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Abstract

We examine the general problem of inter-
domain Gaussian Processes (GPs): problems
where the GP realization and the noisy ob-
servations of that realization lie on differ-
ent domains. When the mapping between
those domains is linear, such as integration or
differentiation, inference is still closed form.
However, many of the scaling and approxi-
mation techniques that our community has
developed do not apply to this setting. In
this work, we introduce the hierarchical in-
ducing point GP (HIP-GP), a scalable inter-
domain GP inference method that enables us
to improve the approximation accuracy by
increasing the number of inducing points to
the millions. HIP-GP, which relies on induc-
ing points with grid structure and a station-
ary kernel assumption, is suitable for low-
dimensional problems. In developing HIP-
GP, we introduce (1) a fast whitening strat-
egy, and (2) a novel preconditioner for conju-
gate gradients which can be helpful in general
GP settings.

1 INTRODUCTION

Gaussian processes (GPs) are a widely used statistical
tool for inferring unobserved functions (Cressie, 1992,
1990; Rasmussen and Williams, 2006). The classic goal
of GPs is to infer the unknown function given noisy ob-
servations. Here, we are interested in a more general
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setting, inter-domain GPs, where the observed data is
related to the latent function via some linear trans-
formation, such as integration or differentiation, while
an identity transformation recovers the standard GP
problem. One motivating example is an astrophysics
problem: mapping the three-dimensional spatial dis-
tribution of dust in the Milky way (Green et al., 2015;
Leike and Enßlin, 2019; Kh et al., 2017). Interstel-
lar dust is a latent function that can be inferred from
star observations. However, because we are embed-
ded in our own dust field, we can only observe some
noisy integral of the dust function along the line of
sight between Earth and a star. Beyond this exam-
ple, inter-domain GPs arise often in the literature:
integrated observations have been used in probabilis-
tic construction of optimization algorithms (Wills and
Schön, 2017), quadrature rules (Minka, 2000), and to-
mographic reconstructions (Jidling et al., 2018); while
derivative observations have been used in dynamical
systems (Solak et al., 2003), modeling monotonic func-
tions (Riihimäki and Vehtari, 2010) and Bayesian op-
timization (Garnett et al., 2010; Siivola et al., 2018).

In practice, this type of inter-domain GP problem
poses two interwined obstacles that are beyond the
reach of current techniques. First, large-scale exact
modeling is usually intractable. The joint distribu-
tion of inter-domain observations and the underly-
ing GP involves the transformed-domain and inter-
domain kernel expressions, which rarely admits ana-
lytical solutions and requires approximations (Lázaro-
Gredilla and Figueiras-Vidal, 2009; Hendriks et al.,
2018). Common approximations are often handled
by numerical integration, which is infeasible for big
datasets since it requires integrating all pairwise cor-
relations.

Moreover, inter-domain GPs suffer from the same scal-
ability issues as regular GPs. For a dataset with N
observations, the likelihood function depends on N2

pairwise correlations. The leading strategy to scale
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standard GP inference is to use M � N inducing
points to represent the global behavior of GP functions
(Rasmussen and Williams, 2006). One popular induc-
ing point method is stochastic variational Gaussian
process (SVGP), which factorizes the objective over
mini-batches of data and requires only O(M2) stor-
age and O(M3) computation (Hensman et al., 2013).
In the current practice of SVGP, M is limited to un-
der 10,000 (Wilson and Nickisch, 2015; Izmailov et al.,
2018). However, many inter-domain problems are spa-
tial or temporal in nature, and the data do not lie in
some small manifold in that space. In the interstellar
dust problem, for example, we aim to make inference
at every point in a dense 3D space. A small set of in-
ducing points is incapable of resolving the resolution of
interest, which is around 4 orders of magnitude smaller
than the domain size. Furthermore, Bauer et al. (2016)
shows that more inducing points are needed to re-
duce the overestimated observation noise parameter
induced by SVGP. All of these facts necessitate the
need to scale both N and M to larger quantities.

To this end, we develop the hierarchical inducing point
GP (HIP-GP), a method to scale GP inference to mil-
lions of inducing points and observations for spatial-
temporal inter-domain problems. In particular,

• We adapt the SVGP framework to inter-domain
settings by decoupling observations and inducing
points into different domains. This framework al-
leviates the difficulties of computing the full trans-
formed kernel matrices, and enables the exploita-
tions of the latent kernel structure.

