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ABSTRACT
Causal inference from observational data is a vital problem, but it comes with strong assumptions. Most
methods assume that we observe all confounders, variables that affect both the causal variables and the
outcome variables. This assumption is standard but it is also untestable. In this article, we develop the
deconfounder, a way to do causal inference with weaker assumptions than the traditional methods require.
The deconfounder is designed for problems of multiple causal inference: scientific studies that involve
multiple causes whose effects are simultaneously of interest. Specifically, the deconfounder combines
unsupervised machine learning and predictive model checking to use the dependencies among multiple
causes as indirect evidence for some of the unobserved confounders. We develop the deconfounder
algorithm, prove that it is unbiased, and show that it requires weaker assumptions than traditional causal
inference. We analyze its performance in three types of studies: semi-simulated data around smoking and
lung cancer, semi-simulated data around genome-wide association studies, and a real dataset about actors
and movie revenue. The deconfounder is an effective approach to estimating causal effects in problems of
multiple causal inference. Supplementary materials for this article are available online.
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1. Introduction

Here is a frivolous, but perhaps lucrative, causal inference prob-
lem. Table 1 contains data about movies. For each movie, the
table shows its cast of actors and how much money the movie
made. Consider a movie producer interested in the causal effect
of each actor; for example, how much does revenue increase (or
decrease) if Oprah Winfrey is in the movie?

To solve this problem, the producer wants to use the poten-
tial outcomes approach to causal inference (Rubin 1974, 2005;
Imbens and Rubin 2015). Following the methodology, she asso-
ciates each movie to a potential outcome function, yi(a). This
function maps each possible cast a to its revenue if the movie
i had that cast. (The cast a is a binary vector with one element
per actor; each element encodes whether the actor is in the
movie.) The potential outcome function encodes, for example,
how much money Star Wars would have made if Robert Red-
ford replaced Harrison Ford as Han Solo. When doing causal
inference, the producer’s goal is to estimate something about
the population distribution of Yi(a). For example, she might
consider a particular cast a and estimate the expected revenue
of a movie with that cast, E [Yi(a)].

Traditionally, causal inference from observational data is a
difficult enterprise and requires strong assumptions. The chal-
lenge is that the dataset is limited; it contains the revenue of
each movie, but only at its assigned cast. However, the pro-
ducer’s problem is not a traditional causal inference. While
causal inference usually considers a single possible cause, such
as whether a subject receives a drug or a placebo, our producer
is considering a multiple causal inference, where each actor
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might causally contribute to the revenue. This article shows how
multiple causal inference can be easier than traditional causal
inference. Thanks to the multiplicity of causes, the producer
can make causal inferences under weaker assumptions than the
traditional approaches require.

Let’s discuss the producer’s inference in more detail: how
can she calculate E [Yi(a)]? Naively, she subsets the data in
Table 1 to those with cast equal to a, and then computes a Monte
Carlo estimate of the revenue. This procedure is unbiased when
E [Yi(a)] = E [Yi(a) | Ai = a].

But there is a problem. The data in Table 1 hide confounders,
variables that affect both the causes and the effect. For example,
every movie has a genre, such as comedy, action, or romance.
This genre has an effect on both who is in the cast and the rev-
enue. (E.g., action movies cast a certain set of actors and tend to
make more money than comedies.) When left unobserved, the
genre of the movie produces a statistical dependence between
whether an actor is cast and the revenue; this dependence biases
the causal estimates, E [Yi(a) | Ai = a] ̸= E [Yi(a)].

Thus, the main activities of traditional causal inference are
to identify, measure, and control for confounders. Suppose the
producer measures confounders for each movie wi. Then infer-
ence is simple: use the data (now with confounders) to take
Monte Carlo estimates of E [E [Yi(a) | Wi, Ai = a]]; this iter-
ated expectation “controls” for the confounders. But the prob-
lem is that whether the estimate is equal to E [Yi(a)] rests on an
uncheckable assumption: there are no other confounders. For
many applied causal inference problems, this assumption is a
leap of faith.

© 2019 American Statistical Association
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Table 1. The TMDB dataset of movie earnings.

Title Cast Revenue

Avatar {Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, . . . } $2788M
Titanic {Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, . . . } $1845M
The Avengers {Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, . . . } $1520M
Jurassic World {Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D’Onofrio, . . . } $1514M
Furious 7 {Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, . . . } $1506M

...
...

...
The Divide {Lauren German, Michael Biehn, Milo Ventimiglia, Courtney B. Vance, . . . } $22,000

We develop the deconfounder, an alternative method for the
producer who worries about missing a confounder. First the
producer finds and fits a good latent-variable model to capture
the dependence among actors. It should be a factor model,
one that contains a per-movie latent variable that renders the
assigned cast conditionally independent. (Probabilistic princi-
pal component analysis (Tipping and Bishop 1999) is a simple
example, but there are many others.) Given the model, she then
estimates the per-movie variable for each cast in the dataset; this
estimated variable is a substitute for unobserved confounders.
Finally, she controls for the substitute confounder and obtains
valid causal inferences.

All methods for causal inference rely on assumptions. The
deconfounder makes two. First, it assumes that the fitted latent-
variable model is a good model of the assigned causes. This
assumption is testable, and we will use predictive checks to
assess how well the fitted model captures the data. Second, it
assumes that there are no unobserved single-cause confounders,
variables that affect one cause (e.g., actor) and the potential
outcome function (e.g., revenue). While this assumption is not
testable, it is weaker than the usual assumption of unconfound-
edness, which requires no unobserved confounders.

Subject to the assumptions, the deconfounder provides valid
causal inferences because it capitalizes on the dependency struc-
ture of the observed casts. It uses patterns of how actors tend to
appear together in movies as indirect evidence for confounders
in the data.

Beyond making movies, many causal inference problems,
especially from observational data, also classify as multiple
causal inference. Such problems arise in many fields.

• Genome-wide association studies (GWAS). In GWAS, biol-
ogists want to know how genes causally connect to traits
(Stephens and Balding 2009; Visscher et al. 2017). The
assigned causes are alleles on the genome, often encoded as
either being common (“major”) or uncommon (“minor”),
and the effect is the trait under study. Confounders,
such as shared ancestry among the population, bias naive
estimates of the effect of genes. We study GWAS problems in
Section 6.2.

• Computational neuroscience. Neuroscientists want to know
how the electrical activity of neurons produces observed
behavior, such as limb movement (Churchland et al.
2012). The possible causes are multiple measurements
about the brain’s activity, for example, one per neuron,
and the effect is a measured behavior. Confounders,
particularly through dependencies among neural activity,
bias the estimated connections between brain activity and
behavior.

• Social science. Sociologists and policy-makers want to know
how social programs affect social outcomes, such as poverty
levels and upward mobility (Morgan and Winship 2015).
However, individuals may enroll in several such programs,
blurring information about their possible effects. In social
science, controlled experiments are difficult to engineer;
using observational data for causal inference is typically the
only option.

• Medicine. Doctors want to know how medical treatments
affect the progression of disease. The multiple causes are
medications and procedures; the outcome is a measurement
of a disease (e.g., a lab test). There are many confounders—
such as when and where a patient is treated or the treatment
preferences of the attending doctor—and these variables bias
the estimates of effects. While gold-standard data from clini-
cal trials are expensive to obtain, the abundance of electronic
health records could inform medical practices.

• Recommender systems. Technology companies want to
know whether recommending different items to a user will
increase revenue. The multiple causes are the recommen-
dation of each item; the outcome is the total revenue of the
company. However, the past purchase history of the users
affect both which items are recommended and which items
they buy, that is, the revenue. Users’ past purchase history
thus confounds the observed effect of recommendation.

All of these problems of causal inference can use the decon-
founder. Fit a good factor model of the assigned causes, infer
substitute confounders, and use the substitutes in causal infer-
ence.

1.1. Related Work

The deconfounder relates to several threads of research in causal
inference.

1.1.1. Probabilistic Modeling for Causal Inference
Several lines of work use probabilistic modeling to aid causal
inference. Mooij et al. (2010) use Gaussian processes to depict
causal mechanisms; Zhang and Hyvärinen (2009) study post-
nonlinear causal models and their identifiability; Mckeigue et al.
(2010) builds on sparse methods to infer causal structures;
Moghaddass, Rudin, and Madigan (2016) use factor models to
generalize the self-controlled case series method to multiple
causes and multiple outcomes. Louizos et al. (2017) use
variational autoencoders to infer unobserved confounders
from proxy variables, Shah and Meinshausen (2018) develop
projection-based techniques for high-dimensional covari-
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ance estimation under latent confounding, Frot, Nandy, and
Maathuis (2019) use linear factor models for robust causal
structure learning with hidden variables, and Kaltenpoth and
Vreeken (2019) leverages information theory principles to
differentiate causal and confounded connections.

With a related goal, Tran and Blei (2017) build implicit
causal models. Like the GWAS example in Section 6.2, they
take an explicit causal view of genome-wide association studies
(gwas), treating the single-nucleotide polymorphisms (snps) as
the multiple causes. They connect implicit probabilistic models
and nonparametric structural equation models for causal infer-
ence (Pearl 2009), and develop inference algorithms for captur-
ing shared confounding. Heckerman (2018) studies the same
scenario with linear regression, where observing many causes
makes it possible to account for shared confounders. Multiple
causal inference and latent confounding was also formalized
by Ranganath and Perotte (2018), who take an information-
theoretic approach.

Most of these articles use Pearl’s framework (Pearl 2009);
they hypothesize a causal graph with confounders, causes, and
outcomes. This article complements these works. We develop
the deconfounder in the potential outcomes framework (Rubin
1974, 2005; Imbens and Rubin 2015).

1.1.2. Analyzing GWAS
In gwas, latent population structure is an important unob-
served confounder. Pritchard et al. (2000) propose a probabilis-
tic admixture model for unsupervised ancestry inference. Price
et al. (2006) and Astle and Balding (2009) estimate the unob-
served population structure using the principal components of
the genotype matrix. Yu et al. (2006) and Kang et al. (2010)
estimate the population structure via the “kinship matrix” on
the genotypes. Song, Hao, and Storey (2015) and Hao, Song,
and Storey (2015) rely on factor analysis and admixture models
to estimate the population structure. GTEx Consortium et al.
(2017) adopt a similar idea to study the effect of genetic varia-
tions on gene expression levels. These methods can be seen as
variants of the deconfounder (see Appendix A in the supple-
mentary materials). The deconfounder gives them a rigorous
causal justification, provides principled ways to compare them,
and suggests an array of new approaches. We study gwas data
in Section 6.2.

1.1.3. Assessing the Unconfoundedness Assumption
Rosenbaum and Rubin (1983) demonstrate that unconfound-
edness and a good propensity score model are sufficient to per-
form causal inference with observational data. Many subsequent
efforts assess the plausibility of unconfoundedness. For exam-
ple, Robins, Rotnitzky, and Scharfstein (2000), Gilbert, Bosch,
and Hudgens (2003), and Imai and Van Dyk (2004) develop
sensitivity analysis in various contexts, though focusing on data
with a single cause. In contrast, this work uses predictive model
checks to assess unconfoundedness with multiple causes. More
recently, Sharma, Hofman, and Watts (2016) leveraged auxiliary
outcome data to test for confounding; Janzing and Schölkopf
(2018a; 2018b), and Liu and Chan (2018) developed tests for
non-confounding in multivariate linear regression; Cinelli et al.
(2019) developed sensitivity analysis for linear causal models;

Franks, D’Amour, and Feller (2019) designed flexible sensitivity
analysis for causal inference with one binary treatment. Here,
we work without auxiliary data, focus on causal estimation, as
opposed to testing, and move beyond linear models and one
treatment.

1.1.4. The (Generalized) Propensity Score
Schneeweiss et al. (2009), McCaffrey, Ridgeway, and Morral
(2004), Lee, Lessler, and Stuart (2010), and many others develop
and evaluate different models for assigned causes. In particular,
Chernozhukov et al. (2017) introduce a semiparametric assign-
ment model; they propose a principled way of correcting for the
bias that arises when regularizing or overfitting the assignment
model. The work in this article introduces latent variables into
the assignment model. The multiplicity of causes enables us to
infer these latent variables and then use them as substitutes for
unobserved confounders.

1.1.5. Traditional Causal Inference With Multiple Treatments
Lopez and Gutman (2017), McCaffrey et al. (2013), Zanutto,
Lu, and Hornik (2005), Rassen et al. (2011), Lechner (2001),
and Feng et al. (2012) extend matching, subclassification, and
weighting to multiple treatments, always assuming no unob-
served confounders. This work relaxes that assumption to no
unobserved single-cause confounders.

1.2. This Article

Section 2 reviews traditional causal inference, sets up multiple
causal inference, presents the deconfounder. Section 3 describes
the identification strategy of the deconfounder and its main
assumptions. Section 4 discusses the practical details of the
deconfounder and presents the full algorithm. Section 5 answers
some questions a reader might have. Section 6 presents three
empirical studies, two semi-synthetic and one real. Section 7
further develops the theory around the deconfounder and estab-
lishes causal identification. Section 8 concludes the article.

2. Multiple Causal Inference With the Deconfounder

In this section, we discuss the problem of multiple causal infer-
ence and develop the deconfounder.

2.1. Multiple Causal Inference

We first describe multiple causal inference. In the data, there are
m possible causes, encoded in a vector a = (a1, . . . , am). We
can consider a variety of types: real-valued causes, binary causes,
integer causes, and so on. In the example of movie revenue, the
causes are binary: aj encodes whether actor j is in the movie.

For each individual i (movie) there is a potential outcome
function that maps configurations of causes to the outcome
(revenue). We focus on real-valued outcomes. For the ith movie,
the potential outcome function maps each possible cast to the
log of the movie’s revenue had it had that cast, yi(a) : {0, 1}m →
R.

The goal of causal inference is to characterize the sampling
distribution of the potential outcomes Yi(a) for each configura-
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tion of the causes a. This distribution provides causal inferences,
such as the expected outcome for a particular array of causes (a
particular cast of actors) µ(a) = E [Yi(a)] or the average effect
of individual causes (how much a particular actor contributes to
revenue).

To help make causal inferences, we draw data from the
sampling distribution of assigned causes ai (the cast of movie
i) and realized outcomes yi(ai) (its revenue).1 The data is
D = {(ai, yi(ai)}n

i=1. Note we only observe the outcome for
the assigned causes yi(ai), which is just one of the values of the
potential outcome function. But we want to use such data to
characterize the full distribution of Yi(a) for any a; this is the
“fundamental problem of causal inference” (Holland 1986).

To estimate µ(a), consider using the data to calculate condi-
tional Monte Carlo approximations of E [Yi(a) | Ai = a]. These
estimates are simply averages of the outcomes for each config-
uration of the causes. But this approach may not be accurate.
There might be unobserved confounders—hidden variables that
affect both the assigned causes Ai and the potential outcome
function Yi(a). When there are unobserved confounders, the
assigned causes are correlated with the observed outcome. Con-
sequently, Monte Carlo estimates of µ(a) are biased,

E [Yi(a) | Ai = a] ̸= E [Yi(a)] . (1)

We can estimate E [Yi(a) | Ai = a] with the dataset; but the goal
is to estimate E [Yi(a)].2

Suppose we measure covariates xi and append to each data
point, D = {(ai, xi, yi(ai)}n

i=1. If these covariates contain all
confounders then

E [E [Yi(a) | Xi, Ai = a]] = E [Yi(a)] . (2)

With augmented data, estimate the left side with Monte Carlo;
thus, estimate E [Yi(a)].

Equation (2) is true when X capture all confounders. More
precisely, it is true under the assumption of unconfounded-
ness3 (Rosenbaum and Rubin 1983; Imai and Van Dyk 2004):
conditional on observed X, the assigned causes are independent
of the potential outcomes,

Ai ⊥⊥Yi(a) | Xi ∀a. (3)

1We use the term assigned causes for the vector of what some might call
the “assigned treatments.”Because some variables may not exhibit a causal
effect, a more precise term would be “assigned potential causes” (but it is
too cumbersome).

2Here is the notation. Capital letters denote a random variable. For example,
the random variable Ai is a randomly chosen vector of assigned causes
from the population. The random variable Yi(Ai) is a randomly chosen
potential outcome from the population, evaluated at its assigned causes.
A lowercase letter is a realization. For example, ai is in the dataset—it is
the vector of assigned causes of individual i. The left side of Equation (1)
is an expectation with respect to the random variables; it conditions on
the random vector of assigned causes to be equal to a certain realization
Ai = a. The right side is an expectation over the same population of the
potential outcome functions, but always evaluated at the realization a.

3Here we describe the weak version of the unconfoundedness assumption,
which requires individual potential outcomes Yi(a) be marginally inde-
pendent of the causes Ai , that is, Ai ⊥⊥ Yi(a) | Xi for all a. Imbens (2000)
and Hirano and Imbens (2004) call this assumption weak unconfound-
edness. In contrast, the strong version of unconfoundedness says Ai ⊥⊥
(Yi(a))a∈A | Xi , which requires all possible potential outcomes (Yi(a))a∈A
be jointly independent of the causes Ai .

The nuance is that Equation (3) needs to hold for all possible a’s,
not only for the value of Yi(a) at the assigned causes. Uncon-
foundedness implies no unobserved confounders.4

Equation (2) underlies the practice of causal inference: find
and measure the confounders, estimate conditional expecta-
tions, and average. In the introduction, for example, we pointed
out that the genre of the movie is a confounder to causal infer-
ence of movie revenues. The genre affects both which cast is
selected and the potential earnings of the film. But the assump-
tion that there are no unobserved confounders is significant.
One of the central challenges around causal inference from
observational data is that unconfoundedness is untestable—it
fundamentally depends on the entire potential outcome func-
tion, of which we only observe one value (Holland 1986).

2.2. The Deconfounder

We develop the deconfounder, an algorithm that uses the mul-
tiplicity of causes to infer unobserved confounders. There are
three steps. First, find a good latent variable model of the assign-
ment mechanism. (A good model is one that accurately captures
the joint distribution of the causes.) Second, use the model to
infer the latent variable for each individual. Finally, use the
inferred variable as a substitute for unobserved confounders and
form causal inferences.

We explain the method and discuss why and when it provides
unbiased causal inferences.

In the first step of the deconfounder, define and fit a prob-
abilistic factor model to capture the joint distribution of causes
p(a1, . . . , am). A factor model posits per-individual latent vari-
ables Zi, which we call local factors, and uses them to model the
assigned causes. The model is

Zi ∼ p(· | α) i = 1, . . . , n,
Aij | Zi ∼ p(· | zi, θj) j = 1, . . . , m,

(4)

where α parameterizes the distribution of Zi and θj param-
eterizes the per-cause distribution of Aij. Notice that Zi can
be multi-dimensional. Factor models encompass many meth-
ods from Bayesian statistics and probabilistic machine learn-
ing. Examples include probabilistic PCA (Tipping and Bishop
1999), mixture models (McLachlan and Basford 1988), mixed-
membership models (Pritchard et al. 2000; Blei, Ng, and Jordan
2003; Erosheva 2003; Airoldi et al. 2008), and deep generative
models (Neal 1990; Kingma and Welling 2013; Rezende and
Mohamed 2015; Mohamed and Lakshminarayanan 2016; Ran-
ganath et al. 2015; Ranganath, Tran, and Blei 2016; Tran et al.
2017).

We can fit using any appropriate method, such as maximum
likelihood estimation or Bayesian inference. And exact fitting
is not required; we can use approximate methods like the EM
algorithm, Markov chain Monte Carlo, or variational inference.
What the deconfounder requires is that the fitted factor model
provides an accurate approximation of the population distribu-
tion of p(a).

4We also assume stable unit treatment value assumption (SUTVA) (Rubin 1980,
1990) and overlap (Imai and Van Dyk 2004), roughly that any vector of
assigned causes has positive probability. These three assumptions together
identify the potential outcome function (Imbens 2000; Hirano and Imbens
2004; Imai and Van Dyk 2004).
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Figure 1. A graphical model argument for the deconfounder. The punchline is that
if Zi renders the Aij ’s conditionally independent then there cannot be a multi-cause
confounder. The proof is by contradiction. Assume conditional independence holds,
p(ai1, . . . , aim | zi) = ∏

j p(aij | zi); if there exists a multi-cause confounder Ui (red)
then, by d-separation, conditional independence cannot hold (Pearl 1988). Note we
cannot rule out the single-cause confounder Si (blue).

In the next step, use the fitted factor model to calculate the
conditional expectation of each individual’s local factor weights
ẑi = EM [Zi | Ai = ai]. We emphasize that this expectation is
from the fitted model M (not the population distribution). We
can use approximate expectations.

In the final step, condition on ẑi as a substitute confounder
and proceed with causal inference. For example, estimate
E [Yi(a)] = E

[
E

[
Yi(a) | Ẑi, Ai = a

]]
.

Why is this strategy sensible? Assume the fitted factor model
captures the (unconditional) distribution of assigned causes
p(ai1, . . . , aim). This means that all causes are conditionally
independent given the local latent factors,

p(ai1, . . . , aim | zi) =
m∏

j=1
p(aij | zi). (5)

Now make an additional assumption: there are no single-
cause confounders, variables that affect just one of the assigned
causes and the potential outcome function. (More precisely,
we need to have observed all the single-cause confounders.)
With this assumption, the independence statement of Equation
(5) implies unconfoundedness, Ai ⊥⊥ Yi(a) | Zi, and uncon-
foundedness justifies causal inference. In summary, if the factor
model captures the distribution of assigned causes—a testable
proposition—then we can use ẑi as a variable that contains the
(multi-cause) confounders.

The graphical model in Figure 1 justifies the deconfounder
and reveals its assumptions.5 Suppose we observe a Zi such that
the conditional independence in Equation (5) holds. Further
suppose there exists an unobserved multi-cause confounder Ui
(illustrated in red), which connects to multiple assigned causes
and the outcome. If such a Ui exists then the causes would
be dependent, even conditional on Zi. (This fact comes from

5Figure 1 uses a graphical model to represent and reason about conditional
dependencies in the population distribution. It is not a causal graphical
model or a structural equation model.

d-separation.) But such dependence leads to a contradiction,
specifically that Equation (5) does not hold. Thus, Ui cannot
exist.

There is a nuance. The conditional independence in Equa-
tion (5) cannot rule out the existence of an unobserved single-
cause confounder, denoted Si in Figure 1. Even if such a con-
founder exists, the conditional independence still holds.

Here is the punchline. If we find a factor model that accu-
rately represents the distribution of causes then that model can
provide a variable that captures the unobserved multiple-cause
confounders. The reason is that the multiple-cause confounders
induce dependence among the causes; a good factor model
provides a variable that renders the causes conditionally inde-
pendent; thus, that variable captures the confounders. This is
the blessing of multiple causes.

3. The Identification Strategy of the Deconfounder

How does the deconfounder identify potential outcomes? The
classical strategy for causal identification is that unconfound-
edness, together with stable unit treatment value assumption
(sutva) and overlap, identifies the potential outcomes (Imbens
2000; Hirano and Imbens 2004; Imai and Van Dyk 2004). The
deconfounder continues to assume sutva and overlap, but it
weakens the unconfoundedness assumption.

Roughly, unconfoundedness requires that there are no
unobserved confounders. To weaken this assumption, the
deconfounder constructs a substitute confounder that captures
multiple-cause confounders. (The proof is in Section 7.)
Uncovering multi-cause confounders from data weakens the
unconfoundedness assumption to one of no unobserved single-
cause confounders.

Thus, the deconfounder relies on three main assumptions:
(1) sutva (Rubin 1980, 1990); (2) no unobserved single-cause
confounders; (3) overlap (Imai and Van Dyk 2004).

3.1. Stable Unit Treatment Value Assumption (SUTVA)

The stable unit treatment value assumption (sutva) requires
that the potential outcomes of one individual are independent
of the assigned causes of another individual. It assumes that
there is no interference between individuals and there is only
a single version of each assigned cause. See Rubin (1980, 1990)
and Imbens and Rubin (2015) for discussion of this assumption.

3.2. No Unobserved Single-Cause Confounders

“No unobserved single-cause confounders” requires that we
observe any confounders that affect only one of the causes; see
Figure 1. (The precise technical definition is in Definition 4 of
Section 7.)

This assumption is weaker than classical assumption of
unconfoundedness, which requires “no unobserved con-
founders.” That said, whether the assumption is plausible
depends on the particulars of the problem. Note that “no
unobserved single-cause confounders” reduces to the “no
unobserved confounders” when there is only one cause; all
confounders are single-cause in this case.
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When might “no unobserved single-cause confounders” be
plausible? Consider the movie-actor example. One possible con-
founder is the reputation of the director. Famous directors have
access to a circle of capable actors; they also tend to make good
movies with large revenues. If the dataset contains many actors,
it is likely that several are in the circle of capable actors; the
director’s reputation is a multi-cause confounder. (If only one
actor in the dataset is capable then the director’s reputation is a
single-cause confounder.)

Or consider the gwas problem. If a confounder affects
SNPs—and we observe 100,000 SNPs per individual—then the
confounder may be unlikely to have an effect on only one. The
same reasoning can apply to other settings—medications in
medical informatics data, neurons in neuroscience recordings,
and vocabulary terms in text data.

By the same token, “no unobserved single-cause con-
founders” may not be satisfied when there are very few assigned
causes. Consider the neuroscience problem of inferring the
relationship between brain activity and animal behavior, but
where the scientist only records the activity of a small number
of neurons. While unlikely that a confounder affects only one
neuron in the brain, it may be more possible that a confounder
affects only one of the observed neurons. This would violate “no
unobserved single-cause confounders.”

In domains where “no unobserved single-cause con-
founders” is likely not satisfied, we suggest performing sensi-
tivity analysis (Robins, Rotnitzky, and Scharfstein 2000; Gilbert,
Bosch, and Hudgens 2003; Imai and Van Dyk 2004; Cinelli et al.
2019; Franks, D’Amour, and Feller 2019) on the deconfounder
estimates. It assesses the robustness of the estimate against
unobserved single-cause confounding. In the context of gwas,
Section 6.2 will illustrate the effect of violating “no unobserved
single-cause confounders.”

3.3. Overlap

The final main assumption of the deconfounder is that the
substitute confounder Zi satisfies the overlap condition,

p(Aij ∈ A | Zi) > 0 for all sets A with positive measure,
i.e., p(A) > 0. (6)

Overlap asserts that, given the substitute confounder, the con-
ditional probability of any vector of assigned causes is positive.
This assumption is sometimes stated as the second half of ignor-
ability (Imai and Van Dyk 2004).6

The potential outcome Yi(a) is not identifiable if the substi-
tute confounder does not satisfy overlap. When the overlap is
limited, that is, p(Aij ∈ A | Zi) is small for all values of Zi, then
the deconfounder estimates of the potential outcome Yi(a) will
have high variance.

For probabilistic factor models, the overlap condition is usu-
ally satisfied. For example, probabilistic PCA assumes Aij | Zi ∼
N (Z⊤

i θj, σ 2). The normal distribution has support over the real
line, which ensures P(Aij ∈ A | Zi) > 0 for all A with positive
measure. That said, as the dimensionality of Zi increases, overlap

6We also require the observed covariates Xi satisfy the overlap condi-
tion if they are single-cause confounders, that is, p(Aij ∈ A | Xi) >
0 for all sets A with positive measure, i.e. p(A) > 0.

often becomes increasingly limited (D’Amour et al. 2017). For
example, probabilistic PCA returns increasingly small σ 2, which
signals P(Aij ∈ A | Zi) is small.

We can enforce overlap by constraining the allowable family
of factor models. With continuous causes, we restrict to models
with continuous densities on R. (We assume the causes are full-
rank, that is, that no two causes are measurable with each other;
if such a pair exists, merge them into a single cause.) With
discrete causes, we restrict to factor models with support on the
whole A and a Zi lower-dimensional than the causes.

Alternatively, we can merge highly correlated causes as a
preprocessing step. For example, consider two causes that are
always assigned the same value, for example, two actors who
either both appear in a movie or both not. We can merge them
into one cause. This merging step prevents the deconfounder
from extrapolating for the assigned causes which the data carries
little evidence. We can also resort to classical strategies of causal
inference under limited overlap, for example subsampling the
population (Crump et al. 2009).

How can we assess the overlap with respect to the substitute
confounder? With a fitted factor model, we can analyze the con-
ditional distribution of the assigned causes given the substitute
confounder P(Aij | Zi) for all individual i’s. A conditional with
low variance or low entropy signals limited overlap and the
possibility of high-variance causal estimates.

3.4. The Deconfounder Is Unbiased

We have described the main assumptions of the deconfounder.
With sutva, overlap, and no unobserved single-cause con-
founders, we use the deconfounder to estimate causal quanti-
ties. Note that point identification of causal quantities requires
further assumptions; see Section 7 for a discussion of these
additional assumptions.

The deconfounder (informal version of Theorem 6 ). Assume
sutva and no unobserved single-cause confounders. Then the
deconfounder provides an unbiased estimate of the average
causal effect:

EY [Yi(a1, . . . , am)] − EY
[
Yi(a′

1, . . . , a′
m)

]

= EX,Z [EY [Yi | Ai1 = a1, . . . , Aim = am, Xi, Zi]] (7)
− EX,Z

[
EY

[
Yi | Ai1 = a′

1, . . . , Aim = a′
m, Xi, Zi

]]
,

where Zi denotes the substitute confounder constructed from
the factor model.

The theorem relies on two properties of the substitute con-
founder: (1) it captures all multi-cause confounders; (2) it does
not capture mediators. By its construction from probabilistic
factor models, the substitute confounder captures all multi-
cause confounders; again, see the graphical model argument in
Figure 1. Moreover, the substitute confounder is constructed
with only the observed causes; no outcome information is used,
so it may not pick up any mediators. (We prove this fact in
Lemma 4.) Thus, along with no unobserved single-cause con-
founders, the substitute confounder provides unconfounded-
ness. With unconfoundedness in hand, we treat the substitute
confounder as if it were observed covariates. While this theorem
does not require overlap, identifying other causal quantities with
the deconfounder requires overlap. We discuss identification of
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different causal quantities in Section 7 and lay out the assump-
tions required for each.

4. Practical Details of the Deconfounder

We next attend to some of the practical details of the decon-
founder. The ingredients of the deconfounder are (1) a factor
model of assigned causes, (2) a way to check that the factor
model captures their population distribution, and (3) a way to
estimate the conditional expectation E

[
Yi(a) | Ẑi, Ai = a

]
for

performing causal inference. We discuss each ingredient below
(Sections 4.1 and 4.2) and then describe the full deconfounder
algorithm (Section 4.3).

