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Abstract

This paper proposes probabilistic conformal prediction (PCP), a predictive inference algorithm
that estimates a target variable by a discontinuous predictive set. Given inputs, PCP construct
the predictive set based on random samples from an estimated generative model. It is efficient
and compatible with either explicit or implicit conditional generative models. Theoretically,
we show that PCP guarantees correct marginal coverage with finite samples. Empirically, we
study PCP on a variety of simulated and real datasets. Compared to existing methods for
conformal inference, PCP provides sharper predictive sets.

1 Introduction
A core problem in supervised machine learning (ML) is to predict a target variable Y ∈ Y given a
vector of inputs X ∈ Rp. In this problem, a predictive function q(Y |X) is fitted on an observed dataset
D = {(Xi, Yi)}Ni=1 and then used to predict the target YN+1 of a new data point with inputs XN+1.
While much of machine learning focuses on point predictions of Y , the problem of predictive inference
aims at more robust prediction. In predictive inference, our goal is to create a predictive set that is
likely to contain the unobserved target [12].

In particular, the field of conformal inference develops predictive inference algorithms that aim for
calibrated coverage probabilities [30, 39]. Assume the data pairs (Xi, Yi) are sampled independent and
identically distributed (iid) from a population distribution P(X,Y ). Given an input X, a conformal
inference algorithm provides a set Cα(X) such that

PX,Y (Y ∈ Ĉα(X)) ≥ 1− α. (1)

The scalar α ∈ [0, 1] is a predefined miscoverage rate and Ĉα(X) ⊂ Y is the predictive set. A set that
satisfies Equation (1) is called a valid predictive set. Since the trivial set Ĉα(X) = Y is valid, one goal of
conformal inference is to keep the size of the predictive set small and (thus) informative. This property
is known as sharpness [10, 21]. In this paper, we develop a new method for conformal inference that
produces valid and sharp predictive sets.
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(a) Sample Data (b) PCP (Ours) (c) HD-PCP (Ours) (d) CDSplit [16] (e) CHR [33]

Figure 1: NYC Taxi data. The covariates are pickup location (red pin) and other passenger information;
The targe is the dropoff location (blue pin). Left to right: Five random samples from Travel Data;
Predictive sets output by PCP, HD-PCP, CDSplit [16] and CHR [33] for one travel record.

Existing conformal inference methods often produce a continuous interval as the predictive set [3, 8,
20, 26, 31, 33]. Such intervals are appropriate in some predictive situations. However, consider a
target distribution with separated high-density regions. In this setting, validity comes at the cost of
sharpness [15]: to ensure validity the set must include all of the high-density regions; but since it’s
continuous it must also include the low-density regions between them.

For example, consider a prediction problem that estimates the drop-off location of a taxi passenger based
on the passenger’s information. The target distribution is likely to be multimodal, centered around
locations such as tourist attractions and transit centers [37]. A continuous predictive set will have to
emcompass these regions, regardless of how far apart they are. A more informative set would contain
the regions themselves, but not the areas between them. Other examples of multimodal targets include
the effects of a stroke on brain regions [13], and the rewards of actions of a robot [28].

Figure 1 provides an example of the taxi application. Panel (a) illustrates the data, the destinations
of New York taxi passengers. Given a new set of inputs, panels (d) and (e) show existing methods for
conformal inference, which predict large regions for the possible destination. Panels (b) and (c) show
the results of our algorithms, which form sharper predictive sets from distinct subregions of the map.
Our method is called probabilistic conformal prediction (PCP). Figure 2 illustrates the algorithm.

In more detail, PCP builds on the split conformal prediction framework [20, 30]. It begins by randomly
splitting the observed data D into a preliminary set Dpre and a calibration set Dcal. It then has
three stages. (1) It fits a conditional generative model q(Y |X) to the preliminary data Dpre. (2)
For each point (Xi, Yi) in the calibration set Dcal, it generates K independent samples of preditions
ŶXi = {Ŷi1, · · · , ŶiK} from the fitted model q(Y |Xi). It then calculates the distance between each
sampled predition and the true label Yi. These quantities are called the nonconformity scores and
measure the goodness-of-fit of the generative model. (3) Finally, it calculates and records the (1− α)
empirical quantile of the nonconformity scores. These will be used to for the predictive sets.

With these calculations in place, PCP can form the predictive set of a new datapoint. First it generates
sampled predictions from the fitted target distribution. Then each sample is expanded to a ball that
centers at its point and has a radius equal to the quantile computed from the calibration set. Finally, the
predictive set is defined as the union of the balls over the samples. Because it is centered at high-density
regions, this predictive set is sharp. Further, as we prove below, it is valid.

There are several advantages to PCP (and a related extension, high-density PCP). First, it adapts
automatically to the landscape of the target distribution, providing sharp and valid predictive sets
regardless of the underlying distribution. Second, the generative model for PCP may have an explicit or
implicit density function as long as the random samples can be generated from it. Without requiring
an explicit density, PCP is compatible with the likelihood-free prediction [1, 7] and is less prone to
model misspecification [27, 42]. Last, (HD-)PCP can be applied to multi-target regression where the
target variable Y ∈ Y = RT , T ≥ 1 [5, 26]. As we shall see, (HD-)PCP scales efficiently with the target
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Figure 2: Illustration of the stages of PCP. Data: i.i.d data D = {(Xi, Yi)}Ni=1; Modeling: generate K
random samples from a fitted q(Y |X); Calibration: compute scores Ei and the quantile ∆y; Prediction:
create the predictive set Ĉ(X) for a test data.

dimension and creates a sharp predictive set by capturing the targets’ dependencies.

Related Work. PCP provides a contribution to the growing field of conformal inference. Some
conformal inference methods are based on predicting summary statistics of the target distribution, for
example, by fitting a mean response function [22, 34], conditional quantile functions [31] and approximate
histograms [33]. However, these methods produce a single continuous interval as the predictive set,
which might be too loose for predicting multimodal targets.

Other conformal inference algorithms estimate the full target distribution. Distributional conformal
prediction (DCP) is based on the estimated cumulative density function [8] but its prediction is often
sensitive to the tail estimation [33]. CDSplit uses a level set of the estimated probability density
function as the predictive set [16]. Similar to PCP, CDSplit can produce discontinuous predictive
sets. However, the level set might be loose when the distribution has high dispersion and it has to be
computed approximately. Thanks to its sampling-based design, PCP is more computationally efficient
than CDSplit, and further it is compatible with likelihood-free predictions [1]. Empirically, across
multiple datasets, PCP creates sharper predictive sets than these existing conformal methods.

Finally, there are a few conformal methods for multi-target regression [25, 26, 29]. Compared to these
methods, PCP models the target variables jointly and can produce discontinuous predictive sets. As we
show in the empirical studies, PCP provides sharper and more interpretable predictions.

2 Probabilistic conformal prediction

2.1 Problem setup
Consider i.i.d. pairs of covariates Xi and a target variable Yi, i.e. D = {(Xi, Yi)}Ni=1, from an underlying
distribution. We observe data D and the covariates XN+1 of a new data point. The goal is to form a
predictive set Ĉ(XN+1) for the unobserved target YN+1 with valid uncertainty estimation. Specifically,
we create a predictive set Ĉα(·) : X 7→ Y that satifies Equation (1) for α ∈ [0, 1]. Since an arbitrary
wide predictive set has valid coverage, a predictive set should be as sharp as possible.

Classic conformal prediction is based on leave-one-out estimation [39], which has high computational
cost due to multiple model fitting. In this paper, we adopt the split conformal prediction framework,
which improves computational efficiency by data-splitting [22, 30]. It randomly splits the observed data
to a preliminary set and a calibration set. The model is fit on the preliminary set and kept fixed in
computing the nonconformity scores on the calibration set and the test set.
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2.2 Generative model fitting
Our proposed PCP depends on random samples from a conditional generative model q(Y |X) that
approximates the target variable distribution p(Y |X). This differs from standard conformal prediction
methods that are based on fitting the summary statistics such as the conditional mean and quantiles
of the target [20, 31] and that depend on evaluating probability densities [8, 15, 16]. Since the only
prerequisite is to sample from q(Y |X), we consider both typical conditional density estimation methods
with explicit density function and popular generative models with implicit density.