• We then develop the HIP-GP algorithm to ad-
dress the computational bottlenecks of standard
SVGP objectives, employing two core strategies:

– Fast matrix inversion with conjugate gradient
method using the hierachical Toeplitz struc-
ture. Upon this structure, we design a novel
preconditioner and a new whitening strategy
to further speed up computations;

– A structured variational approximation of the
posterior over inducing point values.

HIP-GP is suitable for low-dimensional inter-domain
GP problems, and applies in settings where the ker-
nel function is stationary and inducing points fall on
a fixed, evenly-spaced grid. In addition, the techni-
cal innovations in developing HIP-GP are useful in a
variety of more general settings.

2 BACKGROUND

2.1 Inter-domain GPs

Following the notations in van der Wilk et al. (2020),
we consider a statistical model of the form

ρ ∼ GP (0, kθ(·, ·)) (1)

ρ∗ = L ◦ ρ (2)

yn |xn, ρ∗ ∼ N (ρ∗(xn), σ2
n) (3)

for a dataset of N observations D , {yn,xn, σ2
n}Nn=1,

where L is a linear operator and kθ(·, ·) is the covari-
ance function that encodes prior assumptions about
the function ρ. Note that GPs are closed under linear
operators, therefore ρ∗ is also a GP (Rasmussen and
Williams, 2006).

One common linear operator is the integral operator,
L ◦ ρ(·) =

∫
ρ(x)w(x)dx, as used in Lázaro-Gredilla

and Figueiras-Vidal (2009). We see that this L maps
the entire function ρ(·) to a single real value. Another
example is the derivative of the dth input dimension
L ◦ ρ(·) = ∂ρ

∂xd
(xn). In this case, the operator only

depends on the neighborhood around xn. Derivative
observations are often useful for algorithmic purposes,
e.g. in Riihimäki and Vehtari (2010). In application
problems, they could be either collected, e.g. veloc-
ity measured by physical detectors, or identified from
function observations (Solak et al., 2003). We also no-
tice that setting L to an identity map fits regular GPs
into this framework.

The goal of inter-domain GPs is to infer the under-
lying function ρ(x) — either to compute p(ρ(x∗) | D)
for new test locations x∗ or to improve estimates of
p(ρ(xn) | D) for observed location xn given all obser-
vations.

2.2 Stochastic Variational Gaussian Process

The stochastic variational Gaussian process (SVGP)
is an approximate method that scales GP inference to
large N (Hensman et al., 2013). Denote the M in-
ducing point locations x̄ = (x̄1, . . . , x̄M ), and the vec-
tor of inducing point values u , (ρ(x̄1), . . . , ρ(x̄M )).
SVGP defines a variational distribution over the in-
ducing point values u and the latent process values
ρ , (ρ(x1), . . . , ρ(xN )) of the form

q(u,ρ) = qλ(u)p(ρ |u) , qλ(u) = N (u |m,S) ,

where qλ(u) is a multivariate Gaussian, p(ρ |u) is de-
termined by the GP prior and λ , (m,S) are vari-
ational parameters. This choice of variational family
induces a convenient cancellation, resulting in a sepa-
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rable objective (Titsias, 2009)

L(λ) (4)

= Eqλ(u)

[
Ep(ρ |u) [ln p(y |ρ)]

]︸ ︷︷ ︸
a

−KL(qλ(u) || p(u))︸ ︷︷ ︸
b

.

We can write a as a sum over N observations

a =

N∑
n=1

Eqλ(u)

[
Ep(ρn |u) [ln p(yn | ρn)]

]︸ ︷︷ ︸
, an

. (5)

The factorization of an enables the objectives to be

estimated with mini-batches in a large dataset. How-
ever, notice that b′ , the KL-divergence of two Gaus-

sians, will involve a term ln |Ku,u| which requires
O(M3) computation.

2.3 Matrix Solves with Conjugate Gradients

Conjugate gradients (CG) is an iterative algorithm for
solving a linear system using only matrix-vector mul-
tiplies (MVM). CG computes K−1p for any p ∈ RM
by computing Kv for a sequence of vectors v ∈ RM
determined by the algorithm. For K of size M ×M ,
CG computes the exact solution after M iterations,
and typically converges after some smaller number of
steps S < M (Hestenes and Stiefel, 1952; Nocedal and
Wright, 2006).

Preconditioned conjugate gradients (PCG) is an aug-
mented version of CG that solves the system in a trans-
formed space. A good preconditioner can dramatically
speed up convergence (Shewchuk et al., 1994; Cutajar
et al., 2016).