4.1. Using the Assignment Model to Infer a Substitute
Confounder

The first ingredient is a factor model of the assigned causes, as
defined in Equation (4), which we call the assignment model.
Many models fall into this category, such as mixture models,
mixed-membership models, and deep generative models. Each
of these models can be written as Equation (4); they each involve
a per-datapoint latent variable Zi and a per-cause parameter θj.
Fitting the factor model gives an estimate of the parameters
θj, j = 1, . . . , m. When the fitted factor model captures the
population distribution of the assigned causes then inferences
about Zi can be used as substitute confounders in a downstream
causal inference.

4.1.1. Example Factor Models
The deconfounder requires that the investigator find an ade-
quate factor model of the assigned causes and then use the factor
model to estimate the posterior p(zi | ai). In the simulations and
studies of Section 6, we will explore several classes of factor
models; we describe some of them here.

One of the most common factor models is principal compo-
nent analysis (pca). pca is appropriate when the assigned causes
are real-valued. In its probabilistic form (Tipping and Bishop
1999), both zi and the per-cause parameters θj are real-valued
K-vectors. The model is

Zik ∼ N (0, λ2), k = 1, . . . , K, (8)

Aij | Zi ∼ N
(

z⊤
i θj, σ 2

)
, j = 1, . . . , m. (9)

We can fit probabilistic pca with maximum likelihood (or
Bayesian methods) and use standard conditional probability to
calculate p(zi | ai). Exponential family extensions of pca are also
factor models (Collins, Dasgupta, and Schapire 2002; Mohamed,
Ghahramani, and Heller 2009) as are some deep generative
models (Tran et al. 2017), which can be interpreted as a non-
linear probabilistic PCA.

When the causes are counts, Poisson factorization (pf) is
an appropriate factor model (Cemgil 2009; Schmidt, Winther,
and Hansen 2009; Gopalan, Hofman, and Blei 2015). pf is a
probabilistic form of nonnegative matrix factorization (Lee and
Seung 1999, 2001), where zi and θj are positive K-vectors,

Zik ∼ Gamma(α0, α1), k = 1, . . . , K, (10)
Aij | Zi ∼ Poisson(z⊤

i θj), j = 1, . . . , m. (11)

pf can be fit to large datasets with variational methods (Gopalan,
Hofman, and Blei 2015).

A final example of a factor model is the deep exponential
family (def) (Ranganath et al. 2015). A def is a probabilistic
deep neural network. It uses exponential families to generalize
classical models like the sigmoid belief network (Neal 1990)
and deep Gaussian models (Rezende, Mohamed, and Wierstra
2014). For example, a two-layer def models each observation as

Z2,il ∼ Exp-Fam2(α), l = 1, . . . , L, (12)
Z1,ik | Z2,i ∼ Exp-Fam1(g1(z⊤

2,iθ1,k)), k = 1, . . . , K, (13)
Aij | Z1,i ∼ Exp-Fam0(g0(z⊤

1,iθ0,j)), j = 1, . . . , m. (14)

Exp-Fam is an exponential family distribution, θ∗ are parame-
ters, and g∗(·) are link functions. Each layer of the def has the
same functional form as a generalized linear model (McCullagh
and Nelder 1989). The def inherits the flexibility of deep neural
networks, but uses exponential families to capture different
types of layered representations and data. For example, if the
assigned causes are counts then Expfam0 can be Poisson; if
they are reals then it can be Gaussian. Approximate inference
in def can be performed with variational methods (Ranganath,
Gerrish, and Blei 2014).

4.1.2. Predictive Checks for the Assignment Model
The deconfounder requires that its factor model captures the
population distribution of the assigned causes. To assess the
fidelity of the chosen model, we use predictive checks. A predic-
tive check compares the observed assignments with assignments
drawn from the model’s predictive distribution. If the model is
good, then there is little difference.

First hold out a subset of assigned causes for each individ-
ual aiℓ, where ℓ indexes some held-out causes. The heldout
assignments are written ai,held and note we hold out randomly
selected causes for each individual. The observed assignments
are written ai,obs.

Next fit the factor model to the remaining assignment data
D = {ai,obs}n

i=1. This results in a fitted assignment model
p(z, θ | a). For each individual i, calculate the local posterior
distribution of p(zi | ai,obs).

Here is the predictive check. First sample held-out causes
from their predictive distribution,

p(arep
i,held | ai,obs) =

∫
p(ai,held | zi)p(zi | ai,obs) dzi. (15)

This distribution integrates out the local posterior p(zi | ai,obs).
(An approximate posterior also suffices; we discuss why in Sec-
tion 5.)

Then compare replicated data to held-out data. We compare
with expected log probability

t(ai,held) = EZ
[
log p(ai,held | Z) | ai,obs

]
, (16)

which relates to the marginal log-likelihood. In the nomen-
clature of posterior predictive checks, this is the “discrepancy
function” that we use; one can use others.

Finally calculate the predictive score,

predictive score = p
(

t(arep
i,held) < t(ai,held)

)
. (17)
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Figure 2. An example of a predictive check for an assignment model. The verti-
cal dashed line shows t(ai,held). The blue curve shows the kde of t(arep

i,held). The
predictive score is the area under the blue curve to the left of the vertical dashed
line. The predictive score of this assignment model is larger than 0.1; we consider it
satisfactory.

Here the randomness stems from arep
i,held coming from the pre-

dictive distribution in Equation (15), and we approximate the
predictive score with Monte Carlo.

How to interpret the predictive score? A good model will
produce values of the held-out causes that give similar log-
likelihoods to their real values—the predictive score will not
be extreme. A mismatched model will produce an extremely
small predictive score, often where the replicated data has much
higher log-likelihood than the real data. An ideal predictive
score is around 0.5. We consider predictive scores with pre-
dictive scores larger than 0.1 to be satisfactory; we do not
have enough evidence to conclude significant mismatch of the
assignment model. Note that the threshold of 0.1 is a subjective
design choice. We find such assignment models that pass this
threshold often yield satisfactory causal estimates in practice.
Figure 2 illustrates a predictive check of a good assignment
model. Section 6 shows predictive checks in action.

These predictive checks blend ideas around posterior pre-
dictive checks (ppcs) (Rubin 1984), ppcs with realized discrep-
ancies (Gelman, Meng, and Stern 1996), ppcs with held-out
data (Gelfand, Dey, and Chang 1992; Ranganath and Blei 2019),
and stage-wise checking of hierarchical models (Dey et al. 1998;
Bayarri and Castellanos 2007). They also relate to Bayesian
causal model criticism (Tran et al. 2016b). More broadly, the
process of iterative model building—cycling between finding,
fitting, and checking a model of the assignments—relates to the
applied practice of Bayesian data analysis (Gelman et al. 2013;
Blei 2014).

4.2. The Outcome Model

We described how to fit and check a factor model of multiple
assigned causes. We now fold in the observed outcomes and use
the fitted factor model to correct for unobserved confounders.

Suppose p(zi | ai, D) concentrates around a point ẑi. Then
we can use ẑi as a confounder. Follow Section 2.1 to calcu-
late the iterated expectation on the left side of Equation (2).
However, replace the observed confounders with the substitute
confounder; the goal is to calculate E [E [Yi(a) | Ai = a, Zi]].

First, approximate the outside expectation with Monte Carlo,

E [E [Yi(a) | Ai = a, Zi]] (18)

≈ 1
n

n∑

i=1
EY

[
Yi(Ai) | Ai = a, Zi = ẑi

]
.

This approximation uses the substitute confounder ẑi, inte-
grating over its population distribution. It uses the model to
infer the substitute confounder from each data point and then
integrates the distribution of that inferred variable induced by
the population distribution of data.

Turn now to the inner expectation of Equation (18). We fit a
function to estimate this quantity,

E [Yi(Ai) | Ai = a, Zi = z] = f (a, z). (19)

The function f (a, z) is called the outcome model and can be fit
from the augmented observed data {ai, ẑi, yi(ai)}. For example,
we can minimize their discrepancy via some loss function ℓ:

f̂ = arg min
f

n∑

i=1
ℓ(yi(ai) − f (ai, ẑi)).

Like the factor model, we can check the outcome model—it is fit
to observed data and should be predictive of held-out observed
data (Tran et al. 2016b).

One outcome model we consider is a simple linear function,

f (a, z) = β⊤ a + γ ⊤ z + β0. (20)

Another outcome model we consider is where f (·) is linear in
the assigned causes a and the “reconstructed assigned causes”
â(z) = EM [A | z], an expectation from the fitted factor model.
This class of functions is

f (a, z) = β⊤ (a − â(z)) + β0. (21)

This model relates to the generalized propensity score (Imbens
2000; Hirano and Imbens 2004), where it uses â(z) as a proxy for
the propensity score. Note this substitution is used in Bayesian
statistics (Laird and Louis 1982; Tierney and Kadane 1986;
Geisser et al. 1990), and is justified when higher moments of
the assignment are similar across individuals. In both Equations
(20) and (21), the coefficient β represents the average causal
effect of raising each cause by one unit.

Note we are not restricted to linear models. Other out-
come models like random forests (Wager and Athey 2018) and
Bayesian additive regression trees (Hill 2011) all apply here.
Moreover, devising an outcome model is just one approach to
approximating the inner expectation of Equation (18). Another
approach is again to use Monte Carlo. There are several possibil-
ities. In one, group the confounder ẑi into bins and approximate
the expectation within each bin. In another, bin by the propen-
sity score p(ai | ẑi) and approximate the inner expectation within
each propensity-score bin (Rosenbaum and Rubin 1983; Lunce-
ford and Davidian 2004). A third possibility—if the assigned
causes are discrete and the number of causes is small—is to use
the propensity score with inverse propensity weighting (Horvitz
and Thompson 1952; Rosenbaum and Rubin 1983; Heckman
et al. 1998; Dehejia and Wahba 2002).



1582 Y. WANG AND D. M. BLEI

Algorithm 1: The deconfounder

Input: a dataset of assigned causes and outcomes
{(ai, yi)}, i = 1, . . . , n

Output: the average potential outcome E [Y(a)] for any
causes a

repeat
choose an assignment model from the class in Equation
(4)
fit the model to the assigned causes {ai}, i = 1, . . . , n
check the fitted model M̂

until the assignment check is satisfactory
foreach datapoint i do

calculate ẑi = EM̂ [Zi | ai].
end
repeat

choose an outcome model from Equation (19)
fit the outcome model to the augmented dataset
{(ai, yi, ẑi)}, i = 1, . . . , n
check the fitted outcome model

until the outcome check is satisfactory
estimate the average causal effect E [Y(a)] − E

[
Y(a′)

]
by

Equation (18)

4.3. The Full Algorithm and an Example

We described each component of the deconfounder. Algo-
rithm 1 gives the full algorithm, a procedure for estimating
Equation (18). The steps are: (1) find, fit, and check a factor
model to the dataset of assigned causes; (2) estimate ẑi for each
datapoint; (3) find and fit a outcome model; (4) use the outcome
model and estimated ẑi to do causal inference.

4.3.1. Example
Consider a causal inference problem in genome-wide associa-
tion studies (gwas) (Stephens and Balding 2009; Visscher et al.
2017): how do human genes causally affect height? Here we
give a brief account of how to use the deconfounder, omitting
many of the details. We analyze gwas problems extensively in
Section 6.2. We discuss the connections of the deconfounder to
existing GWAS methods in Appendix A in the supplementary
materials.

Consider a dataset of n = 5000 individuals; for each
individual, we measure height and genotype, specifically the
alleles at m = 100,000 locations, called the single-nucleotide

polymorphisms (snps). Each snp is represented by a count of 0,
1, or 2; it encodes how many of the individual’s two nucleotides
differ from the most common pair of nucleotides at the location.
Table 2 illustrates a snippet of the data (10 individuals).

We simulate such a dataset of genotypes and height. We gen-
erate each individual’s genotypes by simulating heterogeneous
mixing of populations (Pritchard et al. 2000). We then generate
the height from a linear model of the snps (i.e., the assigned
causes) and some simulated confounders. (The confounders are
only used to simulate data; when running the deconfounder,
the confounders are unobserved.) In this simulated data, the
coefficients of the SNPs are the true causal effects; we denote
them β∗ = (β∗

1 , . . . , β∗
m). See Section 6.2 for more details of the

simulation.
The goal is to infer how the snps causally affect human

height, even in the presence of unobserved confounders. The m-
dimensional snp vector ai = (ai1, ai2, . . . , aim) is the vector of
assigned causes for individual i; the height yi is the outcome. We
want to estimate the potential outcome: what would the (aver-
age) height be if we set a person’s snp to be a = (a1, a2, . . . , am)?
Mathematically, this is the average potential outcome function:
E[Yi(a)], where the vector of assigned causes a takes values in
{0, 1, 2}m.

We apply the deconfounder: model the assigned causes, infer
a substitute confounder, and perform causal inference. To infer
a substitute confounder, we fit a factor model of the assigned
causes. Here we fit a 50-factor pf model, as in Equation (10).
This fit results in estimates of nonnegative factors θ̂j for each
assigned cause and nonnegative weights ẑi for each individual
(both K-vectors).

If the predictive check greenlights this fit, then we take
the posterior predictive mean of the assigned causes as the
reconstructed assignments, âj(zi) = ẑ⊤

i θ̂j. For brevity, we do
not report the predictive check here. (The model passes.) We
demonstrate predictive checks for gwas in the empirical studies
of Section 6.2.

Using the reconstructed assigned causes, we estimate the
average potential outcome function. Here we fit a linear outcome
model to the height yi against both of the assigned causes ai and
reconstructed assignment â(zi),

yi ∼ N
(
β0 + β⊤ (ai − â(zi)), σ 2

)
. (22)

This regression is high dimensional (m > n); for regularization,
we use an L2-penalty on β (equivalently, normal priors). Fitting
the outcome model gives an estimate of regression coefficients
{β̂0, β̂}. Because we use a linear outcome model, the regression
coefficients β̂ estimate the true causal effect β∗.

Table 2. How do SNPs causally affect height?

SNP_1 SNP_2 SNP_3 SNP_4 SNP_5 SNP_6 SNP_7 SNP_8 SNP_9 SNP_100K Height (feet)
ID (i) (ai,1) (ai,2) (ai,3) (ai,4) (ai,5) (ai,6) (ai,7) (ai,8) (ai,9) · · · (ai,100K ) (yi)

1 1 0 0 1 0 0 1 2 0 · · · 0 5.73
2 1 2 2 1 2 1 1 0 1 · · · 2 5.26
3 2 0 1 1 0 1 0 1 1 · · · 2 6.24
4 0 0 0 1 1 0 1 2 0 · · · 0 5.78
5 1 2 1 1 1 0 1 0 0 · · · 1 5.09
...

...
...

10000 1 1 0 0 0 2 0 0 1 · · · 2 5.45

NOTE: This table shows a portion of a dataset: simulated SNPs as the multiple causes and height as the outcome.
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We evaluate the causal estimates obtained with and without
the deconfounder. We focus on the root mean squared error
(rmse) of β̂ to β∗. (“Causal estimation without the decon-
founder” means fitting a linear model of the height yi against
the assigned causes ai.) The rmse is 49.6 × 10− 2 without the
deconfounder and 41.2 × 10− 2 with the deconfounder. The
deconfounder produces closer-to-truth causal estimates.

5. A Conversation With the Reader

In this section, we answer some questions a reader might have.
Why do I need multiple causes? The deconfounder uses latent

variables to capture dependence among the assigned causes. The
theory in Section 7 says that a latent variable which captures
this dependence will contain all valid multi-cause confounders.
But estimating this latent variable requires evidence for the
dependence, and evidence for dependence cannot exist with just
one assigned cause. Thus, the deconfounder requires multiple
causes.

Is the deconfounder a free lunch? The deconfounder is not a
free lunch—it trades confounding bias for estimation variance.
To see this, take an information point of view: the deconfounder
uses a portion of information in the data to estimate a substitute
confounder; then it uses the rest to estimate causal effects. By
contrast, classical causal inference uses all the information to
estimate causal effects, but it must assume unconfoundedness.

Suppose unconfoundedness is satisfied, that is, no unob-
served confounders. Then both classical causal inference and
the deconfounder provide unbiased causal estimates, though
the deconfounder will be less confident; it has higher variance.
Now suppose only “no unobserved single-cause confounders”
is satisfied. The deconfounder still provides unbiased causal
estimates, but classical causal inference is biased.

Why does the deconfounder have two stages? Algorithm 1
first fits a factor model to the assigned causes and then fits the
potential outcome function. This is a two stage procedure. Why?
Can we fit these two models jointly?

One reason is convenience. Good models of assigned causes
may be known in the research literature, such as for genetic stud-
ies. Moreover, separately fitting the assignment model allows the
investigator to fit models to any available data of assigned causes,
including datasets where the outcome is not measured.

Another reason for two stages is to ensure that Zi does not
contain mediators, variables along the causal path between the
assigned causes and the outcome. Intuitively, excluding the out-
come ensures that the substitute confounders are “pretreatment”
variables; we cannot identify a mediator by looking only at the
assigned causes. More formally, excluding the outcome ensures
that the model satisfies p(zi | ai, yi(ai)) = p(zi | ai); this equality
cannot hold if Zi contains a mediator.

How does the deconfounder relate to the generalized propensity
score? What about instrumental variables? The deconfounder
relates to both. The deconfounder can be interpreted as a gener-
alized propensity score approach, except where the propensity
score model involves latent variables. If we treat the substitute
confounder Zi as observed covariates, then the factor model
P(Ai | Zi) is precisely the propensity score of the causes Ai. With
this view, the innovation of the deconfounder is in Zi being

latent. Moreover, it is the multiplicity of the causes Ai1, . . . , Aim
that makes a latent Zi feasible; we can construct Zi by finding
a random variable that renders all the causes conditionally
independent.

The deconfounder can also be interpreted as a way of con-
structing instruments using latent factor models. Think of a
factor model of the causes with linearly separable noises: Aij

a.s.=
f (Zi) + ϵij. Given the substitute confounder, consider the resid-
ual of the causes ϵij. For example, with probabilistic pca the
residual is ϵij = Aij − Z⊤

i θj ∼ N (0, σ 2).
Assuming no unobserved single-cause confounders, the vari-

able ϵij is an instrumental variable for the jth cause Aij: (1)
The residual ϵij correlates with the cause Aij. (2) The residual
ϵij affects the outcome only through the cause Aij; this fact is
true because the substitute confounder Zi is constructed without
using any outcome information. (3) The residual ϵij cannot be
correlated with a confounder; this is true because Zi ⊥ ϵij by
construction from the factor model, where P(Zi) and P(Aij | Zi)
are specified separately.

However, the deconfounder differs from classical instrumen-
tal variables approaches because it uses latent variable models to
construct instruments, rather than requiring that instruments
be observed. The latent variable construction is feasible because
the multiplicity of the causes allows us to construct Zi and ϵij
from the conditional independence requirement.

Does the factor model of the assigned causes need to be the
true assignment model? Which factor model should I choose if
multiple factor models return good predictive scores? Finding a
good factor model is not the same as finding the “true” model of
the assigned causes. We do not assume the inferred variable Zi
reflects a real-world unobserved variable.

Rather, the deconfounder requires the factor model to cap-
ture the population distribution of the assigned causes and,
more particularly, their dependence structure. This requirement
is why predictive checking is important. If the deconfounder
captures the population distribution—if the predictive check
returns high predictive scores—then we can use the inferred
local variables Zi as substitute confounders.

Moreover, the deconfounder can rely on approximate infer-
ence methods to infer the substitute confounder. The predictive
check evaluates whether Zi provides a good predictive distribu-
tion, regardless of how it was inferred. Given the assumptions of
the deconfounder, as long as the model and (approximate) infer-
ence method together give a good predictive distribution—one
close to the population distribution of the assigned causes—then
the downstream causal inference is valid. We use approximate
inference for most of the factor models we study in Section 6.

Suppose multiple factor models give similarly good predic-
tive scores in the predictive check. In this case, we recommend
choosing the factor model with the lowest capacity. Factor mod-
els with similar predictive scores often result in causal estimates
with similarly little bias. But the variance of these estimates can
differ. Factor models with high capacity can compromise overlap
and lead to high-variance estimates; factor models with low
capacities tend to produce lower variance causal estimates. The
empirical study in Section 6.1 demonstrates this phenomenon.

Should I condition on known confounders and covari-
ates? Suppose we also observe known confounders and other
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covariates Xi. The deconfounder maintains its theoretical prop-
erties when we condition on observed covariates Xi as well
as infer a substitute confounder Zi. In particular, if Xi is
“pretreatment”—it does not include any mediators—then the
causal estimate will be unbiased (Imai and Van Dyk 2004) (also
see Theorem 6). Moreover, to satisfy no unobserved single-
cause confounders (Section 3.2), we must condition on single-
cause confounders.

That said, we do not need to condition on observed con-
founders that affect more than one of the causes; it suffices to
condition only on the substitute confounder Zi. And there is a
tradeoff. Conditioning on covariates Xi maintains unbiasedness
but it hurts efficiency. If the true causal effect size is small then
large confidence or credible intervals will conclude these small
effects as insignificant—inefficient causal estimates can bury the
real causal effects. The empirical study in Section 6.1 explores
this phenomenon.

How can I assess the uncertainty of the deconfounder?
The uncertainty in the deconfounder comes from two sources,
the factor model and the outcome model. The deconfounder
first fits (and checks) the factor model; it gives a substitute
confounder Zi ∼ p(zi | ai). It then uses the mean of the
substitute confounder ẑi = EM̂ [Zi | ai] to fit an outcome
model p(yi | ai, ẑi) and compute the potential outcome estimate
E [Yi(a)].

To assess the uncertainty of the deconfounder, we con-
sider the uncertainty from both sources. We first draw s
samples {z(1)

i , . . . , z(s)
i } of the substitute confounder: z(ℓ)

i
iid∼

p(zi | ai), ℓ = 1, . . . , s. For each sample z(ℓ)
i , we fit an outcome

model and compute a point estimate of the potential outcome.
(If the outcome model is probabilistic, we compute the posterior
distribution of its parameters; this leads to a posterior of the
potential outcome.) We aggregate the estimates of the potential
outcome (or its distributions) from the s samples {z(1)

i , . . . , z(s)
i };

the aggregated estimate is a collection of point estimates of the
potential outcome (or a mixture of its posterior distributions).
The variance of this aggregated estimate describes the uncer-
tainty of the deconfounder; it reflects how the finite data informs
the estimation of the potential outcome. In a two-cause smoking
study, Section 6.1 illustrates this strategy for calculating the
uncertainty of the deconfounder.

6. Empirical Studies

We study the deconfounder in three empirical studies. Two
studies involve simulations of realistic scenarios; these help
assess how well the deconfounder performs relative to ground
truth. The third study is a real-world analysis. All three studies
demonstrate the benefits of the deconfounder. They show how
predictive checks reveal potential issues with downstream causal
inference and how the deconfounder can provide closer-to-
truth causal estimates.

In Section 6.1, we study semi-synthetic data about smok-
ing; the causes are a real dataset about smoking and the
effect (medical expenses) is simulated. In Section 6.2, we study
semi-synthetic data about genetics. Finally, in Section 6.3, we
study real data about actors and movie revenue; there is no
simulation.

Each stage of the deconfounder requires computation: to
fit the factor model, to check the factor model, to calculate
the substitute deconfounder, and to fit the outcome model. In
all these stages, we use black box variational inference (bbvi)
(Ranganath, Gerrish, and Blei 2014; Kucukelbir et al. 2017).
We use its RStan implementation (Carpenter et al. 2017) in
Section 6.1 and its Edward implementation (Tran et al. 2016a,
2017) in Sections 6.2 and 6.3. (This was a choice; other methods
of computation can also be used.)

6.1. Two Causes: How Smoking Affects Medical Expenses

We first study the deconfounder with semi-synthetic data
about smoking. The 1987 National Medical Expenditures Sur-
vey (NMES) collected data about smoking habits and medical
expenses in a representative sample of the U.S. population (US
Department of Health and Human Services Public Health Ser-
vice 1987; Imai and Van Dyk 2004). The dataset contains 9708
people and 8 variables about each. For each person, we focus
on the current marital status (amar), the cumulative exposure to
smoking (aexp), and the last age of smoking (aage). We standard-
ize all variables.

6.1.1. A True Outcome Model and Causal Inference Problem
We use the assigned causes from the survey to simulate a dataset
of medical expenses, which we will consider as the outcome
variable. In this simulation, the true model is linear,

yi = βmar amar,i + βexp aexp,i + βage aage,i + εi, (23)

where εi ∼ N (0, 1). We generate the true causal coefficients
from

βmar ∼ N (0, 1) βexp ∼ N (0, 1) βage ∼ N (0, 1). (24)

and from these coefficients we generate the outcome for
each individual. The result is a dataset of 9708 tuples
(amar,i, aexp,i, aage,i, yi). It is semi-synthetic: the assigned causes
are from the real world, but we know the true outcome model.
Note that the last smoking age is a multi-cause confounder—it
affects both marital status and exposure and is one of the causes
of the expenses.

We are interested in estimating the causal effects of marital
status and smoking exposure on medical expenses. But suppose
we do not observe age; it is an unobserved confounder. We can
use the deconfounder to solve the problem.

6.1.2. Modeling the Assigned Causes
We begin by finding a good factor model of the assigned causes
(amar,i, aexp,i). Because there are two observed assigned causes,
we consider models with a single scalar latent variable for
overlap considerations. (See Section 3.) We consider two factor
models.

The first is a linear factor model,

zline,i ∼ N (0, σ 2) (25)
amar,i = η(1)

mar zline,i + η(0)
mar + ϵi,mar (26)

aexp,i = η(1)
exp zline,i + η(0)

exp + εi,exp, (27)
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Figure 3. Predictive checks for the substitute confounder z obtained from a linear factor model (a) and a quadratic factor model (b). The blue line is the kde of the test-
statistic based on the predictive distribution. The dashed vertical line shows the value of the test-statistic on the observed dataset. The figure shows that the linear model
mismatches the data—the observed statistic falls in a low probability region of the kde. The quadratic factor model is a better fit to the data.

where all errors are standard normal. We use variational infer-
ence to approximate posterior estimates of the substitute con-
founders zline,i. Then we use the predictive check to evaluate
it: following Section 4.1, we hold out a subset of the assigned
causes and using the expected log probability as the test statistic.
The resulting predictive score is 0.03, which signals a model
mismatch. See Figure 3(a).

We next consider a quadratic factor model,

zquad,i ∼ N (0, σ 2) (28)
amar,i = η(1)

mar zquad,i + η(2)
mar z2

quad,i + η(0)
mar + εi,mar (29)

aexp,i = η(1)
exp zquad,i + η(2)

exp z2
quad,i + η(0)

exp + εi,exp, (30)

where all errors are standard normal. (In Appendix C in the
supplementary materials, we prove that the average causal effect
is identifiable with this quadratic factor model and a linear
outcome model.) We again use variational inference and a pre-
dictive check. The resulting predictive score is 0.12, Figure 3(b).
This value gives the green light. We use the model’s posterior
estimates ẑi ∼ pquad(z | ai) to form a substitute confounder in a
causal inference.

6.1.3. Deconfounded Causal Inference
Using a factor model to estimate substitute confounders, we
proceed with causal inference. We set the outcome model of
E

[
Y(Amar, Aexp) | A, Z

]
to be linear in amar and aexp. In one

form, the linear model conditions on ẑ directly. In another it
conditions on the reconstructed causes, for example, for the
quadratic model and for age,

amar,i(ẑi) = Equad
[
Amar | Z = ẑi

]
. (31)

See Equation (21).
We use predictive checks to evaluate the outcome models.

Conditioning on ẑ gives a predictive score of 0.05; conditioning
on a(ẑ) gives a predictive score of 0.18. The model with recon-
structed causes is better.

If the outcome model is good and if the substitute confounder
captures the true confounders then the estimated coefficients

for age and exposure will be close to the true βmar and βexp
of Equation (23). We emphasize that Equation (23) is the
true mechanism of the simulated world, which the decon-
founder does not have access to. The linear model we posit for
E

[
Y(Amar, Aexp) | A, Z

]
is a functional form for the expectation

we are trying to estimate.

6.1.4. Performance
We compare all combinations of factor model (linear, quadratic)
and outcome-expectation model (conditional on ẑi or a(ẑi)).
Table 3 gives the results, reporting the total bias and variance
of the estimated causal coefficients βmar and βexp. We compute
the variance by drawing posterior samples of the substitute
confounder and the resulting posterior samples of the causal
coefficients.

Table 3 also reports the estimates if we had observed the
age confounder (oracle), and the estimates if we neglect causal
inference altogether and fit a regression to the confounded
data. Neglecting causal inference gives biased causal estimates;
observing the confounder corrects the problem.

How does the deconfounder fare? Using the deconfounder
with a linear factor model yields biased causal estimates, but we
predicted this peril with a predictive check. Using the decon-
founder with the quadratic assignment model, which passed
its predictive check, produces less biased causal estimates. (The
estimate with one-dimensional zquad was still biased, but the
outcome check revealed this issue.)

We also use this simulation study to illustrate a few questions
discussed in Section 5:

• What if multiple factor models pass the check? We fit to
the causes one-dimensional, two-dimensional, and three-
dimensional quadratic factor models. All three models pass
the check. Table 3 shows that they yield estimates with similar
bias. However, factor models with higher capacity in general
lead to higher variance. The one-dimensional factor model
is the smallest factor model that passes the check, and it
achieves the best mean squared error.



1586 Y. WANG AND D. M. BLEI

Table 3. Total bias and variance of the estimated causal coefficients βexp and βmar .

