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Abstract
Causal inference from observational data
can be biased by unobserved confounders.
Confounders—the variables that affect both the
treatments and the outcome—induce spurious
non-causal correlations between the two. Without
additional conditions, unobserved confounders
generally make causal quantities hard to identify.
In this paper, we focus on the setting where there
are many treatments with shared confounding,
and we study under what conditions is causal
identification possible. The key observation is
that we can view subsets of treatments as proxies
of the unobserved confounder and identify the
intervention distributions of the rest. Moreover,
while existing identification formulas for proxy
variables involve solving integral equations, we
show that one can circumvent the need for such
solutions by directly modeling the data. Finally,
we extend these results to an expanded class of
causal graphs, those with other confounders and
selection variables.

1. Introduction
Causal inference from observational data can be biased by
unobserved confounders. Confounders are variables that
affect both the treatments and the outcome. When measured,
we can account for them with adjustments (Pearl, 2009). But
when unobserved, they open back-door paths that bias the
causal inference; back-door adjustments are not possible.

Consider the following causal problem. How does a per-
son’s diet affect her body fat percentage? One confounder
is lifestyle: someone with a healthy lifestyle will eat healthy
foods such as boiled broccoli; but she will also exercise
frequently, which lowers her body fat. When lifestyle is
unobserved, the composition of diet will be correlated with
body fat, regardless of its true causal effect. Compound-
ing the difficulty, accurate measurements of lifestyle (the
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confounder) are difficult to obtain, e.g., requiring expensive
real-time tracking of activities. Lifestyle is necessarily an
unobserved confounder.

Here we focus on the setting where multiple treatments share
the same unobserved confounder. The example fits into this
setting. Each type of food—broccoli, burgers, granola bars,
pizza, and so on—is a potential “treatment” for body fat.
Further, each person’s lifestyle affects multiple treatments,
i.e., their consumption of multiple types of food. People
with a healthy lifestyle eat broccoli and granola; people
with an unhealthy lifestyle eat pizza and burgers. Thus the
different foods share the same unobserved confounder, i.e.
each person’s lifestyle.

When multiple treatments share the same unobserved con-
founding, which causal quantities can be identified? How
can we estimate them? These are the questions we address.

Begin with the causal graph of Figure 1a, where an unob-
served confounder U (lifestyle) affects multiple treatments
{A1, . . . , Am} (food choices) and an outcome Y (body
fat). Further consider a subset of treatments C. We prove
that, under suitable conditions, the intervention distribution
p(y |do(aC)) is identifiable.

The key observation is that, under shared confounding,
some treatments can serve as proxies of unobserved con-
founders (Miao et al., 2018; Kuroki & Pearl, 2014), enabling
causal identification of other treatments. This observation
helps identify the intervention distributions of subsets of
treatments. Unlike prior work, we do not need to find two
external proxies for the unobserved confounder; some treat-
ments themselves can serve as proxies for other treatments.

We then turn to estimation. The identification formula we ob-
tain requires solving an integral equation (Miao et al., 2018),
which might be difficult. We show that the deconfounder
algorithm of Wang & Blei (2019a) can help bypass this
requirement, producing correct causal estimates by directly
modeling the data. With a simulation study, we demonstrate
that the identification conditions we require are crucial for
the algorithm to produce correct causal inferences. We note
that, while we use the same algorithm, the theoretical setting
considered here is different from Wang & Blei (2019a).

We finally generalize the identification and estimation re-
sults to an expanded class of graphs in Figure 2b. This class
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Figure 1. (a) Multiple treatments with shared confounding. (b)
Proxy variables for an unobserved confounder (Miao et al., 2018).
(Only the shaded nodes are observed.)

contains shared confounding, measured single-treatment
confounders (that only affect one treatment), and selection
on the unobservables. We establish identifiability as well as
the applicability of the deconfounder in this larger class.

Contributions. The main contributions of this paper are
identification and estimation results that target multiple treat-
ments with shared confounding, allowing for certain types
of selection bias. We derive conditions under which the in-
tervention distributions of the treatments are identifiable and
further conditions under which the deconfounder algorithm
can produce correct causal inference. The key idea is to use
some treatments as proxies of the unobserved confounder to
identify the effect of other treatments. Rather than solving
integral equations, the algorithm estimates the intervention
distributions by directly modeling the data.

Related work. This work uses and extends causal identi-
fication with proxy variables (Kuroki & Pearl, 2014; Miao
et al., 2018; Shi et al., 2020). While these works focus on
a single treatment and a single outcome, we leverage the
multiplicity of the treatments to establish causal identifica-
tion. With multiple treatments, the recent work of Miao
et al. (2020) proposes two approaches to identifying the
intervention distributions: the auxiliary variable approach
and the null treatments approach. These approaches uti-
lize the shared confounding structure via assuming at least
half of the confounded treatments do not causally affect
the outcome, and the treatment-confounder distribution is
identifiable from observational data. Our approach differs
from this approach in how we leverage the shared confound-
ing structure for causal identification. As the treatments
share the same unobserved confounder, we view some treat-
ments as proxies of the shared unobserved confounder for
identifying the effects of the other treatments.

A second body of related work is on causal inference with
multiple treatments (Ranganath & Perotte, 2018; Hecker-
man, 2018; Janzing & Schölkopf, 2018; D’Amour, 2019b;
Frot et al., 2017; Ćevid et al., 2018; Wang et al., 2017; Tran
& Blei, 2017; Wang & Blei, 2019a; Puli et al., 2020). While
many of these works focus on developing algorithms, we fo-
cus on theoretical aspects of the problem. The deconfounder
algorithm that we use was developed in Wang & Blei

(2019a) and has been heavily debated and discussed (Og-
burn et al., 2019; 2020; Imai & Jiang, 2019; Grimmer et al.,
2020; D’Amour, 2019a;b; Wang & Blei, 2020; 2019b). Here
we delineate settings and assumptions, different from those
in Wang & Blei (2019a), where the algorithm provides
correct causal inferences. We also demonstrate that the
effectiveness of the algorithm in practice relies on these
assumptions.

The identification results in this paper differ from those in
Wang & Blei (2019a). First, that work assumes the unob-
served confounder is a deterministic function of the treat-
ments; in contrast, we allow the substitute confounder to
be random given the treatments. Second, we establish iden-
tification by assuming the existence of a function of the
treatments that does not affect the outcome; this assumption
is not made in Wang & Blei (2019a). Finally, we extend the
ideas to allow for selection bias (Bareinboim & Pearl, 2012),
including selection driven by unobserved confounders.

We note that D’Amour (2019b) provides negative examples
of causal identification where some intervention distribu-
tions are not identifiable; it also suggests collecting addi-
tional proxy variables to resolve non-identification. The
results below do not contradict those of D’Amour (2019b).
Rather, we focus on the intervention distributions of subsets
of the treatments; D’Amour (2019b) focuses on the interven-
tion distributions of all the treatments. Further, the way we
use proxy variables differs in that we use existing causes as
proxy variables, as opposed to collecting additional proxies.

2. Multiple treatments & shared confounders
Consider a causal inference problem where multiple treat-
ments of interest affect a single outcome. It deviates from
classical causal inference, where the main interest is a single
treatment and a single outcome.

Figure 1a provides an example. There are m treatments
A1, . . . , Am that all affect the outcome Y ; and there is
an unobserved confounder U that affects Y and the treat-
ments. This graph exemplifies shared unobserved confound-
ing, where U affects multiple treatments.