3 SCALING M : HIP-GP for
INTER-DOMAIN PROBLEMS

We first formulate the SVGP framework for inter-
domain observations, and identify its computational
bottlenecks in Section 3.1. We then address these
bottlenecks by the HIP-GP algorithm using the tech-
niques developed in Section 3.2 - 3.3. In Section 3.4,
we summarize our methods and discuss optimization
procedures for HIP-GP.

3.1 Inter-domain SVGP Formulation

We show that the inter-domain observations can be
easily incorporated into the SVGP framework. We
place a set of inducing points u = ρ(x̄) in the latent
domain at input locations x̄ = (x̄1, · · · , x̄M ). Connec-
tions to the observations are made through the inter-

domain covariance, while the observations are charac-
terized by the transformed-domain covariance. For-
mally, we have the inter-domain GP prior:(

ρ∗n
u

)
∼ N

(
0,

(
k∗∗n,n k∗n,u
k∗u,n Ku,u

))
, (6)

where the inter-domain covariance and the
transformed-domain covariance are defined as

k∗u,n , Cov (ρ(x̄), ρ∗(xn)) = Cov (u, ρ∗n) , (7)

k∗∗n,n , Cov (ρ∗(xn), ρ∗(xn)) = Cov (ρ∗n, ρ
∗
n) , (8)

and the latent domain covariance is

Ku,u , Cov (ρ(x̄), ρ(x̄)) = Cov (u,u) . (9)

This form of the prior suggests formulating the inter-
domain SVGP objective as follows

L(λ) =

N∑
n=1

Eqλ(u)

[
Ep(ρ∗n |u) [ln p(yn | ρ∗n)]

]
(10)

−KL(qλ(u) || p(u)) ,

where

p(ρ∗n|u) = N(ρ∗n|k
∗
n,uK

−1
u,uu, k

∗∗
n,n − k

∗
n,uK

−1
u,uk

∗
u,n) .

Note that this framework can be extended to observa-
tions in multiple domains by including them with their
corresponding inter-domain and transformed-domain
covariances. Under this formulation, we avoid com-
puting the N ×N transformed-domain covariance ma-
trix K∗∗N,N that appears in the exact GP objective.
Instead, only N terms of variance k∗∗n,n need to be eval-
uated. Importantly, the disentanglement of observed
and latent domains enables us to exploit structure of
Ku,u for efficient computations. Such exploitation
would be difficult without a variational approximation,
especially in the case of mixed observations from mul-
tiple domains.

Whitened Parameterization Whitened parame-
terizations are used to improve inference in models
with correlated priors because they offer a better-
conditioned posterior (Murray and Adams, 2010;
Hensman et al., 2015). Here we will show an addi-
tional computational benefit in the variational setting
— the whitened posterior allows us to avoid comput-
ing ln |Ku,u| which appears in the KL term in Equa-
tion 10. To define the whitened parameterization, we
describe the GP prior over u as a deterministic func-
tion of standard normal parameters ε:

ε ∼ N (0, I) , u = Rε. (11)

To preserve the covariance structure in the prior dis-
tribution of (ρ∗n,u) (Equation 6), the transformation
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R and the whitened correlation kn , Cov(ε, ρ∗n) need
to satisfy the following two equalities:

Ku,u = Cov(Rε,Rε) = RR> ,

k∗u,n = Cov(Rε, ρ∗n) = Rkn .
(12)

The classical whitening strategy in GP inference is to
use the Cholesky decomposition: Ku,u = LL> where
L is a lower triangular matrix. In this case, R = L
and kn = L−1k∗u,n.

Now we can target the variational posterior over the
whitened parameters ε: qλ(ε) = N (ε |m,S). The re-
sulting whitened variational objective is

L(λ) =
∑
n

Eqλ(ε)p(ρ∗n | ε) [ln p(yn | ρ∗n)]︸ ︷︷ ︸
a′n

−KL(qλ(ε) || p(ε))︸ ︷︷ ︸
b′

(13)

where

a′n = −1

2
lnσ2

n −
1

2σ2
n

(
y2n + k∗∗n,n − k

ᵀ
nkn

+ kᵀn (S +mmᵀ)kn − 2ynk
ᵀ
nm
)
, (14)

b′ =
1

2
(tr(S) +mᵀm− ln |S| −M) . (15)

Computational Bottlenecks The whitened objec-
tive above still factorizes over data points. However,
there remain two computational bottlenecks. First,

the correlation term kn in a′n depends on the choice of

the whitening strategy. The common Cholesky strat-
egy requires O(M3) computation and O(M2) storage
which is infeasible for large M . We address this bot-
tleneck in Section 3.2. The second bottleneck lies in
the variational covariance S which is an M ×M ma-
trix, requiring O(M2) to store and O(M3) to compute

the ln |S| in b′ . We will address this problem by a
structured variational approximation in Section 3.3.