Check Bias2 × 10− 2 Variance ×10− 2 MSE ×10− 2

No control – 24.19 0.28 24.48
Control for age (oracle) – 5.06 0.07 5.14

Deconfounder

Control for 1-dim zline ✗ 21.51 4.48 25.99
Control for 1-dim a(zline) ✗ 20.02 4.77 24.80
Control for 1-dim zquad ✓ 17.77 5.59 23.36
Control for 1-dim a(zquad) ✓ 15.29 5.26 20.51

Control for 2-dim zquad ✓ 15.08 7.49 22.58
Control for 2-dim a(zquad) ✓ 15.45 6.26 21.71
Control for 3-dim zquad ✓ 16.24 7.74 23.99
Control for 3-dim a(zquad) ✓ 15.62 9.15 24.77

Deconfounder with covariates

Control for 1-dim zquad , x ✓ 16.15 6.22 22.38
Control for 1-dim a(zquad), x ✓ 15.17 7.13 22.30

NOTE: (“Control for xxx” means we include xxx as a covariate in the linear outcome model. The ✓ symbol indicates the factor model gives a predictive score larger than
0.1; the ✗ symbol indicates otherwise.) Both not controlling for confounders and using the deconfounder with a poor Z-model that fails the predictive check bias the
causal estimates. The deconfounder with a good Z-model and a good outcome model significantly reduces the bias in causal estimates; controlling for the “reconstructed
causes” â in general yields less biased estimates than the substitute confounder Z in this study. Finally, the variance of causal estimates can increase if we increase the
capacity of factor models or include additional covariates. The bold values are the smallest values in each block.

• Should we additionally condition on the observed covari-
ates? Table 3 shows that using the deconfounder, along with
covariates, preserves the unbiasedness of the causal estimates
but inflates the variance. (The covariates include gender, race,
seat belt usage, education level, and the age of starting to
smoke.) This demonstrates how including covariates trades
variance for the risk of missing a confounder.

This study provides two takeaway messages: (1) it is crucial
to check both the assignment model and the outcome model;
(2) unless a single-cause confounder believably exists, we do
not need to accompany the deconfounder with other observed
covariates; (3) use the deconfounder.

6.2. Many Causes: Genome-Wide Association Studies

Analyzing gene-wide association studies (GWAS) is an impor-
tant problem in modern genetics (Stephens and Balding 2009;
Visscher et al. 2017). The GWAS problem involves large datasets
of human genotypes and a trait of interest; the goal is to
determine how genetic variation is causally connected to the
trait. GWAS is a problem of multiple causal inference: for each
individual, the data contains a trait and hundreds of thousands
of single-nucleotide polymorphisms (snps), measurements on
various locations on the genome.

One benefit of GWAS is that biology guarantees that genes are
(typically) cast in advance; they are potential causes of the trait,
and not the other way around. However, there are many con-
founders. In particular, any correlation between the SNPs could
induce confounding. Suppose the value of SNP i is correlated
with the value of SNP j, and SNP j is causal for the outcome.
Then a naive analysis will find a connection between gene i and
the outcome.

There can be many sources of correlation; common sources
include population structure, that is, how the genetic codes of
an individuals exhibits their ancestral populations, and lifestyle

variables. We study how to use the deconfounder to analyze
GWAS data. (Many existing methods to analyze GWAS data can
be seen as versions of the deconfounder; see Appendix A in the
supplementary materials.)

6.2.1. Simulated GWAS Data and the Causal Inference
Problem

We put the GWAS problem into our notation. The data are
tuples (ai, yi), where yi is a real-valued trait and aij ∈ {0, 1, 2}
is the value of SNP j in individual i. (The coding denotes
“unphased data,” where aij codes the number of minor alleles—
deviations from the norm—at location j of the genome.) As
usual, our goal is to estimate aspects of the distribution of yi(a),
the trait of interest as a function of a specific genotype.

We generate synthetic GWAS data. Following Song, Hao, and
Storey (2015), we simulate genotypes a1:n from an array of realis-
tic models. These include models generated from real-world fits,
models that simulate heterogeneous mixing of populations, and
models that simulate a smooth spatial mixing of populations.
For each model, we produce multiple datasets of genotypes.

With the individuals in hand, we next generate their traits.
Still following Song, Hao, and Storey (2015), we generate the
outcome (i.e., the trait) from a linear model,

yi =
∑

j
βjaij + λci + εi. (32)

To introduce further confounding effects, we group the individ-
uals by their SNPs; the ith individual is in group ci. (Appendix N
in the supplementary materials describes how individuals are
grouped.) Each group is associated with a per-group intercept
term λc and a per-group error variance σc, where the noise εi ∼
N (0, σ 2

c ). In this study, the group indicator of each individual is
an unobserved confounder.

In Equation (33), SNP j is associated with a true causal
coefficient βj. We draw this coefficient from N (0, 0.52) and
truncate so that majority of the coefficients are set to zero (i.e., no
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causal effect). Such truncation mimics the sparse causal effects
that are found in the real world. Further, we study both low and
high SNR settings. In low SNR settings, the SNPs contribute
only a small portion (e.g., 10%) of the variance, and vice versa.
Appendix N in the supplementary materials details the full
configurations of the simulation.

In a separate set of studies, we generate binary outcomes.
They come from a generalized linear model,

yi ∼ Bernoulli
(

1
1 + exp(

∑
j βjaij + λci + εi)

)

. (33)

We will study the deconfounder for both binary or real-valued
outcomes.

For each true assignment model of ai, we simulate 100
datasets of genotypes ai, causal coefficients βj, and outcomes
yi (real and binary). For each, the causal inference problem
is to infer the causal coefficients βj from tuples (ai, yi). The
unobserved confounding lies in the correlation structure of
the SNPs and the unobserved groups. We correct it with the
deconfounder.

6.2.2. Deconfounding GWAS
We apply the deconfounder with five assignment models dis-
cussed in Section 2.2: probabilistic principal component analy-
sis (ppca), Poisson factorization (pf), Gaussian mixture models
(gmms), the three-layer deep exponential family (def), and
logistic factor analysis (lfa); none of these models is the true
assignment model. (We use 50 latent dimensions so that most
pass the predictive check; for the def we use the structure
[100, 30, 15].) We fit each model to the observed SNPs and check
them with the per-individual predictive checks from Section 4.1.

With the fitted assignment model, we estimate the causal
effects of the SNPs. For real-valued traits, we use a linear model
conditional on the snps and the reconstructed causes a(ẑ); see
Equation (21). Each assignment model gives a different form
of a(ẑ). For the binary traits, we use a logistic regression, again
conditional on the SNPs and reconstructed causes.

6.2.3. Performance
We study the deconfounder for GWAS. Tables 6–15 in the
supplementary materials present the full results across the 11
different configurations and both high and low signal-to-noise
ratio (snr) settings. Each table is attached to a true assignment
model and reports results across different factor models of the
SNPs. For each factor model, the tables report the results of
the predictive check and the root mean squared error (rmse)
of the estimated causal coefficients (for real-valued and binary-
valued outcomes). Tables 6–15 in the supplementary materials
also report the error if we had observed the confounder and if we
neglect causal inference by fitting a regression to the confounded
data.

On both real and binary outcomes, the deconfounder gives
good causal estimates with ppca, pf, lfa, linear mixed models
(lmms), and defs: they produce lower rmses than blindly fit-
ting regressions to the confounded data. (The linear mixed
model does not explicitly posit an assignment model so we
omit the predictive check. It can be interpreted as the decon-
founder though; see Appendix A in the supplementary mate-

rials.) Notably, the deconfounder often outperforms the regres-
sion where we include the (unobserved) confounder as a covari-
ate under the low snr setting; see Tables 11–14 in the supple-
mentary materials.

In general, predictive checks of the factor models reveal
downstream issues with causal inference: better factor models
of the assigned causes, as checked with the predictive checks,
give closer-to-truth causal estimates. For example, the gmm
does not perform well as a factor model of the assignments; it
struggles with fitting high-dimensional data and can amplify the
causal effects (see, e.g., Table 15 in the supplementary materials).
But checking the gmm signals this issue beforehand; the gmm
constantly yields close-to-zero predictive scores in predictive
checks.

Among the assignment models, the three-layer def almost
always produces the best causal estimates. Inspired by deep neu-
ral networks, the def has layered latent variables; see Section 4.1.
The def model of SNPs uses Gamma distributions on the latent
variables (to induce sparsity) and a bank of Poisson distributions
to model the observations.

The deconfounder is most challenged when the assigned
SNPs are generated from a spatial model; see Tables 10 and 15 in
the supplementary materials. The spatial model produces spa-
tially correlated individuals; its parameter τ controls the spatial
dispersion. (Consider each individual to sit in a unit square; as
τ → 0, the individuals are placed closer to the corners of the
unit square while when τ = 1 they are distributed uniformly.)
The five factor models—ppca, pf, lfa, gmm, lmm, and def—
all produce closer-to-truth causal estimates than when ignoring
confounding effects. But they are farther from the truth than
the estimates that use the (unobserved) confounder. Again, the
predictive check hints at this issue. When the true distribution of
SNPs is a spatial model, the predictive scores are generally more
extreme (i.e., closer to zero).

6.2.4. Partially Observed Causes
Finally, we study the situation where some assigned causes are
unobserved, that is, where some of the SNPs are not measured.
Recall that the deconfounder assumes that all single-cause con-
founders are observed. This assumption may be plausible when
we measure all assigned causes but it may well be compromised
when we only observe a subset—if a confounder affects mul-
tiple causes but only one of those causes is observed then the
confounder becomes a single-cause confounder.

Using the simulated GWAS data, we randomly mask a per-
centage of the causes. We then use the deconfounder to estimate
the causal effects of the remaining causes. To simplify the pre-
sentation, we focus on the DEF factor model. Figure 4 shows the
ratio of the rmse between the deconfounder and “no control”;
a ratio closer to one indicates a more biased causal estimate.
Across simulations, the rmse ratio increases toward one as the
percentage of observed causes decreases. With fewer observed
causes, it becomes more likely for “no unobserved single-cause
confounders” to be compromised.

6.2.5. Summary
These studies provide three take-away messages: (1) the decon-
founder can produce closer-to-truth causal estimates, especially



1588 Y. WANG AND D. M. BLEI

Figure 4. The rmse ratio between the deconfounder with def and “No control”across simulations when only a subset of causes are unobserved. (Lower ratios means more
correction.) As the percentage of observed causes decreases, the “no unobserved single-cause confounders”assumption is compromised; the deconfounder can no longer
correct for all latent confounders.

when we observe many assigned causes; (2) predictive checks
reveal downstream issues with causal inference, and better fac-
tor models give better causal estimates; (3) defs can be a handy
class of factor models in the deconfounder.

6.3. Case Study: How Do Actors Boost Movie Earnings?

We now return to the example from Section 1: How much
does an actor boost (or hurt) a movie’s revenue? We study the
deconfounder with the TMDB 5000 Movie Dataset.7 It contains
901 actors (who appeared in at least five movies) and the revenue
for the 2828 movies they appeared in. The movies span 18 genres
and 58 languages. (More than 60% of the movies are in English.)
We focus on the cast and the log of the revenue. Note that this
is a real-world observational dataset. We no longer have ground
truth of causal estimates.

The idea here is that actors are potential causes of movie
earnings: some actors result in greater revenue. But confounders
abound. Consider the genre of a movie; it will affect both who
is in the cast and its revenue. For example, an action movie
tends to cast action actors, and action movies tend to earn more
than family movies. And genre is just one possible confounder:
movies in a series, directors, writers, language, and release sea-
son are all possible confounders.

We are interested in estimating the causal effects of individual
actors on the revenue. The data are tuples of (ai, yi), where aij ∈
{0, 1} is an indicator of whether actor j in movie i, and yi is the
revenue. Table 1 shows a snippet of the highest-earning movies
in this dataset. The goal is to estimate the distribution of Yi(a),
the (potential) revenue as a function of a movie cast.

6.3.1. Deconfounded Causal Inference
We apply the deconfounder. We explore four assignment mod-
els: probabilistic principal component analysis (ppca), Poisson
factorization (pf), Gaussian mixture models (gmms), and deep
exponential familys (defs). (Each has 50 latent dimensions; the
def has structure [50, 20, 5].) We fit each model to the observed
movie casts and check the models with a predictive check on
held-out data; see Section 4.1.

The gmm fails its check, yielding a predictive score <0.01.
The other models adequately capture patterns of actors: the
checks return predictive scores of 0.12 (ppca), 0.14 (pf), and
0.15 (def). These numbers give a green light to estimate how
each actor affects movie earnings.

With a fitted and checked assignment model, we estimate the
causal effects of individual actors with a log-normal regression,

7https://www.kaggle.com/tmdb.

conditional on the observed casts and “reconstructed casts,”
Equation (21).

6.3.2. Results: Predicting the Revenue of Uncommon Movies
We consider test sets of uncommon movies, where we simulate
an “intervention” on the types of movies that are made. This
changes the distribution of casts to be different from those in
the training set.

For such data, a good causal model will provide better pre-
dictions than a purely predictive model. The reason is that
predictions from a causal model will work equally well under
interventions as for observational data. In contrast, a noncausal
model can produce incorrect predictions if we intervene on the
causes (Peters, Bühlmann, and Meinshausen 2016). This idea of
invariance has also been discussed in Haavelmo (1944), Aldrich
(1989), Lanes (1988), Pearl (2009), Schölkopf et al. (2012), and
Dawid and Didelez (2010) under the terms “autonomy,” “mod-
ularity,” and “stability.”

In one test set, we hold out 10% of non-English-language
movies. (Most of the movies are in English.) Table 17 in the sup-
plementary materials compares different models in terms of the
average predictive log likelihood. The deconfounder predicts
better than both the purely predictive approach (no control)
and a classical approach, where we condition on the observed
(pretreatment) covariates.

In another test set, we hold out 10% of movies from uncom-
mon genres, that is, those that are not comedies, action, or
dramas. Table 18 in the supplementary materials shows simi-
lar patterns of performance. The deconfounder predicts better
than purely predictive models and than those that control for
available confounders.

For comparison, we finally analyze a typical test set, one
drawn randomly from the data. Here we expect a purely predic-
tive method to perform well; this is the type of prediction it is
designed for. Table 16 in the supplementary materials shows the
average predictive log-likelihood of the deconfounder and the
purely predictive method. The deconfounder predicts slightly
worse than the purely predictive method.

6.3.3. Exploratory Analysis of Actors and Movies
We show how to use the deconfounder to explore the data,
understanding the causal value of actors and movies.8

First we examine how the coefficients of individual actors
differ between a noncausal model and a deconfounded model.

8This section illustrates how to use the deconfounder to explore data. It
is about these methods and the particular dataset that we studied, not
a comment about the ground-truth quality of the actors involved. The
authors of this article are statisticians, not film critics.
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(In this section, we study the deconfounder with pf as the
assignment model.) We explore actors with njβj, their estimated
coefficients scaled by the number of movies they appeared in.
This quantity represents how much of the total log revenue is
“explained” by actor j.

Consider the top 25 actors in both the corrected and uncor-
rected models. In the uncorrected model, the top actors are
movie stars such as Tom Cruise, Tom Hanks, and Will Smith.
Some actors, like Arnold Schwartzenegger, Robert De Niro,
and Brad Pitt, appear in the top-25 uncorrected coefficients but
not in the top-25 corrected coefficients. In their place, the top
25 causal actors include actors that do not appear in as many
blockbusters, such as Owen Wilson, Nick Cage, Cate Blanchett,
and Antonio Banderas.

Also consider the actors whose estimated contribution
improves the most from the noncausal to the causal model.
The top five “most improved” actors are Stanley Tucci, Willem
Dafoe, Susan Sarandon, Ben Affleck, and Christopher Walken.
These (excellent) actors often appear in smaller movies.

Next we look at how the deconfounder changes the causal
estimates of movie casts. We can calculate the movie casts whose
causal estimates are decreased most by the deconfounder. The
“causal estimate of a cast” is the predicted revenue without
including the term that involves the confounder; this is the
portion of the predicted log revenue that is attributed to the cast.

At the top of this list are blockbuster series. Among the top 25
include all of the X-Men movies, all of the Avengers movies, and
all of the Ocean’s movies. Though unmeasured in the data, being
part of a series is a confounder. It affects both the casting and the
revenue of the movie: sequels must contain recurring characters
and they are only made when the producers expect to profit.
In capturing the correlations among casts, the deconfounder
corrects for this phenomenon.

7. Theory

We develop theoretical results around the deconfounder. (All
proofs are in the Appendix.)

We first justify the use of factor models by connecting them to
the unconfoundedness assumption. We show that factor mod-
els, together with “no unobserved single-cause confounders,”
imply unconfoundedness. We next establish theoretical prop-
erties of the substitute confounder: it captures all multiple-
cause confounders and it does not capture any mediators. These
results imply that if the factor model captures the distribution
of the assigned causes then the substitute confounder renders
the assignment ignorable. Moreover, such a factor model always
exists.

We then discuss identification results around the decon-
founder. Under stable unit treatment value assumption (sutva)
and “no unobserved single-cause confounders,” we prove that
the deconfounder identifies the average causal effects and the
conditional potential outcomes under different conditions.

7.1. Factor Models and the Substitute Confounder

To study the deconfounder, we first connect unconfoundedness
to factor models. Recall the definitions of unconfoundedness
and factor model.

Unconfoundedness assumes that the assigned causes are con-
ditionally independent of the potential outcomes (Rosenbaum
and Rubin 1983; Imbens 2000):

Definition 1 (Weak unconfoundedness (Imbens 2000)). The
assigned causes are weakly unconfounded given Zi if

(Ai1, . . . , Aim) ⊥⊥Yi(a) | Zi (34)

for all (a1, . . . , am) ∈ A1 ⊗ · · · ⊗ Am,, and i = 1, . . . , n.

Roughly, the assigned causes are weakly unconfounded given
Zi if all confounders are captured by Zi. More technically, the
assigned causes are weakly unconfounded if all confounders are
measurable with respect to the σ -algebra generated by Zi.

A factor model of assigned causes describes each assigned
cause of a individual with a latent variable specific to this indi-
vidual and another specific to this cause:

Definition 2 (Factor model of assigned causes). Consider the
assigned causes A1:n, a set of latent variables Z1:n and a set
of parameters θ1:m. A factor model of the assigned causes is a
latent-variable model,

p(z1:n, a1:n ; θ1:m) = p(z1:n)
n∏

i=1

m∏

j=1
p(aij | zi, θj). (35)

The distribution of assigned causes is the corresponding
marginal,

p(a1:n) =
∫

p(z1:n, a1:n ; θ1:m) dz1:n. (36)

In a factor model, each latent variable Zi of individual i
renders its assigned causes Aij, j = 1, . . . , m, conditionally
independent. Each cause is accompanied with an unknown
parameter θj. As we mentioned in Section 4.1, many common
models from Bayesian statistics and machine learning can be
written as factor models. In the deconfounder, we fit factor
models to construct substitute confounders, where we infer Z1:n
as a function of a1:n and check its fidelity against the distribution
of the causes p(a1:n) using a predictive check. When a fitted
factor model passes the check, it captures p(a1:n) well. In other
words, factor models in the deconfounder satisfy Equations (35)
and (36) with p(z1:n) = δfθ (a1:n) for some function fθ (·).

To connect unconfoundedness to factor models, consider
an intermediate construct, the “Kallenberg construction.” The
Kallenberg construction is inspired by the idea of randomiza-
tion variables, Uniform[0,1] variables from which we can con-
struct a random variable with an arbitrary distribution (Kallen-
berg 1997). The Kallenberg construction of assigned causes will
bridge the conditional independence statement in Equation (34)
with the factor models of the deconfounder.

Definition 3 (Kallenberg construction of assigned causes). Con-
sider a random variable Zi taking values in Z . The distribution
of assigned causes (Ai1, . . . , Aim) admits a Kallenberg construc-
tion if there exists (deterministic) measurable functions, fj : Z×
[0, 1] → Aj and random variables Uij ∈ [0, 1] (j = 1, . . . , m)
such that

Aij
a.s.= fj(Zi, Uij); (37)
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the variables Uij must marginally follow Uniform[0,1] and
jointly satisfy

(Ui1, . . . , Uim) ⊥⊥(Zi, Yi(a1, . . . , am)) (38)

for all (a1, . . . , am) ∈ A1 ⊗ · · · ⊗ Am.

Using these definitions, the first lemma relates unconfound-
edness to the Kallenberg construction.

Lemma 1 (Kallenberg construction ⇔ weak unconfoundedness).
The assigned causes are weakly unconfounded given a random
variable Zi if and only if the distribution of the assigned causes
(Ai1, . . . , Aim) admits a Kallenberg construction from Zi.

What Lemma 1 says is that if the distribution of the assigned
causes has a Kallenberg construction from a random variable Zi
then Zi is a valid substitute confounder: it renders the causes
unconfounded. Moreover, a valid substitute confounder must
always come from a Kallenberg construction.

We next relate the Kallenberg construction to factor models.
We show that factor models admit a Kallenberg construction.
This fact suggests the deconfounder: if we fit a factor model
to capture the distribution of assigned causes then we can use
the fitted factor model to construct a substitute confounder.
This step relies on a key assumption of the deconfounder, “no
unobserved single-cause confounders.”

Definition 4 (No unobserved single-cause confounders). Denote
Xi as the observed covariates. There are no unobserved single-
cause confounders for the assigned causes Ai1, . . . , Aim if, for j =
1, . . . , m,

1. There exist some random variable Vij such that

Aij ⊥Yi(a) | Xi, Vij, (39)
Aij ⊥Ai,− j | Vij, (40)

where Ai,− j = {Ai1, . . . , Aim}\Aij is the complete set of m
causes excluding the jth cause;

2. There exists no proper subset of the sigma algebra σ (Vij)
satisfies Equation (40).

At a higher level, Vij refers to the multiple-cause confounders
that affect the jth cause Aij. Equation (39) then ensures that the
observed covariates Xi and the multiple-cause confounders Vij
satisfy unconfoundedness. In other words, Xi must contain all
single-cause confounders. Equation (40) ensures that Vij indeed
induces a dependence between Aij and Ai,− j. It guarantees that
Vij can be recovered by constructing a random variable Zi that
renders all the causes conditionally independent.

This “no unobserved single-cause confounders” assump-
tion differs from the classical weak unconfoundedness assump-
tion (Definition 1) by only requiring marginal independence
between individual causes Aij and the potential outcome Yi(a).
In contrast, weak unconfoundedness requires (Ai1, . . . , Aim) ⊥⊥
Yi(a) | Xi, that is, the joint independence between the causes
(Ai1, . . . , Aim) and the potential outcome function Yi(a). More-
over, it involves multiple-cause confounders Vij. We remark
that “no unobserved single-cause confounders” reduces to weak
unconfoundedness when there is only one cause; both require
Ai ⊥⊥Yi(a) | Xi, where Ai and a are one-dimensional.

Now we state the connection between the Kallenberg con-
struction and factor models.

Lemma 2 (Factor models ⇒ Kallenberg construction). Under
weak regularity conditions and “no unobserved single-cause
confounders,” every factor model of the assigned causes
p(z1:n, a1:n ; θ1:m) admits a Kallenberg construction from Zi.

Lemmas 1 and 2 connect unconfoundedness to Kallenberg
constructions and then Kallenberg constructions to factor mod-
els. The two lemmas together connect factor models to uncon-
foundedness. These connections enable the deconfounder: they
explain how the distribution of assigned causes relates to the
substitute confounder Z in a Kallenberg construction. They
justify why we can take a set of assigned causes and do inference
on Z via factor models.

Next we establish two properties of the substitute con-
founder. We assume the substitute confounder comes from a
factor model that captures the population distribution of the
causes.

The first property is that the substitute confounder must
capture all multiple-cause confounders. It implies that the
inferred substitute confounder, together with all single-cause
confounders (if there is any), deconfounds causal inference.

Lemma 3. Any multiple-cause confounder Ci must be measur-
able with respect to the σ -algebra generated by the substitute
confounder Zi.

A multiple-cause confounder is a confounder that confounds
two or more causes. (Its technical definition stems from Defi-
nition 4 of VanderWeele and Shpitser (2013); see Appendix H
in the supplementary materials.) Figure 1 gives the intuition
with a graphical model and Appendix H in the supplementary
materials gives a detailed proof.

Lemma 3 shows that the deconfounder captures unobserved
confounders. But might the inferred substitute confounder pick
up a mediator? If the substitute confounder also picks up a
mediator then conditioning on it will yield conservative causal
estimates (Baron and Kenny 1986; Imai, Keele, and Yamamoto
2010). The next proposition alleviates this concern.

Lemma 4. Any mediator is almost surely not measurable with
respect to the σ -algebra generated by the substitute confounder
Zi and the pretreatment observed covariates Xi.

Lemma 4 implies that the substitute confounder does
not pick up mediators, variables along the path between
causes and effects. This property greenlights us for treat-
ing the inferred substitute confounder as a pretreatment
covariate.

Lemmas 3 and 4 qualify the substitute confounder for mim-
icking confounders. We condition on the substitute confounder
and proceed with causal inference.

These lemmas lead to justifications of the deconfounder
algorithm. We first describe their implications on the substitute
confounders and factor models.

Proposition 5 (Substitute confounders and factor models). Under
weak regularity conditions,
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1. Under “no unobserved single-cause confounders,” the
assigned causes are weakly unconfounded given the
substitute confounder Zi and the pretreatment covariates
Xi if the true distribution p(a1:n) can be written as a factor
model that uses the substitute confounder, p(z1:n, a1:n ; θ1:m).

2. There always exists a factor model that captures the distribu-
tion of assigned causes.

Proof sketch. The first part follows from Lemmas 1 and 2. The
second part follows from the Reichenbach’s common cause
principle (Reichenbach 1956; Sober 1976; Peters, Janzing, and
Schölkopf 2017) and Sklar’s theorem (Sklar 1959): any multi-
variate joint distribution can be factorized into the product of
univariate marginal distributions and a copula which describes
the dependence structure between the variables. The full proof
is in Appendix G in the supplementary materials.

Proposition 5 justifies the use of factor models in the decon-
founder. The first part of Proposition 5 suggests how to find a
valid substitute confounder, one that renders the causes weakly
unconfounded. Two conditions suffice: (1) the substitute con-
founder comes from a factor model; (2) the factor model cap-
tures the population distribution of the assigned causes. The
assignment model in the deconfounder stems from this result: fit
a factor model to the assigned causes, check that it captures their
population distribution, and finally use the fitted factor model
to infer a substitute confounder. The first part of the theorem
says that the deconfounder does deconfound. The second part
ensures that there is hope to find a deconfounding factor model.
There always exists a factor model that captures the population
distribution of the assigned causes.

7.2. Causal Identification of the Deconfounder

Building on the characterizations of the substitute confounder
(Lemmas 1–4), we discuss a collection of causal identification
results around the deconfounder. We prove that the decon-
founder can identify three causal quantities under suitable con-
ditions.9 These causal quantities include the average causal
effect of all the causes, the average causal effect of subsets of the
causes, and the conditional potential outcome.

Before stating the identification results, we first describe the
notion of a consistent substitute confounder; we will rely on this
notion for identification.

Definition 5 (Consistency of substitute confounders). The factor
model p(θ , z, a) admits consistent estimates of the substitute
confounder Zi if, for some function fθ ,

p(zi | ai, θ) = δfθ (ai). (41)

Consistency of substitute confounders requires that we can
estimate the substitute confounder Zi from the causes Ai with
certainty; it is a deterministic function of the causes.10 Never-
theless, the substitute confounder need not coincide with the

9Here “identify”means the causal quantity can be written as a function of the
observed data. Moreover, the deconfounder can unbiasedly estimate it.

10Together with Lemma 3, consistency of substitute confounders implies that
the true unobserved multiple-cause confounders are also deterministic
functions of the causes.

true data-generating Zi; nor does it need to coincide with the
true unobserved confounder. We only need to estimate the
substitute confounder Zi up to some deterministic bijective
transformations (e.g., scaling and linear transformations).

Many factor models admit consistent substitute confounder
estimates when the number of causes is large. For example,
probabilistic PCA and Poisson factorization lead to consistent
Zi as (n + m) · log(nm)/(nm) → 0, where n is the number of
individuals and m is the number of causes (Chen, Li, and Zhang
2017). Many studies also involve many causes, for example, the
genome-wide association studies (gwas) study in Section 6.2
and the movie-actor study in Section 6.3.

We now describe three identification results under the
sutva, “no unobserved single-cause confounders,” and con-
sistency of substitute confounders. We first study the average
causal effect of all the causes.

Theorem 6 (Identification of the average causal effect of all
the causes). Assume sutva, “no unobserved single-cause con-
founders,” and consistency of substitute confounders. Then,
under conditions described below, the deconfounder nonpara-
metrically identifies the average causal effect of all the causes.
The average causal effect of changing the causes from a =
(a1, . . . , am) to a′ = (a′

1, . . . , a′
m) is

EY [Yi(a)] − EY
[
Yi(a′)

]
= EZ,X [EY [Yi | Ai = a, Zi, Xi]]

− EZ,X
[
EY

[
Yi | Ai = a′, Zi, Xi

]]
. (42)

This holds with the following two conditions11: (1) the substi-
tute confounder is a piece-wise constant function of the (con-
tinuous) causes: ∇afθ (a) = 0 up to a set of Lebesgue measure
zero; (2) the outcome is separable,

E [Yi(a) | Zi = z, Xi = x] = f1(a, x) + f2(z),
E [Yi | Ai = a, Zi = z, Xi = x] = f3(a, x) + f4(z),

for all (a, x, z) ∈ A × X × Z and some continuously differen-
tiable12 functions f1, f2, f3, and f4.13

Proof sketch. Theorem 6 relies on two results: (1) “No unob-
served single-cause confounders” and Lemma 3 ensure (Zi, Xi)
capture all confounders; (2) The pretreatment nature of Xi
and Lemma 4 ensure (Zi, Xi) capture no mediators. These
results assert unconfoundedness given the substitute con-
founder Zi and the observed covariates Xi. They greenlight
us for causal inference given consistency of substitute con-
founder estimates. Theorem 6 then leverages two additional
conditions to identify average causal effects without assuming
overlap. The full proof is in Appendix K in the supplementary
materials.

11We assume the two conditions—“piece-wise constant” and “separable”—
for the substitute confounder. However, it suffices to assume the same two
conditions for the unobserved multiple-cause confounders. The former is
easier to check; it also implies the latter because of Lemma 3.