PCP is compatible with a variety of CGMs, such as the Kernel Mixture Network (KMN) [2], Mixture
Density Network (MixD) [4], Quantile Regression Forest (QRF) [24] and implicit generative models. We
refer to Appendix D for more details about fitting a CGM and generating random samples from it. We
regard CGMs as backbone models for PCP.

2.3 Uncertainty calibration with random samples
Suppose a conditional density model is fit on a preliminary data set Dpre. We use the fitted model
q(Y |X) and the calibration data to construct a predictive set for a new test data point. For a data
point (Xi, Yi) in the calibration set, the algorithm first generates K random samples Ŷik, k = 1, · · · ,K
independently from q(Y |Xi), denoted as Ŷi = {Ŷi1, · · · , ŶiK}. Then, it computes the distance from the
observed outcome to this set of samples as

Ei = min
1≤k≤K

∥∥∥Yi − Ŷik∥∥∥ . (2)

The scalar Ei is set as the nonconformity score. Intuitively, a small score indicates that the speculated
outcomes Ŷik are close to the observed outcome Yi, where Ŷik are from the approximate density
q(Y |Xi) and Yi is from the true underlying density p(Y |Xi). Therefore, the scale of Ei reflects
the distance between the estimated density and the true density. We use the empirical quantile of
the nonconformity scores to construct the predictive set. The α-th empirical quantile is defined as
Qα(z1:n) = infx{(

∑n
i=1 1[zi ≤ x])/n ≥ α} where α ∈ [0, 1] and 1[·] is the indicator function.

For a new data point with covariates X, we generate Ŷ = {Ŷ1, · · · , ŶK} with Ŷk ∼ q(Y |X). Sup-
pose that the desired nominal coverage is 1 − α. Then, each sample Ŷk is expanded to a region
Rk = {y :

∥∥∥y − Ŷk∥∥∥ ≤ r} with an arbitrary norm and a radius r as the (1− α) quantile of the scores
{E1, · · · , En} ∪ {∞}. We call Rk an element region of the data point X. The proposed predictive set
is the union of the element regions,

Ĉ(X, Ŷ) = ∪Kk=1Rk = ∪Kk=1

{
y :
∥∥∥y − Ŷk∥∥∥ ≤ Q1−α(E1:n ∪ {∞}

}
. (3)

As a special case, when the outcome is a scalar, the predictive set can be written explicitly as

Ĉ(X, Ŷ) = ∪Kk=1

[
Ŷk −Q1−α(E1:n ∪ {∞}), Ŷk +Q1−α(E1:n ∪ {∞})

]
. (4)

The proposed PCP algorithm is summarized in Algorithm 1.

As shown in Equation (3), the predictive set can be either continuous or discontinuous. Therefore, it
can produce a sharp estimate by automatically adapting to the distributional properties of the target
distribution. When the generative model is less well fitted, PCP maintains a valid marginal coverage,
properly quantifying the predictive uncertainty. When the generative model fits the target distribution
well, the predictive set allocates its volume according to the random samples. For example, if p(Y |X)
is multimodal and the multimodality is captured by the estimated q(Y |X), the predictive set would
consist of discontinuous sets around the modes where each set is relatively small.

Though in some situations, a continuous interval prediction is preferred in terms of interpretability
[33], when the target is multimodal, a discontinuous set might be more interpretable. For example,
when predicting a watch price based on its appearance without knowing the brand, a price range
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Algorithm 1 Probabilistic Conformal Prediction
Input: Data D = {(Xi, Yi)}Ni=1, model q(Y |X), nominal level α, test point X, sample size K.

Step I: Conditional generative model
1: Split the data into three folds Ztr, Zval, Zcal with set of index as Itr, Ival, Ical respectively
2: Fit q(Y |X) on Ztr with hyper-parameter chosen by cross validation on Zval

Step II: Predictive set for a test point
1: For i ∈ Ical, sample Ŷi1, · · · , ŶiK ∼ q(Y |Xi)
2: For test point X, sample Ŷ1, · · · , ŶK ∼ q(Y |X)
3: Compute nonconformity score {Ei}i∈Ical by Equation (2), EN+1 =∞, Ĩcal = Ical ∪ {N + 1}
4: Set r as the (1− α) empirical quantile of {Ei}i∈Ĩcal
5: Compute the predictive set Ĉ(X, Ŷ) by Equation (3)

Output: Predictive set Ĉ(X, Ŷ)

($100, $200) ∪ ($1000, $1200) might be more informative than ($100, $1200). Nevertheless, one can take
the convex hull of a discontinuous set to form a continuous interval but not vice versa.

By the construction of the predictive set defined in Equation (3), the estimated density q(Y |X) can be
explicit or implicit. This flexibility makes PCP compatible with a wide range of density estimators and
generative models. Moreover, the predictive set in Equation (3) can be computed without approximation,
making PCP scalable to a high dimensional target variable Y . Finally, PCP has a guaranteed marginal
coverage as shown in Theorem 1.

Theorem 1. Suppose (Xi, Yi), i ∈ {1, 2, · · · , n} and (X,Y ) are exchangeable, then

(1) the predictive set in Equation (3) satisfies

PX,Y,Ŷ(Y ∈ Ĉ(X, Ŷ)) ≥ 1− α; (5)

(2) when the scores E1, · · · , En are distinct almost surely,

PX,Y,Ŷ(Y ∈ Ĉ(X, Ŷ)) ≤ 1− α+
1

n+ 1
. (6)

Theorem 1 demonstrates that the marginal coverage of PCP is tight. In particular, the condition of the
upper bound is satisfied when p(Y |X) is continuous with respect to the Lebesgue measure.

In practice, we take the quantile of E1:n instead of the inflated scores E1:n ∪ {∞} in Equation (3). The
following corollary offers the coverage guarantee under such modification.

Corollary 1. Under the conditions of Theorem 1 and suppose α ≥ 1/(n + 1), if the quantile in
Equation (3) is Q1−α(E1:n), then P(Y ∈ Ĉ(X, Ŷ)) ∈ [1−α− 1/(n+ 1), 1−α+ 1/(n+ 1)]; if the quantile
in Equation (3) is Q(1−α)(1+ 1

n )(E1:n), then P(Y ∈ Ĉ(X, Ŷ)) ∈ [1− α, 1− α+ 1/(n+ 1)]

By Corollary 1, if we take the 1− α quantile of E1:n, we may lose the coverage probability by 1/(n+ 1)
where n is the number of data in the calibration set. Instead, we can take the (1− α)(1 + 1

n ) quantile of
E1:n to maintain (1− α) coverage when α ≥ 1/(n+ 1).

High Density Probabilistic Conformal Prediction (HD-PCP). Ideally, we may want the predictive
sets to contain only high density regions to offer informative predictions. As shown in Appendix B,
for different sets covering a specific probability of a multimodal distribution with the same marginal
coverage, the high density region has the smallest size.

In PCP, the generated random samples include low density samples. When K increases, the set size of the
low density region will decrease. However, PCP may generate many isolated sets and make interpretation
difficult for practitioners. To mitigate this problem, we propose High Density Probabilistic Conformal
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Prediction (HD-PCP) to filter out β fraction low-density samples to identify the high density regions when
q(Y |X) is explicit. Instead of sampling K samples from q(Y |X) like in PCP, we sample dK/(1− β)e
samples for each X, keep 1 − β fraction of samples with the highest estimated density, and keep all
other parts of the algorithm the same as PCP. The HD-PCP algorithm is summarized in Appendix
Algorithm 2. The marginal coverage guarantee still holds for HD-PCP, as shown in Corollary 2.

Corollary 2. Under the conditions of Theorem 1, HD-PCP has the same marginal coverage as PCP.

The proofs of the theorems and corollaries are presented in Appendix A.

