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ABSTRACT
The task of recommender systems is classically framed as a predic-
tion of users’ preferences and users’ ratings. However, its spirit is to
answer a counterfactual question: “What would the rating be if we
‘forced’ the user to watch the movie?” This is a question about an
intervention, that is a causal inference question. The key challenge
of this causal inference is unobserved confounders, variables that
affect both which items the users decide to interact with and how
they rate them. To this end, we develop an algorithm that lever-
ages classical recommendation models for causal recommendation.
Across simulated and real datasets, we demonstrate that the pro-
posed algorithm is more robust to unobserved confounders and
improves recommendation.

CCS CONCEPTS
•Computingmethodologies→Machine learning; Latent vari-
able models.
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1 INTRODUCTION
The goal of a recommender is to show its users items that they
will like. Given a dataset of users’ ratings, a recommender system
learns the preferences of the users, predicts the users’ ratings on
those items they did not rate, and finally makes suggestions based
on those predictions. In this paper we develop a causal inference
approach to recommendation.

Why is recommendation a causal inference? Concretely, sup-
pose the items are movies and the users rate movies they have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7583-2/20/09. . . $15.00
https://doi.org/10.1145/3383313.3412225

seen. In prediction, the recommender system is trying to answer
“How would the user rate this movie if she saw it?” However, rec-
ommending all the movies that users will like may not be the most
cost-efficient strategy. Many recommendations, though costing
money, will not make a difference in user behaviors. For example,
users like certain movies so much that they will go see them no
matter whether there is a recommendation. Therefore, we only
want to recommend the movies that (1) if made exposed, the user
will go see them and (2) if not, the user will not go see them. But
this is a question about an intervention: what would the rating be
if we make the user exposed (or not exposed) to the movie? One
tenet of causal inference is that predictions under intervention are
different from usual predictions.

Framing recommendation as a causal problem differs from the
traditional approach. The traditional approach builds a model from
observed ratings data, often a matrix factorization, and then uses
that model to predict unseen ratings. But this strategy only provides
valid causal inferences—in the intervention sense above—if users
randomly watched movies. (This is akin to a randomized clinical
trial, where the treatment is exposure to a movie and the response
is a rating.)

Users do not (usually) watch movies at random and, conse-
quently, answering the causal question from observed ratings data
is challenging. The issue is that there may be confounders, variables
that affect both the treatment assignments (which movies the users
watch) and the outcomes (how they rate them). For example, be-
cause a user watches many movies by a particular director, they
may often be recommended movies by this director and also tend
to watch and like those movies. The director is a confounder that
biases our inferences; it affects both which movies the user were
recommended and whether they watch and like them. Compound-
ing this issue, the confounders might be difficult (or impossible)
to measure. Further, the theory around causal inferences says that
these inferences are valid only if we have accounted for all con-
founders [19]. And, alas, whether we have indeed measured all
confounders is uncheckable [8].

How can we overcome these obstacles? In this paper, we de-
velop the deconfounded recommender, a method that tries to correct
classical matrix factorization for unobserved confounding. The de-
confounded recommender builds on the two sources of information
in recommendation data: which movies each user decided to watch
and the user’s rating for each of those movies. It posits that the
two types of information come from different models—the expo-
sure data comes from a model by which users discover movies to
watch; the ratings data comes from a model by which users decide
which movies they like. The ratings data entangles both types of
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information—users only rate movies that they see—and so classical
matrix factorization is biased by the exposure model, i.e., that users
are not randomly exposed to movies.