3.2 Computational Accelerations

We now turn to the first bottleneck — how to design an
efficient whitening strategy to compute the term kn.
To do so, we rely on judicious placement of inducing
points and assume a stationary covariance function, a
general and commonly used class. We describe three
key ingredients below.

Hierarchical Toeplitz Structure Consider a D-
dimensional grid of evenly spaced points of size M ,
M1×· · ·×MD, characterized by one-dimensional grids
of size Mi along dimension i, i = 1 : D, where D is
the input dimension. Under a stationary kernel, we
construct a covariance matrix for this set of points in
x-major order (i.e. C-order). Such a matrix will have

hierarchical Toeplitz structure, which means the diag-
onals of the matrix are constant. Because of this data
redundancy, a hierarchical Toeplitz matrix is charac-
terized by its first row. Now we place the inducing
points along a fixed, equally-spaced grid, resulting in
a M × M hierarchical Toeplitz Gram matrix Ku,u.
The efficient manipulation of Ku,u is through its cir-
culant embedding:

C =

(
Ku,u K̃

K̃
>

Ku,u

)
(16)

where K̃ is the appropriate reversal of Ku,u to make
C circulant. C admits a convenient diagonalization

C = F>DF = F>diag (Fc)F , (17)

where F is the fast Fourier transform matrix, D is a
diagonal matrix of C’s eigenvalues, and c is the first
row of C. This diagonalization enables fast MVMs
with C and hence the embedded Ku,u via the FFT
algorithm in O(M lnM) time, further making it suf-
ficient for use within CG to efficiently solve a linear
system.

The fast solves afforded by Toeplitz structure have
been previously utilized for exact GP inference (Cun-
ningham et al., 2008; Wilson et al., 2015). Here, we ex-
tend the applicability of Toeplitz structure to the vari-
ational inter-domain case by introducing a fast whiten-
ing procedure and an effective preconditioner for CG.

Fast Whitening Strategy Similar to the Cholesky
decomposition, we aim to find a whitened matrix R
that serves as a root of Ku,u, i.e. RRT = Ku,u.

Directly solving K1/2
u,u is not trivial. Alternatively, we

access the root from the circulant embedding of Ku,u.
We consider the square root of the circulant matrix

C1/2 = F ᵀD1/2F , (18)

and its block representation

C1/2 =

(
A B

B> D

)
. (19)

We make a key observation that the first row-block
(A,B) can be viewed as a “rectangular root” of Ku,u.
That is, we define a non-square whitening matrix R
and the correlation vector kn as follows

R ,
(
A B

)
, kn , RTK−1u,uk

∗
u,n. (20)

One can verify suchR and kn satisfy Equation 12, thus
offering a valid whitening strategy. We note that since
R is non-square and u = Rε, this strategy doubles the
number of variational parameters in each dimension of
the whitened space.
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Now we address how to efficiently compute kn defined
in Equation 20. We first compute the intermediate
quantity k′n = K−1u,uk

∗
u,n via CG in O(M lnM) time.

We then compute kn = R>k′n. Note that RT is em-

bedded in the matrix C1/2 which also admits the FFT
diagonalization (Equation 18). Hence, MVM with R>

can be also done in O(M lnM) time.

Lastly, we show how to make CG’s computation of
K−1u,uk

∗
u,n faster with a well-structured preconditioner.

Efficient Preconditioner The ideal preconditioner
P is a matrix that whitens the matrix to be inverted
— the ideal P is K−1u,u. However, we cannot efficiently

compute K−1u,u. But due to the convenient diagonal-
ization of the circulant embedding matrix C, we can
efficiently compute the inverse of C:

C−1 = F>D−1F . (21)

Note that the upper left block of C−1 does not corre-
spond to K−1u,u as we explicitly write out

C−1 =

((
Ku,u − K̃K−1u,uK̃

ᵀ
)−1

...

... ...

)
. (22)

However, when the number of inducing points are large
enough, Ku,u approaches a banded matrix, and so K̃
is increasingly sparse. Therefore, the upper left block
of C−1 would be close to K−1u,u, suggesting that it
can serve as an effective preconditioner within PCG,
and therefore an effective strategy for solving a lin-
ear system with the kernel matrix. We note that this
banded property is often exploited in developing effec-
tive preconditioners (Chan and Ng, 1996; Saad, 2003).
To justify this intuition, we anlayze the PCG conver-
gence speed under various settings of kernel functions
and inducing point densities in appendix. We com-
pare the performance of PCG and CG in systems of
varying size in Section 5.1. We find that PCG con-
verges faster than CG across all systems, taking only
a fraction of the number of iterations that standard
CG requires to converge. This speedup is crucial —
PCG is a subroutine we use to compute the gradient
term corresponding to each observation n.