3 Experiments
In this section, we conduct a comprehensive analysis demonstrating the advantages of PCP compared to
previously proposed conformal inference methods. We aim to answer the following questions: (a) how
does PCP perform in terms of coverage and predictive set size when compared with baseline models on
synthetic datasets, that has multimodal p(Y |X) distributions? (b) Does the filtering technique improve
the predictive set of PCP? (c) How well do PCP and HD-PCP perform on real datasets with a single
target? (d) How do the backbone models impact the performance of PCP? (e) Does PCP provide
better predictive sets in tasks with multi-dimensional targets? The code for the simulations are available
at https://github.com/Zhendong-Wang/Probabilistic-Conformal-Prediction.

Our experiments are structured into three sections. We first conduct experiment on classic 2D synthetic
data to answer question (a) and (b). Then, we compare PCP and HD-PCP with a full set of baseline
methods on several selected real datasets to address question (b), (c) and (d). Finally, we conduct
experiments on multi-dimensional regression tasks to address question (e). We run all our experiements
on machines with AMD EPYC 7763 CPUs.

Baselines. we consider CHR [33], DistSplit [16], CDSplit [16], DCP [8], and CQR [31] as our comparison
baselines. For CHR, we use two different conditional density estimation models based on neural network
model and random forest model, and we denote them as CHR-NN and CHR-QRF. We evaluate all the
mentioned baselines based on their public Github implementation except for CDSplit. We implement
python-based CDSplit based on their official R implementation to use the same backbone generative
model for a fair comparison, denoted as CDSplit-KMN and CDSplit-MixD.

Choosing the hyperparameter K. We conduct an ablation study on the effect of the sample size K
of PCP. As shown in Figure 3, empirically we find when K increases, the average size of the predictive
sets reduces fast first and then gets slow. In practice, we set K moderately large to balance the sharpness
and the computational cost, i.e., K = 40 or K = 1000 (two-dimensional targets).

3.1 Synthetic data experiments
To evaluate the effectiveness of proposed methods, we compare the predictive set of PCP and HD-PCP
with other baseline methods on classic 2D synthetic data: s-curve, half-moons, 25-Gaussians, 8-Gaussians,
circle and swiss-roll. We show the evaluation results of the s-curve and the 25-Gaussians in Figure 4 and
place detailed results in Appendix E.

Figure 4 illustrates, for dataset that has multimodal p(Y |X) distribution, models that consider multi-
modality, such as CDSplit and (HD-)PCP, works apparently better than the models that can only provide
unimodal predictions. This is consistent with our discussion in Section 1. Quantitatively, all models
achieve the target marginal coverage (1− α), while the average set sizes of CDSplit and (HD-)PCP are
several times smaller than that from CHR. We demonstrate that CDSplit and PCP both can provide
sharp and informative predictive sets for these multimodal datasets and PCP is slightly better with
respect to the set size. The right two panels show the effect of filtering high density samples. The
predictive sets from HD-PCP become cleaner and concentrated on the correct modes. Correspondingly,
the average set sizes of HD-PCP drop a lot compared to PCP. The histogram moving from blue bins to
orange bins also demonstrates the effectiveness of the filtering.
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Figure 3: Ablation study on choosing hyperparameter K and filtering ratio β. We run experiments of
PCP and HD-PCP with MixD and KMN as backbone models on two datasets, bike and bio. The K grid
is [10, 20, 30, . . . , 100] and the β grid is [0.1, 0.2, . . . , 0.7]. In the first row, we show predictive set sizes
with K = 50 and varying β. Second row shows how predictive set size varies with K.
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Figure 4: Visualization of predictive sets (α = 0.1) on 2D toy datasets: s-curve and 25-Gaussians. We
shows the predictive sets on 100 test data samples. Blues lines: the predictive sets from each method;
Blue dots: test points that are not covered by the predictive sets; Reds dots: test points covered. We
report the marginal coverage and the average set size across test datapoints in the x-axis label. The
fifth column shows the histogram of the number of predicted intervals of PCP and HD-PCP. We set
K = 40 for (HD-)PCP, β = 0.2. Detailed experiments are in Appendix E.

3.2 Real data experiments
We study regression tasks on several real data sets to evaluate the effectiveness of PCP and HD-PCP
[33]. We consider multiple types of generative models q(Y |X), including implicit models (GAN [14])
and semi-implicit model [40, 42, 43], explicit models (KMN [2], MixD [4]), and QRF [24, 33]. We denote
them as PCP-GAN, PCP-SIVI, PCP-KMN, PCP-MixD and PCP-QRF respectively.

Datasets. We conduct real data experiments on 9 public-domain data sets: bike sharing data (bike),
physicochemical properties of protein tertiary structure (bio), blog feedback (blog), and Facebook
comment volume, variants one (fb1) and two (fb2), medical expenditure panel survey number 19
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(meps19), number 20 (meps20), and number 21 (meps21) [31] and temperature forecast data [9]. Table 3
in Appendix F illustrates the dataset sizes and data splits for training, calibration and testing.

Evaluation Protocol. We evaluate the marginal coverage, conditional coverage (approximated by
the worst-slab conditional coverage [6, 32]), and the predictive set size.We report results based on 50
random splits for all datasets.

Table 1 shows numerical results. For our methods, we report PCP-MixD and HD-PCP-MixD; for
baselines, we report the backbone model that works generally the best across the 9 datasets with respect
to set size in the main paper. See detailed results in Appendix F: Table 4 reports the best results among
the variants of each method; Table 5, Table 6 and Table 7 report full experiment results.

We observe that all conformal methods achieve (1− α) marginal coverage and perform well in terms of
the worst-slab conditional coverage. Thus, our comparison focuses on the size of predictive sets. As
shown in Table 1, HD-PCP-MixD outperforms all the other baselines on 7 out of 9 datasets in terms
of the predictive set size. When picking a backbone model for each dataset is allowed, our models
outperform baselines on all datasets, as shown in Table 4. Comparing HD-PCP with PCP, we find
that the filtering technique leads to consistent performance improvement. Table 4 shows that PCP
outperforms the baselines by a large margin especially on blog, facebook1 and facebook2 datasets.

Moreover, note that PCP is flexible for backbone generative models, as long as the model can easily
generate random conditional samples. The flexibility of PCP makes it achieve good performance by
choosing a proper generative model according to data sets. For example, PCP-SIVI works well in bike
and facebook data with implicit backbone conditional generative models, as shown in Table 5.

The limitation of CDSplit may be explained by noting that the method needs to make partitions of
data based on K-means algorithm, which is known to be unstable due to local minima. It also needs to
approximate the level set on a grid of the target space to form the predictive set. It may be sensitive to
the range and coarseness of the grid. Thus, we notice that CDSplit produces large predictive sets on
facebook data and meps data. Similar to Sesia and Romano [33], we observe that DCP is sensitive to the
estimation of the distribution tails [33], which makes it unstable for some datasets. CHR is more robust
because it only needs to estimate a histogram with relatively few bins [33], while it could only provide
a single continuous interval and produces a loose predictive set when the data exhibits mulimodality.
CQR predicts intervals based on learned lower and upper quantiles, which leads to large intervals when
the learned quantiles are not accurate or the data distribution is multimodal.

3.3 Multi-dimensional targets
Beyond single target regression tasks, we study PCP and HD-PCP on multi-target datasets. We use
the same strategy in Neeven and Smirnov [29] to adapt previous baselines to multi-target conformal
algorithms by fitting each dimension separately with coverage level (1− α)/d, where d is the dimension
of target Y (this ensures the coverage of the target vector is 1− α [23]).

We construct a synthetic dataset to illustrate the benefit of PCP when targets are dependent. Covariates
X are sampled fromN (0, 1)5 and the target Y is randomly sampled from a bi-modal Gaussian distribution

0.5N (µ1,Σ) + 0.5N (µ2,Σ). µi = βTi (x, 1) and βi is randomly generated from N (0, 1)6, Σ =

(
10 ρ
ρ 10

)
.

