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Comment: Variational Autoencoders as

Empirical Bayes

Yixin Wang, Andrew C. Miller and David M. Blei

We thank Professor Efron for his informative and
unifying review of empirical Bayes. In this comment,
we discuss the connection between empirical Bayes
and the variational autoencoder (VAE), a popular sta-
tistical inference framework in the machine learning
community. We hope this connection motivates new
algorithmic approaches for empirical Bayesians and
gives new perspectives on VAEs for machine learners.

EMPIRICAL BAYES AND VAES

The key idea of empirical Bayes is to estimate a prior
distribution from data. Consider a model where each
observation is independently generated by a different,
unobserved random variable. The empirical Bayesian
first uses all observations to estimate a prior over the
latent variables; she then infers these variables using
the fitted prior. In this model, each latent variable is
associated with only one data point. Yet, through the
fitted prior, the empirical Bayesian profits by incorpo-
rating information from the entire data set into each
inference.

This view of empirical Bayes reminds us of the
variational autoencoder (VAE) (Kingma and Welling,
2013), an approach to approximate Bayesian inference
for a particular class of latent variable models. A VAE
refers to both the user-specified generative model and
a strategy for approximate posterior inference. Given
a dataset, a VAE simultaneously fits the forward model
(i.e., the generative model) that describes the data and
a function that approximates Bayesian inversion for the
generative model. This inversion maps a data point to
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the (approximate) posterior of its associated latent vari-
able and, crucially, it is constructed from the entire data
set. Below we show that a VAE approximates one form
of empirical Bayes inference: in Efron’s language, it
performs g-modeling with a particular parametric form
of g.

THE POSTERIOR INFERENCE PROBLEM

Consider a data set with n data points x = (xq, ...,
Xxn). Bach data point x; is independently generated
from a function fg of a latent variable z;, where B
parameterizes the function. With prior pg on each z;,
observation i is generated

(1) zi ™ po(zi),
) iz ™ pxi | fo(a)).

Assume the prior pg(-) and probability kernel p(-)
are known; for example, they may both be multivari-
ate Gaussian with identity covariance. The form of the
function fg(-) is also known, for example, a neural net-
work, but its parameters 8 are unknown. This class of
generative distributions includes both linear and non-
linear factor models as special cases. The goal is to use
the data to estimate the parameters § and infer the pos-
terior of the latent variables z = (z1, ..., 2,).

The posterior is a quotient between a joint density
and a marginal density; the latter takes the form of an
integral,

p|x;B) =[] pGilxiB

i=1

=f1 Poz) pi | fp(z))
i S oo p(xi | fp(zi))dzi

When the function fg(-) is complicated, such as a
neural network, the integral in the denominator is of-
ten computationally intractable. Hence the posterior
p(z | x; B) is also intractable.
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THE VARIATIONAL AUTOENCODER (VAE)

A VAE is an approach to fit the model parame-
ters B and to approximate the intractable posteriors
p(z | x; B). The intractable per-data posterior is ap-
proximated with a parametric distribution, for exam-
ple, a Gaussian, whose parameter is a function of the
associated data point. This function is learned using the
entire data set.

Specifically, a VAE approximates the posterior of
z with variational Bayes (VB) (Jordan et al., 1999,
Wainwright et al.,, 2008, Blei, Kucukelbir and
McAuliffe, 2017), which casts posterior inference as
an optimization problem. In VB, we first posit a family
of distributions Q on the latent variables z. We then
find the member of Q within this family that is closest
to the exact posterior p(z | x; §).

A VAE posits a particular conditional form for the
family of distributions Q" for z,

n
3 Q= i%(l) =[TasGilx):pecdi.
i=1
The form of g4 (-) is known but the parameters ¢
are free in its domain ®. For example, g4 (z; | X;) =
N (zi; he(x;), I), where hy(-) is a neural network with
parameters ¢. This family is called the recognition
model.! Tt represents a factorizable joint of the latent
variables z; the marginal distribution of each latent
variable z; is a function of its associated data point x;.
A VAE seeks the member within this family that is
closest to the exact posterior in Kullback—Leibler (KL)
divergence. Its goal is to optimize the parameter ¢ of

q¢(-) given B:
4 "B = arg;nin KL(q¢(@) || p(z|x; B)).

This closest member gy+(g)(z) is the approximate pos-
terior of z.

However, computing the KL divergence to the exact
posterior is typically intractable. In practice, the VAE
optimizes an alternative objective, the evidence lower
bound (ELBO),

»*(B) = arg;nax ELBO(g¢(2), X; B),

where
ELBO(g4(2), x; )

S)
< Egym[log p(x,z; B)] — By, [log gy (2)].

11t is also referred to as the encoder or the amortized variational
Sfamily.