12For binary causes, we can analogously assume that there exists anew and
a′

new such that anew − a′
new = a − a′ and they lead to the same substitute

confounder estimate f (anew) = f (a′
new). Further, the outcome model is

separable: E
[

Yi(a) − Yi(a′) | Zi = z, Xi = x
]

= f1(a − a′ , x) + f2(z).
13The expectation over Zi and Xi is taken over P(Zi , Xi) in Equation (42):

EZi ,Xi [EY [Yi | Ai = a, Zi , Xi]] =
∫

EY [Yi | Ai = a, Zi , Xi] P(Zi , Xi) dZi dXi .
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Theorem 6 shows that the deconfounder can unbiasedly
estimate the average causal effect of all the causes. It requires two
conditions beyond “no unobserved single-cause confounders,”
sutva, and consistency of substitute confounders. The first
condition requires that the substitute confounder be a piece-
wise constant function of the causes; it is satisfied when the sub-
stitute confounder is discrete and the causes are continuous. We
remark that this piece-wise constant condition does not assume
away all confounding. For example, it is satisfied when the
substitute confounder (and hence the unobserved confounder)
is a discretization of the causes. In this case, the substitute
confounder still correlates with the causes while satisfying the
piece-wise constant condition.

The second condition of Theorem 6 requires that the poten-
tial outcome be separable in the substitute confounder and
the causes; the observed data also respects this separability.
This condition is satisfied when the substitute confounder does
not interact with the causes. For example, this condition is
often satisfied in gwas studies: the effect of snps on an indi-
vidual’s height does not depend on his/her ancestry (Veturi
et al. 2019). A reader might ask: how can the outcome be
separable in the substitute confounder Zi and the causes Ai
when Zi = fθ (Ai), which is required by the consistency
of substitute confounders? The reason is that fθ is a non-
differentiable piece-wise constant function by condition (1),
while f1, f2, f3, f4 are differentiable required by condition (2). In
this way, the conditional expectation E [Yi(a) | Zi = z, Xi = x]
is can be separated into two components, one differentiable
f1(a, x) and one non-differentiable f2(z). A similar argument
also holds for E [Yi | Ai = a, Zi = z, Xi = x]. It is this incon-
gruence between Xi and Zi in differentiability that leads to
identification.

When the separability condition of Theorem 6 does not hold,
we can still use the deconfounder to handle the unobserved
multiple-cause confounders that do not interact with the causes.
As long as the observed covariates include those that do interact
with the causes, the deconfounder produces unbiased estimates
of the average causal effect.

We next discuss the identification of the average causal effect
for subsets of the causes.

Theorem 7 (Identification of the average causal effect of sub-
sets of the causes). Assume sutva, “no unobserved single-
cause confounders,” and consistency of substitute confounders.
Then, under the condition described below, the decon-
founder nonparametrically identifies the average causal effect of
subsets of causes. The average causal effect of changing the
first k (k < m) causes from a1:k = (a1, . . . , ak) to a′

1:k =
(a′

1, . . . , a′
k) is

EA(k+1):m

[
EY

[
Yi(a1:k, Ai,(k+1):m)

]]
(43)

− EA(k+1):m

[
EY

[
Yi(a′

1:k, Ai,(k+1):m)
]]

= EZ,X
[
EY

[
Yi | Zi, Xi, Ai,1:k = a1:k

]]

− EZ,X
[
EY

[
Yi | Zi, Xi, Ai,1:k = a′

1:k
]]

.

This holds with the following condition: The first k causes
Ai1, . . . , Aik satisfy overlap, P((Ai1, . . . , Aik) ∈ A | Zi, Xi) > 0
for any set A such that P(A) > 0.14

Proof sketch. Similar to Theorem 6, Theorem 7 uses Lemmas 3
and 4 to greenlight the use of a substitute confounder. It then
relies on overlap to identify the average causal effect; we fol-
low the classical argument that identifies the average treatment
effect (Imbens and Rubin 2015). The full proof is in Appendix L
in the supplementary materials.

Theorem 7 shows that the deconfounder can unbiasedly
estimate the average causal effect of subsets of the causes. It lets
us answer “how would the movie revenue change, on average, if
we place Meryl Streep and Sean Connery into a movie?” Beyond
“no unobserved single-cause confounders,” sutva, and consis-
tency of substitute confounders, Theorem 7 requires overlap.
Overlap ensures that EY

[
Yi | Zi, Xi, Ai,1:k = a1:k

]
is estimable

from the observed data for all possible values of (Zi, Xi, Ai,1:k).
The overlap assumption about the causes in Theorem 7 replaces
the separability assumption about the outcome model required
by Theorem 6.

We note that the overlap condition and the consistency
of substitute confounders are compatible. Though consistency
requires P(Zi | Ai) = δfθ (Ai), it is still possible for subsets of
the causes to satisfy overlap; the consistency condition only
prevents the complete set of m causes from satisfying overlap.
For example, consider a consistent estimate of the substitute
confounder that is one-dimensional, Zi = ∑m

j=1 αjAij. Any
k ≤ m − 1 causes satisfy overlap, but the complete set of m
causes do not.

Finally, we discuss the identification of the conditional mean
potential outcome.

Theorem 8 (Identification of the conditional mean potential
outcome). Assume sutva, “no unobserved single-cause con-
founders,” and consistency of substitute confounders. Then,
under the condition described below, the deconfounder non-
parametrically identifies the mean potential outcome of an
individual given its current assigned causes. If an individual
is assigned with a = (a1, . . . , am), then its potential outcome
under a different assignment a′ = (a′

1, . . . , a′
m) is

EY [Yi(a)|Ai = a] = EZ,X[EY [Yi|Zi, Xi, Ai = a′]].
This holds with the following condition: The cause assignment
of interest a′ leads to the same substitute confounder estimate
as the observed assigned causes: P(Zi | Ai = a) = P(Zi
| Ai = a′).

Proof sketch. As with Theorems 6 and 7, Theorem 8 relies on
the unconfoundedness given the substitute confounders Zi and
the observed covariates Xi due to Lemmas 3 and 4. It then
identifies the potential outcome by focusing on the data points
with the same substitute confounder estimate. We note that this
identification result does not require overlap. The full proof is in
Appendix M in the supplementary materials.

14In full notation, EA(k+1):m

[
EY

[
Yi(a1:k , Ai,(k+1):m)

]]
= EA(k+1):m[

EY
[

Yi(a1, . . . , ak , Aik+1, . . . , Aim)
]]

.
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Given consistency of substitute confounders, Theorem 8
nonparametrically identifies the mean potential outcome of an
individual Yi(a′) given its current assigned causes Ai = a. The
only requirement is about the configurations of cause assign-
ments we can query, a′; these configurations should lead to the
same substitute confounder estimate as the current assigned
causes.

We illustrate this condition with actors causing movie rev-
enue. For simplicity, assume the substitute confounder captures
the genre of each movie. Start with one of the James Bond movie;
it is a spy film. We can ask what its revenue would be if we make
its cast to be that of “The Bourne Trilogy” (also a spy film).
Alternatively, we can query what if we make its cast to include
some actors from “The Bourne Trilogy” and other actors from
“North By Northwest”; both are spy films. However, we cannot
query what if we make its cast to be that of “The Shawshank
Redemption” (which is not a spy film).

Theorems 6–8 confirm the validity of the deconfounder by
providing three sets of nonparametric identification results.
When the assumptions in Theorems 6–8 may not hold, we
recommend evaluating the uncertainty of the deconfounder
estimate. Section 5 discusses how; Section 6.1 gives an exam-
ple. The posterior distribution of the deconfounder estimate
reflects how the (finite) observed data informs causal quantities
of interest. When the causal quantity is non-identifiable, the
posterior distribution of the deconfounder estimate will reflect
this non-identifiability. For example, if the causal quantity is
non-identifiable over R, the posterior distribution of the decon-
founder estimate will be uniform over R (with noninformative
priors).

We finally remark that the identification results in
Theorems 6–8 do not contradict the negative results of
D’Amour (2019). D’Amour (2019) explore nonparametric
non-identification of a particular multi-causal quantity, the
mean potential outcome E [Yi(a)]. In this article, Theorems
6–8 establish the nonparametric identification of different
causal quantities. D’Amour (2019) do not make the same
assumptions as in Theorems 6–8. More specifically, under
consistency of substitute confounders and other suitable
conditions, Theorem 6 shows that the average causal effect
of all the causes E [Yi(a)] − E

[
Yi(a′)

]
is nonparametrically

identifiable; Theorem 7 shows that the average causal effect
of subsets of the causes EA(k+1):m

[
EY

[
Yi(a1:k, Ai,(k+1):m)

]]
−

EA(k+1):m

[
EY

[
Yi(a′

1:k, Ai,(k+1):m)
]]

is nonparametrically
identifiable; Theorem 8 shows that the conditional mean
potential outcome E

[
Yi(a′) | Ai = a

]
is nonparametrically

identifiable.

8. Discussion

Classical causal inference studies how a univariate cause affects
an outcome. Here we studied multiple causal inference, where
there are multiple causes that contribute to the effect. Multiple
causes might at first appear to be a curse, but we showed that it
can be a blessing.

We developed the deconfounder: first fit a good factor model
of assigned causes; then use the factor model to infer a substitute
confounder; finally perform causal inference. We showed how a

substitute confounder from a good factor model must capture all
multi-cause confounders, and we demonstrated that whether a
factor model is satisfactory is a checkable proposition.

There are many directions for future work.

We estimated the potential outcomes under configurations
of the causes. Which potential outcomes can be reliably
estimated? Can we trade off confounding bias and estimation
variance?
We checked factor models for downstream causal unbiased-
ness. But model checking is an imprecise science. Can we
develop rigorous model checking algorithms for causal infer-
ence?
We focused on estimation. Can we develop a testing coun-
terpart? How can we identify significant causes while still
preserving family-wise error rate or false discovery rate?
We analyzed univariate outcomes. Can we work with both
multiple causes and multiple outcomes. Can dependence
among outcomes further help causal inference?

Supplementary Materials

The supplementary materials contain further discussions of the decon-
founder algorithm, detailed results of the empirical studies, and proofs of
the theoretical results.
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I would like to congratulate the authors on their illuminating
article, and thank the editors for the opportunity to discuss the
article. The deconfounder method that this article presents is
appealing: a number of important scientific investigations and
high-stakes decisions fit into its template. Indeed, as the authors
note, instances of the deconfounder have already been deployed
without explicit causal language in a number of applied settings.
By bringing to light the implicit causal argument that underlies
this approach, the authors have sparked an important conver-
sation with potentially far-reaching consequences. It is thus
important to carefully outline when we expect the deconfounder
method to succeed in characterizing causal relationships and
when we expect it to fail.

I have personally been in conversation with the authors over
the past two years about this work, and this discussion has
yielded some interesting insights, some of which have been pub-
lished (D’Amour 2019), and some of which now appear in the
current version of the article and in follow-up work (Wang and
Blei 2019). The aim of this note is to draw out some conclusions
from this conversation about the role that the deconfounder
can play in practical causal inference. In particular, I will make
three points here. First, in my role as the critic in this con-
versation, I will summarize some arguments about the lack of
causal identification in the bulk of settings where the “informal”
message of the article suggests that deconfounder could be used.
This is a point that is discussed at length in D’Amour (2019),
which motivated the results concerning causal identification
in Theorems 6–8. Second, I will argue that adding parametric
assumptions to the working model to obtain identification of
causal parameters (a strategy followed in Theorem 6 and in
the experimental examples) is a risky strategy, and should only
be done when extremely strong prior information is available.
Finally, I will consider the implications of the nonparametric
identification results provided for a narrow, but nontrivial, set
of causal estimands in Theorems 7 and 8. I will highlight that
these results may be even more interesting from the perspective
of detecting causal identification from observed data, under
relatively weak assumptions about confounders.

Throughout this note, I will draw connections to sensitivity
analysis methods that probe the implications of unobserved
confounding. This is a natural lens through which to study
the deconfounder because many sensitivity analysis methods
posit a similar latent variable model to the one that the decon-
founder deploys as a working model (see, e.g., Rosenbaum and
Rubin 1983). Well-designed sensitivity analyses can reveal how
specific assumptions restrict the range of causal conclusions

CONTACT Alexander D’Amour alexdamour@google.com Google Research, 355 Main Street, Cambridge, MA.

that are compatible with the observed data, and are thus use-
ful for understanding what is lost when assumptions like “no
unobserved confounders” are relaxed to “no unobserved single-
cause confounders.” Thus, I believe, as the authors suggest, that
sensitivity analysis should be a core part of any workflow that
deploys the deconfounder, and discuss at various places how
sensitivity analysis could be used effectively in this setting.

Preliminaries. Following the article, I will denote causes as
A := (A(1), . . . , A(m)) taking specific values a = (a(1), . . . , a(m)),
potential outcomes as Y(a). To avoid measure-theoretic
considerations when writing conditioning statements, I will
consider the treatments A(k) to be discrete. I will write observed
outcomes as Yobs, where, under the stable unit treatment value
assumption (SUTVA), Yobs = Y(A). Finally, I will denote by Z
any latent confounders.

Throughout, I will consider models of the joint distribution
P(A, Yobs, Z), which I will refer to as latent variable models. I
will assume that unconfoundedness is satisfied conditional on
Z:

Y(a) ⊥⊥ A | Z Z-a.e., ∀a.

Thus, if the latent variable model is fully specified, the potential
outcome distributions P(Y(a)) are also specified by the follow-
ing adjustment formula, which “adjusts” for the confounder Z

P(Y(a)) = E[P(Yobs | Z, A = a)] ∀a. (1)

I will refer to the integrand in (1) P(Yobs | Z, A = a) as the
outcome model. If the confounder Z is observed, and the overlap
condition is satisfied, then P(Y(a)) is identified from observed
data. The question at hand is whether P(Y(a)) can be identified
when Z is unobserved.

1. Fundamental Limitations of the Deconfounder
Approach

I will begin by summarizing the argument in D’Amour (2019)
critiquing the “informal” message about the deconfounder
approach (stated most explicitly in the informal statement of
Theorem 6 and Section 3.4). Specifically, this message asserts
that, under the “no unobserved single-cause confounders”
assumption, any well-fitting latent variable model P(Yobs, A, Z)

will yield the correct potential outcome distribution P(Y(a)) via
the adjustment formula (1). This informal story is motivated
by strong intuition. Lemmas 1–3 establish that multi-cause

© 2019 American Statistical Association
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confounding leaves an observable “imprint” of dependence
between the causes A. Thus, it seems natural that we might
be able to gain some information, and even adjust for,
an unobserved multi-cause confounder Z by modeling the
dependence between the causes A.

Unfortunately, this intuition can only be carried so far: while
a factor model for the causes A can recover some information
about multi-cause confounders from observed data, the poten-
tial outcome distributions P(Y(a)) are not nonparametrically
identified, except in cases where all confounding is observed.
Thus, without additional unverifiable assumptions, no method
can recover the distributions P(Y(a)) when there is unobserved
confounding. In this section, I briefly demonstrate why this is
the case. For a more in-depth argument about lack of identifica-
tion in this setting with concrete examples, see D’Amour (2019).

As I show formally below, the key difficulty is that the causes
A cannot be used simultaneously as measurements of the unob-
served confounder Z, and as treatments whose effects are being
estimated. If the event A = a provides only a noisy mea-
surement of Z, there is ambiguity in how the outcome model
P(Yobs | Z, A = a) should align the variability in the residual
distributions P(Yobs | A = a) and P(Z | A = a); there are
many specifications of the residual dependence between Yobs

and Z that are compatible with the observed data. This is a classic
problem that arises when confounders are measured with error
(see, e.g., Ogburn and Vanderweele 2012). On the other hand,
if the event A = a provides a perfect measurement of Z, such
that there is some function ẑ(A) such that ẑ(a) = Z, then the
overlap condition fails. In this case, P(Yobs | Z, A = a) is only
identified when Z = ẑ(a) because the event Z ̸= ẑ(a) has zero
probability in the observed data.

Let us now make this argument formal. To do this, we will
account for how the two deconfounder assumptions of (a) good
model fit, and (b) “no unobserved single-cause confounders”
constrain the factor model and its implications about the poten-
tial outcomes P(Y(a)). This accounting is convenient if we
rewrite the joint distribution using copula densities c(V , W) =

P(V ,W)
P(V)P(W) , which characterize the dependence between random
variables independently of their marginal distributions.

P(Yobs, A, Z) = P(A, Yobs)︸ ︷︷ ︸
Observed

· P(Z)c(Z, A)︸ ︷︷ ︸
Factor Model

· c(Yobs, Z | A)︸ ︷︷ ︸
Outcome Copula

. (2)

Each factor in this composition corresponds to a different
assumption. The requirement for good model fit constrains
only the first term, which specifies the distribution of observable
quantities, while the “no unobserved single-cause confounders”
assumption constrains the second term by constraining the
causes to be conditionally independent given Z (Lemma 2).1
This leaves the outcome-confounder copula density c(Yobs, Z |
A) = P(Yobs,Z|A)

P(Y|A)P(Z|A) unconstrained. This copula specifies the
residual dependence between Yobs and Z after conditioning
on the causes A, and plays a key role in specifying the outcome
model P(Yobs | A, Z).

1The “no unobserved single-cause confounders” assumption does not
uniquely identify the factor model by itself. Some structure also needs to
be put on the latent variable, and even then, the factor model may not
be identified. See D’Amour (2019) for an example where the factor model
P(A, Z) is itself not identified.

To complete the argument, note that the potential outcome
distributions P(Y(a)) implied by the latent variable model are
sensitive to the specification of this copula. Specifically, the
estimand in (1) can be written as

P(Y(a)) =
∫

Z
P(Yobs | A = a)c(Yobs, Z | A = a)dP(Z).

Plugging in different specifications of the copula here yields
different conclusions about P(Y(a)). Whenever P(Y(a)) ̸=
P(Yobs | A = a), there are multiple specifications of the copula
that yield different conclusions about the potential outcomes.2
Thus, P(Y(a)) is not identified unless there is no confounding
and P(Y(a)) = P(Yobs | A = a).

We can now revisit the tension between the roles of causes A
as measurements of Z, and as treatments. In cases where Z can
only be inferred inexactly (i.e., P(Z | A = a) is nondegenerate),
the marginals P(Yobs | A = a) and P(Z | A = a) put some
constraints on the outcome model P(Yobs | Z, A = a), but the
ambiguity in the copula implies that this model is not identified
for any value of Z. In cases where Z can be reconstructed deter-
ministically from the causes by some function ẑ(a), (i.e., P(Z |
A = a) is degenerate), the outcome model P(Yobs | Z, A = a) is
identified when Z = ẑ(a), but the copula is undefined whenever
Z ̸= ẑ(a) because this event has zero probability.

The upshot of this argument is that neither the deconfounder
nor any other estimation method can adjust for unobserved
confounding when estimating P(Y(a)) under the “no unob-
served single-cause confounders” assumption alone. This con-
clusion holds no matter how much information we can glean
about an unobserved confounder Z from the causes A. Although
the single-cause confounding assumption does put some non-
trivial structure on the latent variable model, it is not enough
for causal estimation.

This lack of identification leaves practitioners looking to
apply the deconfounder with two options: either make addi-
tional assumptions about the latent variable model P(Yobs, A, Z)

so that P(Y(a)) is identified, or seek out causal comparisons
where all of the confounding is effectively observed. In the
Theory section of the article, the authors consider both of these
paths. I will discuss each of these options in turn.

2. Parametric Identification, If You Must

I now turn to the subject of parametric identification of causal
parameters, and offer some cautions about employing this strat-
egy. Parametric identification is a natural strategy to employ
when the causal parameters of interest are not nonparametri-
cally identified. One obtains parametric identification by adding
parametric assumptions to the working model that constrain the
implied potential outcome distributions P(Y(a)) to be unique.
The authors employ this parametric identification strategy in the
experimental demonstrations of the deconfounder, as well as the
formal result in Theorem 6. In Theorem 6, the copula c(Yobs, Z |
A) is restricted by assuming that there is no interaction between

2To see this, note that the independence copula c(Yobs, Z | A = a) = 1
implies that P(Y(a)) = P(Yobs | A = a). Thus, because P(Y(a)) ̸= P(Yobs |
A = a), this copula and the true copula yield different conclusions about
P(Y(a)).
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the causes A and the latent variable Z in the outcome model (i.e.,
that they combine linearly), and assuming that the confounder
is piecewise constant in A. In the article’s experiments, the
authors assume a parametric factor model (e.g., a quadratic fac-
tor model for the genome-wide association study simulation),
and a true linear outcome model. In the cases of Theorem 6
and the GWAS simulation study, the authors prove that these
parametric assumptions are sufficient for identification.

Parametric identification can be a risky strategy to employ in
practice. Specifically, the fact that the parametric assumptions
are necessary to identify causal parameters implies that some
aspects of these assumptions are not testable in the observed
data. The decomposition in (2) makes this clear: given that
the observed data are insufficient to identify the causal param-
eters, the parametric assumptions must restrict some of the
unidentified portions of the latent variable model. Thus, to have
confidence in this approach, one needs to have confidence in
the parametric model used to identify causal effects as a true
model of the world, not merely as an acceptable description
of the observed data. This is because the identifying paramet-
ric assumptions specify not only a descriptive model of the
observed data, but also a structural model for unobserved coun-
terfactual outcomes. Relying on parametric identification may
be feasible in cases where one has strong prior knowledge—
for example, about the quantity represented by the unmea-
sured confounder, or the specific distributions of measurement
errors—but such knowledge is often unavailable.

In addition, uncertainty estimates that are based directly on
the parametric specification, for example, Bayesian credible sets,
do not capture the full extent of uncertainty about causal effects
according to the data. Specifically, these uncertainty estimates
only quantify uncertainty within the specified model, and do
not include the fundamental uncertainty associated with the
lack of nonparametric identification of the potential outcome
distributions P(Y(a)). As a result, unless the prior information
used to specify the parametric assumptions is very strong, these
uncertainty estimates will understate the degree of uncertainty
about a causal parameter estimate. This is a standard critique of
parametric uncertainty quantification, but carries extra weight
in the context where conclusions depend on untestable aspects
of the parametric model. For example, for the parametrically
identified latent variable model in the GWAS example, as the
sample size grows, the posterior for the causal parameter will
concentrate around a single value, even though there exists a
range of outcome models that correspond to different copulas
c(Yobs, Z | A = a) that are equivalently compatible with
the observed data, but would concentrate on different causal
parameters. In fact, even small, seemingly benign parametric
choices can mask alternative causal explanations. Lessons from
latent variable models in the missing data and causal inference
literatures can be instructive here. For example, analyses of the
widely used Heckman selection model (Heckman 1979) have
noted that the tail thickness of priors on latent variables can
induce starkly different conclusions that are hidden by using the
Gaussian default (Little and Rubin 2015; Ding 2014). See also
discussions in Robins, Rotnitzky, and Scharfstein (2000) and
Linero and Daniels (2018) for other examples.

Here, sensitivity analysis can be a useful tool to account for
the fundamental uncertainty due to nonidentification of the

causal estimand. When performed with parametric models,
sensitivity analyses perturb the parametric assumptions made
with the estimating model to understand what other causal
conclusions could be obtained under different parametric
specifications. Performing sensitivity analyses on deconfounder
estimates is straightforward: a number of sensitivity analysis
approaches employ a working model with the same latent
variable structure (e.g., Rosenbaum and Rubin 1983; Imbens
2003; Dorie et al. 2016; Cinelli and Hazlett 2018). However,
sensitivity analyses can also fall victim to spurious parametric
identification if the perturbations are not appropriately param-
eterized (Gustafson and McCandless 2018). To avoid this issue,
it can be useful to employ sensitivity analysis strategies that
cleanly separate the portions of the model that are identified by
the observed data from those that are identified by parametric
assumptions (Robins, Rotnitzky, and Scharfstein 2000; Linero
and Daniels 2018; Franks, D’Amour, and Feller 2019). In the
context of the deconfounder, the decomposition in (2) is a
promising place to start, and is the subject of current work.

3. Toward a More Selective Deconfounder Workflow

A more cautious alternative to pursuing parametric identifica-
tion is to seek out causal questions that have definitive answers
under the “no unobserved single-cause confounders” assump-
tion. The authors take this path in Theorems 7 and 8, in a
setting where the latent confounder Z can be deterministically
reconstructed as a function of the causes ẑ(A). Here, however,
the factor model seems less interesting as a tool for calculating
causal effects, and more interesting as a tool for establishing
empirically when no unobserved confounding is present. In my
opinion, this latter framing seems more promising.

To review, in Theorem 7 the authors consider partitioning
the causes into a set of focal causes A1:k whose effects will be
estimated, and a set of auxiliary causes Ak+1:m that will serve as
measurements of the latent confounder. The theorem then states
that if the latent confounder Z can be written as a function of the
auxiliary causes Z = ẑ(Ak+1:m) alone,3 then the distributions of
potential outcomes defined with respect to the subset of focal
causes P(Y(a1:k)) are identifiable subject to an overlap condi-
tion. Meanwhile, Theorem 8 states that certain counterfactual
potential outcome distributions of the form P(Y(a) | A = a′)
are identifiable as long as the causes a and a′ map to the same
value of the latent confounder, that is, ẑ(a) = ẑ(a′).

In these results, the authors focus on the role of the factor
model in the identification of causal estimands under the “no
unobserved single-cause confounders” assumption. However,
the factor model is not essential for this point. Note that Theo-
rems 7 and 8 both imply that the causal parameters can be iden-
tified in terms of the causes A alone, because it is assumed that
the confounder Z can be written as a function of A. Written with
slightly more generality, the identification result in Theorem 7
implies

P(Y(a1:k)) = E[P(Yobs | A1:k = a1:k, Ak+1:m)], (3)

3 This is not how the theorem is stated, but this function restriction is implied
by the subsequent overlap condition.
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Figure 1. DAG assumed in Proposition 1, representing the relationship between
causes A, latent confounder Z, covariates X , and observed outcome Yobs.

while the identification result in Theorem 8 implies

P(Y(a′) | A = a) = P(Yobs | A = a′) ∀(a, a′) s.t. ẑ(a) = ẑ(a′).
(4)

To me, the more interesting point is that the factor model can
be used in some cases to determine empirically whether some
of the assumptions of the theorems are met. For example, the
setting of Theorem 7 can be framed as a problem where the
unobserved confounder Z is measured with proxies Ak+1:m. It is
well-understood that in the limit where Z is perfectly recovered
by the proxies, the potential outcome distribution P(Y(a1:K)) is
identified (Ogburn and Vanderweele 2012); however, in single-
cause problems, one cannot determine whether this condition
has been met. Similarly, Theorem 8 can be framed as a set-
ting where one is imputing a set of counterfactual outcomes
within a subpopulation where there is no confounding because,
within this subpopulation, the confounder is fixed. Here, too,
in single-cause problems, one cannot definitively identify such
subpopulations from observed data. Interestingly, the theory
of multi-cause confounding presented in the article suggests
that these assumptions can be empirically validated under some
restrictions on the causal DAG relating A to Yobs and the “no
unobserved single-cause confounders” assumption. For exam-
ple, this theory supports the following proposition.

Proposition 1. Suppose there are no single-cause confounders,
and the structural relationships between causes A, latent con-
founder Z, and observed outcomes Yobs can be represented in
the DAG in Figure 1. Suppose that in addition to causes A,
we also have auxiliary covariates X, which are conditionally
independent of the causes A conditional on the multi-cause
confounder Z. Then for any function ẑ(A, X) such that the
causes A are mutually independent conditional on ẑ(A, X), the
conditional independence A ⊥⊥ Y(a) | ẑ(A, X) also holds for
each a.

Theorems 7 and 8 can be written as consequences of this
proposition. This proposition is potentially useful because
it shows that absence of certain confounding structures has
observable implications. This insight is closely related to the
literature on negative controls (see, e.g., Lipsitch, Tchetgen
Tchetgen, and Cohen 2010).

This result suggests that one can use a similar workflow to
the deconfounder to determine, at least in principle, whether
identification statements like (3) or (4) are valid in a given
setting. Specifically, one can obtain a function ẑ(A, X) (perhaps
by fitting a factor model), then test whether the causes A appear

to be mutually independent conditional on ẑ(A, X). If one is
satisfied that this is true, (3) or (4) can be applied. Importantly,
this procedure is truly agnostic to the parametric specification
of the model used to obtain ẑ(A, X): all of the conditions are only
functions of observables.

While the workflow in this procedure is similar to the decon-
founder, it has a different use case. Instead of enabling causal
inference in a wide range of cases, this procedure would be
used to determine whether one can proceed with unconfounded
inference at all, and can potentially give “no” as an answer. Still,
this sort of procedure can prove useful in complex data contexts,
where it can be valuable to surface causal questions that can
be adequately answered with the available data. In a specific
example of this approach, Sharma, Hofman, and Watts (2018)
propose a similar testing procedure to uncover unconfounded
comparisons, and use it to evaluate the causal effect of a recom-
mender system on purchasing rates for certain products.

In outlining this procedure, I have belabored the point that
it is a workflow “in principle” because it could prove tricky to
implement. The observable implication that needs to be tested
is a complex conditional independence statement, and these are
notoriously difficult to test in practice (Shah and Peters 2018).
In particular, one would receive the “green light” to estimate
a causal parameter by failing to reject the null of conditional
independence, which can only be reliably depended upon if
the test has acceptably high power, but designing such tests is
difficult, and in some settings, impossible.

Here, it can again be helpful to turn back to sensitivity
analysis. Instead of attempting to rule out all possible forms
of dependence between the causes A conditional on ẑ(A, X),
a sensitivity analysis approach could explore a number of can-
didate models for the residual dependence between the causes
A and relate these models to the confounding induced by the
unobserved confounder Z. For example, one could examine
the range of causal effects that would be compatible with the
assumption that, conditional on ẑ(A, X), the causes A are no
more predictive of a potential outcome Y(a) than any leave-
one-out set of the causes A− k is able to predict a held-out cause
A(k). This sort of calibration argument is common in more
standard sensitivity analyses (Imbens 2003; Dorie et al. 2016;
Cinelli and Hazlett 2018; Franks, D’Amour, and Feller 2019).
In cases where dependence between the causes can be ruled
out conclusively, this approach would yield a sensitivity region
that collapses to a point; however, in the more likely case where
many dependences cannot be ruled out, this approach would
represent this uncertainty with a wider sensitivity region. It
should be noted that constructing a plausible sensitivity analysis
of this type would require deep domain knowledge to justify
the analogy between different dependences between variables.
Negative control methods and related identification strategies
(Lipsitch, Tchetgen Tchetgen, and Cohen 2010; Miao, Geng,
and Tchetgen Tchetgen 2018) could be framed as particularly
successful executions of this type of argument.