The deconfounded recommender tries to correct this bias. It first
uses the exposure data to estimate a model of which movies each
user is likely to consider. (In recommender systems, the exposure
data is a form of “implicit” data.) It then uses this exposure model
to estimate a substitute for the unobserved confounders. Second, it
fits a ratings model (e.g., matrix factorization) that accounts for the
substitute confounders. The justification for this approach comes
fromWang and Blei [26]; correlations among the considered movies
provide indirect evidence for confounders.1

Consider a film enthusiast who mostly watches western action
movies but who has also enjoyed two Korean dramas, even though
non-English movies are not easily accessible in her area. A tra-
ditional recommender will infer preferences that center around
westerns; the dramas carry comparatively little weight. The decon-
founded recommender will also detect the preference for westerns,
but it will further up-weight the preference for Korean dramas. The
reason is that the history of the user indicates that she is unlikely to
have been exposed to many non-English movies, and she liked the
two Korean dramas that she did see. Compared to westerns, Korean
dramas are likely movies that if recommended she might like and
if not recommended she might see. Consequently, when recom-
mending from among the unwatched movies, the deconfounded
recommender promotes other Korean dramas along with westerns.

Below we develop the deconfounded recommender. We empiri-
cally study it on both simulated data, where we control the amount
of confounding, and real data, about shopping and movies. Com-
pared to existing approaches, it predicts the ratings better and
consistently improves recommendation.

Related work. This work draws on several threads of previous
research in recommendation algorithms.

The first is on evaluating recommendation algorithms via biased
data. It is mostly explored in the multi-armed bandit literature
[11, 12, 25, 27]. These works focus on online learning and rely on
importance sampling. Here we consider an orthogonal problem.
We reason about user preferences, rather than recommendation
algorithms, and we use offline learning and parametric models.

The second thread is around the missing-not-completely-at-
random assumption in recommendation algorithms. Marlin and
Zemel [16] studied the effect of violating this assumption in ratings.
Similar to our exposure model, they posit an explicit missingness
model that leads to improvements in predicting ratings. Later, other
researchers proposed different rating models to accommodate this
violated assumption [1, 7, 13, 14, 23, 24]. In this work, we take an
explicitly causal view of the problem. While violating the missing-
not-completely-at-random assumption is one form of confounding
bias [4], the explicit causal view opens up the door to other recent
debiasing tools, such as the deconfounder [26]. It also articulates
the rationale of such adjustments: By modeling which movies users
tend to watch, we avoid recommending the movies that user will

1The deconfounded recommender focuses on how the exposure of each individual
movie (i.e. one of the many causes) causally affects its observed rating (Eq. 6); we
rely on Theorem 7 of Wang and Blei [26] for the identification of causal parameters.
Note this result does not contradict the causal non-identification examples given in
D’Amour [2], which operate under different assumptions.

watch anyway even without a recommendation. Rather, we only
want to recommendmovies that if recommender the user will watch
and otherwise not.

Finally, the recent work of Schnabel et al. [22] also adapted causal
inference—inverse propensity weighting (IPW), in particular—to
address missingness. Their propensity models rely on either ob-
served ratings of a randomized trial or externally observed user and
item covariates. In contrast, our work relies solely on the observed
ratings: we do not require ratings from a gold-standard randomized
exposure nor do we use external covariates. In § 3, we show that
the deconfounded recommender provides better recommendations
than Schnabel et al. [22].

2 THE DECONFOUNDED RECOMMENDER
We frame recommendation as a causal inference and develop the
deconfounded recommender.

Matrix factorization as potential outcomes.We first set up
notation. Denote aui as the indicator of whether useru rated movie
i . Let yui (1) be the rating that user u would give movie i if she
watches it. This rating is only observed if the user u watched and
rated the movie i; otherwise it is unobserved. Similarly defineyui (0)
to be the rating of user u on movie i if she does not see the movie.
(We often “observe” yui (0) = 0 in recommendation data; unrated
movie entries are filled with zeros.) The pair (yui (0),yui (1)) is the
potential outcomes notation in the Rubin causal model [10, 20, 21],
where watching a movie is a “treatment” and a user’s rating of the
movie is an “outcome.”

A recommender system observes users’ ratings of movies. We
can think of these observations as two datasets. One dataset con-
tains (binary) exposures, {aui ,u = 1, . . . ,U , i = 1, . . . , I }. It indi-
cates who watched what. The other dataset contains the ratings for
movies that users watched, {yui (aui ) for (u, i) such that aui = 1}.