Maximizing the ELBO is equivalent to minimizing the
KL divergence because

ELBO(g4(z), x; B)

= p(x) —KL(g¢() Il p(z| x; B)).
The ELBO is easier to maximize (Blei, Kucukelbir and
McAuliffe, 2017).
Finally, a VAE estimates the parameters § by opti-
mizing the ELBO over S:

B* = argmax ELBO(q4+()(2), X; B).
B

(6)

Equivalently, a VAE jointly maximizes the parameters
B and the approximate posteriors g (z):

B*, ¢* = argﬁmax ELBO(q4(2), x; B).
N0

THE VAE AS EMPIRICAL BAYES

By rewriting the ELBO objective for a VAE, we find
that the VAE approximates the g-modeling approach to
empirical Bayes when the number of data points n is
large.

Efron described the empirical Bayes setup of g-
modeling. Each data point x; is modeled with a latent
variable 6; and a known probability kernel p(x | 6);
further assume that each latent variable 6; is indepen-
dently drawn from some hidden prior g(6),

iid
0; ~ g(6)),

Xi | 0; ~ p(xi | 6;).

Consider a class G of prior g € G, for example, all
the Gaussian densities, or even all densities. Empiri-
cal Bayes estimates this prior g(6) by maximizing the
marginal likelihood within this class,

g =argmax L(x; g(0))
g€y

n
—argmax [] [ ¢@)p(xi 1606,
S
We emphasize this hidden prior g(0) is different from
the known prior po(-) we posit in the posterior infer-
ence problem (equations (1) and (2)). Empirical Bayes
finally infers each latent variable 6; using this estimate
prior g(6),
(0 p(xi | 61)
p6; | xi) = — LT

S &) p(xi | 6;)do;

Taking 0; = fp(zi) and p(x; | 6;) = p(xi | fp(2i)
(i.e., the same probability kernel as in equation (2)),
a VAE turns out to approximate empirical Bayes with a
particular class of G.
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THEOREM 1 (VAE as empirical Bayes). Bayesian
posterior inference via VAE approximates the g-
modeling of empirical Bayes up to a constant. As the
number of data points n — 00,

1
~ELBO(gy(2), x; f)
)
1 a.s.
_ [;logL(x; 45(0) — h(o. ﬂ)] 230,

where each latent variable 6; is a function of the latent
variable z;:

0 = fp(zi);
the prior gg(-) belongs to a class G parametrized by B:

® @ =polf5©®)-|(f; " O
The term h(¢, B) takes the form

9) h(¢, B) =K [KL(qy zi | x) | p(zi | xi5 B))];

this term h(¢, B) decreases to zero as we increase the
flexibility of qp. (The expectation in equation (9) is
taken over the population distribution of the data x;.)

(The proof of Theorem 1 relies on rewriting the
ELBO and invoking the strong law of large numbers.
The full proof is in the Appendix.)

Theorem 1 implies that Bayesian posterior inference
with VAE is essentially performing g-modeling up to a
term h(¢, B). It optimizes the prior (i.e., the g function)
on the latent variables 6;. Its prior takes a particular
parametric form as in equation (8), which involves the
parameters 8 of the generative model (equations (1)
and (2)). Though parametric, the form of this prior can
be quite flexible; for instance, the function fg can be a
neural network.

The difference between the VAE objective and the
empirical Bayes objective is the term /i (¢, B); it is the
price a VAE pays for approximating the posterior. This
term A (¢, B) depends on both the parameters § of the
generative model (equations (1) and (2)) and the pa-
rameters ¢ of the approximate posteriors gy(z), that
is, the recognition model (equation (3)); it decreases
to zero as we increase the capacity of the recogni-
tion model g4(-) (Wang and Blei, 2018). A VAE more
closely approximates empirical Bayes as its recogni-
tion model g4 (-) becomes more flexible.

Finally, we note this connection to empirical Bayes
(Theorem 1) is specific to VAE, where the approximate
posterior of each g4 (z; | x;) shares the same parameter
¢; it does not apply to other VB methods like mean-
field variational Bayes.

EMPIRICAL BAYES WITH
HIGH-DIMENSIONAL DATA

One of the main advantages of VAEs is computa-
tional tractability with high-dimensional data. Can we
leverage the connection between VAE and empirical
Bayes to facilitate the computation of empirical Bayes?

e High-dimensional g-modeling with VAE. Jiang and
Zhang (2009) showed excellent empirical perfor-
mance of nonparametric g-modeling with one-
dimensional binary x;’s. However, g-modeling is
still  computationally  prohibitive for high-
dimensional x; and 6;. The computational bottleneck
lies in computing and maximizing the marginal like-
lihood:

n
(10) 3" =argmax Y log [ (@) (s 16, d.
i=1
where A is the parameter of the prior g; (-). Comput-
ing this log marginal likelihood (equation (10)) is
often intractable with a complicated g, (-) and high-
dimensional 6;’s.
With high-dimensional 6;, we can optimize A*
with a VAE approximation to this integral. In par-
ticular, we solve