In this paper, the goal is to estimate the intervention dis-
tributions on subsets of treatments, P (Y |do(AC = aC)).
It is the distribution of the outcome Y if we intervene on
AC ⊂ {A1, . . . , Am}, which is a (strict) subset. (E.g., if we
are interested in each treatment individually then each subset
contains one treatment.) We will establish causal identifica-
tion and then discuss an algorithm for estimation. Section 3
extends these results to an expanded class of graphs.
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2.1. Causal identification

An intervention distribution is identifiable if it can be writ-
ten as a function of the observed data distribution (e.g.,
P (y, a1, . . . , am) in Figure 1a) (Pearl, 2009). In Fig-
ure 1a, which intervention distributions can be identified?
In this section we prove that, under suitable conditions,
the intervention distributions of subsets of the treatments
P (y |do(aC)) are identifiable.1

The starting point for causal identification with multiple
treatments is the proxy variable strategy, which focuses on
causal identification with a single treatment (Kuroki & Pearl,
2014; Miao et al., 2018). Consider the causal graph in Fig-
ure 1b: it has a single treatment A1, an outcome Y , and an
unobserved confounder U . The goal is to estimate the in-
tervention distribution P (y |do(a1)). There are some other
variables in the graph too. A proxy X is an observable child
of the unobserved confounder; a null proxyN is a proxy that
does not affect the outcome. The theory around proxy vari-
ables says that the intervention distribution P (y |do(a1))
is identifiable if (1) we observe two proxies of the unob-
served confounder U and (2) one of the proxies is a null
proxy (Miao et al., 2018). In particular, since N and X are
observed, P (y |do(a1)) is identifiable.

We leverage the idea of proxy variables to identify inter-
vention distributions in Figure 1a, multiple treatments with
shared unobserved confounding. The main idea is to use
some treatments as proxies to identify the intervention distri-
butions of other treatments. The benefit is that, with multiple
treatments, we do not need to observe external proxy vari-
ables; rather the treatments themselves serve as proxies. Nor
do we need to observe a null proxy, one that does not affect
the outcome (like N in Figure 1b); we only need to assume
that there is a function of the treatments that does not affect
the outcome. (We do not need to know this function either,
just that at least one such function exists.) In short, we can
use the idea of the proxy but without collecting external
data; we can work solely with the data about the treatments
and the outcome.

We formally state the identification result. To repeat, assume
the causal graph in Figure 1a with m treatments A1:m, an
outcome Y , and a shared unobserved confounder U . The
goal is to identify the intervention distribution of a strict
subset of the treatments P (y |do(aC)).

Partition the m treatments into three sets: AC is the set of
treatments on which we intervene; AX is the set of treat-
ments we use as a proxy; AN is the set of treatments such
that there exists a function f(AN ) that can serve as a null
proxy. (We discuss this assumption below.) The latter two
sets mimic the proxy X and the null proxy N in the proxy

1We abbreviate P (y | do(aC))
∆
= P (y | do(AC = aC)).

variable strategy. Sets AC , AX and AN must be non-empty.

Assumption 1. There exists some function f and a set
∅ 6= N ⊂ {1, . . . ,m}\C such that

1. The outcome Y does not depend on f(AN ):

f(AN ) ⊥ Y |U,AC , AX , (1)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.

2. The conditional distribution P (u | aC , f(aN )) is com-
plete2 in f(aN ) for almost all aC .

3. The conditional distribution P (f(aN ) | aC , aX ) is com-
plete in aX for almost all aC .

Assumption 1.1 posits that a set of treatments AN exists
such that some function of them f(AN ) can serve as a null
proxy (Eq. 1). Roughly, it requires f(AN ) does not affect
the outcome. It does not require that we knowN or f(AN ),
just that they exist.

When might this assumption be satisfied? First, suppose
some of the multiple treatments do not affect the outcome.
Then Assumption 1.1 reduces to the null proxy assumption
(Kuroki & Pearl, 2014; Miao et al., 2018; D’Amour, 2019b).
This might be plausible, e.g., in a genetic study or other
setting where there are many treatments. Again, we do
not need to know which treatments are “null treatments.”
Indeed, as long as two treatments are null, the theory below
implies that the intervention distributions of each individual
treatment is identifiable.

But this assumption goes beyond a restatement of the null
proxy assumption. Suppose two (or more) treatments only
affect the outcome as a bundle. Then the bundle can form
the set N and the function is one that is “orthogonal” to
how they are combined. As a (silly) example, consider two
of the treatments to be bread and butter. Suppose they must
be served together to induce the joyfulness of food, but not
individually. (If either is served alone, it has no effect on
joyfulness one way or the other.) Then the function f(AN )
is XOR of the bundle; the quantity (bread XOR butter) does
not affect Y . Again, the function and set must exist; we do
not need to know them.

As a more serious example, consider that HDL cholesterol,
LDL cholesterol, and triglycerides (TG) affect the risk of a

2Definition of “complete”: The conditional distribution
P (u | aC , f(aN )) is complete in f(aN ) for almost all aC means
for any square-integrable function g(·) and almost all aC ,∫

g(u, aC)P (u | aC , f(aN )) du = 0 for almost all f(aN )

if and only if g(u, aC) = 0 for almost all u.
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heart attack through the ratios HDL/LDL and TG/HDL (Mil-
lán et al., 2009). Then HDL×LDL and TG×HDL are both
examples of f(AN ) that do not affect Y . The existence of
one of them suffices for Assumption 1.1. (We discuss this
assumption in more technical detail in Appendix B.)

Assumption 1.2 and Assumption 1.3 are two completeness
conditions on the true causal model; they are required by
the proxy variable strategy (e.g. Conditions 2 and 3 of Miao
et al. (2018)). Roughly, they require that the distributions of
U corresponding to different values of f(AN ) are distinct;
the distributions of f(AN ) relative to different AX values
are also distinct.

The two assumptions are satisfied when we work with
a causal model that satisfies the completeness condition.
Many common models satisfy this condition. Examples
include exponential families (Newey & Powell, 2003),
location-scale families (Hu & Shiu, 2018), and nonpara-
metric regression models (Darolles et al., 2011). Complete-
ness is a common assumption posited in nonparametric
causal identification (Miao et al., 2018; Yang et al., 2017;
D’Haultfoeuille, 2011); it is often used to guarantee the ex-
istence and the uniqueness of solutions to integral equations.
Chen et al. (2014) provides a discussion of completeness.

Under Assumption 1, we can identify the intervention distri-
bution of the subset of the treatments AC .
Theorem 1. (Causal identification under shared confound-
ing) Assume the causal graph Figure 1a. (Note the data
does not need to be “faithful” to the graph—some edges
can be missing.) Under Assumption 1, the intervention
distribution of the treatments AC is identifiable:

P (y |do(aC)) =
∫
h(y, aC , aX )P (aX ) daX (2)

for any solution h to the integral equation

P (y | aC , f(aN )) =
∫
h(y, aC , aX )P (aX | aC , f(aN )) daX .

(3)

Moreover, the solution to Eq. 3 always exists under weak
regularity conditions in Appendix D.

Proof sketch. The proof relies on the partition of the m
treatments: AC as the treatments, AX as the proxies, and
AN such that f(AN ) can be a null proxy. We then fol-
low the proxy variable strategy to identify the intervention
distributions of AC using AX as a proxy and f(AN ) as
a null proxy. We no longer have a null proxy like N as
in Figure 1b; all the m treatments can affect the outcome.
However, Assumption 1.1 allows f(AN ) to play the role of
a null proxy. The full proof is in Appendix A.