Summary of Fast Computation for kn To sum-
marize, we exploit additional computational benefits of
the hierarchical Toeplitz matrix through its circulant
embedding matrix, which enables fast matrix square-
root and matrix inverse. We further utilize these fast
operations to design novel whitening and precondition-
ing strategies. Thus, the whitened correlation term
kn = RTK−1u,uk

∗
u,n can be efficiently processed as fol-

lows:

1. embed Ku,u into a larger circulant matrix C;

2. solve Ku,uk
′
n = k∗u,n for the intermediate term

k′n with PCG, where we utilize the FFT diago-
nalization of C and C−1;

3. compute kn = R>k′n , where we utilize the FFT

diagonalization of C1/2.

The space and time complexity of this procedure are
O(M) and O(M lnM). This offers a speed-up over the
Cholesky decomposition which has O(M2) space and
O(M3) time complexity, respectively. In Section 5.2,
we examine this acceleration by comparing the time of
computing kn using Cholesky and using HIP-GP, as
the system size M varying from 103 to 106. HIP-GP’s
strategy outperforms Cholesky for small values of M ,
and scales to larger M where Cholesky is no longer
feasible. We present HIP-GP’s algorithmic details in
appendix.

3.3 Structured Variational Approximation

Finally, we turn to the second bottleneck: how to rep-
resent and manipulate variational parameters of mean
m and covariance S. We propose the block indepen-
dent variational family

q(u) =

B∏
b

N (ub |mb,Sb) , (23)

where ub denotes a subset of inducing points of size
Mb < M and Sb is the Mb×Mb variational covariance
for that subset. Note that when Mb = 1, it reduces to
the mean-field variational family, and when Mb = M ,
it is the full-rank variational family. Calculations of
the inverse and log-determinant of block independent
S scale O(BM3

b ) — we must choose Mb to be small
enough to be practical.

We note that independence in the posterior is a more
reasonable approximation constraint in the whitened
parameterization than the original space. The original
GP prior, p(u), is designed to have high correlation,
and therefore data are unlikely to decorrelate induc-
ing point values. In the whitened space, on the other
hand, the prior is already uncorrelated. Hence the
whitened posterior is not spatially correlated as much
as the original posterior. This is in addition to the
benefits of optimizing in the whitened space due to
better conditioning.

Constructing Blocks The block independent ap-
proximation of Equation 23 requires assigning induc-
ing points to B blocks. Intuitively, blocks should in-
clude nearby points, and so we focus on blocks of
points that tile the space. To reconcile the Toeplitz
ordering and the block orderings (they may not be the
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same), we simply have to permute any M -length vec-
tor (e.g. k∗u,n or m) before multiplication with S and
then undo the permutation after multiplication. For-
tunately, this permutation is linear in M .

3.4 Method Summary

The modeling difficulty of inter-domain GP problems
arises from the numerical intractability of computing
the full transformed-domain covariance K∗∗N,N of size
N × N . We avoid this difficulty by decoupling the
the observations and the inducing points into different
domains under the SVGP framework. Moreover, we
leverage the kernel structure of the Gram matrixKu,u

in the latent domain for efficient computations.

The computational difficulty stems from the computa-
tions with the kernel matrix Ku,u and the variational
covariance S. We avoid having to compute ln |Ku,u|
by using a whitened parameterization; we develop a
fast whitening strategy to compute the whitened cor-
relation term kn = R>K−1u,uk

∗
u,n by exploiting the

hierarchical Toeplitz structure with a novel precondi-
tioner ; and finally we explore a structred representa-
tion for S.

Optimization We perform natural gradient descent
on variational parameters using closed-form gradient
updates. For gradient-based learning of kernel hyper-
parameters, automatically differentiating through the
CG procedure is not numerically stable. Fortunately,
we can efficiently compute the analytical gradient of
CG solves utilizing the hierarchical Toeplitz structure,
without increasing the computational complexity. See
appendix for more details on gradient derivations.