The goal of the recommender is to suggest movies its users will
like. It first estimates yui (1) for user-movie pairs with aui = 0; that
is, it predicts each user’s ratings for their unseen movies. It then
uses these estimates to suggest movies to users. Note yui (1) is a
prediction under intervention: “What would the rating be if user u
was made to watch movie i?”

To form the prediction of yui (1), we recast matrix factorization
in potential outcomes. First set up an outcome model,

yui (a) = θ
⊤
u βi · a + ϵui , ϵui ∼ N(0,σ 2). (1)

When a = 1 (i.e., user u watches movie i), this model says that the
rating comes from a Gaussian distribution whose mean combines
user preferences θu and item attributes βi . When a = 0, the “rating”
is a zero-mean Gaussian.

Fitting Eq. 1 to the observed data recovers classical probabilistic
matrix factorization [17]. Its log likelihood only involves observed
ratings; it ignores the unexposed items. The fitted model can then
predict E [yui (1)] = θ⊤u βi for every (unwatched) user-movie pair.
These predictions suggest movies that users would like.

Classical causal inference and adjusting for confounders
in recommendation. But matrix factorization does not provide
an unbiased causal inference of yui (1). The theory around potential
outcomes says we can only estimateyui (1) if we assume ignorability.
For all users u, ignorability requires {yu (0),yu (1)} ⊥⊥ au , where
yu (a) = (yu1(a), . . . ,yuI (a)) and au = (au1, . . . ,auI ). In words,
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the vector of movies a user watches au is independent of how she
would rate them if she watched them all yu (1) (and if she watched
none yu (0)).

Ignorability clearly does not hold foryu (1)—the process bywhich
users find movies is not independent of how they rate them. Prac-
tically, this violation biases the estimates of user preferences θu :
movies that u is not likely to see are downweighted and vice versa.
Again consider the American user who enjoyed two Korean dramas
and rated them highly. Because she has only two high ratings of Ko-
rean dramas in the data, her preference for Korean dramas carries
less weight than her other ratings; it is biased downward. Biased
estimates of preferences lead to biased predictions of ratings.

When ignorability does not hold, classical causal inference asks
us to measure and control for confounders [18, 21]. These are vari-
ables that affect both the exposure and the ratings. Consider the
location of a user as an example. It affects both which movies they
are exposed to and (perhaps) what kinds of movies they like.

Suppose we measured these per-user confounderswu ; they sat-
isfy {yu (0),yu (1)} ⊥⊥ au |wu . Classical causal inference controls
for them in the outcomemodel,yui (a) = θ⊤u βi ·a+η⊤wu+ϵui , ϵui ∼
N(0,σ 2). However, this solution requires we measure all con-
founders. This assumption is known as strong ignorability.2 Un-
fortunately, it is untestable [8].

The deconfounded recommender. We now develop the de-
confounded recommender. It leverages the dependencies among
the exposure (“which movies the users watch”) as indirect evidence
for unobserved confounders. It uses a model of the exposure to con-
struct a substitute confounder; it then conditions on the substitute
when modeling the ratings.

The key idea is that causal inference for recommendation sys-
tems is a multiple causal inference problem: there are multiple treat-
ments. Each user’s binary exposure to eachmovie aui is a treatment;
thus there are I treatments for each user. The vector of ratingsyu (1)
is the outcome; this is an I -vector, which is partially observed. The
multiplicity of treatments enables causal inference with unobserved
confounders [26].