Theorem 1 identifies the intervention distributions of subsets
of the treatments AC; it writes P (y |do(aC)) as a function

of the observed data distribution P (y, aC , aX , aN ). In par-
ticular, it lets us identify the intervention distributions of
individual treatments P (y |do(ai)), i = 1, . . . ,m. By using
the treatments themselves as proxies, Theorem 1 exempli-
fies how the multiplicity of the treatments enables causal
identification under shared unobserved confounding.

2.2. Causal estimation with the deconfounder

Theorem 1 guarantees that the intervention distribution
P (y |do(aC)) is estimable from the observed data. How-
ever, it involves solving an integral equation (Eq. 3). This
integral equation is hard to solve except in the simplest
linear Gaussian case (Carrasco et al., 2007). How can we
estimate P (y |do(aC)) in practice?

We revisit the deconfounder algorithm in Wang & Blei
(2019a). We show that the deconfounder correctly esti-
mates the intervention distribution P (y |do(aC)); it implic-
itly solves the integral equation in Eq. 3 by modeling the
data. (This is an alternative justification of the algorithm
from Wang & Blei (2019a).)

We first review the algorithm. Given the treatments
A1, . . . , Am and the outcome Y , the deconfounder proceeds
in three steps:

1. Construct a substitute confounder. Based only on
the (observed) treatments A1, . . . , Am, it first constructs
a random variable Ẑ such that all the treatments are
conditionally independent:

P̂ (a1, . . . , am, ẑ) = P̂ (ẑ)

m∏
j=1

P̂ (aj | ẑ), (4)

where P̂ (·) is consistent with the observed data
P (a1, . . . , am) =

∫
P̂ (a1, . . . , am, ẑ) dẑ. The random

variable Ẑ is called a substitute confounder; it does not
necessarily coincide with the unobserved confounder U .
The substitute is constructed using probabilistic models
with local and global variables (Bishop, 2006), such as
probabilistic PCA (Tipping & Bishop, 1999).

2. Fit an outcome model. The next step is to estimate how
the outcome depends on the treatments and the substitute
confounder P̂ (y | a1, . . . , am, ẑ). This outcome model is
fit to be consistent with the observed data:

P (y, a1, . . . , am)

=

∫
P̂ (y | a1, . . . , am, ẑ)P̂ (a1, . . . , am, ẑ) dẑ. (5)

Along with the first step, the deconfounder gives the joint
distribution P̂ (y, a1, . . . , am, ẑ).

3. Estimate the intervention distribution. The final step
estimates the intervention distribution P (y |do(aC)) by
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integrating out the non-intervened treatments and the
substitute confounder,

P̂ (y |do(aC))
∆
=

∫
P̂ (y | a1, . . . , am, ẑ)

× P̂ (a{1,...,m}\C , ẑ) dẑ da{1,...,m}\C . (6)

This is the estimate.

The correctness of the deconfounder. Note that many pos-
sible P̂ (·)’s satisfy the deconfounder requirements (Eqs. 4
and 5); the algorithm outputs one such P̂ . Under suitable
conditions, we show that any such P̂ provides the correct
causal estimate P (y |do(aC)).
Assumption 2. The deconfounder estimate
P̂ (y, a1, . . . , am, ẑ) satisfies two conditions:

1. It is consistent with Assumption 1.1,
P̂ (y | aC , aX , f(aN ), ẑ) = P̂ (y | aC , aX , ẑ).

2. The conditional distribution P̂ (ẑ | aC , aX ) is complete in
aX for almost all aC .

Assumption 2.1 roughly requires that there exists a function
f and a subset of the treatments AN such that f(AN ) does
not affect the outcome in the deconfounder outcome model.
(When the number of treatments goes to infinity, Assump-
tion 2.1 reduces to Assumption 1.1.) We emphasize that
f(AN ) is not involved in calculating the estimate (Eq. 6); it
only appears in Assumption 2.1. Hence the correctness of
the algorithm does not require specifying f(·) and AN , just
that it exists.

Assumption 2.2 requires that the distributions of Ẑ corre-
sponding to different values ofAX are distinct. It is a similar
completeness condition as in Assumption 1.

Now we state the correctness of the algorithm.

Theorem 2. (Correctness of the deconfounder under shared
confounding) Assume the causal graph Figure 1a. Under
Assumption 1, Assumption 2 and weak regularity conditions,
the deconfounder provides correct estimates of the interven-
tion distribution:

P̂ (y |do(aC)) = P (y |do(aC)), (7)

where P̂ (y |do(aC)) is computed from Eq. 6.

Proof sketch. The proof of Theorem 2 relies on a key
observation: the deconfounder implicitly solves the inte-
gral equation (Eq. 3) by modeling the observed data with
P̂ (y, a1, . . . , am, ẑ). Assumption 2.2 guarantees that the
deconfounder estimate can be written as

P̂ (y | aC , ẑ) =
∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX (8)

under weak regularity conditions; this function ĥ(y, aC , aX )
also solves the integral equation (Eq. 3). The deconfounder
uses this solution to form an estimate of P (y |do(aC)); this
estimate is correct because of Theorem 1. The full proof is
in Appendix C.

Theorem 2 justifies the deconfounder for multiple causal
inference under shared confounding (Figure 1a). It proves
that the deconfounder correctly estimates the intervention
distributions when they are identifiable. This result comple-
ments Theorems 6–8 of Wang & Blei (2019a); it establishes
identification and correctness by assuming there exists some
function of the treatments that does not affect the outcome.
In contrast, Theorems 6–8 of Wang & Blei (2019a) assume
a “consistent substitute confounder,” that the substitute con-
founder is a deterministic function of the treatments. Their
assumption is stronger; conditional on the treatments, Theo-
rems 1 and 2 allow the substitute confounder to be random.

Theorem 2 also shows that we can leverage the decon-
founder algorithm to put the proxy variable strategy into
practice. While existing identification formulas of proxy
variables involves solving integral equations (Miao et al.,
2018), Theorem 2 shows how to circumvent this need by
directly modeling the data and applying the deconfounder;
it implicitly solves the integral equations.

Section 4 illustrates these theorems with a linear example.

3. An expanded class of causal graphs
We discussed causal identification and estimation when mul-
tiple treatments share the same unobserved confounder. We
now extend these results to an expanded class of causal
graphs, those with several types of nodes and, in partic-
ular, those that include a selection variable (Bareinboim
et al., 2014; Bareinboim & Pearl, 2012). Using the results
in Section 2, we establish causal identification and estimate
intervention distributions.

3.1. An expanded class of causal graphs

The expanded class of graphs is illustrated in Figure 2b.
As above, there are m treatments A1:m and an outcome
Y . The goal is to estimate P (y |do(aC)), where AC ⊂
{A1, . . . , Am} is a subset of treatments on which we inter-
vene. Apart from treatments and outcome, the graph has
other types of variables; Figure 2a contains a glossary.

Confounders. Confounders are parents of both the treat-
ments and the outcome; they can be unobserved. In Fig-
ure 2b, for example, U sng

i and Umlt
i are confounders; they

have arrows into the outcome Y and at least one of the treat-
ments Ai. We differentiate between single-treatment and
multi-treatment confounders. Single-treatment confounders
like U sng

i affect only one treatment; multi-treatment con-
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founders like Umlt
i affect two or more treatments.