The synthetic data distribution in Figure 5a shows that the distribution concentrates as ρ increases. As
shown in Figure 5b and Figure 5c, PCP achieves the best performance in terms of average predictive
set size. We observe when ρ gets higher, only PCP shrinks the predictive set accordingly while the
predictions from other methods have little change and become loose. The detailed quantitative results
are in Table 8, Appendix E.

We further study conformal methods on two multi-target real datasets. Taxi Data are the taxi trip records
of New York City which include the pickup, drop-off locations of each trip and the corresponding time.
We sample 10000 records from January 2016 (7800, 2000, 200 for train, calibration and test respectively),
and use the pickup time and location as covariates X to predict drop-off locations Y . The locations are
represented by latitudes and longitudes.For energy dataset, we predict the heating load and cooling load
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Data Metric PCP HD-PCP CHR [33] DistSplit [16] CDSplit [16] DCP [8] CQR [31]

bike
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.86 0.88 0.88 0.87 0.91 0.88 0.89
Set Size 128.13(0.53) 102.92(0.48) 204.10(1.03) 423.13(1.51) 115.74(0.50) 443.76(1.36) 403.88(0.86)

bio
Marg. C 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Cond. C 0.89 0.90 0.89 0.89 0.90 0.89 0.89
Set Size 11.47(0.04) 10.06(0.05) 10.21(0.04) 13.19(0.04) 9.58(0.04) 12.95(0.04) 13.00(0.02)

blogdata
Marg. C 0.89 0.90 0.90 0.90 0.96 0.90 0.90
Cond. C 0.85 0.87 0.87 0.87 0.95 0.88 0.87
Set Size 10.78(0.17) 9.44(0.19) 10.81(0.17) 16.27(0.23) 39.00(0.40) 1422.36(0.03) 15.15(0.26)

facebook1
Marg. C 0.90 0.90 0.90 0.90 0.95 0.90 0.90
Cond. C 0.82 0.85 0.86 0.89 0.95 0.89 0.88
Set Size 9.99(0.14) 8.93(0.12) 11.21(0.12) 14.03(0.16) 33.69(0.16) 1303.01(0.04) 13.79(0.15)

facebook2
Marg. C 0.90 0.90 0.90 0.90 0.97 0.90 0.90
Cond. C 0.82 0.84 0.87 0.89 0.96 0.89 0.89
Set Size 9.93(0.11) 8.84(0.10) 10.81(0.14) 13.48(0.19) 45.75(0.16) 1963.68(0.03) 13.00(0.17)

meps19
Marg. C 0.90 0.90 0.90 0.90 0.93 0.90 0.90
Cond. C 0.87 0.88 0.89 0.89 0.92 0.88 0.89
Set Size 19.28(0.16) 17.78(0.18) 18.26(0.15) 29.96(0.28) 23.86(0.17) 559.23(0.01) 28.71(0.18)

meps20
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.87 0.88 0.90 0.90 0.92 0.88 0.90
Set Size 19.52(0.16) 18.19(0.17) 17.94(0.18) 29.35(0.23) 22.93(0.16) 520.25(0.01) 27.57(0.15)

meps21
Marg. C 0.90 0.90 0.90 0.90 0.93 0.90 0.90
Cond. C 0.87 0.88 0.90 0.89 0.92 0.88 0.89
Set Size 19.18(0.12) 17.91(0.15) 18.65(0.16) 30.32(0.31) 23.63(0.17) 531.25(0.01) 29.89(0.20)

temperature
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.90 0.89 0.89 0.89 0.91 0.88 0.87
Set Size 2.10(0.01) 1.85(0.01) 3.24(0.01) 3.07(0.01) 2.23(0.01) 3.10(0.02) 3.55(0.03)

Table 1: Summary results of real data experiments, where Marg. C and Cond. C denote the marginal
coverage and approximated conditional coverage. The results are averaged over 50 random cross-
validation splits. We report the set size mean and standard error (inside the parentheses, the default is
0.00) based on the same 50 splits. The nominal coverage rate (1− α) is 90%, the K for (HD-)PCP is
set as 40. To save space and keep consistency, here we report PCP-MixD, HD-PCP-MixD, CHR-QRF,
CDSplit-MixD and CQR, which include the variant that works generally the best across the 9 datasets.
The detailed results are placed in Appendix F.

for energy efficiency analysis [38]. The predictors are building information such as orientation, glazing
area and wall area. We use 568, 100, and 100 samples for train, calibration and test set. We report the
predictive set sizes of each algorithm. To calculate the predictive set size of PCP, due to the overlapped
regions, the set size cannot be calculated exactly. We estimate it by Monte Carlo simulation with a grid
size of 100 on each dimension. For (HD-)PCP and CDSplit, we use MixD as the backbone model.

As shown in Table 2, algorithms considering multimodality have significantly better performance
compared to other baselines. We visualize the conformal region predicted by (HD-)PCP in Figure 1
(See Appendix G for more qualitative results). We notice that PCP can successfully capture the most
popular regions of New York City for drop-off, downtown of Manhattan, LaGuardia airport and JFK
airport, while methods with continuous predictive sets would learn a wide bounding box. Furthermore,
as shown in Table 2, PCP has similar coverage level but with much smaller predictive set compared
to CDSplit. This might be because the joint estimation of the high-dimensional targets can capture
dependencies between the target elements. Applying the filtering, HD-PCP provides a cleaner and
interpretable predictive set and further reduces the set size.

We include more experiments with two other multi-target real datasets in Appendix H( 8 and 3 targets)
due to space constraint. Since Monte-Carlo estimation of volume of high-dimensional nonconvex set
suffers from curse of dimension, we focus on two dimensional task and evaluate the predictive set generated
for every pair of all targets. PCP and HD-PCP offer significantly sharper predictive sets compared to
baselines on almost all pairs, and HD-PCP can further improve the performance of PCP.
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Figure 5: (a): Conditional data distribution p(Y |X) for multi-target synthetic dataset. (b), (c): Marginal
coverage and set size for baselines. PCP is able to capture the joint coverage more efficiently than other
baselines when ρ increases.

Data Metric PCP HD-PCP CHR [33] DistSplit [16] CDSplit [16] DCP [8] CQR [31]

Taxi
Marg. C 0.90(0.01) 0.89(0.01) 0.87(0.01) 0.91(0.01) 0.91(0.01) 0.89(0.01) 0.90(0.01)
Cond. C 0.89(0.03) 0.87(0.02) 0.84(0.04) 0.92(0.03) 0.89(0.03) 0.84(0.03) 0.86(0.04)
Set Size 0.0089(0.0001) 0.0064(0.0002) 0.0245(0.0009) 0.0202(0.0009) 0.0097(0.0023) 0.0354(0.0013) 1.9302(0.5202)

Energy
Marg. C 0.89(0.01) 0.90(0.01) 0.93(0.01) 0.92(0.01) 0.93(0.01) 0.93(0.01) 0.91(0.01)
Cond. C 0.87(0.04) 0.94(0.03) 0.93(0.05) 0.83(0.10) 0.89(0.06) 0.97(0.02) 0.94(0.03)
Set Size 19.22(2.55) 14.13(3.55) 27.41(2.65) 36.31(3.04) 36.88(3.94) 34.18(3.61) 45.20(3.19)

Table 2: Summary results of Multi-Target Regression experiments, where Marg. C and Cond. C denote
the marginal coverage and approximated conditional coverage. Results are averaged over 10 random
cross-validation splits. We report the standard error inside the parentheses. The nominal coverage rate
(1− α) is 90%, the K for (HD-)PCP is set as 1000.

4 Conclusion and Future Work
We proposed novel conformal inference algorithms, PCP and HD-PCP, that find valid and sharp predictive
sets using random samples from a conditional generative model; PCP and HD-PCP can be built from
either implicit or explicit models. PCP and HD-PCP outperform existing methods, particularly with
multimodal data and multi-dimensional targets.

