whistles, but we’ve decoupled these things into separate computations and
that’s the important part. François notes a similarity to Arora here, that there
is a normalizer set to a constant for convenience.

PDB now has a few questions for Taddy... we started with a multinomial,
but that was hard to fit because Λi ties together normalizers. Then we made
Poisson, and said if we set intercept to MLE, we get equivalence. Then out of a
RCMP campaign hat we have a plug-in estimator, and that’s ocassionally right
and we use it out of a general desire to have fun with large datasets.

Question 1. In work on correlated topic models, PDB went back and forth
inferring and then setting exp{ηij}. Can we cycle back and forth here, and
set up a coordinate ascent that starts with a plug-in estimate, but updates ηij
based on the last iteration? Could this help?

Question 2. Why does it matter? If we go back to pepper shaker, we allow
coefficients to be the same thing across documents (scribe note: my notes don’t

seem to clearly articulate this question).
Question 3. If µi is supposed to capture document length, then we would

expect E[X] = r (from fact 2). We should expect everything to sum to the docu-
ment length, but that doesn’t actually happen... E[mi|ϕv+α = 0] = exp{µi}d.
That’s not document length. Would µ̂i = log mi

d
be more appropriate/motivated

by theory?

5

Ben at this point suggests we’d never have α = 0 and that the parame-
ters should adjust to µ. Maja further points out that model M easily handles
proportionality, and we should have no problem with scaling.

Ryan at this point opines that we are sort of losing the whole point of this
entire model because there are no guarantees that any of these parameters are
going to end up ‘true’, in that we can actually pull out any sort of inference from
this. He wonders what the point of having such a Frankenstein model might be
where we have a nice original model and the end result is computable, but not
inferentially tied to the thing we set out to find in the first place.

This is noted as a good question and it’s not clear whether Taddy himself
could answer.

Let’s move to inverse regression, because according to PDB, it is a little
underutilized.

Here’s the idea... we have some exponential r.v.

p(Zi) = exp{ηTi ci − α(ηi)}

ηij = αj + ~ϕT
j ~vi

Φ = p x d matrix of coefficients (generally, d > p)

p(~ci) = exp{αT ci} exp{(Φ~ci)
T~vi − a(Φ, ~αi, ~vi)}

In the last line, we see there is a contribution of a function of ~ci and one of
Φ~ci, vi. This implies that ~vi is independent of ~ci given Φ~ci.

PDB says we are being a little loose here and Ben notes it is not exactly
clear when this is actually a sufficient statistic, i.e. is it when we are actually
predicting one from the other or...

To put it a just a little bit more precisely...

vi ∼ ...

ci|vi ∼ ...

p(vi|ci)... and E[vi|ci] = E[vi|Φci]

Now what Taddy notes is that we can compute for each document and come
up with a p-vector where ~Z = Φ~ci.

This is intuitive. If we have a set of ‘cool’ features, we might want to sum
across words hitting those cool features and we would end up with some sort of
estimate of how cool a document is.

Dawen says that this is sort of a glimpse of a generative vs. discriminative
learning coming in to play a role here. PDB agrees, and says that if we care
about v, we could just do v|c. That would be reasonable and maybe we should
do that. The issue is that as v gets high-dimensional, it is harder to do that and
at that point, getting to a generative model may actually get us somewhere.

6

Finally, in the last five minutes, we turned to figuring out how all this relates
to word embeddings.

Imagine wi occurs in a context ci. We have some potential function, and
why not just make it based on a Poisson...

log p(wi, v = 1|ci) = λT
v γci − exp{λT

v γci}

wi is an indicator vector with one 1. Well then,

log p(wi|ci) = λT
wiγci −

∑

v

exp(λT
v γci)

We might consider fitting this with pseudolikelihood. This looks like regression-
based LL. Except we don’t ignore zeros, and we use Poisson which is probably
nicer/more efficient to fit.

There’s a final note that this is a truncated Poisson and apparently you can
do a fancy correction of this or not bother and it still works fine.

Organizational note: no class next week (spring break).

7

