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Abstract

In this paper, we develop the continuous time
dynamic topic model (cDTM). The cDTM is
a dynamic topic model that uses Brownian
motion to model the latent topics through
a sequential collection of documents, where
a “topic” is a pattern of word use that we
expect to evolve over the course of the col-
lection. We derive an efficient variational
approximate inference algorithm that takes
advantage of the sparsity of observations in
text, a property that lets us easily han-
dle many time points. In contrast to the
cDTM, the original discrete-time dynamic
topic model (dDTM) requires that time be
discretized. Moreover, the complexity of vari-
ational inference for the dDTM grows quickly
as time granularity increases, a drawback
which limits fine-grained discretization. We
demonstrate the cDTM on two news corpora,
reporting both predictive perplexity and the
novel task of time stamp prediction.

1 Introduction

Tools for analyzing and managing large collections of
electronic documents are becoming increasingly im-
portant. In recent years, topic models, which are hi-
erarchical Bayesian models of discrete data, have be-
come a widely used approach for exploratory and pre-
dictive analysis of text. Topic models, such as latent
Dirichlet allocation (LDA) and the more general dis-
crete component analysis [3, 4], posit that a small
number of distributions over words, called topics, can
be used to explain the observed collection. LDA is
a probabilistic extension of latent semantic indexing
(LSI) [5] and probabilistic latent semantic indexing
(pLSI) [11]. Owing to its formal generative semantics,
LDA has been extended and applied to authorship [19],

email [15], computer vision [7], bioinformatics [18], and
information retrieval [24]. For a good review, see [8].

Most topic models assume the documents are ex-
changeable in the collection, i.e., that their probability
is invariant to permutation. Many document collec-
tions, such as news or scientific journals, evolve over
time. In this paper, we develop the continuous time
dynamic topic model (cDTM), which is an extension of
the discrete dynamic topic model (dDTM) [2]. Given
a sequence of documents, we infer the latent topics and
how they change through the course of the collection.

The dDTM uses a state space model on the natural pa-
rameters of the multinomial distributions that repre-
sent the topics. This requires that time be discretized
into several periods, and within each period LDA is
used to model its documents. In [2], the authors an-
alyze the journal Science from 1880-2002, assuming
that articles are exchangeable within each year. While
the dDTM is a powerful model, the choice of discretiza-
tion affects the memory requirements and computa-
tional complexity of posterior inference. This largely
determines the resolution at which to fit the model.

To resolve the problem of discretization, we consider
time to be continuous. The continuous time dynamic
topic model (cDTM) proposed here replaces the dis-
crete state space model of the dDTM with its continu-
ous generalization, Brownian motion [14]. The cDTM
generalizes the dDTM in that the only discretization
it models is the resolution at which the time stamps
of the documents are measured.

The cDTM model will, generally, introduce many more
latent variables than the dDTM. However, this seem-
ingly more complicated model is simpler and more effi-
cient to fit. As we will see below, from this formulation
the variational posterior inference procedure can take
advantage of the natural sparsity of text, the fact that
not all vocabulary words are used at each measured
time step. In fact, as the resolution gets finer, fewer
and fewer words are used.



This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)
βj,k,w|βi,k,w, s ∼ N

(
βi,k,w, v∆sj ,si

)
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+ 1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).



2. For document dt at time st (t > 0):

(a) For each topic k, 1 ≤ k ≤ K,
i. From the Brownian motion model, draw
βt,k|βt−1,k, s ∼ N (βt−1,k, v∆st

I).
(b) Draw θt ∼ Dir(α).
(c) For each word,

i. Draw zt,n ∼ Mult(θt).
ii. Draw wt,n ∼ Mult(π(βt,zt,n

)).

The function π maps the multinomial natural parame-
ters, which are unconstrained, to its mean parameters,
which are on the simplex,

π(βt,k)w =
exp(βt,k,w)∑
w exp(βt,k,w)

. (2)

The cDTM is illustrated in Figure 1.