Like most existing conformal methods, PCP and HD-PCP rely on a reasonable estimation through a
fitted conditional generative model. When the generative model is inaccurate, PCP may only provide
wide, uninformative predictive sets to ensure the validity. However, given the recent success in conditional
generative models, PCP and HD-PCP may be promising in many domains, including precision medicine,
quantitative finance and marketing [17, 19, 41].

Here we focused on regression tasks. Future research can consider adapting PCP and HD-PCP to
conformal treatment effect estimation and classification problems [11, 32, 44].
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Appendix

A Proof
For the completeness, we first present a lemma adapted from Tibshirani et al. [36], Romano et al.
[31].

Lemma 1. Suppose Z1, · · · , Zn, Zn+1 are scalar random variables that are exchangeable and almost
surely distinct, then for β ∈ [0, 1]

β ≤ P(Zn+1 ≤ Qβ(Z1:n ∪ {∞})) ≤ β +
1

n+ 1
.

Proof of Lemma 1. Denote the inflated Z1:n as

Z̃1:n = Z1:n ∪ {∞}. (7)

The quantile

Qβ(Z1:n) := inf
x

(

n∑
i=1

1[Zi ≤ x])/n = Z(dnβe).

By Lemma 1 of Tibshirani et al. [36], the events

Zn+1 ≤ Qβ(Z̃1:n)⇔ Zn+1 ≤ Qβ(Z1:n+1). (8)

Furthermore, by exchangeability and the definition of empirical quantile,

β ≤ P(Zn+1 ≤ Qβ(Z1:n+1)) ≤ β +
1

n+ 1
, (9)

where the upper bound hold when Z1:n+1 are almost surely distinct. By Equation (8), the proof is
completed.

Proof of Theorem 1. Given the estimated conditional density q(Y |X) on an independently sampled
training set Dtr. By assumption, the calibration set {(Xi, Yi)}ni=1 and the test point (Xn+1, Yn+1) are
exchangeable. Denote Di = (Xi, Yi, Ŷi) for i = 1, · · · , n, n + 1. Then Di ∼ p(X,Y )qK(Y |Xi) and
{D1:n+1} are exchangeable because Ŷi |= Ŷj .

The nonconformity score Ei in Equation (2) is defined as a deterministic function of Di. Therefore
{Ei}n+1

i=1 are exchangeable [18] and are almost surely distinct. By Lemma 1,

1− α ≤ P(En+1 ≤ Qα(E1:n ∪ {∞}) |Dtr) ≤ 1− α+
1

n+ 1
. (10)

Next we demonstrate that for

Ĉ(Xn+1, Ŷn+1) = ∪Kk=1

{
y :
∥∥∥y − Ŷn+1,k

∥∥∥ ≤ Q̂}, Q̂ = Q1−α(E1:n ∪ {∞}),

the following statement holds

Yn+1 ∈ Ĉ(Xn+1, Ŷn+1)⇔ En+1 ≤ Q̂.

Suppose the LHS is true, then ∃ m, 1 ≤ m ≤ K, s.t. Yn+1 ∈
{
y :
∥∥∥y − Ŷn+1,m

∥∥∥ ≤ Q̂
}
. This means∥∥∥Yn+1 − Ŷn+1,m

∥∥∥ ≤ Q̂. Hence En+1 = mink

∥∥∥Yn+1 − Ŷn+1,k

∥∥∥ ≤ ∥∥∥Yn+1 − Ŷn+1,m

∥∥∥ ≤ Q̂.
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On the other hand, suppose the RHS is true, letting t = arg mink

∥∥∥Yn+1 − Ŷn+1,k

∥∥∥, we have ∥∥∥Yn+1 − Ŷn+1,t

∥∥∥ ≤
Q̂, i.e., Yn+1 ∈

{
y :
∥∥∥y − Ŷn+1,t

∥∥∥ ≤ Q̂}. Therefore, Yn+1 ∈ Ĉ(Xn+1, Ŷn+1).

Then by Equation (10), we have

1− α ≤ P(Yn+1 ∈ Ĉ(Xn+1, Ŷn+1) |Dtr) ≤ 1− α+
1

n+ 1
. (11)

Marginalizing out Dtr the statement is proved.

Proof of Corollary 1. Suppose 0 ≤ β ≤ n/(n+ 1), then d(n+ 1)βe 6= n+ 1. We have

Qβ(Z̃1:n) = Z̃(d(n+1)βe,n+1) = Z(dnn+1
n β,ne) = Q(1+ 1

n )β(Z1:n) (12)

where Z̃1:n is defined in Equation (7). By Equations (8) and (9),

β ≤ P(Zn+1 ≤ Q(1+ 1
n )β(Z1:n)) ≤ β +

1

n+ 1
. (13)

By Equation (13), we have

β − 1

n+ 1
≤ P(Zn+1 ≤ Qβ(Z1:n)) ≤ β +

1

n+ 1
. (14)

Proof of Corollary 2. With the notations in the proof of Theorem 1, Di = (Xi, Yi, Ŷi) are i.i.d. varari-
ables. For a fixed conditional density function q(y|x), the nonconformity score Ei is fully determined by
Xi, Yi, Ŷi. So Ei = g(Di) where g(·) is a deterministic function including the filtering step of HD-PCP.
By Kuchibhotla [18], since {Di}n+1

i=1 are i.i.d., {Ei}n+1
i=1 are exchangeable. The other parts of proof follow

the same as the proof of Theorem 1.

B High Density Probabilistic Conformal Prediction
Figure 6 shows the different predictive sets with 95% coverage when the underlying distribution is
bi-mode normal.

We summarize our HD-PCP algorithm in Algorithm 2.

C Hyperparameters
PCP introduces one additional hyperparameter, the sample size K. We conduct ablation study on the
effect of K in Figure 3 and find that as long as K is set moderately large, i.e., K = 40, the predictive set
size is near optimal. K is not a very sensitive hyperparameter that needs much effort for tuning.

D Summary of Conditional generative models
SIVI Model. Following [40], we build a conditional distribution estimator by using semi-implicit
variational inference [42] and we call it SIVI model. Specifically, we approximate P(Y |X) by an
inference distribution qφ(Y |X) with respect to parameter φ. We construct the inference distribution as
a hierarchical model,

y ∼ qφ1
(y|x, z), z ∼ qφ2

(z|x,ψ),ψ ∼ p(ψ)

Here z ∈ Rd is an auxiliary latent variable and p(ψ) is a known noise distribution, i.e., N (0, I). The infer-
ence distribution is the marginal distribution of the hierarchical model, qφ(y |x) =

∫
qφ1

(y|z)qφ2
(z|x)dz
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Figure 6: High Density Region can capture multi-mode easier comparing to other predictive set.

Algorithm 2 High Density Probabilistic Conformal Prediction
Input: Data D = {(Xi, Yi)}Ni=1, nominal level α, test point X, generative model class Q, sample size
K, β grid B (For HD-PCP).

Step I: Conditional generative model
1: Split the data into three folds Ztr, Zval, Zcal with set of index as Itr, Ival, Ical respectively
2: Estimate q(Y |X) on Ztr with hyper-parameter chosen by cross validation on Zval

Step II: Predictive set for a test point
1: For i ∈ Ical, sample Ŷi1, · · · , ŶiK ∼ q(Y |Xi)
2: For β ∈ B, Filtering out β fraction of {Ŷik}Kk=1 with the lowest density. Repeat Line 3-7 for x ∈ Ical.
β0 = arg minβ λ(

∑
x∈Ical Ĉβ(x, Ŷ))

3: For a test point, sample Ŷ1, · · · , ŶK ∼ q(Y |X)
4: Filtering out β fraction of {Ŷk}Kk=1 with the lowest density
5: Compute nonconformity score {Ei}i∈Ical by Equation (2), EN+1 =∞, Ĩcal = Ical ∪ {N + 1}
6: Set r as the (1− α) empirical quantile of {Ei}i∈Ĩcal
7: Compute the predictive set Ĉβ(X, Ŷ) by Equation (3)

Output: Predictive set Ĉβ0(X, Ŷ)

with φ = (φ1,φ2). We model qφ1
(y|z) and qφ2

(z|x) as Gaussian distributions, whose mean and standard
deviation are the outputs of neural networks feed with corresponding (x, z) and (x,ψ). The marginal
distribution q(y |x) can thus be constructed with flexibility in modeling multimodality, skewness and
kurtosis. We learn the φ by maximizing the ELBO [40],

LK = E
ψ(0),...,ψ(K)iid∼ p(ψ)

Ez∼q(· |ψ(0),x)

[
ln qφ1

(y |x, z) + ln
p(z)

1
K+1

∑K
k=0 qφ2

(z |ψ(k),x)

]
,

where p(z) is a prior distribution for latent variable z, i.e.,N (0, I) and K is set as 20.