Covariates. There are two types of covariates—treatment
covariates and outcome covariates. treatment covariates are
parents of the treatments, but not the outcome; they can be
unobserved. As with confounders, we differentiate between
single-treatment covariates W sng

i and multi-treatment co-
variates Wmlt

i . Outcome covariates like V are parents of
the outcome but not the treatments. They do not affect any
of the m treatments; they can be unobserved.

Selection operator. Following Bareinboim & Pearl (2012),
we introduce a selection operator S ∈ {0, 1} into the causal
graph. The value S = 1 indicates an individual being se-
lected; otherwise, S = 0. We only observe the outcome of
those individuals with S = 1, but we may observe the treat-
ments on unselected individuals. (E.g., consider a genome-
wide association study where we collect an expensive-to-
measure trait on a subset of the population but have genome
data on a much larger set.) Note that Figure 2b allows
selection to occur on the confounders.

3.2. Causal identification

We extend the results around causal identification and es-
timation under shared confounding (Theorems 1 and 2) to
the expanded class of graphs. We first reduce the graph of
Figure 2b to one close to the shared confounding case; then
we handle the complications of selection bias.

Reduction to shared confounding. To reduce the graph
of Figure 2b, we bundle all the unobserved multi-treatment
confounders and null confounders {Umlt,Wmlt} into a sin-
gle unobserved confounder Z. This variable Z is shared by
all the treatments as in Figure 1a and renders all the treat-
ments conditionally independent. Moreover, it is sufficient
to adjust for Z and single-treatment confounders U sng to
estimate P (y |do(aC)) because {Umlt,Wmlt, U sng} con-
stitute an admissible set.

We can equivalently identify the intervention distributions
P (y |do(aC)) in the graph of Figure 2b using a reduced
graph of Figure 2c; it involves only the single-treatment
confounders U sng and a shared confounder Z. Below we
formally state the validity of the reduction.

Lemma 3. (Validity of reduction) Assume the causal graph
in Figure 2b. Adjusting for the multi-treatment confounders
and null confounders on the graph of Figure 2b is equivalent
to adjusting for the shared confounder in Figure 2c:

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1)

= P (y |usng, z, a1, . . . , am, s = 1). (9)

Proof sketch. The proof uses a measure-theoretic argument
to characterize the information contained in the Z variable
in Figure 2c. Roughly, the information in Z is same as

the information of all multi-treatment confounders, all null
confounders, and some independent error:

σ(z) = σ(umlt, wmlt, εZ), (10)

where σ(·) denotes the σ-algebra of a random variable. The
independent error εZ satisfies

εZ ⊥ Y, S, U sng, Umlt,Wmlt, A1, . . . , Am.

Eq. 10 implies that conditioning on Z is equivalent to condi-
tioning on Umlt,Wmlt, εZ ; it leads to Eq. 9. The full proof
is in Appendix E.

Causal identification on the reduced causal graph (Fig-
ure 2c). We reduced the expanded class of graphs (Fig-
ure 2b) to one with shared confounding (Figure 2c). This
reduction allows us to establish causal identification on the
expanded class. We extend Theorem 1 from Figure 1a to
Figure 2c. With the reduction step (Lemma 3), it leads to
causal identification.

How can we identify the intervention distributions
P (y |do(aC)) on the reduced graph (Figure 2c)? Figure 2c
has a confounder Z that is shared across all treatments. This
structure is similar to the unobserved shared confounding
of Figure 1a. In addition to the shared confounder Z, the
reduced graph involves single-treatment confounders U sng

and the selection operator S. We posit two assumptions on
them to enable causal identification.

Assumption 3. The causal graph Figure 2c satisfies the
following conditions:

1. All single-treatment confounders U sng
i ’s are observed.

2. The selection operator S satisfies

S ⊥ (A, Y ) |Z,U sng. (11)

3. We observe the non-selection-biased distribution

P (a1, . . . , am, u
sng)

and the selection-biased distribution

P (y, usng, a1, . . . , am | s = 1).

Assumption 3.1 requires that the confounders that affect the
outcome and only one of the treatments must be observed.
It allows us to adjust for confounding due to these single-
treatment confounders. Assumption 3.2 roughly requires
that selection can only occur on the confounders. Assump-
tion 3.3 requires access to the non-selection-biased distribu-
tion of the treatments and single-treatment-confounders. It
aligns with common conditions required by recovery under
selection bias (e.g., Theorem 2 of Bareinboim et al. (2014)).
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Name Children Notation

Confounder ≥ 1 treatment & outcome Umlt, Usng

treatment covariate ≥ 1 treatment only Wmlt,W sng

Outcome covariate outcome only V

(a)

Umlt
1 Umlt

2 U sng
1Wmlt

1W sng
1

AmA1 A2

Y

V S

. . . . . .

(b)

Z U sng
1

AmA1 A2

Y

V S

. . . . . .

(c)

Figure 2. (a) Types of nodes (b) The expanded class of causal graphs. S is the selection operator. (c) The reduced causal graph with
shared confounding.

We next establish causal identification on the reduced causal
graph Figure 2c. We additionally make Assumption 4; it
is a variant of Assumption 1 but involves single-treatment
confounders and the selection operator.

Assumption 4. There exists some function f and a set
∅ 6= N ⊂ {1, . . . ,m}\C such that

1. The outcome Y does not causally depend on f(AN ):

f(AN ) ⊥ Y |Z,AC , AX , U sng, S = 1 (12)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.

2. The conditional P (z | aC , f(aN ), usng
C , s = 1) is com-

plete in f(aN ) for almost all aC and usng
C , where U sng

C
is the single-treatment confounders affecting AC .

3. The conditional P (f(aN ) | aC , aX , usng
C , s = 1) is

complete in aX for almost all aC and usng
C .

Under Assumption 3 and Assumption 4, we can identify the
intervention distributions P (y |do(aC)).
Lemma 4. Assume the causal graph Figure 2c. Under As-
sumption 3 and Assumption 4, the intervention distribution
of the treatments AC is identifiable:

P (y |do(aC)) (13)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX )P (u

sng
C ) daX dusng

C

for any solution h to the integral equation

P (y | aC , f(aN ), usng
C , s = 1)

=

∫
h(y, aC , aX , u

sng
C )

× P (aX | aC , f(aN ), usng
C , s = 1) daX , (14)

where U sng
C is the single-treatment confounders affecting

AC . Moreover, the solution to Eq. 14 always exists under
weak regularity conditions in Appendix D.

(The proof is in Appendix F, similar to Theorem 1.)

Causal identification on the expanded class of causal
graphs (Figure 2b). Based on the previous analysis on the
reduced graph, we establish causal identification result on
the expanded class of causal graphs.

Theorem 5. Assume the causal graph Figure 2b. Assume
a variant of Assumption 3 and Assumption 4 (detailed in
Appendix G), the intervention distribution of the treatments
AC is identifiable using Eq. 13 and Eq. 14.

(The proof is in Appendix G.)

3.3. Causal estimation with the deconfounder

We finally extend the deconfounder to the expanded class
of causal graphs (Figure 2b) with selection bias and prove
its correctness. We build on the identification result of
Theorem 5. We then show that the deconfounder provides
correct causal estimates by implicitly solving the integral
equation (Eq. 14). This argument is similar to the argument
of Theorem 2.