4 RELATED WORK

Inter-domain GPs The idea of the inter-domain
Gaussian processes has been discussed in (Lázaro-
Gredilla and Figueiras-Vidal, 2009; van der Wilk
et al., 2020). However, their primary interests are
using inter-domain transformations to define inducing
variables for specifying GP approximations, whereas
our work explores the usage of SVGP framework to
perform scalable modeling and inference with inter-
domain observations.

Scalable Inducing Point Methods We note several
recent approaches to scaling the number of inducing
points in GP approximations. Shi et al. (2020) takes
an orthogonal strategy to ours by approximating GP
with inducing points in two independent directions,
whereas HIP-GP requires inducing points to densely
cover the input space. However, while improved over
standard SVGP, their method still remains a cubic
complexity. Izmailov et al. (2018) introduces the ten-

sor train decomposition into the variational approxi-
mation. Alternatively, Evans and Nair (2018) directly
approximate the kernel with a finite number of eigen-
functions evaluated on a dense grid of inducing points.
Both methods rely on separable covariance kernels to
utilize the Kronecker product structure. This limits
the class of usable kernels. The Matérn kernel, for ex-
ample, is not separable across dimensions. To fill that
gap, we instead focus on the class of stationary kernels.

Another line of inducing point work is based on sparse
kernel interpolations. KISS-GP uses a local kernel
interpolation of inducing points to reduce both the
space and time complexity to O(N + M2) (Wilson
and Nickisch, 2015). SV-DKL also uses local ker-
nel interpolation, and exploits separable covariance
structures and deep learning techniques to address the
problem of multi-output classification (Wilson et al.,
2016). But these kernel interpolation methods are not
applicable to inter-domain observations under trans-
formations. More specifically, for standard (non-
inter-domain) problems, kernel interpolation meth-
ods approximate the N ×N covariance matrix KN,N

with WKu,uWT , where W is a sparse interpolation
weight matrix. However, for problems with integral
observations, we must compute the integrated ker-
nel K∗∗N,N = [

∫ ∫
Cov(ρ(xi), ρ(xj))dxidxj ]

N
i,j=1. Ap-

proximating this integral with local interpolation is
not straightforward, and computing every integrated
cross-covariance term is costly. Alternatively, HIP-GP
decouples observations and inducing points into differ-
ent domains through the inter-domain prior (Equa-
tion 6). This decoupled prior enables mini-batch pro-
cessing of k∗∗n,n, eliminates the need to compute cross-
covariance terms k∗∗ni,nj

, while still maintaining struc-
ture exploitation of Ku,u.

Fast Whitening Strategy As is mentioned before,
the classical whitening strategy is the Cholesky de-
composition that has O(M2) space and O(M3) time
complexity. Pleiss et al. (2020) provides a more gen-
eral purpose method for fast matrix roots and is in
particular applicable to whitening GP. Their method
is an MVM-based approach that leverages the contour
integral quadrature and requires O(M logM + QM)
time for Q quadrature points. Our whitening strat-
egy specifically targets gridded inducing points and
achieves more complexity savings (O(M logM) time).

5 EXPERIMENTS

Due to the mismatch in missions of different scalable
GP methods, we focus most of our empirical study on
HIP-GP and SVGP (with Cholesky whitening) which
serve the most similar purposes. We also include in
appendix a standard GP problem on a UCI benchmark
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Figure 1: Convergence result of PCG v.s. CG. We
compare PCG to standard CG for systems of size M =
625, 2,500 and 10, 000 over 25 independent runs. We
report RMSE as a function of the fraction of total CG
iterations (to converge). PCG converges faster than
CG, and for larger M fewer iterations are required.

dataset (Dua and Graff, 2017) where we compare HIP-
GP to exact GP (Wang et al., 2019), sparse Gaussian
Process regression (SGPR) (Titsias, 2009) and SVGP.

5.1 Effect of the Preconditioner

We first examine the effect of the preconditioner de-
veloped in Section 3.2. We run CG and PCG with the
preconditioner for systems of size M = 625 (25× 25),
M = 2,500 (50 × 50), and M = 10,000 (100 × 100)
determined by a two-dimensional grid applied to the
Matérn kernel. We run the algorithm to convergence
(at tolerance 1e-10) for 25 randomly initialized vectors
of size M . We record the error at each iteration — the
norm of the distance between the current solution and
the converged solution.

We report the RMSE at each iteration in Figure 1. We
rescale the x-axis to run from 0 to 1 for each system of
size M . From this experiment we see two results: the
Toeplitz preconditioner is extremely effective and the
preconditioner seems to be more effective as the system
size becomes larger. The fraction of CG iterations re-
quired for PCG to converge for M = 10,000 (< 4.5%)
is much smaller than the fraction of iterations required
for M = 625 (< 18%) to converge. Without this pre-
conditioner, we would expect each HIP-GP iteration to
take over twenty times longer to achieve similar preci-
sion.