GAN model. To fit a conditional distribution, we follows [27] to build a Conditional GAN model with
a generator G(x, z) and a discriminator D(x, y). For simplicity, we call it GAN model. Here, the z is
a latent variable, which is usually set as z ∼ N (0, I), G(x, z) is modeled by a neural network, whose
outputs are the samples of y, and D(x, y) is another neural network, which outputs the probability
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that the given y is from the true data distribution. We train G and D with the following adversarial
loss,

min
G

max
D

V (G,D) = Ex,y∼pdata(x,y)[logD(x, y)] + Ez∼p(z),x∼pdata(x)[log(1−D(x, G(x, z)))]

Kernel Mixture Network. Ambrogioni et al. [2] model arbitrarily complex conditional densities as
linear combinations of a family of kernel functions centered at a subset of training points. The weights
are determined by the outer layer of a deep neural network, trained by minimizing the negative log
likelihood. The conditional density function is modeled as follows,

q(y|x) =
1∑

p,j wp,j(x;W )

∑
p,j

wp,j(x;W )Kj(y, y(p)),

where p denotes the index of the observed data points, Kj is the pre-set kernel function, j is the index
of selected bandwidth for Kj , and wp,j(x;W ) represents the weight of each kernel. A common choice for
Kj is the Gaussian kernel,

Kj(y, y′;σj) =
1√

2πσj
exp
− (y−y′)2

2σ2
j .

The weights wp,j(x;W ) are determined by a deep neural network (DNN), with covariates x as the inputs
and W as the parameters. All weights are non negative by applying non-negative activation functions
on the output layer of DNN. We train the KMN model by minimizing the loss function,

L(W ) = −
∑
q

[
log
∑
p,j

wp,j(x;W )Kj(y, y(p))− log
∑
p,j

wp,j(x;W )

]

Mixture Density Network. Bishop [4] proposes the mixture density network as fellows,

q(y|x) =

K∑
k=1

πk(x)N (y|µk(x), σ2
k(x))

where πk(·), µk(·) and σk(·) are all modeled by neural networks.
∑K
k=1 πk(x) = 1 is guaranteed by using

softmax activation function. The model is trained by minimizing the loss function,

L = −
N∑
i=1

log

[ K∑
k=1

πk(xi)N (yi|µk(xi), σ
2
k(xi))

]
,

where {(xi, yi)}Ni=1 are the observed data points.

Quantile Regression Forest Meinshausen [24] shows that random forests provide information about the
full conditional distribution of the response variable, not only about the conditional mean. Conditional
quantiles can be inferred with quantile regression forests, a generalisation of random forests. Quantile
regression forests give a non-parametric and accurate way of estimating conditional quantiles for high-
dimensional predictor variables. We refer to [24] for more details about QRF model. PCP needs to
get samples from QRF. We first sample a percentile τ ∼ U [0, 1], the uniform distribution on the unit
interval, and then use QRF to get the estimated conditional quantile value yτ as a y sample.

E Full synthetic experiment results
We include the Full synthetic experiment results for 2D toy datasets, s-curve, half-moons, 25-Gaussians,
8-Gaussians, circle and swiss-roll, in Figure 7 and Figure 8. We compare conformal prediction with
mean estimation (CP-MeanPred), CHR-QRF and CDSplit-MixD with our method (HD-)PCP.

The data used to plot Figure 5b and Figure 5c is included in Table 8. When ρ increases, the set size
decreases for PCP and HD-PCP while keeping nearly constant for other baselines, which overlooks the
joint relationship between targets.
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Figure 7: Visualization of predictive sets (α = 0.1) on 2D toy datasets: s-curve, half-moons, 25-Gaussians,
8-Gaussians, circle and swiss-roll. For ours, we show the PCP in the last two columns. We show the
predictive sets on 100 test data samples, where blues lines represent the predictive sets, blue dots are
test points that are not covered by the predictive sets and reds dots are the test points covered. We
show the marginal coverage and the average interval length across test datapoints in the x-axis label.
The fifth column shows the histogram of the number predicted intervals of PCP.
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Figure 8: Visualization of predictive sets (α = 0.1, β = 0.2) on 2D toy datasets: s-curve, half-moons,
25-Gaussians, 8-Gaussians, circle and swiss-roll. For ours, we show the HD-PCP in the last two columns.
We show the predictive sets on 100 test data samples, where blues lines represent the predictive sets,
blue dots are test points that are not covered by the predictive sets and reds dots are the test points
covered. We show the marginal coverage and the average interval length across test datapoints in the
x-axis label. The fifth column shows the histogram of the number predicted intervals of HD-PCP.
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Figure 9: Y response variable of blog, facebook1, and facebook2 data. The first row shows the Y
marginal histogram plots. The second row shows an approximation of Y |X distribution, where we fit a
K-Means on X to generate the 5 clusters. We could find that multimodality exhibits clearly in the Y |X
distribution.

F Full real data experiment results
We report all experiment results for our single target real data regression tasks in Table 5, Table 6 and
Table 7. Table 4 illustrates the best performance of each method with best backbone model picked for
each dataset repsectively.

G Additional Plots for NYC Taxi Data
Figure 10 shows the additonal plots for NYC Taxi data for PCP, HD-PCP, CHR and CDSplit. Each
row representsone individual record in the test set and we show the predictive set generated by each
algorithm. Clearly, PCP and HD-PCP generate the most informative predictive set where popular

Data n_train n_calib n_test

bike 6886 2000 2000
bio 41730 2000 2000
blog 48397 2000 2000
facebook1 36948 2000 2000
facebook2 77311 2000 2000
meps_19 11785 2000 2000
meps_20 13541 2000 2000
meps_21 11656 2000 2000
temperature 5314 1138 1138

Table 3: Dataset splits for training, calibration and testing.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

bike PCP-SIVI 0.90 0.86 134.55 1.13
HD-PCP-MixD(β = 0.2) 0.90 0.88 102.92 0.48
CHR-QRF 0.90 0.88 204.10 1.03
DistSplit 0.90 0.87 423.13 1.51
CDSplit-MixD 0.92 0.92 115.74 0.50
DCP 0.90 0.88 443.76 1.36
CQR 0.90 0.89 403.88 0.86

bio PCP-KMN 0.90 0.89 10.30 0.05
HD-PCP-KMN(β = 0.2) 0.90 0.89 8.76 0.05
CHR-QRF 0.90 0.89 10.21 0.04
DistSplit 0.90 0.89 13.19 0.04
CDSplit-KMN 0.9 0.9 9.13 0.04
DCP 0.90 0.89 12.95 0.04
CQR2 0.90 0.89 12.88 0.05

blogdata PCP-QRF 0.89 0.85 3.68 0.65
HD-PCP-MixD(β = 0.2) 0.90 0.87 9.44 0.19
CHR-QRF 0.90 0.87 10.81 0.17
DistSplit 0.90 0.87 16.27 0.23
CDSplit-MixD 0.96 0.95 39.00 0.40
DCP 0.90 0.88 1422.36 0.03
CQR2 0.90 0.87 13.91 0.27

facebook1 PCP-QRF 0.90 0.82 4.52 0.76
HD-PCP-KMN(β = 0.2) 0.90 0.83 8.62 0.06
CHR-NNet 0.90 0.87 9.96 0.11
DistSplit 0.90 0.89 14.03 0.16
CDSplit-MixD 0.95 0.95 33.69 0.16
DCP 0.90 0.89 1303.01 0.04
CQR2 0.90 0.88 12.17 0.15