The first step is to fit a model to the exposure data. We use
Poisson factorization (PF) model [5]. PF assumes the data come
from the following process,

aui | πu , λi ∼ Poisson(π⊤
u λi ), ∀u, i, (2)

where both πu
iid
∼ Gamma(c1, c2) and λi

iid
∼ Gamma(c3, c4) are

nonnegative K-vectors. The user factor πu captures user prefer-
ences (in picking what movies to watch) and the item vector λi
captures item attributes. PF is a scalable variant of nonnegative
factorization and is especially suited to binary data [5]. It is fit with
coordinate ascent variational inference.3

With a fitted PF model, the deconfounded recommender com-
putes a substitute for unobserved confounders. It reconstructs the

2In causal graphical models, this requirement is equivalent to “no open backdoor paths”
[18].
3The Bernoulli distribution is more natural to model binary exposure, but PF is more
computationally efficient and several precedents use a Poisson to model binary data
[5, 6]. PF scales linearly with the number of nonzero entries in the exposure matrix
{aui }U ×I while Bernoulli scales with the number of all entries. Further, the Poisson
distribution closely approximates the Bernoulli when the exposure matrix {aui }U ×I
is sparse [3]. Finally, PF can also model non-binary count exposures: e.g., PF can model
exposures that count how many times a user has been exposed to an item.

exposure matrix â from the PF fit,

âui = EPF[π
⊤
u λi | a], (3)

where a is the observed exposure for all users, and the expectation
is taken over the posteriors computed from the PF model. This is
the posterior predictive mean of π⊤

u λi , which serves as a substitute
confounder [26].

Finally, the deconfounded recommender posits an outcomemodel
conditional on the substitute confounders â,

yui (a) = θ
⊤
u βi · a + γu · âui + ϵui , ϵui ∼ N(0,σ 2), (4)

where γu is a user-specific coefficient that describes how much
the substitute confounder â contributes to the ratings. The decon-
founded recommender fits this outcome model to the observed
data; it infers θu , βi ,γu , via MAP estimation. The coefficients θu , βi
in Eq. 4 are fit only with the observed user ratings (i.e., aui = 1)
because aui = 0 zeroes out the term that involves them; in contrast,
the coefficient γu is fit to all movies (aui = 0 and aui = 1) since âui
is always non-zero.

To form recommendations, the deconfounded recommender cal-
culates all the potential ratings yui (1) with the fitted θ̂u , β̂i , γ̂u . It
then orders the potential ratings of the unseen movies. These are
causal recommendations. Algorithm 1 provides the algorithm for
forming recommendations with the deconfounded recommender.

Why does it work? Poisson factorization (PF) learns a per-user
latent variable πu from the exposure matrix aui , and we take πu
as a substitute confounder. What justifies this approach is that PF
admits a special conditional independence structure: conditional
on πu , the treatments aui are independent (Eq. 2). If the exposure
model PF fits the data well, then the per-user latent variable πu
(or functions of it, like âui ) captures multi-treatment confounders,
i.e., variables that correlate with multiple exposures and the rat-
ings vector (Lemma 3 of [26]). We note that the true confounding
mechanism does not need to coincide with PF and nor does the
real confounder need to coincide with πu . Rather, PF produces a
substitute confounder that is sufficient to debias confounding.

Beyondprobabilisticmatrix factorization.The deconfounder
involves two models, one for exposure and one for outcome. We
have introduced PF as the exposure model and probabilistic ma-
trix factorization [17] as the outcome model. Focusing on PF as
the exposure model, we extend the deconfounded recommender to
general outcome models.

We start with a general form of matrix factorization,

yui (a) ∼ p(· |m(θ⊤u βi ,a),v(θ
⊤
u βi ,a)), (5)

wherem(θ⊤u βi ,a) characterizes the mean and v(θ⊤u βi ,a) the vari-
ance of the ratings yui (a). This form encompasses many factoriza-
tion models, including probabilistic [17], weighted [9], and Poisson
matrix factorization [5]. The deconfounded recommender then fits
an augmented outcome model MY . This outcome model MY in-
cludes the substitute confounder,

yui (a) ∼ p(· |m(θ⊤u βi ,a) + γu âui + β0,v(θ
⊤
u βi ,a)). (6)

Notice the parameter γu is a user-specific coefficient; for each user,
it characterizes how much the substitute confounder â contributes
to the ratings. Note the deconfounded recommender also includes
an intercept β0. These deconfounded outcome model can be fit by
maximum a posteriori estimation.
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Figure 1: (Left) Probabilistic MF (Center) Poisson MF (Right) Weighted MF. Varying confounder correlation γθ from 0.0 to 1.0
(γy = 3.0). The recommendation performance of the deconfounded recommender (green) is better than its classical counterpart
(blue) and the existing causal approach, IPW MF [22] (orange). (Higher is better.)