4. Conclusion

In writing this article, the authors have drawn attention
to a problem that is simultaneously scientifically impor-
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tant, methodologically interesting, and conceptually subtle.
Although I have taken on the role of critic in our conversations,
I believe their contribution here is important. I remain skeptical
about the deconfounder as a method for causal point estimation,
but believe that the authors’ characterization of multi-cause
confounding could yield fruitful developments in sensitivity
analysis, and in potentially obtaining identification results in
more complex settings. This work has certainly inspired me to
pay more attention to this problem, and to consider how new
methods and tools can be developed to help practitioners draw
principled causal conclusions in this setting.
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We congratulate the authors of Wang and Blei (2018) on a
thought-provoking article on causal inference in settings with
unobserved confounders. We expect that their ideas will lead to
further developments in this important area. In this comment,
we offer some thoughts on one such direction. Specifically, we
explore the relevance of the Wang and Blei (2018) multiple
causes ideas for a canonical problem in economics, namely the
identification of demand functions in simultaneous equations
(supply and demand) models. This is an old problem in eco-
nomics, going back to the origins of the field of economet-
rics in the 1920s. Classic references include Tinbergen (1930),
Haavelmo (1943), Wright (1928), and many econometric text-
books. See Angrist, Graddy, and Imbens (2000) for an inter-
pretation in the modern causal inference literature. We show
that the Wang and Blei (2018) multiple causes ideas bring new
insights to this setting, but that they will not be a panacea.

First let us introduce a version of the canonical set up for
demand function estimation to demonstrate how the presence
of unobserved confounders naturally emerges. Consider ini-
tially a setting with a single product. For a number of markets,
indexed by t, we observe the price for this product, Pt , and
the quantity sold, Qt . These markets may correspond to geo-
graphically separated markets or to the same location at different
points in time. The interest is in the demand function QD

t :
R !→ R that describes how much consumers are willing to buy
at different prices. Causal effects correspond to comparisons of
the demand function at different prices, possibly scaled by the
price differences, for example, (QD

t (p) − QD
t (p′)/(p − p′). For

illustrative purposes, we assume the demand function is linear:

QD
t (p) = α + β × p + εt ,

with β negative. The problem is that the prices we see are not
randomly assigned. Instead they are determined by sellers who
set prices to maximize profits (price times quantity minus cost).
Suppose that the cost in market t is also linear with unobserved
market-specific component ηt :

Ct(q) = (c + ηt) × q,

so that profits are

%t(p) = p × QD
t (p) − Ct(QD

t (p)) = (α + βp + εt)

× p − (c + ηt) × (α + βp + εt).

CONTACT Guido W. Imbens imbens@stanford.edu Department of Economics, 579 Jane Stanford Way, Stanford, CA 94305.

The profit maximizing price is

Pt = arg max
p

%t(p) = c
2

− α

2β
− εt

2β
+ ηt

2
.

The realized price depends on εt , so the potential demand QD
t (p)

at a given price is correlated with the realized price Pt , and we
do not have weak unconfoundedness (Rosenbaum and Rubin
1983; Imbens 2000). In econometric terminology, Pt is said to
be endogenous. For the set up in directed acyclical graph (DAG)
from Pearl (1995) and Pearl (2000), see Figure 1.

Traditionally, the econometric literature deals with the endo-
geneity of prices by using instruments. For example, in the
analysis of the demand for fish in Angrist, Graddy, and Imbens
(2000) the authors use weather conditions at sea as an instru-
ment for the price, see Figure 2. These weather conditions are
correlated with the unobserved cost shocks ηt , but assumed to
be independent of the unobserved demand shocks, εt . Alterna-
tively researchers exploit variation over time by using fixed effect
methods and regression discontinuity designs (Angrist and Pis-
chke 2008; Imbens and Lemieux 2008). Prices may change
discontinuously, which can validate comparisons of quantities
just before and after price changes.

The Wang and Blei (2018) article takes a different approach
that we explore in the context of this demand function example.
A critical component in their approach is the presence of addi-
tional information in the form of multiple causes. Suppose we
have multiple products, for ease of exposition two, with prices
Pt1 and Pt2, and quantities Qt1 and Qt2. The demand function
for product i depends only on its own price, and is assumed to
be linear, and the cost function also has the same structure as
before, so that for i = 1, 2:

QD
ti (p) = αi + βi × p + εti, Cti(q) = (ci + ηti) × q,

so that the equilibrium price for product i is

Pti = ci
2

− αi
2βi

− εti
2βi

+ ηti
2

.

Note that Pt2 is not strictly speaking a second cause for Qt1 in
the Wang and Blei (2018) sense: the direct effect of the second
price on the quantity of the first product is absent in our set up.
However, it does share with the Wang and Blei (2018) approach
the key feature that this variable partly depends on what is

© 2019 American Statistical Association
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Figure 1. Unobserved confounder.
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Figure 2. Instrumental variable.

potentially the same unobserved confounder as the first price
Pt1, through the possible correlation of the residuals εt1 and εt2.

Let the correlation between the demand shocks εt1 and εt2
be ρε , and let the correlation between the supply shocks ηt1 and
ηt2 be ρη, and assume that the demand and supply shocks are
uncorrelated for both products. For ease of exposition we also
assume that demand and supply shocks have the same variances
for both products, σ 2

ε and σ 2
η , respectively. See Figure 3. We

focus on estimation of the price effect in the demand function
for the first product, β1.

Given this set up we consider various standard estimators
for β1 that deal with the unmeasured confounders in different
ways. We calculate for each of these estimators the bias, and
investigate under what conditions on the correlation structure
of the demand and cost shocks these biases vanish.

The first estimator does not actually attempt to address the
presence of the unobserved confounder, and is intended to set
the stage and provide a baseline comparison. Consider least
squares regression of the quantity for product 1, Qt1, on the own
price, Pt1:

Qt1 = µ + γ × Pt1 + νt . (1)

This leads to a biased estimate of β1 because of the endogeneity
of the price, or the presence of the unobserved confounder εt1.

P1

ε1

Q1

P2

ε2

Figure 3. Two product example in general case.

The probability limit of the least squares estimator is

γ = β1 − 2β1
σ 2

ε

σ 2
ε + β2

1σ 2
η

> β1

(bias because of unobserved confounder).

Note that β1 is negative so there is an upward bias. This is a
standard result in economics that one cannot in general estimate
a demand function by regressing quantities on prices because of
the endogeneity of the price.

The question now is what we can do with the additional
information in the form of the price for the second good, given
the structure of the model, including the correlation struc-
ture between the demand shocks and costs shocks. Here, we
investigate the implications of four simple regression strategies,
including some conventional ones and some that are in the spirit
of the Wang and Blei (2018) multiple causes ideas. For each
of these strategies, we explore when they remove or at least
improve the biases relative to the true causal effect β1 that we
saw in the simple regression of Qt1 on Pt1.

1. First, consider simply controlling for the second price in the
regression by adding Pt2 to the specification in (1). This does
not help in general. Regressing Qt1 on both prices, Pt1 and
Pt2, leads to

γ = β1 − 2β1

(
σ 2
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1σ 2

η

)
σ 2
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(
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2
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1ρsσ 2
η

)
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(σ 2
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Here, the asymptotic bias only vanishes in unusual settings.
2. Second, consider using Pt2 as an instrument for Pt1 in (1).

This leads to

γ = β1 − 2β1
ρεσ

2
ε

ρεσ 2
ε + β2

1ρησ 2
η

.

Here γ is equal to β1 if two conditions are satisfied. First, the
demand shocks must be uncorrelated (ρε = 0), and second
there must be some correlation in the cost shocks (ρη ≠
0). This type of identification strategy is sometimes used in
Industrial Organization in analyses of markets for differenti-
ated products (Hausman and Leonard 1996). This strategy is
in fact the opposite of the common unobserved confounder
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Figure 4. Proxy for unobserved confounder.

case that Wang and Blei (2018) focus on. In this case, the
unobserved confounders are single cause confounders, and
there is no common unobserved confounder at all.

3. Wang and Blei (2018) propose to use the second price in
a different way. Their idea amounts in the current simple
linear example to regressing Qt1 on Pt1 controlling, not for the
second price Pt2, but for the average price Pt = (Pt1 +Pt2)/2.
This leads to

γ = β1 − 2β1
(1 − ρε)σ

2
ε

(1 − ρε)σ 2
ε + β2

1 (1 − ρη)σ 2
η

.

The Wang and Blei (2018) insight in this setting corresponds
to the fact that this is equal to the effect of interest β1 if
the demand shocks are the same for the two products, or
ρε = 1 (as long as the cost shocks are not perfectly correlated,
ρη ≠ 1). In the case with perfectly correlated demand
shocks the unobserved confounder is common to both prices
and there is no single-cause unobserved confounder, as
in Figure 4.

4. The second Wang and Blei (2018) procedure leads to the same
result. Regressing Qt1 on Pt1 using the residual Zt = Pt1 − Pt
as an instrument for Pt1 also estimates

β1 − 2β1
(1 − ρε)σ

2
ε

(1 − ρε)σ 2
ε + β2

1 (1 − ρη)σ 2
η

.

Again this is equal to β1 if the demand shocks are perfectly
correlated, that is, if ρε = 1.

Discussion

If we are interested in estimating demand functions, regressing
quantity on price typically does not work because we expect that
price is high when unobserved components of demand are high,
so there is an upward bias in simple regression estimates. The
Wang and Blei (2018) multiple-causes idea implies that if we
have multiple prices that all depend on the same unobserved
components, we can try to exploit this additional information
by predicting and proxying for the unobserved component.
Wang and Blei (2018) suggest doing so in two ways. One is
by controlling for the principal components of the multiple
prices, and one is by using part of the own price that cannot be
predicted by these principal components as an instrument.

Can this work? Yes. If in this demand function example the
demand shocks are highly correlated, and the supply shocks are
not, then this will eliminate or at least reduce the biases. As
such it is a welcome new addition to the identification strategies
economists use in such settings. Does this work in general? No.
It relies on assumptions about the structure of the demand and
cost shocks. In a world where the demand shocks are only very
weakly correlated relative to cost shocks (or not correlated at
all), this does not work, and the Hausman and Leonard (1996)
approach will work better. On the other hand, in a world where
the demand shocks are highly correlated relative to cost shocks,
or in particular if they are perfectly correlated, this will work
well. Which case one is in depends on the relative magnitude
of the demand and cost shock correlations, and will require
assessing those in the specific context.

Wang and Blei (2018) bring new ideas to the widespread
problem of accounting for the presence of unobserved con-
founders. Such problems are pervasive in economics and other
social sciences, where researchers have developed many specific
methods to deal with particular cases. The Wang and Blei (2018)
multiple-cause proposals add to the methods that can be used in
those settings. We expect they will find multiple applications in
the social sciences.
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We begin by congratulating Yixin Wang and David Blei for
their thought-provoking article that opens up a new research
frontier in the field of causal inference. The authors directly
tackle the challenging question of how to infer causal effects
of many treatments in the presence of unmeasured confound-
ing. We expect their article to have a major impact by further
advancing our understanding of this important methodological
problem. This commentary has two goals. We first critically
review the deconfounder method and point out its advantages
and limitations. We then briefly consider three possible ways to
address some of the limitations of the deconfounder method.

1. The Advantages and Limitations of the
Deconfounder Method

We first discuss several advantages offered by the deconfounder
method. We then examine the assumptions required by the
method and discuss its limitations.

1.1. The Deconfounder Method

Suppose that we have a simple random sample of n units from
a population. We have a total of m treatments, represented by
the m-dimensional vector, Ai = (Ai1, Ai2, . . . , Aim)⊤, for unit
i. For the sake of simplicity, we ignore the possible existence of
observed confounders Xi. But, all the arguments of this com-
mentary are applicable, conditional on Xi. The deconfounder
method consists of the following two simple steps. The first step
fits the following factor model to the observed treatments,

p(Ai1, Ai2, . . . , Aim) =
∫

p(Zi)
m∏

j=1
p(Aij | Zi) dZi, (1)

where Zi = (Zi1, Zi2, . . . , Zik)⊤ represents the k-dimensional
vector of latent factors.

Once the estimates of the factors Ẑi, which Wang and Blei
call the substitute confounders, are obtained, the second step
estimates the average causal effects of multiple treatments by
adjusting for these substitute confounders as follows,

τ (a, a′) = E{Yi(a) − Yi(a′)}
= E{E(Yi | Ai = a, Ẑi) − E(Yi | Ai = a′, Ẑi)}, (2)

CONTACT Kosuke Imai imai@harvard.edu Department of Government and Department of Statistics, Harvard University, Cambridge, MA 02138.

where a ∈ A and a′ ∈ A are the vectors of selected treatment
values with a ̸= a′ and A represents the support of Ai. In
practice, a regression model may be used to adjust for the
substitute confounders as demonstrated by Wang and Blei in
their empirical application.

The deconfounder method is attractive to applied researchers
for several reasons. First, it is a simple procedure based on
two classes of familiar statistical models—factor models and
regression models. Second, the method offers diagnostics in
observational studies with unmeasured confounding. Specif-
ically, researchers can check the conditional independence
among the observed treatments given the estimated factors,

Aij ⊥ ⊥ Ai,− j | Ẑi (3)

for any j = 1, . . . , m and Ai,− j represents all the treatments
except Aij. If this conditional independence does not hold, then
there may exist unobserved confounders that affect both Aij and
some of Ai,− j, yielding a biased causal estimate. As discussed
below, however, the lack of conditional independence may also
be due to the misspecification of factor model, which, for exam-
ple, would be present if there are causal relationships among
treatments.

In sum, the deconfounder method proposes a simple solu-
tion to a long-standing problem of inferring causal effects of
multiple treatments in observational studies. Many analysts of
observational studies rely upon the assumption that the treat-
ments are unconfounded conditional on a set of observed pre-
treatment covariates. And yet, it is often difficult to rule out
the possible existence of unobserved confounders. The decon-
founder method not only offers a new identification strategy in
the presence of unobserved confounding, but also shows how
to check the validity of the resulting estimates under certain
assumptions.

1.2. Assumptions

What assumptions does the deconfounder method require?
Wang and Blei use a graphical model to represent the condi-
tional dependencies required by the deconfounder method.
Here, we reproduce the graphical model using the directed
acyclic graph (DAG) in Figure 1. In addition to the SUTVA
(Rubin 1990), this DAG implies several key assumptions.
First, the unobserved confounders Z should represent all

© 2019 American Statistical Association
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Figure 1. Directed acyclic graph for the deconfounder method.

confounding variables such that the treatments are ignorable
given Z,

Yi(a) ⊥ ⊥ Ai | Zi (4)

for any a ∈ A. The assumption implies that the multi-cause
confounder Zi suffices to adjust for the treatment-outcome con-
founding.

Second, the DAG also implies the following conditional inde-
pendence assumption,

Aij ⊥ ⊥ Ai,− j | Zi (5)

for any j = 1, 2, . . . , m. The assumption justifies the factor
model in Equation (1). This assumption is violated if, for exam-
ple, there exists a causal relationship among treatments. In the
movie revenue application considered in the original article,
the assumption is violated if the choice of actor for the main
role (e.g., Sean Connery in a James Bond movie) influences the
selection of actor for another role (e.g., Bernard Lee as the char-
acter of M). This is an important limitation of the deconfounder
method as the problem may be common in applied research
with multiple treatments.

In addition, according to Wang and Blei, the deconfounder
method also requires the following overlap assumption that is

not explicitly represented in the DAG,
p(Ai ∈ A∗ | Zi) > 0 (6)

for all sets A∗ ⊂ A with p(Ai ∈ A∗) > 0. The assumption
implies that the choice of treatment values a may be constrained
when estimating E{Yi(a)}. If the selected value of a does not
belong to A∗, then the resulting causal inference will be based
on extrapolation.

Finally, the key identification condition of the deconfounder
method is the assumption of “no unobserved single-cause con-
founder.” Wang and Blei formalize this assumption as the follow-
ing set of conditional independence assumptions (see Definition
4 of the original article),

Yi(a) ⊥ ⊥ Aij | Vij, (7)
Aij ⊥ ⊥ Ai,− j | Vij (8)

for any j = 1, 2, . . . , m, a ∈ A, and some random variable Vij.
In addition, the authors require that these conditional indepen-
dence relations do not hold when conditioning on any proper
subset of the sigma algebra of Vij.

Unfortunately, these conditional independence assumptions
are not sufficient to eliminate the possible existence of unob-
served single-cause confounders. Figure 2 presents two exam-
ples, in which single-cause confounders exist, but Equations (7)
and (8) still hold. In addition, both cases can be reduced to the
DAG in Figure 1 where no single-cause unobserved confounder
exists by defining the unobserved multi-cause confounder as
Z = (Z1, Z2, Z3). The examples demonstrate that a single multi-
cause confounder can be decomposed into multiple single-cause
confounders, and that several single-cause confounders can be
combined into a single multi-cause confounder. Therefore, it
is difficult to distinguish between single-cause and multiple-
cause confounders without the knowledge of causal relation-
ships among the variables.

We believe that it is important to develop the precise for-
mal statement of the no unobserved single-cause confounder
assumption. Such formalization allows us to understand how
this assumption enables the identification of causal effects. In
addition, our discussion implies that assessing the credibility
of the assumption requires the scientific knowledge about the
underlying causal structure involving unobserved confounders.

Figure 2. Examples of unobserved single-cause confounders.
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1.3. Nonparametric Identification

Wang and Blei establish the nonparametric identification of the
average treatment effect given in Equation (2) under the afore-
mentioned assumptions in two steps. First, they show that a fac-
tor model of the observed treatments can be used to consistently
estimate the substitute confounder. Second, they show that given
the substitute confounder, the average treatment effects can be
nonparametrically identified using Equation (2).

In an insightful paper, D’Amour (2019) demonstrates that
this two-step proof strategy leads to two problems for the decon-
founder method. First, there may be more than one factor
model that is compatible with the distribution of the observed
treatments. He provides an example where different factor mod-
els that are compatible with the distribution of the observed
treatments under the structure of Figure 1 yield different causal
estimates. Second, D’Amour shows that even if a factor model
is uniquely identified, the nonparametric identification is in
general impossible.

Moving beyond the counterexamples, we consider the iden-
tification assumption for the factor model, discuss the role of
the substitute confounder, and assess the overlap assumption
required by the deconfounder method.

With respect to the identifiability of factor models, Kruskal
(1977) and Allman, Matias, and Rhodes (2009) give the general
identification assumptions when observed variables are discrete.
In this case, a crucial assumption is that the latent factor is corre-
lated with the observed variables. In our context, this means that
Z must causally affect each treatment Aj. In the causal inference
literature, this assumption is known as faithfulness (Spirtes et al.
2000), which states that there exists conditional independence
among variables in the population distribution if and only if it is
entailed in the corresponding DAG. Thus, although Wang and
Blei only discuss a set of conditional independence assumptions,
the deconfounder method requires the faithfulness assumption
to ensure the identifiability of factor model.

Next, we discuss the role of the substitute confounder. In
the proof of the deconfounder method, Wang and Blei not only
assume that the true unobserved confounder Zi can be con-
sistently estimated, but also treat the estimated substitute con-
founder Ẑi as its true counterpart. This proof strategy ignores
the crucial fact that the (estimated) substitute confounder is a
function of observed treatments Ẑi = ĥM(Ai) = EM(Zi | Ai),
where ĥM indicates the fact that the substitute confounder is
estimated from the data and depends on the choice of factor
model and EM represents the expectation with respect to the fit-
ted factor model. We emphasize that the substitute confounder
Ẑi does not converge in probability to the true confounder
Zi, which in itself is a random variable. Rather, the substitute
confounder converges to a function of observed treatments. Yet,
this consistency result is required for the key results of the paper
(i.e., Theorems 6–8).

We also closely examine the identification formula given in
Equation (2) by explicitly writing out the conditional expecta-
tion,

E{E(Yi | Ai = a, Ẑi)} =
∫

E(Yi | Ai = a, Ẑi)p(Ẑi)dẐi. (9)

Notice that Equation (9) does not follow unless the support of
p(Ẑi | Ai = a) is identical to the support of p(Ẑi) for any

given a ∈ A. Unfortunately, since the substitute confounder
is a function of the observed treatments, p(Ẑi | Ai = a) is
in general degenerate. The overlap assumption given in Equa-
tion (6) is not applicable because the assumption is about the
(true) unobserved confounders Zi rather than the (estimated)
substitute confounders, Ẑi. This means that we can only identify
E(Yi | Ai = a, Ẑi = z) = E(Yi | Ai = a) for the values of z
with z = ĥM(a), implying that only a certain set of causal effects
are identifiable.

In Theorem 6 of the original paper, Wang and Blei address
this problem by imposing two additional restrictions. First, it is
assumed that the outcome is separable in the following sense,

E{Yi(a) | Ẑi} = f1(a) + f2(Ẑi), (10)
E(Yi | Ai, Ẑi) = f3(Ai) + f4(Ẑi), (11)

where we use Ẑi instead of Zi to emphasize the fact that the sub-
stitute confounder is estimated. Although Equation (10) allows
us to write the average treatment effect as a function of treatment
values alone, that is, E{Yi(a) − Yi(a′)} = f1(a) − f1(a′), this
assumption is not particularly helpful for identification since
conditioning on Ẑi is still required to identify the mean potential
outcomes. In addition, Equation (11) can be rewritten as E(Yi |
Ai) = f3(Ai)+f4(ĥM(Ai)) because Ẑi is a deterministic function
of Ai. This suggests that the validity of this restriction about the
outcome model critically depends on the choice of factor model.

The second restriction is that when the treatments are con-
tinuous, the substitute confounder is a piecewise constant func-
tion, that is, ∇afθ (a) = 0 where a parametric model is assumed
for p(Ẑi | Ai = a, θ) = δfθ (a) with a vector of parameters θ . A
similar restriction is proposed for the case of discrete treatments.
Since p(Ẑi | Ai = a, θ) = δĥM(a)

automatically holds, the
assumption is valid if ĥM(a) is a piece-wise constant function.
Thus, this second restriction also suggests that the choice of
factor model is critical for the validity of the deconfounder
method.

In sum, we conclude that the nonparametric identification
is generally difficult to obtain under the deconfounder method.
Because the substitute confounder is a function of observed
treatments, it leads to the violation of the overlap assumption.
Wang and Blei introduce two additional restrictions to address
this problem. However, these assumptions impose severe con-
straints on the choice of factor model as well as that of out-
come model. As a consequence, they may significantly limit the
practical applicability of the deconfounder method. Even when
researchers carefully choose a factor model that satisfies these
restrictions, they may obtain causal effects only for a restricted
range of treatment values.

2. Alternative Approaches

We next consider three alternative approaches to the important
question of identifying the causal effects of multiple treatments
in the presence of unobserved confounders. The approaches in
this section will be based on Equation (4). Unlike the decon-
founder method, however, we will directly consider the iden-
tification of the probability distributions involving the (true)
unobserved confounder p(Ai, Zi) and p(Yi | Ai, Zi) rather than
adopting Wang and Blei’s two-step proof strategy.
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2.1. Parametric Approach

Wang and Blei use parametric models in their empirical appli-
cations. Here, we consider a more general parametric approach.
A primary advantage of the parametric approach is simplicity,
whereas its major limitation is the required modeling assump-
tions that may not be credible in practice.

Suppose that there exists a uniquely identifiable factor model
for the treatments, and that the joint distribution of (A, Z) is
also identifiable. We assume the following additive model for the
outcome variable,

E{Yi(a) | Zi} =
m∑

j=1
βjbj(aj) + σ g(Zi),

where bj(·) and g(·) are prespecified functions. Under this
setting, it can be shown that if σ is known, then the average
treatment effect is identifiable so long as (b1(Ai1), . . . , bm(Aim))

is linearly independent. In contrast, if σ is unknown, then the
average treatment effect is identifiable if (b1(Ai1), . . . , bm(Aim),
E{g(Zi) | Ai}) is linearly independent. This linear indepen-
dence assumption is analogous to the overlap assumption
discussed earlier, but the assumption can be tested using the
observed data.

To illustrate this parametric approach, consider an example,
in which we have three binary treatments m = 3 and one binary
latent factor Zi. Further assume that we have the following
outcome model,

E{Yi(a) | Zi} = β0 +
3∑

j=1
βjAij + σZi.

Now, consider a scenario, under which Aij’s are mutually inde-
pendent of one another given Zi. Then, the joint distribution
p(Ai1, Ai2, Ai3, Zi) = p(Zi)

∏3
j=1 p(Aij | Zi) is identifiable based

on the joint distribution of (Ai1, Ai2, Ai3) up to label switching
(see Kruskal 1977). Note that the average treatment effects are
invariant to label switching. Thus, under this condition, even if
σ is unknown, βj’s are identifiable so long as E(Zi | Ai1, Ai2, Ai3)
is not linear in (Ai1, Ai2, Ai3).

Next, consider a different case shown as the DAG in Figure 3,
in which one treatment causally affects other treatments. In

Figure 3. Directed acyclic graph in the presence of causal relations among
treatments.

this case, we may focus on estimating the causal effects of
(A2, A3, A4) conditional on A1. We assume the following model
for the outcome variable,

E{Yi(a) | Zi} = β0 +
4∑

j=1
βjAij + σZi.

The joint distribution of Ai and Zi under Figure 3 is given by
p(Zi)p(Ai1 | Zi)p(Ai2 | Ai1, Z)p(Ai3 | Ai1, Zi)p(Ai4 | Zi). This
factorization is identifiable from the observed data (Allman,
Matias, and Rhodes 2009). Then, even when σ is unknown, we
can identify the parameters in the outcome model so long as
E(Zi | Ai1, Ai2, Ai3, Ai4) is not linear in (Ai1, Ai2, Ai3, Ai4). Using
these estimated parameters, we can obtain the estimates for the
causal effects.

2.2. Nonparametric Approach

In the causal inference literature, many scholars first consider
the problem of nonparametric identification by asking whether
or not causal effects can be identified without making any mod-
eling assumption. Only after the nonparametric identification
of causal effects is established, researchers proceed to their
estimation and inference. Cox and Donnelly (2011) regarded
this approach as a general principle of applied statistics. They
state, If an issue can be addressed nonparametrically then it will
often be better to tackle it parametrically; however, if it cannot be
resolved nonparametrically then it is usually dangerous to resolve
it parametrically. (p. 96)

To enable the general nonparametric identification of causal
effects in the current setting, we must introduce auxiliary vari-
ables. D’Amour (2019) considers the use of proxy variables.
Here, we examine an approach based on instrumental variables.
Figure 4 presents the DAG for this approach where W rep-
resents a set of instrumental variables. Instrumental variables
have the property that they are independent of the unobserved
confounders Z and influence the outcome Y only through the
treatments A.

For the sake of simplicity, we begin by considering the fol-
lowing separable model for the outcome,

E{Yi(a) | Zi} = q(a) + r(Zi),

Figure 4. Directed acyclic graph for the instrumental variable approach.
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where E{r(Zi)} = 0 without loss of generality. Since the instru-
mental variables satisfy E{r(Zi) | Wi} = E{r(Zi)} = 0, we
obtain,

E(Yi | Wi) = E{q(Ai) | Wi} =
∑

a∈A
q(Ai = a)p(Ai = a | Wi).

(12)

Since we can identify E(Yi | Wi) and p(Ai | Wi) from
the observed data, the causal effects are identifiable if we can
uniquely solve q(·) using Equation (12). Suppose that all the
treatments are binary and the instrumental variable is discrete
with L levels. Since there are 2m parameters in q(a), Equation
(12) implies that the identification requires the 2m × L matrix
{p(Ai | Wi)} to be full-rank. This condition is analogous to
the overlap assumption discussed earlier and can be checked
using the observed data. The proposed approach here, however,
requires the instrumental variables to have more than 2m levels.
When m is large, it may be difficult to find instrumental variables
that satisfy this condition.

The deconfounder method is closely related to the control
function methods developed in the econometrics literature. The
control function is a variable that, when adjusted for, renders
an otherwise endogenous treatment variable exogenous (see,
e.g., Wooldridge 2015). Imbens and Newey (2009) considered
the nonparametric identification of the following nonseparable
triangular system of equations (as before, we omit observed
pretreatment confounding variables for simplicity),

Yi = s1(Ai, Zi), (13)
Ai = s2(Wi, Ui), (14)

where Zi and Ui are unobserved, Ai is the endogenous treat-
ment variable of interest, Wi is the instrumental variable with
Wi ⊥ ⊥ (Zi, Ui), and s2(·, ·) is a strictly monotonic function of Ui.
When Ai is a vector and Ui = Zi, Equations (13) and (14)
become identical to the setting of the deconfounder method.
Imbens and Newey show that the control function Ci is given
by the cumulative distribution function of Ai given Wi, that
is, Ci = FA|W(Ai, Wi). Like the substitue confounder, the
control function unconfounds the treatment variable, that is,
Yi(a) ⊥ ⊥ Ai | Ci. This is because Ci is a one-to-one function of
Ui, and Ai depends only on Wi conditional on Ui.

It is important to emphasize that the control function
methodology requires the overlap assumption that the support
of the marginal distribution of the control function, that is,
p(Ci), is the same as the support of the conditional distribution,
that is, p(Ci | Ai). However, unlike the case of the deconfounder
method, control function is a function of both treatment and
instrumental variables, making this overlap assumption more
likely to be satisfied.

In sum, the nonparametric identification of causal effects in
the current settings requires the existence of auxiliary variables.
Here, we consider an approach based on instrumental variables.
Even when such instrumental variables are available, certain
overlap assumptions are needed. This point is also clearly shown
for the control function methods that are closely related to the
deconfounder method. As we discussed, the overlap assump-
tions required for these instrumental variable methods are less
stringent than those required for the deconfounder method.

2.3. Stochastic Intervention Approach

Our discussion has identified the overlap assumption as a
main methodological challenge for the deconfounder method.
Because the estimated substitute confounder itself is a function
of treatment variables, conditioning on the particular treatment
values alters the support of its distribution. The parametric
and nonparametric approaches introduced above address this
problem through the reliance on modeling assumptions and the
use of instrumental variables, respectively.