facebook2 PCP-QRF 0.90 0.82 3.62 0.72
HD-PCP-KMN(β = 0.2) 0.90 0.82 8.34 0.07
CHR-NNet 0.90 0.87 10.15 0.13
DistSplit 0.90 0.89 13.48 0.19
CDSplit-KMN 0.95 0.94 44.53 0.26
DCP 0.90 0.89 1963.68 0.03
CQR2 0.90 0.89 11.41 0.17

meps19 PCP-GAN 0.90 0.86 18.41 0.17
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.78 0.18
CHR-QRF 0.90 0.89 18.26 0.15
DistSplit 0.90 0.89 29.96 0.28
CDSplit-MixD 0.93 0.92 23.86 0.17
DCP 0.90 0.88 559.23 0.01
CQR 0.90 0.89 28.71 0.18

meps20 PCP-MixD 0.90 0.87 19.52 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 18.19 0.17
CHR-QRF 0.90 0.90 17.94 0.18
DistSplit 0.90 0.90 29.35 0.23
CDSplit-MixD 0.92 0.92 22.93 0.16
DCP 0.90 0.88 520.25 0.01
CQR 0.90 0.90 27.57 0.15

meps21 PCP-MixD 0.90 0.87 19.18 0.12
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.91 0.15
CHR-QRF 0.90 0.90 18.65 0.16
DistSplit 0.90 0.89 30.32 0.31
CDSplit-MixD 0.93 0.92 23.63 0.17
DCP 0.90 0.88 531.25 0.01
CQR 0.90 0.89 29.89 0.2

temperature PCP-MixD 0.90 0.90 2.10 0.01
HD-PCP-MixD(β = 0.2) 0.90 0.89 1.85 0.01
CHR-NNet 0.90 0.89 3.17 0.01
DistSplit 0.90 0.89 3.07 0.01
CDSplit-MixD 0.92 0.91 2.23 0.01
DCP 0.90 0.88 3.1 0.02
CQR2 0.90 0.88 3.14 0.02

Table 4: Best results of real data experiments (the best variant of each method for each dataset is
selected).
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

bike PCP-SIVI 0.90 0.86 134.55 1.13
PCP-GAN 0.90 0.88 399.32 2.48
PCP-QRF 0.90 0.87 241.11 3.35
PCP-MixD 0.90 0.87 128.13 0.53
HD-PCP-MixD(β = 0.2) 0.90 0.88 102.92 0.48
PCP-KMN 0.90 0.88 172.92 1.04
HD-PCP-KMN(β = 0.2) 0.90 0.88 146.24 1.06
CHR-NNet 0.90 0.89 353.51 1.59
CHR-QRF 0.90 0.88 204.10 1.03
DistSplit 0.90 0.87 423.13 1.51
CDSplit-KMN 0.92 0.91 161.16 0.72
CDSplit-MixD 0.92 0.92 115.74 0.50
DCP 0.90 0.88 443.76 1.36
CQR 0.90 0.89 403.88 0.86
CQR2 0.90 0.88 416.75 1.57

bio PCP-SIVI 0.90 0.89 14.08 0.06
PCP-GAN 0.90 0.89 13.11 0.05
PCP-QRF 0.90 0.89 11.08 0.16
PCP-MixD 0.90 0.89 11.47 0.04
HD-PCP-MixD(β = 0.2) 0.90 0.90 10.06 0.05
PCP-KMN 0.90 0.89 10.30 0.05
HD-PCP-KMN(β = 0.2) 0.90 0.89 8.76 0.05
CHR-NNet 0.90 0.89 11.74 0.04
CHR-QRF 0.90 0.89 10.21 0.04
DistSplit 0.90 0.89 13.19 0.04
CDSplit-KMN 0.90 0.90 9.13 0.04
CDSplit-MixD 0.90 0.90 9.58 0.04
DCP 0.90 0.89 12.95 0.04
CQR 0.90 0.89 13.00 0.02
CQR2 0.90 0.89 12.88 0.05

blog PCP-SIVI 0.90 0.85 11.21 0.32
PCP-GAN 0.90 0.86 11.67 0.16
PCP-QRF 0.89 0.85 3.68 0.65
PCP-MixD 0.90 0.85 10.78 0.17
HD-PCP-MixD(β = 0.2) 0.90 0.87 9.44 0.19
PCP-KMN 0.90 0.85 10.67 0.13
HD-PCP-KMN(β = 0.2) 0.90 0.86 10.51 0.14
CHR-NNet 0.90 0.88 11.1 0.19
CHR-QRF 0.90 0.87 10.81 0.17
DistSplit 0.90 0.87 16.27 0.23
CDSplit-KMN 0.96 0.95 45.90 0.62
CDSplit-MixD 0.96 0.95 39.00 0.40
DCP 0.90 0.88 1422.36 0.03
CQR 0.90 0.87 15.15 0.26
CQR2 0.90 0.87 13.91 0.27

facebook1 PCP-SIVI 0.90 0.83 8.8 0.06
PCP-GAN 0.90 0.85 9.22 0.05
PCP-QRF 0.90 0.82 4.52 0.76
PCP-MixD 0.90 0.82 9.99 0.14
HD-PCP-MixD(β = 0.2) 0.90 0.85 8.93 0.12
PCP-KMN 0.90 0.82 10.60 0.06
HD-PCP-KMN(β = 0.2) 0.90 0.83 8.62 0.06
CHR-NNet 0.90 0.87 9.96 0.11
CHR-QRF 0.90 0.86 11.21 0.12
DistSplit 0.90 0.89 14.03 0.16
CDSplit-KMN 0.95 0.94 33.88 0.19
CDSplit-MixD 0.95 0.95 33.69 0.16
DCP 0.90 0.89 1303.01 0.04
CQR 0.90 0.89 13.79 0.15
CQR2 0.90 0.88 12.17 0.15

Table 5: Detailed results of experiments on data: bike, bio, blog and facebook1.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

facebook2 PCP-SIVI 0.90 0.83 8.69 0.17
PCP-GAN 0.90 0.84 9.47 0.1
PCP-QRF 0.90 0.82 3.62 0.72
PCP-MixD 0.90 0.82 9.93 0.11
HD-PCP-MixD(β = 0.2) 0.90 0.84 8.84 0.10
PCP-KMN 0.90 0.81 10.42 0.07
HD-PCP-KMN(β = 0.2) 0.90 0.82 8.34 0.07
CHR-NNet 0.90 0.87 10.15 0.13
CHR-QRF 0.90 0.87 10.81 0.14
DistSplit 0.90 0.89 13.48 0.19
CDSplit-KMN 0.95 0.94 44.53 0.26
CDSplit-MixD 0.97 0.96 45.75 0.16
DCP 0.90 0.89 1963.68 0.03
CQR 0.90 0.89 13 0.17
CQR2 0.90 0.89 11.41 0.17

meps19 PCP-SIVI 0.90 0.85 26.93 0.3
PCP-GAN 0.90 0.86 18.41 0.17
PCP-QRF 0.90 0.86 20.16 0.48
PCP-MixD 0.90 0.87 19.28 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.78 0.18
PCP-KMN 0.90 0.85 23.24 0.21
HD-PCP-KMN(β = 0.2) 0.90 0.84 23.48 0.20
CHR-NNet 0.90 0.90 20.17 0.2
CHR-QRF 0.90 0.89 18.26 0.15
DistSplit 0.90 0.89 29.96 0.28
CDSplit-KMN 0.93 0.91 31.10 0.33
CDSplit-MixD 0.93 0.92 23.86 0.17
DCP 0.90 0.88 559.23 0.01
CQR 0.90 0.89 28.71 0.18
CQR2 0.90 0.89 30.78 0.36