Algorithm 1 The Deconfounded Recommender

Input: a dataset of exposures and ratings
{(aui ,yui (aui ))}u,i , i = 1, . . . , I ,u = 1, . . . ,U

Output: the potential outcome given treatment ŷui (1)

1. Fit PF to the exposures {aui }u,i from Eq. 2

2. Compute substitute confounders {âui }u,i from Eq. 3

3. Fit the outcome model {(aui ,yui (aui ))}u,i from Eq. 6

4. Estimate all potential ratings yui (1) with the fitted outcome
model (Eq. 6)

3 EMPIRICAL STUDIES
We study the deconfounded recommender on simulated and real
datasets. We examine its recommendation performance and com-
pare to existing recommendation algorithms. We find that the de-
confounded recommender predicts the ratings better and consis-
tently improves recommendation. (The supplement contains soft-
ware that reproduces these studies.)

3.1 Evaluation of causal recommendation
models

We first describe how we evaluate the recommender. Traditionally,
we evaluate the accuracy (e.g. mean squared error or ranking met-
rics) of the predicted ratings. However, causal recommendation
models pose unique challenges for evaluation. In causal inference,
we need to evaluate how a model performs across all potential
outcomes, errcau = 1

U
∑U
u=1 ℓ({ŷui }i ∈{1, ..., I }, {yui (1)}i ∈{1, ..., I }),

where ℓ is a loss function, such as mean squared error (MSE) or
normalized discounted cumulative gain (NDCG). The challenge
is that we don’t observe all potential outcomes yui (1). If we use
a “regular test set” by randomly splitting the data, it gives a bi-
ased estimate of errcau; it emphasizes popular items and active
users. The (expensive) solution is to measure a randomized test
set. Randomly select a subset Iu from all items and ask the users

to interact and rate all of them. Then compute the average loss
across users, errrand = 1

U
∑U
u=1 ℓ({ŷui }i ∈Iu , {yui (1))}i ∈Iu ), which

is an unbiased estimate of the average across all items in errcau; it
tests the recommender’s ability to answer the causal question. Two
available datasets that include such random test sets are the Yahoo!
R3 dataset [16] and the coat shopping dataset [22]. We also create
random test sets in simulation studies.

3.2 Simulation studies
We study the deconfounded recommender on simulated datasets.
We simulate movie ratings forU = 1, 000 users and I = 1, 000 items,
where effect of preferences on rating is confounded.

Simulation setup.We simulate a K-vector confounder for each
user cu ∼ GammaK (0.3, 0.5) and a K-vector of attributes for each
item βi ∼ GammaK (0.3, 0.5). We then simulate the user preference
K-vectors θu conditional on the confounders, θu ∼ γθ ·cu +(1−γθ ) ·
GammaK (0.3, 0.5). The constant γθ ∈ [0, 1] controls the exposure-
confounder correlation; higher values imply stronger confounding.

We next simulate the binary exposures aui ∈ {0, 1}, the rat-
ings for all users watching all movies yui (1) ∈ {1, 2, 3, 4, 5}, and
calculate the observed ratings yui . The exposures and ratings are
both simulated from truncated Poisson distributions; the exposures
are from aui ∼ min(Poisson(c⊤u βi ), 1) and the ratings are from
yui (1) ∼ min(1 + Poisson((θu + γy · cu )

⊤βi ), 5). Finally, the ob-
served ratings mask the ratings by the exposure, yui = aui · yui (1).
The constant γy ≥ 0 controls how much the confounder cu affects
the outcome; higher values imply stronger confounding.