The final approach we consider is to change the causal quan-
tities of interest using the idea of stochastic intervention. Instead
of comparing two sets of fixed treatment values, we propose to
contrast the two different distributions of treatments. In the
movie application of the original article, one may be interested
in comparing the revenue of a film featuring a typical cast for
action movies with that featuring common actors for Sci-Fi
movies. Stochastic intervention is a useful approach especially
in the settings where inferring the average outcome under the
fixed treatment values is difficult. For example, Geneletti (2007)
applied it to mediation analysis, while Hudgens and Halloran
(2008) proposed an experimental design with stochastic
intervention to identify spillover effects. More recently, Kennedy
(2019) considers the incremental interventions that shift
propensity score values to avoid overlap assumption.

Specifically, we focus on the average causal effects of dis-
tributions of treatments rather than the effects of treatments
themselves.

δ(p1, p0)

= E
{∫

Yi(a)p1(Ai = a)da −
∫

Yi(a)p0(Ai = a)da
}

, (15)

where p1 and p0 are the prespecified distributions of treat-
ments to be compared. Various distributions can be selected
for comparison. For example, we may compare the conditional
distributions of treatments given the different values of observed
covariates, that is, p1(Ai | Xi = x1) and p0(Ai | Xi = x2).
Moreover, if factors are interpretable, then we may choose the
conditional distributions given some specific values of the fac-
tors, that is, p1(Ai | Zi = z1) and p0(Ai | Zi = z2). Topic models
in the analysis of texts and ideal point models in the analysis of
roll calls are good examples of interpretable factor models (Blei,
Ng, and Jordan 2003; Clinton, Jackman, and Rivers 2004).

In the current setting, we may use the following estimator,

δ̂(p1, p0) =
n∑

i=1
Yi

p1(Ai) − p0(Ai)

p̂(Ai | Zi)
, (16)

where p̂(Ai | Zi) is the estimated factor model. For this estima-
tor, the required overlap assumption is that the support of pj(Ai)
is a subset of the support of p(Ai | Zi) for j = 0, 1. Researchers
can choose p1(Ai) and p0(Ai) so that this overlap assumption
is satisfied. Furthermore, although the deconfounder method
is not applicable when one treatment causally affects another,
under the stochastic intervention approach one could model
causal relationships among treatments by specifying p(Ai | Zi)
provided that the model is identifiable. An example of such case
is given in Figure 3.
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3. Concluding Remarks

The article by Wang and Blei is an important contribution to the
causal inference literature because it opens up a new research
frontier. The authors study a relatively unexplored question of
how to infer the causal effects of many treatments in the pres-
ence of unobserved confounders. The deconfounder method
provides a novel and yet intuitive approach using familiar sta-
tistical models. A key insight is that under certain assumptions,
the factorization of treatments can yield a substitute confounder
as well as a practically useful diagnostic tool for checking the
validity of the resulting substitute confounder.

Although the deconfounder method has advantages, as first
pointed out by D’Amour (2019) and further elaborated in this
commentary, the method is not free of limitations. In par-
ticular, it cannot achieve nonparametric identification with-
out additional restrictions. We emphasized the violation of the
overlap assumption due to the fact that the estimated substi-
tute confounder is a function of observed treatments. Wang
and Blei consider some restrictions on the outcome model
that may overcome this limitation and enable identification.
However, such restrictions may severely limit the applicabil-
ity of the deconfounder method. More research is needed to
investigate the consequences of these restrictions in practical
settings.

We discussed three alternative approaches to the method-
ological problems of the deconfounder method. The first
approach is based on parametric assumptions and extend the
data analysis conducted in the original article. The second
approach relies upon the use of instrumental variables and
is related to the control function literature in econometrics.
The final approach considers an alternative causal estimand
based on stochastic intervention, which is particularly useful
in the settings with high-dimensional treatments. We expect
and hope that many researchers will follow up on the work
of Wang and Blei and develop new methods for estimating
the causal effects of multiple treatments in observational
studies.
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We are grateful to Wang and Blei (2019) (hereafter WB) for
drawing attention to the important and increasingly popular
project of using latent variable methods to control for unmea-
sured confounding. Prior causal inference research on this topic
has not been adequately communicated or disseminated, leaving
room for misconceptions, which we hope to begin to remedy in
this discussion. We also appreciate that the authors have sought
and been receptive to our feedback about their work. We would
also like to thank the editors for giving us the opportunity to
comment on this article.

However, this article has foundational errors. Specifically,
the premise of the deconfounder, namely that a variable that
renders multiple causes conditionally independent also controls
for unmeasured multi-cause confounding, is incorrect. This can
be seen by noting that no fact about the observed data alone
can be informative about ignorability, since ignorability is com-
patible with any observed data distribution. Methods to con-
trol for unmeasured confounding may be valid with additional
assumptions in specific settings (e.g., Price et al. 2006; Angrist
and Pischke 2008; Kuroki and Pearl 2014), but they cannot, in
general, provide a checkable approach to causal inference, and
they do not, in general, require weaker assumptions than the
assumptions that are commonly used for causal inference. While
this is outside the scope of this comment, we note that much
recent work on applying ideas from latent variable modeling to
causal inference problems suffers from similar issues.

Causal inference aims to draw inferences about the param-
eters of the full data distribution—the distribution of the
observed random variables and the potential outcomes—
from realizations of the observed data distribution, which is
generally a coarsened version of the full data distribution. For
example, the full data distribution for a conditionally ignorable
model with binary treatment is of the form p(Y(1), Y(0), A, X),
where the following conditional independences hold on the
counterfactual outcomes Y(1), and Y(0), the treatment A and
the set of baseline covariates X: Y(1) ⊥ A|X, and Y(0) ⊥ A|X.
The parameter of interest is often the average causal effect
(ACE): E[Y(1) − Y(0)]. The observed data distribution, on
the other hand, is of the form P(Y , A, X), where the observed
outcome Y is a coarsened version of Y(1) and Y(0), defined
by consistency as Y(1) · A + Y(0) · (1 − A). Causal inference
problems are often viewed as missing data problems, since every
realization of the observed outcome Y yields exactly one of

CONTACT Elizabeth L. Ogburn eogburn@jhsph.edu Department of Biostatistics, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205.

the potential outcomes for the corresponding subject, with the
other outcomes being missing data. With the deconfounder, WB
aim to tackle settings with a vector A of multiple treatments,
where baseline covariates are unobserved (except for single-
cause confounders, which we ignore throughout). In such cases,
the observed data distribution is a marginal distribution of the
form p(Y , A), marginalized over the missing potential outcomes
and the unobserved confounders.

The deconfounder proposal can be loosely summarized as
follows:

• Suppose ignorability for the effect of a vector of causes A on
an outcome Y holds conditional on U: A ⊥ Y(a)|U.

• U is unobserved, but if it were observed then conditioning
on and standardizing by U (covariate adjustment, or the
adjustment formula) would identify causal effects of A on Y ,
as in equation (2) of WB.

• In lieu of the unmeasured U, and in the absence of any
unmeasured single-cause confounders, one can control for
any variable Z such that A1, . . . , Am are mutually indepen-
dent conditional on Z, because such a Z satisfies ignorability
for all multi-cause confounders. Z is a substitute confounder
for the true confounder U.

In addition to the above, the authors impose several addi-
tional assumptions at various points throughout the article. We
describe these below. Nevertheless, the assumptions, as stated,
do not imply the claimed results.

1. Conditionally Independent Causes Do Not Ensure
Conditional Ignorability

The third step is the crux of the deconfounder. However, the
criterion of conditional independence does not suffice to make
Z a valid substitute confounder. This criterion does not rule out
the inclusion of variables that may bias effects, nor does it ensure
that all multi-cause confounders are captured by Z. Finding an
observed proxy that suffices to control for all confounding via
covariate adjustment is related to a body of work on complete
adjustment criteria (Shpitser, VanderWeele, and Robins 2010;
Perkovic et al. 2015). Below we give a few examples that violate
these adjustment criteria, meaning that covariate adjustment is

© 2019 American Statistical Association
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Figure 1. (a) A DAG in which A1 and A2 are causally dependent. (b) A DAG with
a single-cause mediator. (c) A DAG with a single-cause collider. (d) A DAG with an
M-bias collider.

not a valid identification strategy, but that are not excluded from
the deconfounder.

1.1. The Deconfounder May Include Variables That Bias
Effects

A substitute confounder constructed to render the causes
mutually independent may include three types of variables that
undermine the ability to identify causal effects. M-bias colliders,
such as M in the directed acylic graph (DAG) in Figure 1(d),
and single-cause colliders, such as C in Figure 1(c), are variables
that induce confounding (Cole et al. 2009; Elwert and Winship
2014), and single-cause mediators, such as R in Figure 1(a) and
D in Figure 1(b), are variables that bias causal effects.

Both colliders and mediators are post-treatment variables. As
WB note, it is crucial that all covariates used to identify causal
effects via the formula in (2) be pretreatment variables, because
conditioning on a downstream effect of A may introduce bias in
any direction (it need not bias effect estimates toward the null).
However, Lemma 4, which states that the substitute confounder
Z is guaranteed to be pretreatment, is incorrect. We first give an
intuitive counterexample in which mediators would be included
in a substitute confounder and then point out a problem in the
proof of Lemma 4.

1.1.1. Causes Cannot Be Causally Dependent
Suppose the causes A1, . . . , Am can themselves have causal
effects on one another, as would be expected in most of the
motivating examples described in the introduction of WB
(neurons may cause one another to fire; enrolling in one social
program may increase the chance that someone will learn of
or be referred to another social program; one medicine may be
prescribed to treat side effects of another or of a procedure).
Specifically, consider the case depicted in Figure 1(a), where
A1 causes A2, and to render them conditionally independent
the deconfounder must include a variable, R, that breaks this
connection. However, the effect of A1 on Y is through R and
therefore cannot be identified controlling for R; depending on
the relationships among A1, R, and Y , an estimator that controls
for R could either over- or underestimate the true effect. This
scenario is directly analogous to longitudinal causal inference
problems with multiple time-varying treatments that contain

time-varying confounders, variables that serve as confounders
for some treatments and as mediators for other treatments. If
there is an unmeasured confounder for the R-Y relationship
(represented by V and the dashed arrows in Figure 1(a)), then
conditioning on R fails to identify the direct effects of A on Y ,
because it opens a confounding pathway through V . See Hernan
and Robins (2020) for an overview of these issues.

The answer to the question posed in Appendix B of WB, “Can
the causes be causally dependent among themselves?” is there-
fore “no.” If they are causally dependent then the deconfounder,
by dint of rendering the causes independent, breaks some of
the structure among the causes A, and as was originally estab-
lished in the time-varying treatment setting, this undermines
the identification of joint effects of A on Y by standard covariate
adjustment.

1.1.2. Analysis of Lemma 4
This simple argument also serves as a counterexample to Lemma
4, which states that the deconfounder does not pick up any post-
treatment variables and can be treated as a pretreatment covari-
ate. This is necessarily false whenever the causes are causally
dependent among themselves, but it need not hold even if the
causes are not causally dependent, see below.

The proof of Lemma 4 in Appendix I states that “Inferring
the substitute confounder Zi is separated from estimating the
potential outcome. It implies that the substitute confounder
is independent of the potential outcomes conditional on the
causes.” The proof invokes the assumption that Z ⊥ Y(A)|A. By
the consistency property in causal inference, which defines the
observed data variable Y as

∑
a I(A = a)Y(a), Y(A) is equal

to Y , which implies Z ⊥ Y|A. This conditional independence
cannot hold for any Z that satisfies ignorability, except in trivial
settings. Limiting inquiry to settings in which there exists a
deterministic function of the causes that suffices to identify
causal effects rules out almost everything that is typically con-
sidered confounding.1 (This is also the case replacing Y(A) with
Y(a) in the original assumption (note the lower case a), since Y
is a fixed function of Y(a) and A.)

In fact, confounders confound because they are related to
potential outcomes even conditional on the observed treatment
and outcome. For example, if a person knows that their potential
pain status under treatment A = tylenol is preferable to their
potential pain status under treatment A = notylenol, then they
are more likely to take tylenol when they have a headache—so
Y(a) affects A. Obviously Y(a) also affects Y , their pain status
after treatment, so Y(a) is itself a confounder. While this may
be an extreme example, in general confounders are, almost by
definition, intricately linked to the potential outcomes.

When the causes are not causally dependent (which is the
setting for which WB recommend using the deconfounder, see
Appendix B), can we ensure that a substitute confounder does
not contain post-treatment variables? Any mediator or collider
caused by more than one cause will be excluded from the sub-
stitute confounder, because such a variable is a collider between
its causes and conditioning on it induces, rather than eliminates,

1We updated the statement of this result to reflect the fact that different
definitions exist for the presence of confounding; we are grateful to WB for
drawing to our attention the fact a previous version was not entirely clear.
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dependence among the causes. But single-cause mediators and
colliders may be incorporated into the substitute confounder.

1.1.3. Single-Cause Mediators and Colliders
A single-cause mediator, such as D in Figure 1(b) will generally
not be required to render the causes conditionally independent,
and the same is true of a single cause collider, such as C in Figure
1(c). But in the absence of Lemma 4, one cannot guarantee that
single-cause mediators and colliders would be excluded from
substitute confounders. In particular, if the dashed arrow in
Figure 1(b) is present, so that the unmeasured confounder is not
independent of the mediator, then it is possible that a substitute
confounder would include some or partial information about
the mediator. Similarly, if the dashed arrow in Figure 1(c) is
present, so that the unmeasured confounder is not indepen-
dent of the collider, then it is possible that a substitute con-
founder would include some or partial information about the
collider.

1.1.4. M-Bias Colliders
Even if one could exclude post-treatment random variables from
the deconfounder, M-bias colliders, like M in Figure 1(d), can
be pretreatment. They provide a counterexample to the premise
that a pretreatment Z that renders the causes conditionally
independent suffices to control for multi-cause confounding of
A on Y , and specifically to Lemmas 1 and 2. While conditioning
on U itself would suffice to control for M-bias, if, in addition to
M, Z captures the part of U that affects dependence among the
causes without capturing the part of U that relates Am to M, then
M-bias would remain.2

1.2. The Deconfounder Need Not Capture All Multi-Cause
Confounders

We provide an example to illustrate that the deconfounder may
not capture all multi-cause confounders, and then we point out
a flawed premise in the proof of Lemmas 1 and 2. A related
point is that the deconfounder may not be able to control for
confounding even if it does capture all multi-cause confounders;
this is because confounding involves the joint distribution of the
causes and the potential outcomes, so in general learning a latent
confounder requires dealing with this joint distribution. This is
established by a copula argument in D’Amour (2019).

Conditioning on Z can render the causes mutually inde-
pendent by separating a multi-cause confounder U into single-
cause components, while failing to control for the relationship
between the causes and the outcome. Here is an example: sup-
pose U is a confounder of A1, A2, and Y , and suppose that, con-
ditional on Z, U ∼ Unif(0, 1). Then U|Z is decomposable into
the sum of V and W, where V and W are independent.3 Further
suppose that A1 only depends on V and A2 only depends on
W. Then conditioning on Z renders A1 and A2 independent,

2 We are grateful to WB for catching a mistake in a previous version of this
counterexample.

3 A random variable is decomposable if it is equal to the sum of independent
random variables; a Unif(0, 1) random variable is decomposable into a
bernoulli random variable that takes the values 0 or 0.5 with equal prob-
ability and a uniform random variable over (0, 0.5).

but there is no reason to think that it controls for confounding
by U.

This counterexample to the claim that the deconfounder con-
trols for all multi-cause confounding is pathological, but given
the fact that modeling the marginal distribution of the causes
can only tell us about the joint distribution of the causes and the
outcome under stringent assumptions or in degenerate models,
we expect counterexamples to be the rule, not the exception.

1.2.1. Analysis of Lemmas 1 and 2
The discussion above undermines the claim that the decon-
founder, estimated via a factor model of the causes, suffices
for ignorability to hold. The argument for this claim in WB is
rather technical, but we briefly analyze it here. It is made through
Lemma 1, which states that if A admits a Kallenberg construction
from the deconfounder then ignorability holds conditional on
the deconfounder, and Lemma 2, which states that all factor
models of A admit a Kallenberg construction. However, Def-
inition 3 misstates the Kallenberg construction for the rele-
vant probability model. The probability model for analyzing the
causal effect of A on Y subject to confounding by Z is the model
for the full data distribution; the probability model that includes
only the observed data is appropriate for prediction but not for
causal inference. The full data comprise (in chronological/causal
order) the random variables {Y(a) : a ∈ A}, Z, A, and Y . Note
that ignorability is a restriction on the full data distribution, not
the observed data distribution (which often has no restrictions
in causal inference problems). Put another way, no fact about the
observed data alone can be informative about ignorability, since
ignorability is compatible with any observed data distribution.
Therefore, Theorem 5.10 of Kallenberg (1997) in fact implies
Aij

a.s.= fj(Zi, {Y(a) : a ∈ A}, Uij) rather than the construction
given in equation (37) of WB, which omitted {Y(a) : a ∈ A}.
Thus, the Kallenberg construction used in the article cannot
link factor models to ignorability. A Kallenberg construction on
the full data, which could be informative about ignorability, is
impossible to obtain given observed data information alone.

1.3. When Would a Latent Substitute Confounder Be
Expected to Control for All Multi-Cause Confounding?

Identifying a latent substitute confounder from the observed
data on A essentially requires the assumption that learning
structure on the causes suffices to learn about any joint structure
linking the causes with the outcome, in addition to the assump-
tions above.

A widely studied setting in which this would hold is when
U represents unknown structure that is common to each Ak
and to Y . This is likely to be the case in GWAS studies and in
problems with clustered data with unknown clusters. In GWAS
studies, including in WB’s simulations, U represents population
structure that is common across all of the causes and the out-
come. For example, U might be an ancestry matrix indicating
how n subjects are related to one another, and each of the causes
and the outcome are expected to show dependence across the n
subjects due to this same ancestry matrix. In this setting, any
subset of the collection of variables with this same structure,
that is any subset of {A1, . . . , Am, Y}, can be used to learn the
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common underlying population structure, in particular the set
{A1, . . . , Am} as is commonly done in practice (Price et al. 2006).

Theorem 6 requires the deconfounder to be piecewise con-
stant in the causes; this reduces the problem of confounding to
one of clustering.

Another example when a latent substitute confounder con-
trols for all multi-cause confounding is the fully parametric
model given in Appendix C of WB.

2. Assumptions Beyond Ignorability

In this section, we assume that we are in the class of problems
for which latent substitute confounders are known to perform
well, for example, in the GWAS or clustering setting. We argue
that even for those limited settings the assumptions required
of the deconfounder are quite strong, and are not nonparamet-
ric. Below we discuss the assumptions required for the decon-
founder that go beyond those required for “classical causal infer-
ence.” In exchange for the assumptions listed below, “classical
causal inference” requires the sole (but strong and untestable)
assumption of no unmeasured multi-cause confounders. Both
the deconfounder and classical methods require no unmeasured
single-cause confounders, SUTVA, and overlap (or positivity).

2.1. Nonparametric Identification

Although the terms parametric and nonparametric can mean
different things to different researchers, generally a causal
effect is said to be nonparametrically identified if either (a) the
assumptions required for identification place no restrictions on
the observed data distribution, except possibly up to a set of
distributions of measure zero (Bickel et al. 1993), or (b) the only
restrictions on the observed data distribution are those imposed
by a nonparametric structural equation model. Such restrictions
may include some conditional independences and inequality
constraints. But causal effects cannot be nonparametrically
identified (in either sense) in the setting considered in WB;
identification requires assumptions that place substantial
restrictions on the observed data distribution and on the
structural equation models.

2.2. Semiparametric and Parametric Assumptions

Contrary to its statement, Theorem 6, which identifies the joint
causal effect of all of the causes on Y , rests on the parametric
assumptions that the confounding variable is a clustering indica-
tor and that the treatment effects are constant across clusters (no
treatment-confounder interaction). Furthermore, although it is
not listed in the assumptions in the article, in order for f1(a, x)

and f2(z) to be jointly estimable even though z is a deterministic
function of a, Theorem 6 also requires f1 to be more smooth than
f2, for example, they cannot be collinear.

Theorem 7 identifies the causal effect of a subset of k out
of the m causes, assuming overlap/positivity for those k causes:
P((A1, . . . , Ak) ∈ A|Zi) > 0 for any set A such that P(A) > 0.
Because the conditioning event Zi is a deterministic function
of A1, . . . , Am, this is a stronger assumption than the classical
overlap assumption, and it greatly restricts the possible func-
tional forms for the deterministic function of A that gives Z.

This restriction will be greatest when k is close to m. Two open
questions are (1) whether these restrictions imply that the model
for Z is degenerate as m → ∞ and (2) whether they restrict the
observed data distribution in addition to restricting the function
of A that gives Z. Neither of these concerns is addressed in
the article, leaving open the possibility that the statement of
the theorem might be vacuous, requiring parametric and/or
additional causal assumptions in order for these conditions to
be met.4 This framework, but with k ≪ m and the addition
of parametric assumptions and exclusion restrictions (i.e. that
most causes are null), is often used to test the effects of many
SNPs in GWAS studies (e.g., Price et al. 2006; Gagnon-Bartsch,
Jacob, and Speed 2013; Wang et al. 2017).

2.3. The Number of Causes Must Go to Infinity

The identification results in WB require consistency of substi-
tute confounders (Definition 4 of WB), which generally holds
asymptotically as the number of causes, m, goes to infinity.
This is the case, for example, for probabilistic PCA and Pois-
son factorization, as discussed by WB and for which (n +
m) log(nm)/(nm) → 0 ensures consistency. Consistency likely
also requires either (a) a parametric factor model or (b) that a
discrete variable with finite support suffices to control for con-
founding. It is not immediately clear what estimands are defined
and identified in this limit, since Theorems 6–8 are written for
finite m. Furthermore, it is not clear whether identification holds
for any finite m. Of course, desirable frequentist properties for
estimators of causal effects often require asymptotic arguments.
However, in most settings that argument is required for estima-
tion but not for identification; here an asymptotic limit in both
the number of causes and the number of subjects is required for
unmeasured confounding to be controlled for and therefore for
identification.

However, the requirement that, in the limit, Z be a determin-
istic function of A suggests that it cannot, in fact, control for
confounding. This is because such a Z is independent of Y given
A, which is not true of confounders (see the analysis of Lemma
4). If causal effects are identifiable using such a Z, it must be
because bias due to unmeasured confounding is estimable with
a function of A, and that function is not collinear with the causal
effects themselves. In this case the method would have to rely for
identification not on ignorability, but rather on an assumption
that a biased, confounded effect and its bias are simultaneously
identified.

3. Conclusion

One of the most important roles of causal inference in statistics
and data science is to be transparent about the strong, usually
untestable assumptions under which causal inference is possible
(Pearl 2000; Robins 2001). The burden for transparency about
assumptions is arguably greater in causal inference than in
other areas of statistics, because it is crucial that scientists and
consumers of research, for example, policy makers or doctors,
have the tools to reason about whether an association is in fact
causal. To that end, our best current understanding of when it is

4 We are grateful to WB for pointing out that a previous version of this
statement was imprecise.
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justified to use a substitute confounder based on a factor analysis
to estimate causal estimands in the presence of unmeasured
confounding is under these conditions/assumptions (some of
which are explicit in WB):

1. No unmeasured single-cause confounders.
2. SUTVA
3. No M structures exist between A and Y .
4. The causes are not causally dependent.
5. No post-treatment variables are captured by Z.
6. Unmeasured multi-cause confounding is due to a depen-

dence or clustering structure that is common to each cause
and to the outcome.

7. Z is consistent, which may rule out confounding altogether
(see discussion above).

8. In the limit as the number of causes and the number of
observations go to infinity.

9. One of the following:

(a) Confounding is due to a clustering indicator, treatment
effects are constant in Z, continuous causes, and relative
smoothness constraints on functions of the causes and of
Z identify joint treatment effects of all of the causes (WB,
Theorem 6).

(b) Overlap for some causes identifies treatment effects for
those causes (WB, Theorem 7). This is at best a semipara-
metric assumption given the definition of Z in terms of
the causes (see discussion of semiparametric and para-
metric assumptions above).

(c) Common values of Z identify conditional potential out-
comes (WB, Theorem 8).

Some of these assumptions may be able to be relaxed
or replaced with different assumptions, but unfortunately—
we wish this were not the case!—it is impossible to identify
causal effects in the presence of unmeasured confounding with
nonparametric or empirically verifiable assumptions.
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We thank all the discussants for taking the time and energy to
build on this work; and we thank the editors for putting together
an engaging and thought-provoking collection of discussions.
After reading these contributions, we were struck that these are
not mere discussions—indeed, each is an article in itself. This
collection pushes forward “The Blessings of Multiple Causes”
in significant ways, offering new theory, new criticism, and
new application. After highlighting some of the themes of these
articles, we will turn to each individually.

“The Blessings of Multiple Causes” provide assumptions,
theory, and algorithms for multiple causal inference. The
deconfounder algorithm involves modeling the causes, using
the model to infer a substitute confounder, and then using the
substitute confounder in a downstream causal inference. The
deconfounder is not a black-box solution to causal inference.
Rather, it is a way to use careful domain-specific modeling in
the service of causal inference.

Causal inference with the deconfounder involves a number
of assumptions and trade-offs, and many of the discussants
highlighted these. Among them are the following. (1) There can
be no unobserved single-cause confounders. (2) When we apply
the deconfounder, we trade an increase in estimation variance
for a reduction in confounding bias; there is no free lunch. (3)
We do not recommend using the deconfounder with causally
dependent causes, such as a time series; finding a substitute
confounder may be too difficult in these scenarios.

There are many directions for further research, and the
discussants have pointed out several of the most important ones.
We need a more complete picture of identification; D’Amour
(2019) and the discussions here make good progress (see
Table1). We need to understand the finite-sample properties of
the deconfounder, and how to estimate uncertainty about causal
inferences when using a substitute multi-cause confounder. We
need rigorous methods of model criticism for assessing the
validity of the substitute confounder.

Deconfounder-like methods have already been used for
genome-wide association studies (e.g., Pritchard et al. 2000)
and estimating peer effects in networks (Shalizi and McFowland
III 2016). More broadly, the deconfounder strategy points to
many applications, including in genetics, psychology, education,
and marketing, where factor models are routinely fit to large-
scale data. We hope that statisticians and machine learners will

CONTACT Yixin Wang yixin.wang@columbia.edu Department of Statistics, Columbia University, New York, NY.

continue to study multiple causality, and that scientists and other
practitioners will adapt the deconfounder to help analyze and
understand their observational data.

1. Athey, Imbens, and Pollmann

Athey, Imbens, and Pollmann (AIP) consider a problem in eco-
nomics: how do the prices of products affect their demand? The
causes are prices; the outcome is demand; and the unobserved
confounders are shocks to demand that also affect price. AIP
apply the deconfounder to a setting of two products, gracefully
using their domain expertise to directly construct a substitute
confounder. They show that the deconfounder only helps when
the two products have highly correlated demand shocks, that is,
when there is shared unobserved confounding. AIP’s applica-
tion beautifully illustrates the importance of domain knowledge
to the deconfounder.

AIP compare two methods for estimating causal effects. The
deconfounder uses the average price of the two products as
the substitute confounder; the instrumental variable approach
uses the price of one product as an instrument for the other.
It is interesting that these two strategies work best in opposite
cases. The deconfounder works when the demand shocks of the
two products are highly correlated. The instrumental variable
works when they are not (or weakly) correlated. More precisely,
both the deconfounder and the instrumental variable approach
require the prices be correlated. But the deconfounder requires
that the driver of this correlation also affects the outcome, while
the instrumental variable approach requires that it not affect the
outcome.

AIP’s method further suggests extending the deconfounder
to more general structures of shared confounding. Unlike the
simpler settings in the article, AIP examine multiple causal
problems: each product’s price affects a different outcome, but
with shared unobserved confounders. We imagine that other
scientific settings bear the same parallel structure.

2. Imai and Jiang

Imai and Jiang (IJ) discuss two technical aspects of the decon-
founder.

© 2019 American Statistical Association
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Table 1. Identification in multiple causal inference.

Causal quantity Result Condition Source

P(Y(a)) Non-ID No conditions D’Amour (2019)
E [Y(a)] − E

[
Y(a′)

]
ID Consistent substitute confounder; Categorical

substitute confounder; No confounder/cause
interaction; Differentiable relationships

Theorem 6 (WB)

EA
[
EY

[
Y(a1:k , A(k+1):m)

]]
ID Consistent substitute confounder; A1:k satisfy

overlap
Theorem 7 (WB)

E
[

Y(a′) | A = a
]

ID Consistent substitute confounder; a′ and a map
to same substitute

Theorem 8 (WB)

E [Y(a)] ID E [U | A] nonlinear; E [Y | A, U] linear Section 2.1 (IJ)
E [Y(a)] ID Measure instrument W ; Instrument W satisfies

overlap
Section 2.2 (IJ)

∫
Y(a)q1(a) da −

∫
Y(a)q2(a) da ID p(a | z) > 0 when q1(a), q2(a) > 0 Section 2.3 (IJ)

NOTE: ID = identifiable.

They first point out the difficulty of defining “multi-cause”
and in particular of defining the assumption “no unobserved
single-cause confounders.” In the DAG language, this assump-
tion requires (1) the causal graph resides in a class where unob-
served confounders must be parents of two or more causes and
(2) the causal problem be faithful to the graph (Spirtes 2010).

We agree with IJ that it is difficult to simultaneously express
such graphical and faithfulness conditions in the potential out-
comes notation. The definition in the article attempts to express
faithfulness by considering the smallest sigma algebra that ren-
ders the causes conditionally independent (see condition 2 in
Definition 4). Note this definition excludes those multi-cause
confounders that can be separated into multiple single-cause
confounders, as illustrated in Figure 2 of IJ’s article.

IJ correctly note that it is unclear whether the definition
of “no unobserved single-cause confounders” in the article is
equivalent to the one we intended in the DAG language. As
suggested by IJ at JSM 2019, a more precise form of “no unob-
served single-cause confounders” may be: there exist a random
variable Z s.t. (1) Z satisfies p(a | z) = ∏m

j=1 p(aj | z) and
no sigma-algebra smaller than σ (Z) satisfies this equation; (2)
A1, . . . , Am ⊥ Y(a) | Z. Moreover, assessing the credibility of
“no unobserved single-cause confounders” may require sub-
stantial domain expertise. How to rigorously translate graphical
and faithfulness conditions into the potential outcomes notation
is an interesting direction of research.