5.2 Speedup over Cholesky Decomposition

We examine the speedup of HIP-GP’s whitening strat-
egy over the Cholesky whitening strategy in standard
SVGP, by comparing the time for solving the corre-
lation term kn. We generate 200 random 1D obser-
vations, and evenly-spaced inducing grids of size M

M 103 104 105 106

HIP-GP 0.0045 0.0185 0.3475 1.4595
SVGP 0.0175 0.1745 n/a n/a

Table 1: Whitening time comparison (second) of HIP-
GP v.s. SVGP with Matérn(2.5) kernel.

ranging from 103 to 106. We apply a set of kernels
including the Matérn kernels with ν = 0.5, 1.5, 2.5 and
the squared exponential kernel. The marginal variance
is fixed to 0.1 for all M . The length scale is set to L/M
where L is the range of the data domain to utilize the
inducing points efficiently. The PCG within the HIP-
GP algorithm is run to convergence at tolerence 1e-
10. The Cholesky decomposition is only available up
to M = 104 due to the memory limit. All experiments
are run on a NVIDIA Tesla V100 GPU with 32GB
memory.

We report the wall clock time of computations ap-
plied to Matérn (2.5) kernel in Tabel 1. The full re-
port for all settings is presented in appendix. HIP-
GP’s whitening strategy is consistently faster than the
Cholesky whitening strategy across all experiments,
and scales to larger M .

5.3 Synthetic Derivative Observations

To validate our inter-domain SVGP framework, we
study a derivative GP problem. We follow the work
in Solak et al. (2003), which introduces derivative ob-
servations in addition to regular function observations
to reduce uncertainty in learning dynamic systems.
We synthesize a 1D GP function from a random neu-
ral network with sinusoidal non-linearities, and obtain
function derivatives using automatic differentiation.
The total observations consist of 100 function observa-
tions and 20 derivative observations, with added noise
level = 0.05 and 0.2 respectively, as depicted in Fig-
ure 2a.

We compare two inter-domain SVGP framework-based
methods, HIP-GP and the standard SVGP, to the ex-
act GP. We use the squared exponential kernel with
signal variance 0.5 and length scale 0.1. For both HIP-
GP and SVGP, we apply the full-rank variational fam-
ily. The maximum number of PCG iterations within
HIP-GP is set to 20. We evaluate the predictive per-
formance on 100 test data. From Figure 2b and 2c,
we see that the inter-domain SVGP framework suc-
cessfully utilizes the derivative observations to improve
the prediction quality with reduced uncertainty, and is
comparable to the exact method.



Hierarchical Inducing Point Gaussian Process for Inter-domain Observations

(a) Synthetic function and derivative observations

(b) HIP-GP posterior prediction with / without derivative
observations for 100 test data. The solid blue line is the
mean prediction and the shaded blue area is the 1 pos-
terior standard deviation band. The red points indicate
derivative observation locations with true function values.

HIP-GP SVGP Exact GP

RMSE 0.0192 0.0192 0.0192
Uncertainty 0.0198 0.0206 0.0198

(c) Predictive RMSE and uncertainty (i.e. average stan-
dard deviation) for 100 test data.

Figure 2: GP with derivative observations analysis.

5.4 Spatial Analysis: UK Housing Prices

Now we test HIP-GP on a standard GP problem, i.e.,
the transformation L is an identity map. We apply
HIP-GP to (log) prices of apartments as a function of
latitude and longitude in England and Wales1. The
data include 180,947 prices from 2018, and we train
on 160,947 observations and hold out 20,000 to report
test error. We use the standard SVGP as baseline.

Scaling Inducing Points We run HIP-GP on an in-
creasingly dense grid of inducing points M . In all ex-
periments, we use the Matérn (2.5) kernel and apply
the block-independent variational family with neigh-
boring block size Mb = 100 (10 × 10) for HIP-GP
and SVGP. The maximum number of PCG iterations
within HIP-GP is set to 20 and 50 for training and
evaluation. The predictive performance measured by
RMSE and the training time are displayed in Fig-
ure 3c. From this result, we conclude that (i) in-
creasing M improves prediction quality; (ii) the perfor-
mance of HIP-GP is almost indistinguishable to that
of SVGP given the same M . (iii) Again, HIP-GP runs
faster than SVGP and scales to larger M . The best
prediction of HIP-GP is depicted in Figure 3a and 3b.