The cDTM can be seen as a generalization of the
dDTM. Both models assume that the log probability
of a term exhibits variance over an interval of time
between observations. In the dDTM, this interval is
evenly divided into discrete ticks. A parameter con-
trols the variance at each tick, and the variance across
the whole interval is that parameter multiplied by the
number of ticks. As a consequence of this represen-
tation, the topic, i.e., the full distribution over terms,
is explicitly represented at each tick. For fine-grained
time series, this leads to high memory requirements
for posterior inference, even if the observations are
sparsely distributed throughout the timeline.

In the cDTM, however, the variance is a function of
the lag between observations, and the probabilities at
discrete steps between those observations need not be
considered. Inference, as we will see below, can be
handled sparsely. Thus, choosing the right granularity
becomes a modeling issue rather than one governed by
computational concerns. A dDTM is obtained with a
cDTM by measuring the time stamps of the documents
at the desired granularity.

Akin to Brownian motion as the limiting process of
a discrete-time Gaussian random walk [6], the cDTM
is the limiting process of the dDTM. Denote the per-
tick variance in the dDTM by σ2, and note that it
is a function of the tick granularity (to make mod-
els comparable). The cDTM is the limiting model in
this setting as σ2 approaches zero. We emphasize that
with the cDTM, we need not represent the log proba-
bilities at the ticks between observed documents. This
perspective is illustrated in Figure 2.

3 Sparse variational inference

The central problem in topic modeling is posterior in-
ference, i.e., determining the distribution of the la-

Figure 2: Documents are available only at time s and
s′, and no documents between them. When σ2 → 0,
the dDTM becomes a cDTM, and we no longer need
to represent the steps between i and j.

tent topic structure conditioned on the observed doc-
uments. In sequential topic models, this structure
comprises the per-document topic proportions θd, per-
word topic assignments zd,n, and the K sequences
of topic distributions βt,k. The true posterior is not
tractable [2]. We must appeal to an approximation.

Several approximate inference methods have been de-
veloped for topic models. The most widely used are
variational inference [3, 20] and collapsed Gibbs sam-
pling [9]. In the sequential setting collapsed Gibbs
sampling is not an option because the distribution of
words for each topic is not conjugate to the word prob-
abilities. Thus, we employed variational methods.

The main idea behind variational methods is to posit
a simple family of distributions over the latent vari-
ables, indexed by free variational parameters, and
to find the member of that family which is closest
in Kullback-Leibler divergence to the true posterior.
Good overviews of this methodology can be found
in [12] and [22]. For continuous time processes, varia-
tional inference has been applied in Markov jump pro-
cesses [1] and diffusion processes [17], where the vari-
ational distributions are also random processes.

For the cDTM described above, we adapt variational
Kalman filtering [2] to the continuous time setting.
For simplicity, assume that one document occurs at
each time point. In their algorithm, the variational
distribution over the latent variables is:

q(β1:T , z1:T,1:N , θ1:T | β̂, φ, γ) =
K∏

k=1

q(β1,k, . . . , βT,k|β̂1,k, . . . , β̂T,k)×

T∏
t=1

(
q(θt|γt)

Nt∏
n=1

q(zt,n|φt,n)

)
. (3)

The variational parameters are a Dirichlet γt for the
per-document topic proportions, multinomials φ for
each word’s topic assignment, and β̂ variables, which
are “observations” to a variational Kalman filter.

These variables are fit such that the approximate pos-
terior is close to the true posterior. From the varia-
tional Kalman filter, the βk,t, 1 ≤ t ≤ T retain their
chained structure in the variational distribution. Vari-



ational inference proceeds by coordinate ascent, up-
dating each of these parameters to minimize the KL
between the true posterior and variational posterior.