The algorithm for the expanded class of graphs with
selection bias extends the version described in Sec-
tion 2.2. Specifically, Assumption 2 allows the algo-
rithm to have access to both the non-selection-biased
data P (a1, . . . , am, u

sng) and the selection-biased data
P (y, usng, a1, . . . , am | s = 1). In this case, the algorithm
outputs two estimates:

(1)P̂ (a1, . . . , am, u
sng, ẑ)

= P̂ (ẑ)P̂ (usng | a1, . . . , am, ẑ)

n∏
i=1

P̂ (ai | ẑ),

(2)P̂ (y, a1, . . . , am, u
sng, ẑ | s = 1).

We note that the former is constructed using only the treat-
ments A1, . . . , Am and single-treatment confounders U sng.
Moreover, both estimates must be consistent with the ob-
served data:

(1)

∫
P̂ (a1, . . . , am, u

sng, ẑ) dẑ = P (a1, . . . , am, u
sng),
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(2)

∫
P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1) dẑ

= P (y, a1, . . . , am, u
sng | s = 1).

We note that the substitute confounder Ẑ does not neces-
sarily coincide with the true confounders Umlt or the true
null confoundersWmlt. Nor do P̂ (a1, . . . , am, u

sng, ẑ) and
P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1) need to be unique. We
will show that any Ẑ and P̂ that the algorithm outputs will
lead to a correct estimate of P̂ (y |do(aC)).

Finally the algorithm estimates

P̂ (y |do(aC))
∆
=

∫
P̂ (y | a1, . . . , am, ẑ, u

sng
C , s = 1) (15)

× P̂ (a{1,...,m}\C , ẑ)P (usng
C ) dusng

C dẑ da{1,...,m}\C ,

where U sng
C are the single-treatment confounders that affect

the treatments AC .

We now prove the correctness of the deconfounder on the
expanded class of causal graphs. We make a variant of
Assumption 2 and state the correctness result.
Assumption 5. The deconfounder outputs the
estimates P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1) and
P̂ (a1, . . . , am, u

sng, ẑ) that satisfy the following:

1. It is consistent with Assumption 3.1:

P̂ (a1, . . . , am | ẑ, usng, s = 1)

= P̂ (a1, . . . , am | ẑ, usng).
(16)

2. It is consistent with Assumption 4.1:

P̂ (y | aC , aX ,f(aN ), ẑ, usng, s = 1)

= P̂ (y | aC , aX , ẑ, usng, s = 1).
(17)

3. The conditional P̂ (ẑ | aC , aX , usng, s = 1) is complete
in aX for almost all aC .

The conditional P̂ (ẑ | aC , aX , usng, s = 1), Eq. 16, and
Eq. 17 can be computed from P̂ (a1, . . . , am, u

sng, ẑ) and
P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1)).

Under these assumptions, Theorem 6 establishes the cor-
rectness of the deconfounder on causal graphs under certain
types of selection bias.
Theorem 6. (Correctness of the deconfounder on the ex-
panded class of causal graphs) Assume the causal graph
Figure 2b. Assume a variant of Assumption 3 and Assump-
tion 4 (detailed in Appendix H). Under Assumption 5 and
weak regularity conditions, the deconfounder provides cor-
rect estimates of the intervention distribution:

P̂ (y |do(aC)) = P (y |do(aC)). (18)

(The proof is in Appendix H.)

4. Example: A linear causal model
We illustrate Theorems 5 and 6 in a linear causal model.

Consider the meal/body-fat example. The treatments are ten
types of food A1, . . . , A10; the outcome is a person’s body
fat Y . How does food consumption affect body fat?

In this example, the individual’s lifestyle Umlt is a multi-
treatment confounder. Whether a person is vegan Wmlt is a
multi-treatment null confounder. Both Umlt and Wmlt are
unobserved. Whether one has easy access to good burger
shops U sng is a single-treatment confounder; it affects both
burger consumption A1 and body fat percentage Y ; U sng

is observed. Finally, the observational data comes from a
survey with selection bias S; people with healthy lifestyle
are more likely to complete the survey.

Every variable is associated with a disturbance term ε, which
comes from a standard normal. Given these variables, sup-
pose the real world is linear,

Umlt = εUmlt , U sng = εUsng ,Wmlt = εWmlt ,

A1 = αA1UU
mlt + αA1WW

mlt + αA1U ′U sng + εA1
,

Ai = αAiUU
mlt + αAiWW

mlt + εAi , i = 2, . . . , 10,

Y =

10∑
i=1

αY AiAi + αY UU
mlt + αY U ′U sng + εY .

These equations describe the true causal model of the world.
The confounders and null confounders {Umlt,Wmlt} are
unobserved.

We are interested in the intervention distribution of the
first two food categories, burger (A1) and broccoli (A2):
P (y |do(a1, a2)). (We emphasize that we might be inter-
ested in any subsets of the treatments.) This world satis-
fies the assumptions of Theorem 5. Even though the con-
founders Umlt are unobserved, the intervention distribution
P (y |do(a1, a2)) is identifiable.

Now consider a simple deconfounder. Fit a 2-D probabilistic
principal component analysis (PPCA) to the data about food
consumption {A1, . . . , A10}; we do not model the outcome
Y . Wang & Blei (2019a) also checks the model to ensure
it fits the distribution of the assigned treatments. (Let’s
assume that 2-D PPCA passes this check.)

PPCA leads to a linear estimate of the substitute confounder,

Ẑ =

(
10∑
i=1

γ1iAi + ε1Ẑ ,

10∑
i=1

γ2iAi + ε2Ẑ

)
, (19)

for parameters γ1i and γ2i, and Gaussian noise εi,Ẑ .

This substitute confounder Ẑ satisfies Assumption 5. Plausi-
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bly, the real world satisfies the variant of Assumption 3 and
Assumption 4. These assumptions greenlight us to calculate
the intervention distribution. We fit an outcome model using
the substitute confounder Ẑ and calculate the intervention
distribution using Eq. 15. Theorem 6 guarantees that this
estimate is correct.

5. A Simulation Study
In this section, we see the identification results in action.
We find that the identification conditions discussed in Sec-
tions 2 and 3 are crucial for producing correct causal esti-
mates. The theoretical results and the conditions required
by Theorems 1, 2, 5 and 6 are practically important.

Specifically, we consider a linear data generating process
in Section 4 with a one-dimensional U and three treatments
A1, A2, A3. We explore two configurations of the unob-
served confounder U .

In one configuration, U is normally distributed, and the
resulting observational data satisfies the completeness con-
dition in Assumption 1.2. Figure 3a shows the mean squared
error (RMSE) of the deconfounder average treatment effect
(ATE) estimate stays low even if the confounding strength is
high while the RMSE of naive regression quickly blows up.

In a second configuration, U is uniformly distributed; it
results in an observational data distribution that violates the
completeness condition (Assumption 1.2). Figure 3b shows
that the deconfounder can no longer control for confound-
ing in this setting. It produces causal estimates that have
consistently lower quality than naive regression.

Finally we extend the simulation to study selection bias.
Given a normally or uniformly distributed U , we generate
observational data from the same linear model. We then
introduce selection bias by selecting samples with probabil-
ity ∝ N (U ; 0, 0.52) and ∝ Unif(U ; 0, 0.5). We apply the
deconfounder estimation algorithm.