The second thread of IJ’s article is about causal identifica-
tion of a complete intervention E [Y(a)], and the difficulty of
the deconfounder in satisfying overlap. Because the substitute
confounder Z is a function of the causes A, the overlap condition
P(A | Z) > 0 can be stringent. IJ consider three ways forward:
parametric assumptions, instrumental variables, and stochastic
interventions.

IJ’s parametric approach achieves the identification of
E [Y(a)] by the incongruence between the linear outcome
model and the nonlinear factor model. Related to IJ’s setting,
Theorem 6 in the article achieves identification via the incon-
gruence between the differentiability of the outcome model and
the non-differentiability of the substitute confounder. IJ’s result
and Theorem 6 suggest that the idea of incongruence may serve
as a general approach to causal identification.

IJ’s instrumental variable approach requires an overlap con-
dition that is weaker than the one required by the deconfounder.
But, as IJ illustrate in their discrete-variable example, this over-
lap condition may become more stringent as the number of

causes increases. Notice there may be an increasing number
of instrumental variables as the number of causes increases,
though not one of them might satisfy overlap by itself. IJ’s
thinking is suggestive of a direction of future investigation:
how to combine multiple instrumental variables in multi-cause
problems to satisfy overlap and obtain causal identification.

The final approach IJ explore is stochastic intervention. It
tackles the problem of overlap by restricting the causal queries.
This approach relates to Theorem 8 in the article, which restricts
the causal queries to those interventions that map to the same
value of the substitute confounder. But IJ’s approach is more
powerful than Theorem 8 because it handles causally dependent
causes. We look forward to more developments in the stochastic
intervention approach of multiple causal inference.

Including IJ’s new results, Table1 summarizes the current
landscape of identification results in multiple causality.

3. D’Amour

In both his discussion here and his earlier article (D’Amour
2019), Alex D’Amour has significantly contributed to the under-
standing of multi-causal identification. We have enjoyed a pro-
ductive conversation with him over the past years. We were glad
to read that the feeling is mutual.

In his discussion, D’Amour articulates the fundamental ten-
sion between using the causes to infer unobserved confounding
and using them to estimate causal effects. In other words, the
deconfounder does not provide free lunch: the more informa-
tion is baked into estimating the substitute confounder, the
less information is available for estimating causal quantities.
Moreover, the assumption that we can pinpoint the substitute
confounder is at odds with “all-cause” overlap, that is, that
P(A | Z) > 0. As D’Amour (2019) points out, both cannot be
simultaneously satisfied.

Theorems 6–8 in the article live at one extreme of this ten-
sion. They assume a pinpointed substitute confounder and forgo
overlap on all the causes. (Note it is still possible for subsets of
the causes to satisfy overlap, as in Theorem 7.) The pinpointed
substitute confounder is achievable thanks to the multiplicity
of the causes and the consistent estimability of factor models.
Going forward, how does identification fare as we move away
from this extreme? Point identification might no longer be
possible, but partial identification might be.
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With the same assumptions as Theorems 6–8, D’Amour stud-
ies both parametric and nonparametric identification. The para-
metric direction is risky without strong prior knowledge. But
certain applications enjoy parametric models that are worth
studying. For example, when we believe causal effects are small,
a structural model that is linear in the causes but nonparamet-
ric in the unobserved confounder may be reasonably close to
reality, Y = ∑m

j=1 βjAj + g(U) + ε. Identification conditions
for such parametric models can be convenient for practical
applications.

In the nonparametric direction, D’Amour explores Theorems
7 and 8 of the article. D’Amour’s Proposition 1 summarizes well
the essence of the theorems. Toward a more cautious applica-
tion of the deconfounder, he suggests performing conditional
independence tests or sensitivity analysis. This is an important
direction of investigation and could be useful in many scientific
domains.

4. Ogburn, Shpitser, and Tchetgen Tchetgen

Ogburn, Shpitser, and Tchetgen Tchetgen (OSTT) provide a
technical meditation on some of the theoretical aspects of the
article, and a dissenting opinion about its value. Among their
remarks, they claim that there are “foundational errors” with the
work and that the “premise is incorrect.” These claims are not
substantiated. There are no foundational errors; the premise is
correct.

The identification results in Theorems 6–8 capitalize on two
requirements: (1) the distribution of the causes p(a) can be
described by a factor model and (2) the factor model pinpoints
the substitute confounder Z, that is, Z a.s.= fθ (A) for some
fθ . The first requirement relies on the successful execution of
the deconfounder, that is, finding a factor model that captures
p(a). The conditional independence structure of factor models
guarantees that the substitute confounder Z pick up all multi-
cause confounders and no multi-cause mediators or colliders.
The second requirement is the “consistency of the substitute
confounder.” It is satisfied when the number of causes goes
to infinity and Z remains finite-dimensional. From Lemma 4,
it guarantees that Z cannot pick up single-cause confounders,
mediators, or colliders.

OSTT’s main concern revolves around Lemma 4, which
states the substitute confounder cannot pick up information
about multi-cause mediators, single-cause mediators, or any of
the other graphs that OSTT put forward. Lemma 4 is correct,
as is the proof in the article. But Lemma 4 might also seem
surprising. Here is an alternative proof.

Restatement of Lemma 4. No post-treatment variable can be
measurable with respect to a consistent substitute confounder.

Proof. First, the substitute cannot pick up any multi-cause post-
treatment variables. Otherwise, the substitute cannot render all
the causes conditionally independent.

The substitute also cannot pick up any single-cause variables.
These variables include pretreatment variables, such as single-
cause confounders, and single-cause post-treatment variables,
such as single-cause mediators or colliders.

The key idea behind the proof is the following. We assume
the causes pinpoint the substitute confounder Z a.s.= f (A; θ),
as is the case where there are many causes. The deconfounder
further requires that the converse is not true, that is, that the
substitute does not pinpoint the causes. This fact holds in a
probabilistic model of the causes, such as when the dimension
of the substitute stays fixed as the number of causes increases.
Further, the deconfounder requires that the factor model cannot
have one component of the substitute a priori be a deterministic
function of another component; this fact also holds in proba-
bilistic factor models. The proof then follows by contradiction:
if the substitute picks up single-cause variables then the factor
model must be “degenerate,” that is, nonprobabilistic.

Here are the details. Suppose the substitute Z does pick up
a single-cause variable. Then separate Z into a single-cause
component and a multi-cause one, Z = (Zs, Zm). Without loss
of generality, assume the single-cause component only depends
on the first cause. The assumption of a consistent substitute
confounder says

p(z | a, θ) = p(zs, zm | a, θ) = δ(fs(a ; θ),fm(a ; θ)), (1)

where a = (a1, . . . , am) are the m causes and f (·) are the deter-
ministic functions that map causes to substitute confounders.

Now calculate the conditional distribution of the single-cause
component given the causes,

p(zs | a)

=p(zs | a, zm = fm(a ; θ))), (2)
=p(zs | a1, zm = fm(a ; θ))), (3)

=p(zs | zm = fm(a ; θ)) · p(a1 | zs, zm = fm(a ; θ))

p(a1 | zm = fm(a ; θ))
. (4)

Equation (2) is due to the consistency of substitute confounder.
Equation (3) is due to Zs ⊥ A2, . . . , Am | A1, Zm. Equation (4) is
due to the definition of conditional probability.

Equation (4) and Equation (1) imply that at least one of
p(zs | zm = fm(a ; θ)) and p(a1 | zs, zm = fm(a ; θ)) is a point
mass. But this is a contradiction: either term being a point mass
implies that the factor model is degenerate. The former is a point
mass when one component Zs of the substitute is a deterministic
function of another component Zm. The latter is a point mass
when the first cause is a deterministic function of the latent Z.

Note the same argument would not reach a contradiction for
multi-cause variables Zm. The reason is that

p(zm | a)

=p(zm | a, zs = fs(a ; θ))), (5)

=
p(a1, zm | zs = fs(a ; θ))) · ∏m

j=2 p(aj | zm)

p(a)
, (6)

where
∏m

j=2 p(aj | zm) can converge to a point mass with non-
degenerate factor models and m → ∞.

OSTT also question the random variable on which we used
the Kallenberg construction in Lemmas 1 and 2. Definition
3 is the Kallenberg construction we intended, and it involves
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potential outcomes (see Equation (38) in the article). Lem-
mas 1 and 2 link factor models of the causes to their Kallen-
berg construction and unconfoundedness, thanks to the con-
sistency of the substitute confounder. Such a substitute can-
not separate a multi-cause confounder into single-cause con-
founders, as the one in OSTT’s counterexample does. OSTT
claim that the article leaves open that Theorem 7 is “vacuous”
because the overlap condition may be impossible to satisfy.
D’Amour’s discussion of the article shows how Theorem 7 can be
useful.

Finally, OSTT remark that requiring a pinpointed substi-
tute implies that the unobserved (multi-cause) confounding
is effectively observed. Their intuition is correct—the multi-
plicity of the causes and the consistent estimability of factor
models enable us to effectively observe such multi-cause con-
founding. It is these two features that form the basis of the
deconfounder.
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Supplementary Material: The Blessings of Multiple Causes

A Connections to genome-wide association studies

Many methods from the research literature, especially around genome-wide association studies,
can be reinterpreted as instances of the deconfounder algorithm. Each can be seen as positing a
factor model of assigned causes (Section 4.1) and a conditional outcome model (Section 4.2).

The deconfounder justifies each of these methods as forms of multiple causal inference and, though
predictive checks, points to how a researcher can usefully compare and assess them. Most of
these methods were motivated by imagining true unobserved confounding structure. However, the
theory around the deconfounder shows that a well-fitted factor model will capture confounders
independent of a researcher imagining what they may be; see the question in Section 5.

Below we describe many methods from the GWAS literature and show how they can be viewed
as deconfounder algorithms. The GWAS problem is described in Section 4.3.

Linear mixed models. The LMM is one the most popular classes of methods for analyzing
GWAS (Yu et al., 2006; Kang et al., 2008; Yang et al., 2014; Lippert et al., 2011; Loh et al., 2015;
Darnell et al., 2017). Seen through the lens of the deconfounder, an LMM posits a linear outcome
model that depends on both the SNPs and a scalar latent factor Zi.

In the LMM literature, Zi is not explicitly drawn from a factor model; rather, Z1:n are from a
multivariate Gaussian whose covariance matrix, called the “kinship matrix,” is calculated from
the observed SNPs a1:n. However, this is mathematically equivalent to posterior latent factors
from a one-dimensional principal component analysis (PCA) model. Subject to its capturing the
distribution of SNPs, the LMM is performing multiple causal inference with a deconfounder.

Principal component analysis. A related approach is to first perform (multi-dimensional) PCA
on the SNP matrix and then to estimate an outcome model from the corresponding residuals (Price
et al., 2006). This too is an instance of the deconfounder. As a factor model, PCA is described in
Eq. 9. Fitting an outcome model to its residuals is equivalent to conditioning on the reconstructed
assignments, Eq. 21.

Logistic factor analysis. Closely related to PCA is LFA (Song et al., 2015; Hao et al., 2015).
LFA can be seen as the following factor model,

Zi ªN (0, I)

ºi j |Zi ªN (z>i µ j,æ2), j = 1, . . . ,m,

Ai j |ºi j ªBinomial(2, logit°1(ºi j)), j = 1, . . . ,m.

If it captures the SNP matrix well, then Zi can be viewed as a substitute confounder.

With LFA in hand, Song et al. (2015) use inverse regression to perform association tests. Their ap-
proach is equivalent to assuming an outcome model conditional on the reconstructed assignments
a(ẑi), again Eq. 21, and subsequently testing for non-zero coefficients.

1



In a variant of LFA, Tran and Blei (2017) use a neural-network based model of the unobserved
confounder, connecting this model to a causal inference with a nonparametric structural equation
model (Pearl, 2009). They take an explicitly causal view of the testing problem.

Mixed-membership models. Finally, many statistical geneticists use mixed-membership mod-
els (Airoldi et al., 2014) to capture the latent population structure of SNPs, and then condition on
that structure in downstream analyses (Pritchard et al., 2000a,b; Falush et al., 2003, 2007). In ge-
netics, a mixed-membership model is a factor model that captures latent ancestral populations. The
latent variable Zi is on the K °1 simplex; it represents how much individual i reflects each ances-
tral population. The observed SNP Ai j comes from a mixture of Binomials, where Zi determines
its mixture proportions.

Using these models, researchers use a linear outcome model conditional on zi and devise tests
for significant associations (Pritchard et al., 2000b; Song et al., 2015; Tran and Blei, 2017). The
deconfounder justifies this practice from a causal perspective, and underlines the importance of
finding a model of population structure that captures the per-individual distribution of SNPs.

B Can the causes be causally dependent among themselves?

When the causes are causally dependent, the deconfounder can still provide unbiased estimates of
the potential outcomes. Its success relies on a valid substitute confounder.

Note there are cases where a valid substitute confounder cannot exist. For example, consider a
cause A1 that causally affects A2 according to A1 ªN (0,1), A2 = A1+≤,≤ªN (0,1). In this case,
a substitute confounder Z must satisfy Z a.s.= A1 or Z a.s.= A2, because it needs to render the two
causes conditionally independent. But such a Z does not satisfy overlap.

On the other hand, causal dependence among the causes does not necessarily imply the nonexis-
tence of a valid substitute confounder. Consider a different mechanism for the causal relationship
between A1 and A2,

A1 ªN (0,1),
A2 = |A1|+≤, ≤ªN (0,1).

Here Z a.s= |A1| is a valid substitute confounder; it satisfies overlap and renders A1 conditionally
independent of A2.

Empirically, it is hard to detect the nonexistence of a valid substitute confounder without knowing
the functional form of how the causes are structurally dependent. Insisting on using the decon-
founder in this case results in limited overlap and high variance causal estimates downstream.

To illustrate this phenomenon, we repeat the experiments in Section 6.1 with the same confounder
aage but three causes: amar,aexp and an additional cause amar+. We assume amar+ causally depend
on amar, where

amar+ = amar +"i,mar+, "i,mar+ ªN (0,0.12). (43)

2



Check Bias2 £10°2 Variance £10°2 MSE £10°2

No control – 41.89 0.01 41.90
Control for age (oracle) – 22.57 0.01 22.57

Control for 1-dim zline 3 29.98 16.97 46.96
Control for 1-dim a(zline) 3 28.01 18.49 46.50

Control for 1-dim zquad 3 25.10 16.70 41.80
Control for 1-dim a(zquad) 3 27.46 15.77 43.23

Table 5: Total bias and variance of the estimated causal coefficients Øexp and Ømar when there is a
third cause dependent on amar. The nonlinear factor model outperforms linear factor model. The
deconfounder estimate has much higher variance than usual (e.g., Table 4) when two of the causes
are dependent.

It implies that theoretically there exists no substitute confounders that can both satisfy overlap and
render the causes conditionally independent.

We simulate the outcome from

yi =Ømar amar,i +Øexp aexp,i +Øage aage,i +Ømar+ amar+,i +"i, (44)

where "i ªN (0,1). We generate the true causal coefficients from

Ømar ªN (0,1) Øexp ªN (0,1) Øage ªN (0,1) Ømar+ ªN (0,1). (45)

Nevertheless, we apply the deconfounder to this data. We model the three causes with one-
dimensional linear and quadratic factor model; both pass the predictive check, with a predictive
score of 0.28 and 0.20. Table 5 shows the bias and variance of the deconfounder estimate of Ømar
and Øexp. With causally dependent causes (Table 5), the deconfounder estimates have much larger
variance than usual (Table 4); it signals that the substitute confounder we constructed is close to
breaking overlap. That said, the deconfounder is still able to correct for a substantial portion of
confounding bias.

Finally, we recommend applying the deconfounder to non-causally dependent causes. A valid
substitute confounder is guaranteed to exist in this case; it will both satisfy overlap and render the
causes conditionally independent of each other.

C Causal identification with a quadratic factor model and a
linear outcome model

We establish causal identification when the true causal model is composed of a quadratic factor
model and a linear outcome model.
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We first write down the causal model:

Z = ≤Z , (46)

A1 =Æ10 +Æ11Z+Æ12Z2 +≤A1, (47)

A2 =Æ20 +Æ21Z+Æ22Z2 +≤A2, (48)
Y =Ø0 +Ø1A1 +Ø2A2 +∞Z+≤Y , (49)

where all the errors ≤Z ,≤A1,≤A2,≤Y are independent zero-mean Gaussian with a fixed but unknown
variance.

We note that all variables Z, A1, A2,Y are scalars in this example; only A1, A2,Y are observable;
Z is unobserved.

To prove identification, we show that the causal parameters Ø1 and Ø2 are both functions of the
moment generating function of (A1, A2,Y ).

we first rewrite Y :

Y = (Ø0 +Ø1Æ10 +Ø2Æ20)+ (Ø1Æ11 +Ø2Æ21 +∞) ·Z+ (Ø1Æ12 +Ø2Æ22) ·Z2 +Ø1≤A1 +Ø2≤A2 +≤Y ,

= (Ø1Æ12 +Ø2Æ22) ·
µ
Z+ Ø1Æ11 +Ø2Æ21 +∞

2 · (Ø1Æ12 +Ø2Æ22)

∂2
+Ø1≤A1 +Ø2≤A2 +≤Y

+
µ
Ø0 +Ø1Æ10 +Ø2Æ20 °

µ
Ø1Æ11 +Ø2Æ21 +∞
2 · (Ø1Æ12 +Ø2Æ22)

∂2∂

In other words, the observed random variable Y is a sum of a constant, a non-central ¬2 random
variable and a zero mean Gaussian random variable Ø1≤A1 +Ø2≤A2 +≤Y .

For notation simplicity, we denote the constants with separate symbols:

B0 ,Ø0 +Ø1Æ10 +Ø2Æ20, (50)

B1 ,Ø1Æ11 +Ø2Æ21 +∞, (51)

B2 ,Ø1Æ12 +Ø2Æ22. (52)

Therefore, we have

Y = B0 +B1 ·Z+B2 ·Z2 +≤Y , (53)

where ( Z
æZ

+ B1
2B2æZ

)2 is a non-central ¬2 random variable with the non-centrality parameter ∏ =
≥

B1
2B2æZ

¥2
and degree of freedom k = 1. (æ2

Z is the variance of Z.)

We leverage this property to identify the distribution ≤Y . Notice the moment generating function
of A1, A2,Y is

MA1,A2,Y (t1, t2, t3) (54)
=E [exp(t1A1 + t2A2 + t3Y )] (55)
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=exp(B0t3 +Æ10t1 +Æ20t2) (56)

·E
£
exp

°
(Æ11t1 +Æ21t2 +B1t3) ·Z+ (Æ12t1 +Æ22t2 +B2t3) ·Z2¢§ (57)

·E
£
t1≤A1 + t2≤A2 + t3(Ø1≤A1 +Ø2≤A2 +≤Y )

§
(58)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3)

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(59)

·E
∑
exp

µ
(Æ12t1 +Æ22t2 +B2t3)æ2

Z ·
µ

Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)æZ
+ Z
æZ

∂2∂∏
(60)

·E
£
t1≤A1 + t2≤A2 + t3(Ø1≤A1 +Ø2≤A2 +≤Y )

§
(61)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(62)

·
exp( ∏t

1°2t )
(1°2t)1/2 (63)

·exp(
1
2

(t1 + t3Ø1)2æ2
A1

)exp(
1
2

(t2 + t3Ø2)2æ2
A2

)exp(
1
2

t3æ
2
Y ) (64)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(65)

·
exp( ∏t

1°2t )
(1°2t)1/2 (66)

·exp(
1
2

(t1æ
2
A1

+Ø2
1æ

2
A1

t2
3 +2Ø1æ

2
A1

t1t3 + t2æ
2
A2

+Ø2
2æ

2
A2

t2
3 +2Ø2æ

2
A2

t2t3 +æ2
Y t3), (67)

where t = (Æ12t1 +Æ22t2 +B2t3)æ2
Z and ∏=

≥
Æ11t1+Æ21t2+B1t3

2(Æ12t1+Æ22t2+B2t3)æZ

¥2
.

Notice that the ratio of the coefficients in front of t2
3 and t1t3 is Ø1. Hence we can identify Ø1 from

the moment generating function of the unobserved random variables A1, A2,Y . The reason is the
incongruence between exponential functions, polynomial functions, and square root functions, i.e.
exponential functions can not be written as polynomials and others. The other components of the
moment generating functions Eqs. 65 and 66 do not contain the terms t2

3 and t1t3.

The high-level intuition behind the above calculation is the incongruence between the nonlinear
(quadratic) factor model and the linear outcome model. More specifically, the variance due to
≤Y in the linear outcome model cannot be attributed wrongfully to the causes and the confounder
Ø1A1 +Ø2A2 +∞Z; the former is Gaussian while the latter is non-Gaussian except when Æ12 =
Æ22 = 0. (This incongruence does not hold for the linear factor model and the linear outcome
model.)

For the same reason, we can identify the other causal parameter Ø2.

This result can be extended to other nonlinear factor models and linear outcome models.
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D Detailed Results of the GWAS Study

In this section, we present tables of results from the GWAS study in Section 6.2.

Tables 6 to 10 contain the result under the high SNR setting.

Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 49.66 39.39
Control for confounders§ — 40.27 31.09

(G)LMM — 46.22 37.81
PPCA 0.13 46.05 36.01
PF 0.15 44.58 36.30
LFA 0.14 43.02 36.65
GMM 0.01 47.33 40.24
DEF 0.18 41.05 33.88

Table 6: GWAS high-SNR simulation I: Balding-Nichols Model. (“Control for all confounders”
means including the unobserved confounders as covariates.) The deconfounder outperforms
(G)LMM; DEF performs the best among the five factor models. Predictive checking offers a good
indication of when the deconfounder fails.

Tables 11 to 15 contain the result under the low SNR setting.

E Detailed Results of the Movie Study

In this section, we present tables of results from the movies study in Section 6.3.

F Proof of Lemma 1

Proof sketch. First assume the Kallenberg construction in Eq. 37. This form shows that the as-
signed causes (Ai1, . . . , Aim) are captured by functions of Zi and randomization variables Ui j.
This fact, in turn, implies that the randomness in (Ai1, . . . , Aim) |Zi comes from the randomization
variables which are (by definition) independent of Yi(a). Therefore (Ai1, . . . , Aim) is conditionally
independent of Yi given Zi, i.e., unconfoundedness holds. Now assume that unconfoundedness
holds. We prove that this assumption implies a Kallenberg construction by building on the ran-
domization variable construction of conditional distributions (Kallenberg, 1997).

Proof. For notation simplicity, we suppress the i subscript in this proof.

We assume Z is a measurable space and A j, j = 1, . . . ,m are Borel spaces.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 68.78 38.16
Control for confounders§ — 60.29 32.76

(G)LMM — 65.25 35.41
PPCA 0.15 65.98 36.11
PF 0.17 64.25 34.79
LFA 0.17 64.00 37.08
GMM 0.02 67.23 35.40
DEF 0.20 63.73 33.71

Table 7: GWAS high-SNR simulation II: 1000 Genomes Project (TGP). (“Control for all con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms (G)LMM; DEF performs the best among the five factor models. Predictive checking offers
a good indication of when the deconfounder fails.

We first prove the necessity. Assume that A j = f j(Z,Uj), j = 1, . . . ,m, where f j, j = 1, . . . ,m are
measurable and

(U1, . . . ,Um)?? (Z,Y (a1, . . . ,am)) (68)

for all (a1, . . . ,am). By Proposition 5.18 in Kallenberg (1997), Eq. 68 implies

(U1, . . . ,Um)?? ZY (a1, . . . ,am),

and so
(Z,U1, . . . ,Um)?? ZY (a1, . . . ,am)

by Corollary 5.7 in Kallenberg (1997). It implies

(A1, . . . , Am)?? ZY (a1, . . . ,am)

for all (a1, . . . ,am) 2 A1 ≠ · · ·≠Am. The last step is because A j’s are measurable functions of
(Z,U1, . . . ,Um).

Now we prove the sufficiency. Assume that Y (a1, . . . ,am) ?? Z(A1, . . . , Am). Marginalizing out all
but one A j gives

Y (a1, . . . ,am)?? Z A j, j = 1, . . . ,m.

By Theorem 5.10 in Kallenberg (1997), there exists a measurable function f j : Z £ [0,1] ! A j
and a Uniform[0,1] random variable Ũ j satisfying Ũ j ?? (Z,Y (a1, . . . ,am)) such that the random
variable Ã j = f j(Z,Ũ j) satisfies

Ã j
d= A j and (Ã j, Z) d= (A j, Z).

Moreover, we have
Ã j ?? ZY (a1, . . . ,am)

with the same argument as the above necessity part.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 77.35 45.93
Control for confounders§ — 67.53 39.43

(G)LMM — 74.38 42.79
PPCA 0.14 74.45 43.27
PF 0.14 71.40 42.75
LFA 0.13 72.11 42.34
GMM 0.03 76.27 46.88
DEF 0.16 69.86 41.61

Table 8: GWAS high-SNR simulation III: Human Genome Diversity Project (HGDP). (“Control
for confounders” means including the unobserved confounders as covariates.) The deconfounder
outperforms (G)LMM; DEF performs the best among the five factor models. Predictive checking
offers a good indication of when the deconfounder fails.

Hence, by Proposition 5.6 in Kallenberg (1997),

P(Ã j 2 · | Z,Y (a1, . . . ,am))= P(Ã j 2 · | Z)= P(A j 2 · | Z)= P(A j 2 · | Z,Y (a1, . . . ,am)),

and so
(Ã j, Z,Y (a1, . . . ,am)) d= (A j, Z,Y (a1, . . . ,am)).

By Theorem 5.10 in Kallenberg (1997), we may choose some random variable Uj such that

Uj
d= Ũ j and (Ã j, Z,Y (a1, . . . ,am),Uj)

d= (A j, Z,Y (a1, . . . ,am),Ũ j).

In particular, we have
Uj ?? (Z,Y (a1, . . . ,am))

and
(A j, f j(Z,Uj))

d= (Ã j, f j(Z,Ũ j).

Since
Ã j = f j(Z,Ũ j)

and the diagonal in S2 is measurable, we have

A j
a.s.= f j(Z,Uj).

We then show (U1, . . . ,Um) ?? (Z,Y (a1, . . . ,am)). By Theorem 5.10 in Kallenberg (1997), there
exists a measurable function g1 : Y £Z £ [0,1] ! [0,1] and a Uniform[0,1] random variable Û1
satisfying Û1 ?? (Y (a1, . . . ,am), Z) and

(Y (a1, . . . ,am), Z,U1) d= (Y (a1, . . . ,am), Z, g1(Y (a1, . . . ,am), Z,Û1)).

Moreover, by
U1 ?? ZY (a1, . . . ,am),
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we have
g1(Y (a1, . . . ,am), Z,Û1)?? ZY (a1, . . . ,am)

there exists some measurable function g0
1 : Z £ [0,1]! [0,1] such that

g1(Y (a1, . . . ,am), Z,Û1)= g0
1(Z,Û1)

and
Û1 ?? (Z,Y (a1, . . . ,am)).

In other words, we have

(Y (a1, . . . ,am), Z,U1) d= (Y (a1, . . . ,am), Z, g0
1(Z,Û1)).

Repeating these steps, we again have from Theorem 5.10 in Kallenberg (1997) that there exists a
measurable function g2 : Y £Z £[0,1]2 ! [0,1] and a Uniform[0,1] random variable Û2 satisfying

(Y (a1, . . . ,am), Z,U1,U2)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g2(Y (a1, . . . ,am), Z,Û1,Û2))

and
Û2 ?? (Z,Y (a1, . . . ,am),Û1).

Again by
U1 ?? ZY (a1, . . . ,am),

we have a measurable function g0
2 : Z £ [0,1]2 ! [0,1] that satisfies

(Y (a1, . . . ,am), Z,U1,U2)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g0
2(Z,Û1,Û2)).

Repeating these steps m times, we have

(Y (a1, . . . ,am), Z,U1,U2, . . . ,Um)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g0
2(Z,Û1,Û2), . . . , g0

m(Z,Û1,Û2, . . . ,Ûm))

with
Û j ?? (Z,Y (a1, . . . ,am),Û1, . . . ,Û j°1), j = 1, . . . ,m.

We notice that the right side of the equation have conditional independence property

(g0
1(Z,Û1), g0

2(Z,Û1,Û2), . . . , g0
m(Z,Û1,Û2, . . . ,Ûm))?? ZY (a1, . . . ,am).

This implies the same property holds for the left side of the equation, that is

(U1, . . . ,Um)?? ZY (a1, . . . ,am).
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G Proof of Lemma 2

Proof sketch. The lemma is an immediate consequence of Lemma 2.22 in Kallenberg (1997) and
“no unobserved single-cause confounders”. We also rely p(µ1:m) and p(zi |ai) are point masses,
so they are a priori independent of the potential outcomes and the other latent variables.

Proof. For simplicity, we consider continuous random variables Ai j, Zi,µ j. Also, we assume there
are no single-cause confounders. The proof can be easily extended to accommodate discrete ran-
dom variables and observed single-cause confounders.

We first state the regularity condition: The domains of the causes, A j, j = 1, . . . ,m are Borel
subsets of compact intervals. Without loss of generality, we could assume A j = [0,1], j = 1, . . . ,m.

By Lemma 2.22 in Kallenberg (1997), there exists some measurable function f j : Z £[0,1]! [0,1]
such that ∞i j ?? Zi and

Ai j = f j(Zi,∞i j).

Furthermore, there exists some measurable function hi j :££ [0,1]! [0,1] such that

∞i j = hi j(µ j,!i j),

where !i j ?? (Zi,µ j) and !i j ªUniform[0,1]. Lastly, we write

Ui j = F°1
i j (∞i j)ªUniform[0,1],

where Fi j is the cumulative distribution function of ∞i j.

Eq. 35 implies that !i j, i = 1, . . . ,n, j = 1, . . . ,m are jointly independent: if they were not, then
Ai j = f j(Zi,hi j(µ j,!i j)) would not have been conditionally independent given Zi,µ j.

We thus have
Ai j = f j(Zi,Ui j),

where Ui j := F°1
i j (hi j(µi,!i j)).

Below we will prove that Ui j satisfies

(Ui1, . . . ,Uim)?? (Zi,Yi(a1, . . . ,am)). (69)

We will rely on the “no single-cause confounders” assumption and the consistency of substitute
confounder assumption p(zi |ai)= ± fµ(ai).