For simplicity, now we consider a model with only one
topic. These calculations are simpler versions of those
we need for the more general latent variable model
but exhibit the essential features of the algorithm.
For the cDTM, we assume a similar variational distri-
bution, with the same variational Dirichlet and vari-
ational multinomials for the per-document variables.
The cDTM updates for these parameters are identical
to those in [2], and we do not replicate them here.

In principle, we can directly use the variational
Kalman filtering algorithm for the cDTM by replac-
ing the state space model with Brownian motion. Let
V be the size of the vocabulary. While conceptually
straightforward, this will yield VT variational param-
eters in the vectors β̂1:T . When T and V are large, as
in a fine-graned model, posterior inference will require
massive amounts of time and memory. Thus, we de-
velop a sparse variational inference procedure, which
significantly improves its complexity without sacrific-
ing accuracy.

The main idea behind the sparse variational Kalman
filtering algorithm is that if certain βt,w do not de-
scribe any term emissions, i.e., there are no observa-
tions of w at t, then the true posterior of βt,w is only
determined by the observations of the other words at
that time. Therefore, we don’t need to explicitly rep-
resent β̂t,w for those w that are not observed.

Figure 3 illustrates the idea behind sparse variational
inference for the cDTM. In Figure 3, the variational
posterior of the log probability of a word βt,w is deter-
mined by the variational observations of the observed
words. From the belief propagation point of view, the
belief propagated from βt,w to node βt+2,w is not re-
vised by term w, and this property is retained in the
sparse variational inference algorithm. The probabil-
ity of variational observation β̂t,w given βt,w is a Gaus-
sian:

β̂t,w|βt,w ∼ N (βt,w, v̂t). (4)

We next describe the forward-backward algorithm for
the sparse variational Kalman filter, which is needed
to compute the expectations for updating the varia-
tional parameters. For a certain term w, the varia-
tional forward distribution p(βt,w|β̂i,i≤t,w) is a Gaus-
sian [13] and can be characterized as follows.

βt,w|β̂i,i≤t,w ∼ N (mt,w, Vt,w)

mt,w = E(βt,w|β̂i,i≤t,w)

Vt,w = E((βt,w −mt,w)2|β̂i,i≤t,w). (5)

Figure 3: A simplified graphical model shows how
sparse variational inference works with only single
topic. Note this generation process needs normaliza-
tion to βt according to Equation 2, but this will not
affect the sparse solution. For term w, there are no ob-
servations at time index t+1 (or time st+1), the corre-
sponding variational observations don’t appear at time
index t+ 1. For term w′, there are no observations at
time index t+2 (or time st+2), the corresponding vari-
ational observations don’t appear at time index t+ 2.

If w is not observed at time step t then

mt,w = mt−1,w

Vt,w = Pt,w,

Pt,w = Vt−1,w + v∆st , (6)

which means that the forward mean remains the same
as the previous step. Otherwise,

mt,w =
β̂t,wPt,w + v̂tmt−1,w

Pt,w + v̂t

Vt,w = v̂t
Pt,w

Pt,w + v̂t

β̂t,w|β̂i,i≤t−1,w ∼ N (mt−1,w, Pt,w + v̂t). (7)

Similarly, the variational backward distribution
p(βt,w|β̂i,i≤T,w) is also a Gaussian:

βt,w|β̂i,i≤T,w ∼ N (m̃t,w, Ṽt,w)

m̃t,w = E(βt,w|β̂i,i≤T,w)

Ṽt,w = E((βt,w − m̃t,w)2|β̂i,i≤T,w).

m̃t−1,w = mt−1,w
ftv

Pt,w
+ m̃t,w

Vt−1,w

Pt,w



Ṽt−1,w = Vt−1,w +
V 2

t−1,w

P 2
t,w

(Ṽt,w − Pt,w).(8)

With this forward-backward computation in hand, we
turn to optimizing the variational observations β̂w,k

in the sparse setting. Equivalent to minimizing KL is
tightening the bound on the likelihood of the observa-
tions given by Jensen’s inequality [12].