Figures 3c and 3d exhibit the similar phenomenon as above.
When the identification conditions hold, the deconfounder
produces significant improvement in ATE estimation. When
these conditions are violated, the deconfounder produces
low quality ATE estimates. Notice that under selection bias,
the variance of the estimate tends to go down as confounding
strength goes up. We observe this phenomenon because
stronger confounding strength makes it easier to infer the
latent confounder U, reducing the variance of the estimate.

6. Discussion
We study causal identification and estimation when multiple
treatments share the same unobserved confounder. By treat-
ing some treatments as proxies of the shared confounder, we
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Figure 3. The deconfounder outperforms naive regression when
the identification conditions are satisfied, but fails to otherwise.

can identify the intervention distributions of the other treat-
ments. For an expanded class of causal graphs, we prove
that the intervention distribution of subsets of treatments is
identifiable. We further show that the deconfounder algo-
rithm of Wang & Blei (2019a) makes valid inferences of
these intervention distributions when causal identification
holds. We demonstrate the practical relevance of these theo-
retical results in a simulation study, showing how violating
the identification conditions can fail the deconfounder in
practice.
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Supplementary Material: A Proxy Variable View of Shared Confounding

A. Proof of Theorem 1
Proof. The proof of Theorem 1 relies on two observations. The first observation starts with the integral equation we solve:

P (y | aC , f(aN )) =
∫
h(y, aC , aX )P (aX | aC , f(aN )) daX (20)

=

∫ ∫
h(y, aC , aX )P (aX |u)P (u | aC , f(aN )) daX du. (21)

The first equality is due to Eq. 3. The second equality is due to the conditional independence implied by Figure 1a:
AX ⊥ AC , f(aN ) |U.

The second observation relies on the null proxy:

P (y | aC , f(aN )) =
∫
P (y |u, aC , f(aN ))P (u | aC , f(aN )) du (22)

=

∫
P (y |u, aC)P (u | aC , f(aN )) du. (23)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of
Assumption 1, which implies Y ⊥ f(aN ) |U,AC . The reason is that

P (y |u, aC , f(aN )) =
∫
P (y |u, aC , aX , f(aN ))P (aX |u, aC , f(aN )) daX (24)

=

∫
P (y |u, aC , aX )P (aX |u, aC) daX (25)

=P (y |u, aC). (26)

In fact, it is sufficient to assume Y ⊥ f(aN ) |U,AC instead of Y ⊥ f(aN ) |U,AC , AX in Theorem 1. However, the latter
is easier to check and interpret.

Comparing Eq. 21 and Eq. 23 gives∫ [
P (y |u, aC)−

∫
h(y, aC , aX )P (aX |u) daX

]
× P (u | aC , f(aN )) du = 0, (27)

which, by the completeness condition in Assumption 1.2, implies

P (y |u, aC) =
∫
h(y, aC , aX )P (aX |u) daX . (28)

Eq. 28 leads to identification:

P (y |do(aC)) =
∫ ∫

h(y, aC , aX )P (aX |u) daXP (u) du (29)

=

∫
h(y, aC , aX )P (aX ) daX . (30)

Consider the special case of a single treatment as in Figure 1b. Let aC = {A1}, aX = {X}, aN = N , and f(aN ) = N .
The above proof reduces to the identification proof for proxy variables (Theorem 1 of Miao et al. (2018)).

B. Examples of Assumption 1
As an example, if the structural equation writes

Y = g(A1 +A2, A3, . . . , Am, U, ε),
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where ε ⊥ U,A1, . . . , Am, then Assumption 1.1 is satisfied if A1 and A2 are identically Gaussian: AN = (A1, A2) and
f(AN ) = A1 −A2 satisfies

A1 −A2 ⊥ Y |U,A3, . . . , Am.

If A1 and A2 are both Gaussian but not identically distributed, then f(AN ) = α1A1 − α2A2 would satisfy

α1A1 − α2A2 ⊥ Y |U,A3, . . . , Am,

for some constant α1 and α2.

Similarly, if the structural equation writes

Y = g(A1 ×A2, A3, . . . , Am, U, ε),

where ε ⊥ U,A1, . . . , Am, then Assumption 1.1 is satisfied if A1 and A2 are identically log-normal: AN = (A1, A2) and
f(AN ) = A1/A2 satisfies

A1/A2 ⊥ Y |U,A3, . . . , Am.

As a final example, if the structural equation writes

Y = g(A1&&A2, A3, . . . , Am, U, ε),

where ε ⊥ U,A1, . . . , Am and A1, A2 are both binary, then Assumption 1.1 is satisfied: AN = (A1, A2) and f(AN ) =
A1 XOR A2 satisfies

A1 XOR A2 ⊥ Y |U,A3, . . . , Am.

C. Proof of Theorem 2
Proof. Assumption 2.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ) =
∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX (31)

under weak regularity conditions. (We will discuss the reason in Appendix D.)

We first claim that ĥ(y, aC , aX ) solves

P (y | aC , f(aN )) =
∫
ĥ(y, aC , aX )P (aX | aC , f(aN )) daX . (32)

Given this claim (Eq. 77), we have

P̂ (y |do(aC))

=

∫
P̂ (y | ẑ, aC)P̂ (ẑ) dẑ

=

∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX P̂ (ẑ) dẑ

=

∫
ĥ(y, aC , aX )P (aX ) daX

=P (y |do(aC)),

which proves the theorem. The first equality is due to Eq. 6; the second is due to Eq. 77; the third is due to the deconfounder
estimate being consistent with the observed data distribution by construction; the fourth is due to the above claim (Eq. 77)
and Theorem 1.

We next prove the claim (Eq. 77). Start with the right side of the equality.∫
ĥ(y, aC , aX )P (aX | aC , f(aN )) daX
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=

∫ ∫
ĥ(y, aC , aX )P̂ (aX | ẑ)P̂ (ẑ | aC , f(aN )) daX dẑ

=

∫
P̂ (y | aC , ẑ)P̂ (ẑ | aC , f(aN )) dẑ

=P (y | aC , f(aN )),

which establishes the claim. The first equality is due to Eq. 4 and the deconfounder estimate being consistent with the
observed data; the second is due to Eq. 31; the third is due to Assumption 2.1, which implies

P̂ (y | aC , f(aN ), ẑ) = P̂ (y | aC , ẑ). (33)

Similar to Assumption 1.1, it is sufficient to assume Eq. 33 directly. However, Assumption 2.1 is easier to check and more
interpretable; it directly relates to the deconfounder outcome model.

D. Existence of solutions to the integral equations
Theorem 1 involves solving the integral equation

P (y | aC , f(aN )) =
∫
h(y, aC , aX )P (aX | aC , f(aN )) daX . (34)

When does a solution exist for Eq. 34? We appeal to Proposition 1 of Miao et al. (2018).

Proposition 7. (Proposition 1 of Miao et al. (2018)) Denote L2{F (t)} as the space of all square-integrable function of t
with respect to a c.d.f. F (t). A solution to integral equation

P (y | z, x) =
∫
h(w, x, y)P (w | z, x) dw (35)

exists if

1. the conditional distribution P (z |w, x) is complete in w for all x,

2.
∫ ∫

P (w | z, x)P (z |w, x) dw dz < +∞,

3.
∫
[P (y | z, x)]2P (z |x) dz < +∞,

4.
∑+∞
n=1 | < P (y | z, x), ψx,n > |2 < +∞,

where the inner product is < g, h >=
∫
g(t)h(t) dF (t), and (λx,n, φx,n, ψx,n)

∞
n=1 is a singular value decomposition of the

conditional expectation operator Kx : L2{F (w |x)} → L2{F (z |x)},Kx(h) = E [h(w) | z, x] for h ∈ L2{F (w |x)}.