Competing methods. We compare the deconfounded recom-
mender to baseline methods. One set of baselines are the classical
counterparts of the deconfounded recommender. We explore prob-
abilistic matrix factorization [17], Poisson matrix factorization [5],
and weighted matrix factorization [9]. We additionally compare
to inverse propensity weighting (IPW) matrix factorization [22],
which also handles selection bias in observational recommendation
data.
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Table 1: Recommendation on random test sets for existing users (weak generalization) and new users (strong generalization).
The deconfounded recommender improves recommendation over classical approaches and the existing causal approach [22].
(Higher is better.)

Existing users (Weak generalization) New users (Strong generalization)
Yahoo! R3 Coat Yahoo! R3 Coat

NDCG Recall@5 NDCG Recall@5 NDCG Recall@5 NDCG Recall@5
Prob. MF [17] 0.811 0.671 0.719 0.451 0.811 0.831 0.779 0.650
IPW Prob. MF [22] 0.813 0.676 0.714 0.480 0.814 0.834 0.781 0.548
Dcf. Prob. MF (ours) 0.815 0.680 0.721 0.487 0.816 0.793 0.805 0.760

Pois. MF [5] 0.773 0.510 0.680 0.358 0.767 0.771 0.725 0.608
IPW Pois. MF [22] 0.783 0.550 0.692 0.362 0.772 0.735 0.717 0.601
Dcf. Pois. MF (ours) 0.788 0.565 0.696 0.387 0.782 0.741 0.739 0.618

Wght. MF [9] 0.821 0.641 0.718 0.554 0.802 0.776 0.799 0.617
IPW Wght. MF [22] 0.822 0.644 0.717 0.449 0.800 0.772 0.770 0.600
Dcf. Wght. MF (ours) 0.823 0.648 0.720 0.566 0.810 0.782 0.766 0.594

Results. Figure 1 shows the recommendation performance of dif-
ferent algorithms. The deconfounded recommender leads to higher
NDCGs in recommendation than its classical counterparts (Proba-
bilistic, Poisson, or Weighted Matrix Factorization) and the existing
causal approach (Inverse Propensity Weighted (IPW) Probabilistic,
Poisson, or Weighted Matrix Factorization [22]).

3.3 Case studies: The deconfounded
recommender on random test sets

We next study the deconfounded recommender on two real datasets:
Yahoo! R3 [16] and coat shopping [22].4 Both datasets are comprised
of an observational training set and a random test set. The training
set comes from users rating user-selected items; the random test
set comes from the recommender system asking its users to rate
randomly selected items. The latter enables us to evaluate how
different recommendation models predict potential outcomes: what
would the rating be if we make a user watch and rate a movie?

Evaluation metrics.We use the recommenders for two types
of prediction: weak generalization and strong generalization [15].
Weak generalization predicts preferences of existing users in the
training set on their unseen movies. Strong generalization predicts
preferences of new users—users not in the training set—on their
unseen movies. Based on the predictions, we rank the items with
nonzero ratings. For evaluation, we report NDCG and recall.

Results. Table 1 show the performance of the deconfounded
recommender and its competitors. Across the three metrics and
the two datasets, the deconfounded recommender outperforms its
classical counterpart for both weak and strong generalization: it
produces better item rankings and improves retrieval quality; its
predicted ratings are also more accurate. The deconfounded recom-
mender also outperforms the IPW matrix factorization [22], which
is the main existing approach that targets selection bias in rec-
ommendation systems. These results show that the deconfounded
recommender produces more accurate predictions of user prefer-
ences.

4Yahoo! R3 [16] contains user-song ratings. The training set contains over 300K user-
selected ratings from 15400 users on 1000 items. Its random test set contains 5400 users
who were asked to rate 10 randomly chosen songs. The coat shopping dataset [22]
contains user-coat ratings. The training set contains 290 users. Each user supplies 24
user-selected ratings among 300 items. Its random test contains ratings for 16 randomly
selected coat per user.
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