L(β̂) ≥
T∑

t=1

Eq [(log p(wt|βt) + log p(βt|βt−1)] +H(q),

(9)
where H(q) is the entropy. This is simplified to

L(β̂) ≥
T∑

t=1

Eq

[
log p(wt|βt)− log q(β̂t|βt)

]
+

T∑
t=1

log q(β̂t|β̂i,i≤t−1), (10)

We use δt,w = 1 or 0 to represent whether β̂t,w is in
the variational observations or not. Then the terms
above are

Eq log q(wt|βt) ≥
∑
w

nt,wm̃t,w

−nt log
∑
w

exp(m̃t,w + Ṽt,w/2)

Eq log p(β̂t|βt) =
∑
w

δt,wEq log q(β̂t,w|βt,w)

log q(β̂t|β̂i,i≤t−1) =
∑
w

δt,w log q(β̂t,w|β̂i,i≤t−1,w).

The count of w in document dt is nt,w and nt =∑
w nt,w.

Thus, to optimize the variational observations, we
need only to compute the derivative ∂L/∂β̂t,w for
those δt,w = 1. The general memory requirement
is O(

∑
t

∑
w δt,w)—the sum of the number of unique

terms at each time point—which is usually much
smaller than O(VT ), the memory requirement for the
densely represented algorithm. Formally, we can de-
fine the sparsity of the data set to be

sparsity = 1− (
∑

t

∑
w δt,w) /(VT ), (11)

which we will compute for several data sets in the next
section. Finally, we note that we use the conjugate
gradient algorithm [16] to optimize the variational ob-
servations from these partial derivatives.

As an example of the speed-up offered by sparse vari-
ational inference, consider the Science corpus from
1880-2002, analyzed by [2], which contains 6243 is-
sues of the magazine. Note that these issues are not

Sparsity
Data set Hour Day Week Month
AP 0.93 0.68 0.12 –
Election 08 – 0.95 0.79 0.50

Table 1: Sparsity for two data sets where available.
Higher numbers indicate a sparser data set and more
efficiency for the cDTM over the dDTM.

evenly spaced over the time line. In the dDTM, these
documents were separated by years. To analyze them
at a finer scale, e.g., issue by issue, one needs to con-
sider 6243 time points. With a vocabulary size of 5000,
for a 10-topic setting, the cDTM requires 0.8G mem-
ory while the dDTM requires 2.3G memory, nearly 3
times larger. The sparsity of Science is 0.65. This
means that a term only appears in about a third of
the total time points.

4 Experiments

In this section, we demonstrate the cDTM model on
two news corpora. We report predictive perplexity and
a results on the novel task of time stamp prediction.

4.1 News Corpora

We used two news corpora. First, “AP” is a subset
from the TREC AP corpus [10] containing the news
from 05/01/1988 to 06/30/1988. We extracted the
documents about the presidential election in 1988 re-
sulting in 1, 342 documents. These documents are time
stamped by hour. Second, the “Election 08” data are
summaries of the top articles from Digg1 classified as
being part of the 2008 presidential election. We used
articles from 02-27-2007 to 02-22-2008. This data set
has 1, 040 summaries. Time is measured in days.

Table 1 shows the sparsity information for these data
in terms of the resolution at which we can analyze
them. This illustrates the gain in efficiency of the
cDTM. For example, in the day setting of the Elec-
tion 08 data, the sparsity is 0.95. The dDTM model
will need at least 20 times more parameters than the
cDTM to analyze the data at this resolution.

4.2 Per-Word Predictive Perplexity

Let Dt be the set of documents at time index t. We
performed approximate posterior inference on these
data with the cDTM at different levels of granular-
ity. To make models comparable, we set the variance
across the entire period to be the same (see Equation
1). We evaluated the models with perplexity. Specifi-

1http://digg.com



cally, we computed the per-word predictive perplexity
of the documents at time t based on the data of the
previous t− 1 time indices,

perplexitypw(t) = exp

{
− 1
|Dt|

∑
d∈Dt

log p(wd|D1:t−1)
Nd

}
.