1HM land registry price paid data available here.

(a) Posterior mean (b) Posterior st. dev.

M 10,000 14,400 19,600 25,600 32,400 40,000

HIP-GP (RMSE) 0.411 0.409 0.400 0.397 0.393 0.389
SVGP (RMSE) 0.412 0.409 0.398 0.396 n/a n/a

HIP-GP (time) 91.2 115.7 119.8 130.7 129.5 133.2
SVGP (time) 193.6 406.3 668.1 898.2 n/a n/a

(c) Top row: predictive RMSE. Bottom row: average train-
ing time (second) per epoch.

Figure 3: UK Housing Analysis

Figure 4: Stochastic optimization is robust to early
stopping of PCG iterations.

PCG Iteration Early Stopping Additionally, we
examine the effect of the maximum number of PCG
iterations when computing kn on approximation qual-
ity. Figure 4 depicts test RMSE as a function of PCG
iteration for M = 14,400 on the test dataset of size
N = 20,000. The final approximation quality is robust
to the number of PCG iterations used. The upshot is
that HIP-GP needs only a small number of PCG iter-
ations to be effective.

5.5 Inferring Interstellar Dust Map

Finally, we investigate an inter-domain GP problem
with L being the integral transformation: inferring the
interstellar dust map from integral observations. The
interstellar dust map ρ is a three-dimensional density
function at each location in the Galaxy. The obser-
vations y, also known as the starlight extenctions, are
noisy line integrals of the dust function (Rezaei Kh
et al., 2017). We experiment with the Ananke dataset,

https://ckan.publishing.service.gov.uk/dataset/land-registry-monthly-price-paid-data
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(a) Posterior mean of ρ∗ (b) Posterior mean of ρ

MAE MSE loglike

HIP-GP (M = 62,500) 0.0101 0.0012 2.3517
SVGP (M = 16,384) 0.0153 0.0020 2.0690

(c) Predictive statistics for integrated observations

Figure 5: HIP-GP performance on 20,000 held-out
data. Top: Posterior mean predictions in the inte-
grated domain (ρ∗) and the latent domain (ρ). Bot-
tom: We report the mean absolute error (MAE), the
mean square error (MSE) and the test log likelihood
in the intergrated domain.

which is comprised of 500,000 starlight extinctions
within 4kpc × 4kpc × 2kpc region of a high resolu-
tion Milky Way like galaxy simulation — a cutting
edge simulation in the field because of the gas and
dust resolution (Wetzel et al., 2016; Hopkins et al.,
2018; Sanderson et al., 2020). Our goal is to infer the
underlying dust map ρ from the noisy extinctions y.

We compare HIP-GP with M = 62,500 (50× 50× 25)
and SVGP with M = 16,384 (32 × 32 × 16) – the
largest M feasible. For both methods, we apply the
block-independent variational parameterization with
neighboring block size Mb = 8 (2 × 2 × 2), and the
Matérn (1.5) kernel. The maximum number of PCG
iterations within HIP-GP is set to 200 and 500 for
training and evaluation. We use Monte Carlo esti-
mation to compute the inter-domain and transformed-
domain covariance functions in Equations 7 and 8. We
hold out 20,000 points for evaluation. The posterior
mean predictions of the extinctions ρ∗ and the latent
dust map ρ are displayed in Figure 5a and 5b. The
predictive test statistics are summarized in Table 5c.
We see that with more inducing points, the predictive
accuracy is enhanced. HIP-GP can scale to larger M
which enables better prediction quality, while SVGP
is limited to M around 16,000.

6 DISCUSSION

We formulate a general SVGP framework for inter-
domain GP problems. Upon this framework, we fur-
ther scale the standard SVGP inference by developing
the HIP-GP algorithm, with three technical innova-
tions (i) a fast whitened parameterization, (ii) a novel
preconditioner for fast linear system solves with hierar-

chical Toeplitz structure, and (iii) a structured varia-
tional approximation. The core idea of HIP-GP lies in
the structured exploitations of the kernel matrix and
the variational posterior. Therefore, it can be poten-
tially extended to various settings, e.g. the case where
a GP is a part of a bigger probabilistic model, and the
non-Gaussian likelihoods thanks to recent advance in
non-conjugate GP inference (Salimbeni et al., 2018).

Future works involve more in-depth analysis of such
CG-based approximate GP methods. On the applied
side, we will to apply HIP-GP to the Gaia dataset
(Gaia et al., 2018) which consists of nearly 2 billion
stellar observations.
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