Leveraging Proposition 7, we can establish sufficient conditions for existence of a solution to Eq. 34.

Corollary 8. A solution exist for the integral equation Eq. 34 if

1. the conditional distribution P (f(aN ) | aX , aC) is complete in aX for all aC ,

2.
∫ ∫

P (aX | f(aN ), aC)P (f(aN ) | aX , aC) daX df(aN ) < +∞,

3.
∫
[P (y | f(aN ), aC)]2P (f(aN ) | aC) df(aN ) < +∞,

4.
∑+∞
n=1 | < P (y | f(aN ), aC), ψaC,n > |2 < +∞,

where ψaC,n is similarly defined as a component of the singular value decomposition.
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We remark that the first condition is precisely Theorem 1.3; others are weak regularity conditions.

By the same token, we can establish sufficient conditions for solution existence of Eq. 8, Eq. 14. The same argument also
applies to the integral equation involved in Theorem 6:

P̂ (y | aC , ẑ, usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX . (36)

It is easy to show that the conditions described in the main text are sufficient to guarantee the existence of solutions under
weak regularity conditions. We omit the details here.

E. Proof of Lemma 3
The idea of the proof is to start with the structural equations of the expanded class of causal graphs Figure 2b. Then
posit the existence of a latent variable Z that renders all the treatments conditionally independent; Figure 2c features this
conditional independence structure. We will quantify the information (i.e. the σ-algebra) of this latent variable Z; Z
contains the information of the union of multi-treatment confounders Umlt, multi-treatment null confounders Wmlt, and
some independent error. This result lets us establish

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1). (37)

We start with a generic structural equation model for multiple treatments.

Wk = fWk
(εWk

), k = 1, . . . ,K,K ≥ 0, (38)
Uj = fUj (εUj ), j = 1, . . . , J, J ≥ 0, (39)
Vl = fVl(εVl), l = 1, . . . , L, L ≥ 0, (40)
Ai = fAi(WSWAi

, USUAi
, εAi), i = 1, . . . ,m,m ≥ 2, (41)

Y = fy(A1, . . . , Am, U1, . . . , UK , V1, . . . VL, εY ), (42)

where all the errors εWk
, εUj , εVl , εAi , εY are independent. Notation wise, we note that SWAi ⊂ {1, . . . ,K} is an index set; if

SWA1
= {1, 3, 4}, then WSWAi

= (W1,W3,W4). The same notion applies to SUAi ⊂ {1, . . . , J}.

The notation in this structural equation model is consistent with the set up in Figure 2b. Wk’s are null confounders; Uj’s are
confounders; Vl’s are covariates. Moreover, USUAi

indicates the set of confounders that have an arrow to both Ai and Y .
WSWAi

indicates the set of null confounders that have an arrow to Ai; they do not have arrows to Y .

Relating to the single-treatment and multi-treatment notion, we have single-treatment null confounders as

W sng ∆
= {W1, . . . ,WK}/

⋃
i,j∈{1,...,m}:i 6=j

(WSWAi
∩WSWAj

). (43)

To parse the notation above, recall that WSWAi
is the set of null confounders that affects Ai.

⋃
i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
)

describes the set of null confounders that affect at least two of the Ai’s. Hence, W sng denotes the set of null confounders
that affect only one of the Ai’s, a.k.a. single-treatment null confounders.

Before proving Lemma 3, we first prove the following lemma that quantifies the information in Z (in Figure 2c).

Lemma 9. The random variable Z in Figure 2c “captures” all multi-treatment confounders, all multi-treatment null
confounders and some independent error:

σ(Z) = σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)
, (44)

= σ
(
{εZ}

⋃
Wmlt

⋃
Umlt

)
. (45)

where εZ ⊥ (εY , V1, . . . , VL,∪i,j∈{1,...,m}:i 6=j(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj ), S).
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We can parse the notation in Lemma 9 in the same way as in Eq. 43: ∪i,j∈{1,...,m}:i 6=j(WSWAi
∩WSWAj

) denotes the set of all

multi-treatment confounders; ∪i,j∈{1,...,m}:i 6=j(USUAi ∩ USUAj ) denotes the set of all multi-treatment null confounders.

Proof. Without the loss of generality, we assume the compactness of representation in Eqs. 41 and 42. For any subset S
of the random variables S ⊂ {A1, . . . , Am, Y }, we assume the σ-algebra σ(

⋂
τ (S

W
Sτ
, SUSτ , S

V
Sτ
)) is the smallest σ-algebra

that makes all the random variables in S jointly independent. The assumption is made for technical convenience. We simply
ensure the arrows from the W,U, V ’s to the Ai’s do exist. In other words, all the W,U, V ’s “whole-heartedly” contribute to
the Ai’s when they appear in Eq. 41. This assumption does not limit the class of causal graphs we study.

First we show that all multi-treatment confounders and all multi-treatment null confounders are measurable with respect to
the substitute confounder Z:

σ

 ⋃
i,j∈{1,...,m}:i 6=j

(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj )

 ⊂ σ(Z). (46)

Consider any pair of Ai and Aj . Figure 2c implies that

Ai ⊥ Aj |Z, (47)

for i 6= j and i, j ∈ {1, . . . ,M}. On the other hand, we have

Ai ⊥ Aj |σ
(
(WSWAi

∩WSWAj
), (USUAi

∩ USUAj )
)
, (48)

by the independence of errors assumption. Therefore, by the compactness of representation assumption, σ((WSWAi
∩

WSWAj
), (USUAi

∩ USUAj )) is the smallest σ-algebra that renders Ai independent of Aj . This implies

σ
(
(WSWAi

∩WSWAj
), (USUAi

∩ USUAj )
)
⊂ σ(Z). (49)

The argument can be applied to any pair of i 6= j, i, j ∈ {1, . . . ,M}, so we have

σ

 ⋃
i,j∈{1,...,m}:i 6=j

(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj )

 ⊂ σ(Z). (50)

Next Figure 2c implies

σ(A1, . . . , AM ) 6⊂ σ(Z), (51)

and

σ(Y ) 6⊂ σ(Z). (52)

Therefore, we have

σ(Z) ⊂ σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)
, (53)

where εZ is independent of all the other errors in the structural model, including those of A and Y .

The error εZ can have an empty σ-algebra: for example, εZ is a constant. Therefore, the left side of Eq. 50 can be made
equal to the right side of Eq. 53. We have

σ(Z) = σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)

(54)

= σ
(
{εZ}

⋃
Wmlt

⋃
Umlt

)
. (55)

for some random variable εZ that is independent of all other random errors ε’s.
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As a direct consequence of Lemma 9, we have

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1), (56)

due to the definition of conditional probabilities and εZ ⊥ Y |S,U sng, Umlt,Wmlt, A1, . . . , Am. The latter is because εZ
is independent of all other errors.

F. Proof of Lemma 4
Proof. Denote U sng

C as the set of single-treatment confounders that affects AC .

The proof of Lemma 4 relies on two observations.

The first observation starts with the integral equation we solve:

P (y | aC , f(aN ), usng
C , s = 1) (57)

=

∫
h(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX (58)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX | z)P (z | aC , f(aN ), usng

C , s = 1) daX dz (59)

The first equality is due to Eq. 14. The second equality is due to Assumption 3.2.