meps20 PCP-SIVI 0.90 0.86 23.87 0.16
PCP-GAN 0.90 0.86 19.92 0.18
PCP-QRF 0.90 0.86 20.47 0.52
PCP-MixD 0.90 0.87 19.52 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 18.19 0.17
PCP-KMN 0.90 0.85 22.96 0.17
HD-PCP-KMN(β = 0.2) 0.90 0.85 23.35 0.18
CHR-NNet 0.90 0.9 19.43 0.18
CHR-QRF 0.90 0.90 17.94 0.18
DistSplit 0.90 0.90 29.35 0.23
CDSplit-KMN 0.93 0.90 29.05 0.30
CDSplit-MixD 0.92 0.92 22.93 0.16
DCP 0.90 0.88 520.25 0.01
CQR 0.90 0.90 27.57 0.15
CQR2 0.90 0.90 29.94 0.31

meps21 PCP-SIVI 0.90 0.85 23.74 0.27
PCP-GAN 0.90 0.86 19.73 0.16
PCP-QRF 0.89 0.86 18.52 0.45
PCP-MixD 0.90 0.87 19.18 0.12
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.91 0.15
PCP-KMN 0.90 0.85 23.13 0.17
HD-PCP-KMN(β = 0.2) 0.90 0.85 23.70 0.19
CHR-NNet 0.90 0.90 20.07 0.22
CHR-QRF 0.90 0.90 18.65 0.16
DistSplit 0.90 0.89 30.32 0.31
CDSplit-KMN 0.92 0.91 30.42 0.41
CDSplit-MixD 0.93 0.92 23.63 0.17
DCP 0.90 0.88 531.25 0.01
CQR 0.90 0.89 29.89 0.2
CQR2 0.90 0.89 31.78 0.36

Table 6: Detailed results of experiments on data: facebook2, meps19, meps20 and meps21.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

temperature PCP-SIVI 0.90 0.90 3.27 0.06
PCP-GAN 0.90 0.89 3.51 0.04
PCP-QRF 0.88 0.86 3.78 0.09
PCP-MixD 0.90 0.90 2.10 0.01
HD-PCP-MixD(β = 0.2) 0.90 0.89 1.85 0.01
PCP-KMN 0.90 0.89 2.68 0.01
HD-PCP-KMN(β = 0.2) 0.90 0.89 2.43 0.01
CHR-NNet 0.90 0.89 3.17 0.01
CHR-QRF 0.90 0.89 3.24 0.01
DistSplit 0.90 0.89 3.07 0.01
CDSplit-KMN 0.91 0.90 2.84 0.02
CDSplit-MixD 0.92 0.91 2.23 0.01
DCP 0.90 0.88 3.1 0.02
CQR 0.90 0.87 3.55 0.03
CQR2 0.90 0.88 3.14 0.02

Table 7: Detailed results of experiments on data: temperature.

Synthetic Data Method Cond. Coverage Marg. Coverage Set Size Mean Set Size SE

ρ = 0 HD-PCP-MixD 0.92 (0.03) 0.90 (0.01) 356.82 10.78
PCP-MixD 0.94 (0.02) 0.90 (0.01) 412.40 12.70
CHR-NNet 0.88 (0.05) 0.92 (0.01) 690.49 51.55
DistSplit 0.93 (0.01) 0.92 (0.01) 714.92 54.81
CDSplit-MixD 0.87 (0.03) 0.90 (0.01) 437.98 20.20
DCP 0.90 (0.03) 0.92 (0.01) 710.64 53.99
CQR 0.95 (0.02) 0.92 (0.01) 667.01 51.47
CQR2 0.89 (0.03) 0.92 (0.01) 694.64 52.40

ρ = 5 HD-PCP-MixD 0.88 (0.03) 0.89 (0.01) 302.64 9.88
PCP-MixD 0.87 (0.03) 0.88 (0.01) 348.93 10.70
CHR-NNet 0.92 (0.03) 0.91 (0.01) 689.22 57.47
DistSplit 0.93 (0.02) 0.91 (0.01) 702.56 54.02
CDSplit-MixD 0.87 (0.03) 0.90 (0.01) 415.86 17.49
DCP 0.89 (0.05) 0.91 (0.02) 697.18 54.01
CQR 0.87 (0.03) 0.91 (0.02) 653.64 53.59
CQR2 0.88 (0.05) 0.91 (0.02) 693.10 56.18

ρ = 9 HD-PCP-MixD 0.83 (0.07) 0.89 (0.02) 171.61 8.36
PCP-MixD 0.89 (0.03) 090 (0.01) 205.63 5.76
CHR-NNet 0.92 (0.02) 0.92 (0.02) 664.31 51.59
DistSplit 0.91 (0.05) 0.91 (0.01) 689.72 59.96
CDSplit-MixD 0.92 (0.02) 0.91 (0.01) 416.86 16.96
DCP 0.90 (0.03) 0.91 (0.02) 666.13 50.61
CQR 0.93 (0.04) 0.92 (0.01) 639.00 50.19
CQR2 0.92 (0.02) 0.91 (0.01) 663.54 54.59

Table 8: Detailed results for multidimensional target synthetic dataset. The set size for PCP and
HD-PCP decreases when ρ increases while the set sizes for other baselines are similar for different ρ
since the marginal distribution remains the same.
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neighborhoods and airports are tagged, while HD-PCP offers a more sparse and clean set. As expected,
CHR offers a wide predictive set. Both CDSplit and CHR fail to provide predictive set with clear
interpretation. Figure 11 shows the predictive set and heatmap for pickup from SOHO and Chinatown.
Most popular spots in NYC have higher density, which means passengers are more likely to be dropped
off there.

(a) P1: PCP (b) P1: HD-PCP (c) P1: CDSplit (d) P1: CHR

(e) P2: PCP (f) P2: HD-PCP (g) P2: CDSplit (h) P2: CHR

(i) P3: PCP (j) P3: HD-PCP (k) P3: CDSplit (l) P3: CHR

Figure 10: NYC Taxi data. Red Pin: pickup location; Blue Pin: dropoff location. Left to right:
Predictive set output by PCP, HD-PCP, CDSplit and CHR. Each row represents a random selected
individual record sampled from the dataset.

H Additional Results for Multi-Target Regression Task
We include more experiment results for multi-target regression task in this section. We use two datasets
for river flow prediction [35] and stock prediction from StatLib repository. River flow dataset predicts
the rivernetwork flows for future 48 hours for 8 sites (8 targets) and the stock dataset has stock price for
10 aerospace companies and we try to predict 3 companies’ price using remaining companies’. There are
64 features including past river flow information for river flow predictions. For train, calibration and
test size, we use 6925, 2000 and 200 for river flow prediction and 750, 100 and 100 for stock prediction
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(a) PCP (b) HD-PCP (c) SOHO (d) Chinatown

Figure 11: NYC Taxi data. (a), (b): predictive set for an individual using PCP and HD-PCP; (c):
predictive set for riders from SoHo; (d): predictive set for riders from Chinatown.

respectively.

Since the Monte-Carlo estimation of overlapping hypersphere suffers from curse of dimensionality. We
convert each dataset into two-dimensional pairwise comparisions to evaluate the robustness of each
method (8 targets result in 28 pairs). We plot the pairwise comparison of PCP and HD-PCP against
CHR and CDSplit, the two baselines that performs generally the best among other datasets. We use
Mixture density Network for CDSplit, PCP and HD-PCP and Neural Netork based CHR, the results
are averaged over 5 runs.

For X-axis, we plot the set size of PCP / HD-PCP and for Y-axis, we plot the set size for CDSplit and
CHR, and we also show the Y = X line. If all points fall into the left region, it means PCP / HD-PCP
outputs a sharper predictive set. For PCP, almost all pointsfall into the left region, which indicates PCP
has a better or comparable performance with CDSplit and CHR in all pairwise comparisions. HD-PCP
has a much better performance and the points all fall into the far left part in the figure, which shows
HD-PCP offers a much sharper predictive set.
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Figure 12: Additional Results for Multi-Target Regression Task. Each point corresponds to the size of
predictive set for two elements of the target vector.
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