(11)
R n
A= argmaxm(fx Z[log/‘g;h(@)p(xi | 6;)do;
A i=1

~KL(gp®: | %) | pr (6 | xi: x))}

where p; (6; | xi; A) o ,.(8;) p(x; | 6;) is the pos-
terior distribution implied by the g, (-) prior. The
function gy (-) is a probability density function as
in the recognition model of VAE (equation (3)). The
optimization objective in equation (11) resembles
the ELBO objective in equation (6); it is computa-
tionally tractable with high-dimensional 6; (Kingma
and Welling, 2013). Moreover, this VAE approxi-
mation is exact when the function g¢(-) is flexi-
ble enough. In particular, we have A* = A* when
Pa(6i | xi; A%) = q4(6; | x;) for some ¢ € D.

e High-dimensional f-modeling with flexible density
estimators. Tweedie’s formula (Efron, 2011) enables
f-modeling for certain models, which allows us
to infer the mean and variance of the latent vari-
ables 6;’s by directly modeling the marginal dis-
tribution of the data. In practice, f-modeling has
been mostly restricted to one-dimensional data us-
ing Lindsey’s method—binning the data and model-
ing the counts in each bin with Poisson regression.
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However, binning becomes impossible with high-
dimensional data.

For high-dimensional data, we can turn to alter-
native density estimators for f-modeling. Exam-
ples include normalizing flows (Rezende and Mo-
hamed, 2015), bidirectional recurrent neural net-
works (Schuster and Paliwal, 1997, Berglund et
al., 2015), neural autoregressive distribution esti-
mators (Larochelle and Murray, 2011) and gen-
erative stochastic networks (Bengio et al., 2014).
These density estimators are amenable to high-
dimensional observations and use flexible deep neu-
ral networks, which approximates the nonparametric
nature of Lindsey’s method. These density estima-
tors are almost everywhere differentiable. This al-
lows us to easily compute derivatives of the log den-
sities (log f(x)) for use within Tweedie’s formulas
(Efron, 2019, equation (24)) and f-modeling.

APPENDIX: PROOF OF THEOREM 1

We rewrite the VAE objective to prove Theorem 1.
The VAE is fit through variational EM, where the ex-
pectation is taken over z; ~ g¢(z | x) and the maxi-
mization is over (¢, 8). We remark that the exact pos-
terior p(z; | x;; B) is a function of the parameter 8 and
only depends on x;.

The objective of VAE is

1
(12) ;ELBO(%(Z), x; B)

1 n
_ —Z[lOg/PO(Zi)P(xi | fp(zi)) dzi
n-:

—KL(gg (zi [ x) || p(zi | xi ﬁ>)}

1 n
= ;Zlog/po(zi)P(xi | fp(z)) dzi

i=1

(14)
1 n
=~ D _KL{as i |x) Il PGz | xi; B)
i=1
1< -1 —1y/
= ;Zlog/[po(fﬂ ) - |(f/3 ) 6
i=1
(15) - p(xi 1 6;)]d6;

1 n
- Y KL(gp i | xi) | pzi | xi3 B)).
i=1

The first equality writes the ELBO objective as a dif-
ference between the log marginal probability and the

KL divergence. The second equality collects the KL
terms of all the data points. The third equality is due

to a change-of-variable step: 6; 2 fp(zi).
Next we rewrite the last equation (15). We first
rewrite its KL term:

(16)  g(xi.¢.B) = KL(qg(zi | x0) || p(zi | i1 ).

This step is because the KL term is only a function of
Xi, ¢, B; the latent random variable z; is marginalized
out. We then apply the strong law of large numbers to
conclude

1 n
~ > KL(gp(i | x0) || (i | x5 B))
17 iz

% Ex[g(Xi, 0, B)] 2 h(s, B).

This step is because x;’s are assumed i.i.d. The ex-
pectation in Ex[g(X;, ¢, B)] is taken over the popu-

lation distribution of x. We emphasize that i (¢, ) 2
Ex[g(Xi, ¢, B)] > 01is only a function of ¢ and B.

Equation (15) and equation (17) then lead to equa-
tion (7) of Theorem 1.

Equation (15) shows how the VAE connects to empir-
ical Bayes; the VAE maximizes the marginal likelihood
of the following model up to a term A (¢, B):

iid

(18) 0 ~ po(f5 @) - |(f5") @],
(19) xi | 0i ~ p(xi | 6;).

The prior on 6; is shared across i = 1,...,n. It is
optimized because the VAE maximizes ¢ and .

This connection of variational inference to empiri-
cal Bayes is specific to VAEs; it does not apply to mean
field variational Bayes. The reason is that equation (17)
requires all x;’s share the same parameter ¢. It does not
hold for mean field variational Bayes whose approxi-
mating family is

(20) Q' = q¢(z)=nq¢i(zi):¢ed> .

i=1
with different ¢;’s for i = 1,...,n. In this case, the
latent variable 6;’s will not share the same prior.
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