The second observation relies on the null proxy:

P (y | aC , f(aN ), usng
C , s = 1) (60)

=

∫
P (y | z, aC , f(aN ), usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (61)

=

∫
P (y | z, aC , usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (62)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of
Assumption 4; it implies Y ⊥ f(aN ) |Z,U sng

C , AC , S = 1. The reason is that

P (y | z, aC , f(aN ), usng
C , s = 1) (63)

=

∫
P (y | z, aC , aX , f(aN ), usng

C , s = 1)P (aX | z, aC , f(aN ), usng
C , s = 1) daX (64)

=

∫
P (y | z, aC , aX , usng

C , s = 1)P (aX | z, aC , usng
C , s = 1) daX (65)

=P (y | z, aC , usng
C , s = 1). (66)

The second equality is again due to Assumption 3.2.

Comparing Eq. 59 and Eq. 62 gives∫ [
P (y | z, aC , usng

C , s = 1)−
∫
h(y, aC , aX , u

sng
C )P (aX | z) daX

]
× P (z | aC , f(aN ), usng

C , s = 1) dz = 0, (67)

which implies

P (y | z, aC , usng
C , s = 1) =

∫
h(y, aC , aX , u

sng
C )P (aX | z) daX . (68)

This step is due to the completeness condition in Assumption 4.2.

Eq. 68 leads to identification:

P (y |do(aC)) (69)
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=P (y | z, aC , usng
C )P (z)P (usng

C ) dz dusng
C (70)

=P (y | z, aC , usng
C , s = 1)P (z)P (usng

C ) dz dusng
C (71)

=

∫ ∫ ∫
h(y, aC , aX , u

sng
C )P (aX | z) daXP (z)P (usng

C ) dz dusng
C (72)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX )P (u

sng
C ) daX dusng

C . (73)

In particular, the second equality is due to Assumption 3.2.

G. Proof of Theorem 5
We first state the variant of Assumption 3 and Assumption 4 required by Theorem 5. We essentially replace Z with
(Umlt,Wmlt) in these assumptions.

Assumption 6. (Assumption 3’) The causal graph Figure 2b satisfies the following conditions:

1. All single-treatment confounders U sng
i ’s are observed.

2. The selection operator S satisfies

S ⊥ (A, Y ) |Umlt,Wmlt, U sng. (74)

3. We observe the non-selection-biased distribution

P (a1, . . . , am, u
sng)

and the selection-biased distribution
P (y, usng, a1, . . . , am | s = 1).

Assumption 7. (Assumption 4’) There exists some function f and a set ∅ 6= N ⊂ {1, . . . ,m}\C such that

1. The outcome Y does not causally depend on f(aN ):

f(aN ) ⊥ Y |AC , AX , Umlt,Wmlt, U sng, S = 1 (75)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.

2. The conditional P (umlt, wmlt | aC , f(aN ), usng
C , s = 1) is complete in f(aN ) for almost all aC and usng

C , where U sng
C

is the single-treatment confounders affecting AC .

3. The conditional P (f(aN ) | aC , aX , usng
C , s = 1) is complete in aX for almost all aC and usng

C .

Under these assumptions, Theorem 5 is a direct consequence of Lemma 3 and Lemma 4. The reason is thatUmlt,Wmlt, U sng

constitutes an admissible set to identify the intervention distributions P (y |do(aC)).

H. Proof of Theorem 6
We assume Assumption 6 and Assumption 7 as described in Appendix G.

Proof. Assumption 5.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ, usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX (76)

under weak regularity conditions. (We discuss the reason in Appendix D.)
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We first claim that ĥ(y, aC , aX , u
sng
C ) solves

P (y | aC , f(aN ), usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX . (77)

Given this claim (Eq. 77), we have

P̂ (y |do(aC))

=

∫ ∫
P̂ (y | ẑ, usng

C , aC , s = 1)P̂ (ẑ)P (usng
C ) dẑ dusng

C

=

∫ ∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX P̂ (ẑ)P (u
sng
C ) dẑ dusng

C

=

∫ ∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ) daX P̂ (ẑ)P (usng

C ) dẑ dusng
C

=

∫ ∫
ĥ(y, aC , aX , u

sng
C )P (aX ) daXP (u

sng
C ) dusng

C

=P (y |do(aC)),

which proves the theorem. The first equality is due to Eq. 15; the second is due to Eq. 76; the third is due to Assumption 5
and U sng

C being the single-treatment confounders for AC; the fourth is due to marginalizing out Ẑ; the fifth is due to the
above claim (Eq. 77) and Theorem 5.

We next prove the claim (Eq. 77). Start with the right side of the equality.∫
ĥ(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX

=

∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , aC , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) daX dẑ

=

∫
P̂ (y | aC , ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=

∫
P̂ (y | aC , f(aN ), ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=P (y | aC , f(aN ), usng
C , s = 1),

which establishes the claim. The first equality is due to Eq. 15; the second is due to Eq. 76; the third equality is due to
Assumption 5.2, which implies

P̂ (y | aC , f(aN ), ẑ, usng
C , s = 1) = P̂ (y | aC , ẑ, usng

C , s = 1). (78)

The fourth equality is due to marginalizing out ẑ.

I. Constructing candidate f(aN )’s from the deconfounder outcome model
We illustrate how to construct candidate f(aN )’s in the deconfounder outcome model.

Consider a fitted linear outcome model

Y =

10∑
i=1

αY AiAi + αY ZẐ + αY U ′U sng + εY . (79)

where all the random variables are Gaussian.

It implies that there exists f1(A9, A10) = A9 + α9,10A10 that satisfies

f1(A9, A10) ⊥ Y | Ẑ, U sng, A1, . . . , A8,
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where

α9,10 = − α9Var(A9) + α10Cov(A9, A10)

α9Cov(A9, A10) + α10Var(A10)
.

The reason is that f(A9, A10) ⊥ (α9A9 + α10A10). Hence f(aN ) = A9 + α9,10A10 satisfies Assumption 5.2.

J. Details of the simulation study
Figure 3a. We simulate n = 10, 000 data points from a linear Gaussian model and apply the deconfounder. For
γU = 0, 1, 2, 3, 4, 5,

Un×1 ∼ N (0, I), (80)
θ1×3 ∼ Unif(0, I), (81)
An×3 ∼ N (Uθ, I), (82)
β1×3 ∼ Unif(0, I), (83)
β0 ∼ Unif(0, 1), (84)

Y ∼ N (β0 +Aβ> + γU · U, I). (85)

To apply the deconfounder, we perform maximum likelihood estimation of PPCA on A and then fit a linear model of Y
against both A and the PPCA factor.

As (1) the distributions of U , A, Y are all Gaussian, and (2) the Gaussianity of A leads to the existence of null proxy (as is
discussed in Appendix I, the completeness conditions in Assumption 1 are satisfied.

Figure 3b. We perform the same simulation as above except that Un×1 ∼ Unif(0, I). In this case, the distributions of A
and Y no longer belong to the exponential family and violate the completeness conditions in Assumption 1.

Figures 3c and 3d. We perform the same pair of simulation as above except that we add an additional selection
step to U . After generating U from Un×1 ∼ N (0, I), we select U w.p. proportional to N (U ; 0, 0.52)/N (U ; 0, I)
and Unif(U ; 0, 0.5)/Unif(U ; 0, I) respectively. The resulting U distribution is N (U ; 0, 0.52) and Unif(U ; 0, 0.5)
respectively.
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