(12)
Note that lower numbers are better.

Since each document is predicted exactly once in all
models at different granularities, we also compute the
averaged per-word perplexity over the time line, which
is defined as

perplexitypw = exp
{
−
∑

d∈D log p(wd)∑
d∈D Nd

}
. (13)

In the AP data, we made predictions from 5/15/1988
to 05/29/1988. In the Election 08 data, we made pre-
dictions from 04/26/2007 to 02/22/2008. Figure 4
shows the results of the per-word predictive perplexity
over the time line on both data sets for the 10 topic
model. Figure 5 shows the results of average per-word
perplexity for 1, 3, 5 and 10 topics.

From the computational perspective, we note that the
sparse inference algorithm lets us fit models of differ-
ent granularities efficiently. For the AP data, the day
model and week are almost comparable. Models with
5 and 10 topics perform better.

In the Election 08 data, the 1-topic model performs
best. We suspect that this is because the summaries
are very short. More complex models, i.e., those with
more topics, are not appropriate. The models perform
differently at different levels of granularity because the
amount of data supported at each time point depends
on the chosen level. It is not necessarily the case that
a finer grained model will contain enough data to pro-
vide a better predictive distribution.

4.3 Time Stamp Prediction

We can further use the cDTM for time stamp predic-
tion, dating a document based on its content. To assess
this task, we split each data set into 80% training and
20% testing sets. We predict the time stamp of each
test document by finding its most likely location over
the time line. We measure the error in terms of the
same granularity at which the data are measured.

We investigated two approaches. The first is the flat
approach. Each model of different granularity predicts
as best it can. The second is the hierarchical approach.
We use models of increasing granularity to “zoom in”
on the prediction. For example, to predict the day, we
first find the best month, then the best week within
the month, and then the best day within the week.

We compute the average absolute error over the test
data set. Figure 6 illustrates the results.

The hierarchical approach always performs better than
or as well as the flat approach. The hour model in the
AP data and day model in Election 08 perform worse.
With the small data sets, a larger granularity is better.
The reason may also lie in the parameter v. Currently
it is shared among all models. In the future, we’d like
to infer it from the data.

4.4 Example Topics

We provide some example topics by using the week
model in the Election 08 data. We sample the topics
every two months. Figure 7 shows one of the topics. At
the beginning the election (year 2007), general issues
were discussed more, such as “healthcare.” As the
competition went up (year 2008), the topics were more
about candidates themselves and changing faster.

5 Conclusions

In this paper, we have developed the cDTM, using
Brownian motion to model continuous-time topic evo-
lution. The main advantage of the cDTM is that we
can employ sparse variational inference for fast model
comparison. We demonstrated the use of cDTM by
measuring the predictive likelihood and time stamp
prediction accuracy on two real-world data sets. In fu-
ture work, we plan to explore the Ornstein-Uhlenbeck
(OU) model [21], a generalization of Brownian model,
that allows bounded variance.
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Figure 6: Time stamp prediction. ‘m’ stands for flat approach of ‘month’, ‘w’ for ‘week’, ‘d’ for ‘day’ and and ‘h’
for ‘hour.’ ‘m+w’ stands for the hierarchical approach of combining ‘month’ and ‘week’, and ‘m+w+d’, ‘w+d’,
‘w+d+h’ are similarly defined. The baseline is the expectation of the error by randomly assigning a time. (a)
AP data. 5-topic and 10-topic models perform better than others, and the hierarchical approach always achieves
the best performance. (b) Election 08 data. 1-topic model performs best due to the short documents. The
hierarchical approach achieves comparable performances.
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Figure 7: Examples from a 3-topic cDTM using the week model in the Election 08 data. In year 2007, the topics
were more about general issues, while around year 2008, were more about candidates and changing faster.
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