First, we notice that µ1:m are point masses; they satisfy (µ1, . . . ,µm)?? (Zi,Yi(a1, . . . ,am)).

Next, we notice that the “no single-cause confounders” assumption implies that there exists a
random variable Z̃i such that

p(ai1, . . . ,aim | z̃i)=
mY

j=1
p(ai j | z̃i) (70)
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and

Ai1, . . . , Aim ?Yi(a1, . . . ,am) | Z̃i. (71)

Moreover, no sigma algebra smaller than Z̃i satisfies Eq. 70. Further, the consistency of substitute
confounder assumption Zi = fµ(A i) required for the factor model implies that the Z̃i that satis-
fies Eq. 70 is unique, i.e. Z̃i

a.s.= Zi. The reason is that the consistency of substitute confounder
assumption implies

p(ai, zi)= p(ai)p(zi |ai)= p(ai) ·± fµ(ai),

which is a function of p(ai) by construction. This is a key step that illustrates how the consistency
of substitute confounder assumption interacts with the no single-cause confounder assumption to
provide causal identification. Hence, Zi also satisfies the unconfoundedness condition Eq. 71,
which implies Eq. 69 and also

(!i1, . . . ,!im)?? (Yi(a1, . . . ,am), Zi)

or equivalently, (!i1, . . . ,!im)??Yi(a1, . . . ,am) |Zi. In particular, for m = 2, we have

p(Yi(a1, . . . ,am),!i1,!i2 |Zi)
=p(!i1 |Zi) · p(Yi(a1, . . . ,am) |!i1, Zi) · p(!i2 |!i1,Yi(a1, . . . ,am), Zi)
=p(!i1 |Zi) · p(Yi(a1, . . . ,am) |Zi) · p(!i2 |Zi)

Finally, this argument illustrates how the “no single-cause confounders” assumption interacts with
the consistency of substitute confounder assumption.

If all pre-treatment single-cause confounders Wi are observed, we can simply expand Zi; we con-
sider Z0

i := (Zi,Wi) in the place of Zi. The same argument applies.

H Proof of Lemma 3

We first define multi-cause confounders. A multi-cause confounder is a confounder that confounds
two or more causes. The following definition formalizes this idea. This definition stems from
Definition 4 of VanderWeele and Shpitser (2013).

Definition 6. (Multi-cause confounder) A pretreatment covariate Ci is a multi-cause confounder
if there exists a set of pre-treatment covariates Vi (possibly empty) and a set J Ω {1, . . . ,m} with
|J| ∏ 2 such that (Ai j) j2J ?? Yi(ai1, . . . ,aim) |æ(Vi,Ci). Moreover, there is no proper subset Si of
æ(Vi,Ci) and no proper subset J0 of J such that (Ai j) j2J0 ??Yi(ai1, . . . ,aim) |Si.

Proof sketch. This proposition is a consequence of Lemma 1, Lemma 2, and a proof by contradic-
tion. The intuition is that if a confounder affects two or more causes then the substitute confounder
Zi must have captured it. Why? Obtain the substitute confounder Zi from a factor model; Lemma 1
ensures that it satisfies unconfoundedness. Now suppose we omitted a multi-cause confounder Ci.
Then the substitute confounder Zi could not have satisfied unconfoundedness: the omitted con-
founder Ci renders the causes and potential outcomes conditionally dependent, even given Zi.
Figure 1 gives the intuition with a graphical model and Appendix H gives a detailed proof.
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Proof. Without loss of generality, we work with two-cause confounders. The proof is directly
applicable to general multi-cause confounders.

We prove the proposition by contradiction. Suppose there exists such a multi-cause confounder
Wi,bad that is not measurable with respect to æ(Zi); we show that Zi could not have satisfied the
factor model Eq. 36.

By Lemma 2.22 in Kallenberg (1997), there exist some function f j such that Ai j = f j(Zi,Ui j),
where Ui j ?? Zi. ( f j is non-constant in Zi.)

Then Wi,bad being a multi-cause confounder has two implications:

1. There exist j1, j2 and nontrivial functions g1, g2 such that Ui j1 = g1(Wi,bad,∞i j1) and Ui j2 =
g2(Wi,bad,∞i j2), where (∞i j1,∞i j2)??Wi,bad;

2. There exists a nontrivial function h such that Yi(ai1, . . . ,aim) = h(Wi,bad,≤), where ≤ ??
Wi,bad.

These two statements implies that

(Ui j1,Ui j2) 6??Yi(ai1, . . . ,aim) |Zi,

because Wi,bad is not measurable with respect to æ(Zi). This implies

(Ui1, . . . ,Uim) 6??Yi(ai1, . . . ,aim) |Zi.

It contradicts the fact that Zi comes from the factor model (Eq. 35) with (Ui1, . . . ,Uim) ??
Yi(ai1, . . . ,aim) |Zi. Therefore, there does not exist such a multi-cause confounder.

Corollary 9. Under “no unobserved single-cause confounders”, any confounder must be mea-
surable with respect to the æ-algebra generated by the substitute confounder Zi and the observed
covariates Xi.

Proof. Because of “no unobserved single-cause confounders”, a single-cause confounder must be
measurable with respect to the observed covariates Xi. Because of Lemma 3, a multi-cause con-
founder must be measurable with respect to the substitute confounder Zi. Thus all confounders
must be measurable with respect to the union of the substitute confounders and the observed co-
variates (Zi, Xi).

Corollary 9 shows how the “no unobserved single-cause confounder” assumption is necessary for
the deconfounder; the substitute confounder Zi can only handle multi-cause confounders.

I Proof of Lemma 4

Proof sketch. The deconfounder separates inference of the substitute confounder from estimation
of causal effects; see Algorithm 1. This two-stage procedure guarantees that the substitute con-
founder is “pre-treatment”; it does not contain a mediator. The reason is that a mediator is, by
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definition, a post-treatment variable that affects the potential outcome. Thus it (almost surely) can-
not be identified with only the assigned causes and it is not measurable with respect to the observed
(pre-treatment) covariates Xi. Appendix I provides a detailed proof.

Proof. We prove the proposition by contradiction.

Consider a mediator M. We denote Mi(a) as the potential value of the mediator M for unit i when
the assigned cause is a. We show that Mi(ai) is almost surely not measurable with respect to Zi.

The deconfounder operating in two stages. Inferring the substitute confounder Zi is separated from
estimating the potential outcome. It implies that the substitute confounder is independent of the
outcomes conditional on the causes A i: Zi ?? Yi(A i) |A i. The intuition is that, without looking at
Yi(·), the only dependence between Zi and Yi must come from A i.

However, a mediator must satisfy Mi(A i) 6?? Yi(A i) |A i; otherwise, it has no mediation effect
(Imai et al., 2010). If a mediator is measurable with Zi, then Zi 6??Yi(A i) |A i. This contradicts the
conditional independence of Zi and Yi(A i) given A i. We ensured this conditional independence
by inferring the substitute confounder Zi based only on the causes A i.

As a consequence of “no unobserved single-cause confounders”, the substitute confounder, to-
gether with the observed covariates, captures all confounders.

J Proof of Proposition 5

The first part is a direct consequence of Lemmas 1 and 2.

We now prove the second part. We provide two constructions.

We start with the first trivial one. For any assigned causes A i, we consider a special case when
A i

a.s.= Zi. We have

p(ai1, . . . ,aim | zi)= ±zi =
mY

j=1
±zi j =

mY

j=1
p(ai j | zi) (72)

This step is due to point masses are factorizable. Therefore, we can write the distribution of A i in
the form of a factor model; we set µ j

a.s.= 0, j = 1, . . . ,m and Zi
a.s.= A i:

p(µ1:m, z1:n,a1:n)= p(µ1:m)p(z1:n |µ1:m)p(a1:n | z1:n,µ1:m) (73)
= p(µ1:m)p(z1:n)p(a1:n | z1:n) (74)

= p(µ1:m)p(z1:n)
nY

i=1

mY

j=1
p(ai j | zi) (75)

The second equality is due to Zi ?? µ1:m and A i ?? µ1:m |Zi. They are because µ j’s are point masses.
The third equality is due to the SUTVA assumption and Eq. 72.
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Choosing Zi
a.s.= A i, that is letting the substitute confounder Zi be the same as the assigned causes

A i, does not help with causal inference; see a related discussion on overlap around Eq. 6.

This result is only meant to exemplify the large capacity of factor models. Finally, this Zi
a.s.= A i

example also illustrates the fact that a factor model capturing p(ai) is not necessarily the true
assignment model.

We now present the second construction. It relies on copulas and the Sklar’s theorem. We follow
the modified distribution function from Rüschendorf (2009). Let X be a real random variable with
distribution function F and let V ª U(0,1) be uniformly distributed on (0,1) and independent of
X . The modified distribution function F(x,∏) is defined by

F(x,∏) := P(X < x)+∏P(X = x). (76)

Then if we construct U variables as

U := F(X ,V ), (77)

then we have

U = F(X°)+V (F(X )°F(X°)), (78)

U d=Uni f orm(0,1), (79)

X a.s.= F°1(U). (80)

Now we set Zi j = F°1
i j (Ai j), where Fi j is the modified distribution function of Ai j. We also set

µ j, j = 1, . . . ,m as point masses. The Sklar’s theorem then implies

p(µ1:m, z1:n,a1:n)= p(µ1:m)p(z1:n |µ1:m)p(a1:n | z1:n,µ1:m) (81)
= p(µ1:m)p(z1:n)p(a1:n | z1:n,µ1:m) (82)

= p(µ1:m)p(z1:n)
nY

i=1

mY

j=1
p(ai j | zi,µ j) (83)

The second equality is due to µ1:m being point masses; µ j, j = 1, . . . ,m can be considered as pa-
rameters of the marginal distribution of Ai j. The third equality is due to the SUTVA assumption
and the Sklar’s theorem.

This construction aligns more closely with the idea of the deconfounder; it aims to capture multi-
causes confounders that induces the dependence structure, i.e. the copula. However, the decon-
founder is different from directly estimating the copula; the latter is a more general (and harder)
problem.

K Proof of Theorem 6

Proof sketch. Theorem 6 rely on two results: (1) “no unobserved single-cause confounders” and
Lemma 3 ensure (Xi, Zi) capture all confounders; (2) the pre-treatment nature of Xi and Lemma 4
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ensure (Xi, Zi) capture no mediators. These results assert unconfoundedness given the substitute
confounders Zi and the observed covariates Xi. They greenlight us for causal inference if the
factor model admits consistent estimates of Zi, i.e. the substitute confounder has a degenerate
distribution P(Zi |A i)= ± f (A i).

Given these results, Theorem 6 identifies the average causal effect of all the causes by assuming
ra f (a1, . . . ,am) = 0 almost everywhere and a separable outcome model. These two assumptions
let us identify the average causal effect without assuming overlap.

More specifically, ra f (a1, . . . ,am) = 0 roughly requires that the substitute confounder is a step
function of the all causes. In other words, we can partition all possible values of (a1, . . . ,am) into
countably many regions. In each region, the value of the substitute confounder must be a constant.
But the substitute confounder can take different values in different regions. This condition ensures
that the average causal effect EY [Yi(a)]°EY

£
Yi(a0)

§
is identifiable if a and a0 belong to the same

region.

Further, we assume the outcome model be separable in the substitute confounder and the causes.
It roughly requires that there is no interaction between the substitute confounder and the causes.
This separability condition lets us identify the average causal effect for all values of a and a0. The
full proof is in Appendix K.

Proof. For notational simplicity, denote a= (a1, . . . ,am), a0 = (a0
1, . . . ,a0

m), and A i = (Ai1, . . . , Aim).
We also write fµ(·)= f (·).

We start with rewriting EY [Yi(a)]°EY
£
Yi(a0)

§
using the unconfoundedness assumption and the

separability assumption.

First notice that

EY [Yi(a)]=EZ,X [EY [Yi(a) |Xi, Zi]] (84)
=EX [ f1(a, Xi)]+EZ [ f2(Zi)] . (85)

The first equality is due to the tower property. The second equality is due to the separability
assumption. The third equality is due to linearity of expectations.

Hence we have

EY [Yi(a)]°EY
£
Yi(a0)

§
=EX [ f1(a, Xi)]°EX

£
f1(a0, Xi)

§
(86)

=
Z

C(a,a0)
raEX [ f1(a, Xi)]da, (87)

where C(a,a0) is a line where a and a0 are the end points. The second equality is due to the
fundamental theorem of calculus.

Next we see how the gradient of the potential outcome function raEX [ f1(a, Xi)] relates to the
gradient of the outcome model we fit. The key idea here is that the two gradients are equal in
regions {a : f (a)= c} for each c.
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We will rely on the consistent substitute confounder assumption. Notice that, for almost all a, we
have

raEX [ f1(a)]=raEX [ f3(a)] (88)

It is due to two observations. The first observation is that

raEX [EY [Yi |Zi = f (a), Ai = a, Xi]] (89)
=raEX [EY [Yi(a) |Zi = f (a), Ai = a, Xi]] (90)
=raEX [EY [Yi(a) |Zi = f (a), Xi]] (91)
=raEX [ f1(a, Xi)]+ra f2( f (a)) (92)
=raEX [ f1(a, Xi)]+r f (a) f2 ·ra f (a) (93)
=raEX [ f1(a, Xi)] (94)

The first equality is due to SUTVA. The second equality is due to is due to Proposition 5.1:
Yi(a) ? A i |Xi, Zi. The third equality is due to the separability condition. The fourth equality is
due to the chain rule. The fifth equality is due to ra f (a)= 0 up to a set of Lebesgue measure zero.

The second observation is that

raEX [EY [Yi |Zi = f (a), A i = a, Xi]] (95)
=raEX [ f3(a, Xi)]+ra f4( f (a)) (96)
=raEX [ f3(a, Xi)] (97)

Hence Eq. 88 is true because f1 and f3 are continuously differentiable.

Therefore, we have

EY [Yi(a)]°EY
£
Yi(a0)

§
(98)

=
Z

C(a,a0)
raEX [ f1(a, Xi)]da (99)

=
Z

C(a,a0)
raEX [ f3(a, Xi)]da (100)

=EX [ f3(a, Xi)]°EX
£
f3(a0, Xi)

§
(101)

=(EX [ f3(a, Xi)]+E [ f4(Zi)])° (EX
£
f3(a0, Xi)

§
+E [ f4(Zi)])) (102)

=
Z
EY

£
Yi |A i = a0, Xi, Zi

§
P(Zi, Xi)dZi dXi

°
Z
EY [Yi |A i = a, Xi, Zi]P(Zi, Xi)dZi dXi (103)

=EZ,X [EY [Yi |A i = a, Zi, Xi]]°EZ,X
£
EY

£
Yi |A i = a0, Zi, Xi

§§
. (104)

The first equality is due to Eq. 87. The second equality is due to Eq. 88. The third equality is due
to the fundamental theorem of calculus. The fourth equality is due to simple algebra. The fifth
equality is due to the separability condition.
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L Proof of Theorem 7

Proof. Lemma 1 and Lemma 2, together with “no unobserved single-cause confounders”, ensures
that the substitute confounder Zi and the observed covariate Xi satisfies

(Ai1, . . . , Aim)??Yi(ai1, . . . ,aim) |Zi, Xi. (105)

Therefore, we have

EA(k+1):m

£
EY

£
Yi(a1:k, Ai,(k+1):m)

§§
(106)

=EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim)

§§
(107)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim) |Zi, Xi

§§§
(108)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim) |Zi, Xi, Ai1 = a1, . . . , Aik = ak

§§§
(109)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(Ai1, . . . , Aik, Ai,k+1, . . . , Aim) |Zi, Xi, Ai1 = a1, . . . , Aik = ak

§§§
(110)

=EZ,X
£
EA(k+1):m [EY [Yi |Zi, Xi, Ai1 = a1, . . . , Aik = ak]]

§
(111)

=EZ,X [EY [Yi |Zi, Xi, Ai1 = a1, . . . , Aik = ak]] (112)
=EZ,X

£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
(113)

The first equality is an expansion of the notations. The second equality is due to the tower property.
The third equality is due to Eq. 105. The fourth equality is due to Ai1 = a1, . . . , Aik = ak. The fifth
equality is due to SUTVA. The sixth equality is due to the inner expectation does not depend on
A(k+1):m.

Therefore, we have

EA(k+1):m

£
EY

£
Yi(a1:k, Ai,(k+1):m)

§§
°EA(k+1):m

£
EY

£
Yi(a0

1:k, Ai,(k+1):m)
§§

=EZ,X
£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
°EZ,X

£
EY

£
Yi |Zi, Xi, Ai,1:k = a0

1:k
§§

by the linearity of expectation.

Finally, EZ,X
£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
can be estimated from the observed data because (1)

Ai,1:k satisfy overlap with respect to (Zi, Xi) and (2) the substitute confounder Z can be consis-
tently estimated.

M Proof of Theorem 8

Proof. As with Theorem 6 and Theorem 7, Theorem 8 relies on the unconfoundedness given the
substitute confounders Zi and the observed covariates Xi due to Lemma 3 and Lemma 4.

Given this unconfoundedness, Theorem 8 identifies the mean potential outcome of an individ-
ual given its current cause assignment Ai = (a1, . . . ,am); it only requires that the new cause as-
signment of interest (a0

1, . . . ,a0
m) lead to the same substitute confounder estimate: f (a1, . . . ,am) =

f (a0
1, . . . ,a0

m).
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To prove identification, we rewrite this conditional mean potential outcome

EY
£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am

§
(114)

=EZ,X
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am, Zi, Xi

§§
(115)

=EX
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am, Zi = f (a1, . . . ,am), Xi

§§
(116)

=EX
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a0

1, . . . , Aim = a0
m, Zi = f (a1, . . . ,am), Xi

§§
(117)

=EZ,X
£
EY

£
Yi |Ai1 = a0

1, . . . , Aim = a0
m, Zi, Xi

§§
(118)

The first equality is due to the tower property. The second equality is due to the consistency
requirement on the substitute confounder P(Zi |A i) = ± f (A i). The third equality is due to uncon-
foundedness given Zi, Xi. The fourth equality is estimable from the data because f (a1, . . . ,am) =
f (a0

1, . . . ,a0
m). Hence the nonparametric identification of EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am

§

is established. We note that this identification result does not require overlap.

N Details of Section 6.2

We follow Song et al. (2015) in simulating the allele frequencies. We present the full details here.

We simulate the n£m matrix of genotypes A from Ai j ª Binomial(2,Fi j), where F is the n£m
matrix of allele frequencies. Let F = °S, where ° is n£d and S is d£m with d ∑ m. The d£m
matrix S encodes the genetic population structure. The n£ d matrix ° maps how the structure
affects the allele frequencies of each SNP. Table 19 details how we generate ° and S for each
simulation setup.

For each simulation scenarios, we generate 100 independent studies. We then simulate a trait; we
consider two types: one continuous and one binary. For each trait, three components contributing
to the trait: causal signals

Pm
j=1Ø jai j, confounder ∏i, and random effects ≤i.

Notice that the SNPs are affected by some latent population structure. We simulate the confounder
∏i and the random effects ≤i so that they depend on the latent population structure as well.

For the confounder ∏i, we first perform K-means clustering on the columns of S with K = 3 using
Euclidean distance. This assigns each individual i to one of three mutually exclusive cluster sets
S1,S2,S3, where Sk Ω {1,2, . . . ,n}. Set ∏ j = k if j 2Sk,k = 1,2,3.

We then simulate the random effects ≤i. Let ø2
1,ø2

2,ø2
3

iidª InvGamma(3,1), and set æ2
i = ø2

k for all
j 2S i,k = 1,2,3. Draw ≤i ªN (0,æ2

i ).

We control the SNR to mimic the highly noisy nature of GWAS data sets. In the low SNR setting,
we simulate datasets of n = 5000 individuals and m = 100,000 SNPs; we let the causal signalsPm

j=1Ø jai j contribute to ∫gene = 0.1 of the variance, the confounder ∏i contribute ∫conf = 0.2, and
the random effects ≤i contribute ∫noise = 0.7. We set the first 10% of the m SNPs to be the true
causal SNPs (Ø j 6= 0,Ø j

iidª N (0,1); Ø j = 0 for the rest of the SNPs. In the high SNR setting, we
simulate datasets of n = 5,000 individuals and m = 5,000 SNPs; we have ∫gene = 0.4, ∫conf = 0.4,
and ∫noise = 0.2.
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We set

∏i √
"

s.d.{
Pm

j=1Ø jai j}n
i=1

p
∫gene

#" p
∫conf

s.d.{∏i}n
i=1

#

∏i, (119)

≤i √
"

s.d.{
Pm

j=1Ø jai j}n
i=1

p
∫gene

#" p
∫noise

s.d.{≤i}n
i=1

#

≤i. (120)

We finally generate a real-valued outcome from a linear model and a binary outcome from a logistic
model:

yi,real =
mX

j=1
Ø jai j +∏i +≤i, (121)

yi,binary ªBernoulli

√
1

1+exp(
Pm

j=1Ø jai j +∏i +≤i)

!

. (122)
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

Æ= 0.01 No control — 40.68 30.37
Control for confounders§ — 34.35 28.21

(G)LMM — 39.09 28.36
PPCA 0.15 38.14 28.97
PF 0.16 34.77 28.67
LFA 0.16 35.87 28.33
GMM 0.02 38.15 29.69
DEF 0.18 34.84 28.04

Æ= 0.1 No control — 43.87 36.77
Control for confounders§ — 37.62 33.89

(G)LMM — 39.97 35.76
PPCA 0.21 39.60 35.61
PF 0.19 38.95 34.28
LFA 0.18 39.28 34.73
GMM 0.00 44.38 36.44
DEF 0.20 38.75 34.85

Æ= 0.5 No control — 47.38 41.84
Control for confounders§ — 43.63 39.86

(G)LMM — 47.28 42.91
PPCA 0.14 46.90 41.41
PF 0.16 43.29 40.69
LFA 0.17 43.60 40.77
GMM 0.02 46.95 42.47
DEF 0.18 43.09 40.03

Æ= 1.0 No control — 53.94 49.32
Control for confounders§ — 47.12 45.96

(G)LMM — 49.21 48.96
PPCA 0.21 50.57 47.58
PF 0.19 48.07 46.16
LFA 0.17 49.27 46.16
GMM 0.02 52.28 50.31
DEF 0.23 47.82 45.62

Table 9: GWAS high-SNR simulation IV: Pritchard-Stephens-Donnelly (PSD). (“Control for con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms (G)LMM; DEF often performs the best among the five factor models. Predictive checking
offers a good indication of when the deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

ø= 0.1 No control — 47.47 45.16
Control for confounders§ — 44.22 43.85

(G)LMM — 47.35 44.15
PPCA 0.08 47.61 44.36
PF 0.09 47.13 43.69
LFA 0.09 47.16 43.87
GMM 0.01 47.55 45.95
DEF 0.10 46.95 43.62

ø= 0.25 No control — 44.68 41.10
Control for confounders§ — 41.23 39.65

(G)LMM — 43.42 40.67
PPCA 0.11 43.26 41.28
PF 0.12 43.30 41.10
LFA 0.13 43.62 41.65
GMM 0.01 44.81 41.02
DEF 0.13 43.35 40.97

ø= 0.5 No control — 45.18 40.92
Control for confounders§ — 41.33 37.35

(G)LMM — 44.83 40.59
PPCA 0.10 43.78 39.99
PF 0.09 43.65 40.23
LFA 0.10 43.88 40.04
GMM 0.01 46.08 40.76
DEF 0.12 43.57 40.02

ø= 1.0 No control — 56.57 57.70
Control for confounders§ — 52.98 55.46

(G)LMM — 56.44 56.33
PPCA 0.14 55.18 57.36
PF 0.12 55.29 56.31
LFA 0.13 54.75 56.66
GMM 0.01 57.15 57.55
DEF 0.12 55.07 56.22

Table 10: GWAS high-SNR simulation V: Spatial model. (“Control for confounders” means
including the unobserved confounders as covariates.) The deconfounder often outperforms
(G)LMM. Predictive checking offers a good indication of when the deconfounder fails: GMM
poorly captures the SNPs; it can amplify the error in causal estimates.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 6.55 5.75
Control for confounders§ — 6.54 5.75

(G)LMM — 6.54 5.74
PPCA 0.14 6.52 5.74
PF 0.16 6.53 5.74
LFA 0.14 6.54 5.74
GMM 0.01 6.54 5.74
DEF 0.19 6.47 5.74

Table 11: GWAS low-SNR simulation I: Balding-Nichols Model. (“Control for all confounders”
means including the unobserved confounders as covariates.) The deconfounder outperforms LMM;
DEF performs the best among the five factor models; it also outperforms using the (unobserved)
confounder information. Predictive checking offers a good indication of when the deconfounder
fails.

Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 8.31 4.85
Control for confounders§ — 8.28 4.85

(G)LMM — 8.29 4.85
PPCA 0.14 8.29 4.85
PF 0.15 8.29 4.85
LFA 0.17 8.26 4.85
GMM 0.02 8.30 4.85
DEF 0.20 8.11 4.84

Table 12: GWAS low-SNR simulation II: 1000 Genomes Project (TGP). (“Control for all con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms LMM; DEF performs the best among the five factor models; it also outperforms using the
(unobserved) confounder information. Predictive checking offers a good indication of when the
deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 9.59 5.84
Control for confounders§ — 9.52 5.84

(G)LMM — 9.57 5.84
PPCA 0.14 9.55 5.84
PF 0.13 9.56 5.84
LFA 0.14 9.54 5.84
GMM 0.03 9.59 5.84
DEF 0.16 9.47 5.83

Table 13: GWAS low-SNR simulation III: Human Genome Diversity Project (HGDP). (“Control
for confounders” means including the unobserved confounders as covariates.) The deconfounder
outperforms LMM; DEF performs the best among the five factor models; it also outperforms using
the (unobserved) confounder information. Predictive checking offers a good indication of when
the deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

Æ= 0.01 No control — 3.73 3.23
Control for confounders§ — 3.71 3.23

(G)LMM — 3.71 3.23
PPCA 0.13 3.64 3.23
PF 0.16 3.67 3.23
LFA 0.16 3.66 3.23
GMM 0.02 3.72 3.23
DEF 0.18 3.59 3.22

Æ= 0.1 No control — 4.09 3.84
Control for confounders§ — 4.09 3.84

(G)LMM — 4.09 3.84
PPCA 0.20 4.08 3.84
PF 0.18 4.08 3.84
LFA 0.18 4.07 3.84
GMM 0.00 4.09 3.84
DEF 0.20 4.05 3.83

Æ= 0.5 No control — 4.82 4.14
Control for confounders§ — 4.81 4.14

(G)LMM — 4.82 4.14
PPCA 0.14 4.81 4.13
PF 0.17 4.80 4.13
LFA 0.16 4.81 4.14
GMM 0.03 4.82 4.14
DEF 0.19 4.80 4.13

Æ= 1.0 No control — 5.43 4.58
Control for confounders§ — 5.38 4.57

(G)LMM — 5.40 4.58
PPCA 0.21 5.38 4.57
PF 0.16 5.41 4.57
LFA 0.19 5.40 4.57
GMM 0.02 5.43 4.58
DEF 0.24 5.37 4.57

Table 14: GWAS low-SNR simulation IV: Pritchard-Stephens-Donnelly (PSD). (“Control for
confounders” means including the unobserved confounders as covariates.) The deconfounder out-
performs LMM; DEF performs the best among the five factor models; it also outperforms using
the (unobserved) confounder information. Predictive checking offers a good indication of when
the deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

ø= 0.1 No control — 4.66 4.74
Control for confounders§ — 4.63 4.73

(G)LMM — 4.57 4.73
PPCA 0.09 4.62 4.74
PF 0.08 4.58 4.74
LFA 0.09 4.54 4.73
GMM 0.02 4.70 4.74
DEF 0.10 4.53 4.73

ø= 0.25 No control — 4.30 3.81
Control for confounders§ — 3.81 3.79

(G)LMM — 4.28 3.80
PPCA 0.10 4.26 3.80
PF 0.12 4.26 3.80
LFA 0.12 4.27 3.80
GMM 0.01 4.30 3.81
DEF 0.13 4.25 3.80

ø= 0.5 No control — 4.30 3.85
Control for confounders§ — 3.82 3.83

(G)LMM — 4.28 3.83
PPCA 0.11 4.27 3.83
PF 0.09 4.28 3.84
LFA 0.11 4.27 3.84
GMM 0.01 4.29 3.84
DEF 0.13 4.25 3.84

ø= 1.0 No control — 6.71 5.52
Control for confounders§ — 5.43 5.51

(G)LMM — 6.70 5.52
PPCA 0.14 6.70 5.52
PF 0.12 6.70 5.52
LFA 0.12 6.69 5.52
GMM 0.01 6.72 5.53
DEF 0.13 6.62 5.51

Table 15: GWAS low-SNR simulation V: Spatial model. (“Control for confounders” means in-
cluding the unobserved confounders as covariates.) The deconfounder often outperforms LMM;
DEF often performs the best among the five factor models. Yet, the deconfounder does not out-
perform using the (unobserved) confounder information. Spatially-induced SNPs challenge many
latent variable models to capture its patterns and fully deconfound causal inference. Predictive
checking offers a good indication of when the deconfounder fails: GMM poorly captures the SNPs;
it can amplify the error in causal estimates.
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Control Average predictive log-likelihood

No Control -1.1
Control for X -1.1
Control for âPPCA -1.2
Control for âPF -1.2
Control for âDEF -1.2
Control for (âPPCA, X ) -1.3
Control for (âPF, X ) -1.2
Control for (âDEF, X ) -1.2

Table 16: Average predictive log-likelihood on a holdout set of all movies. (X represents the
observed covariates.) Causal models (the deconfounder) predicts slightly worse than prediction
models.

Control Average predictive log-likelihood

No Control -2.5
Control for X -2.1
Control for âPPCA -1.6
Control for âPF -1.5
Control for âDEF -1.5
Control for (âPPCA, X ) -1.7
Control for (âPF, X ) -1.5
Control for (âDEF, X ) -1.6

Table 17: Average predictive log-likelihood on the holdout set of non-English movies. (X rep-
resents the observed covariates.) On a test set of uncommon movies, causal models with the
deconfounder predict better than prediction models.

Control Average predictive log-likelihood

No Control -2.1
Control for X -1.9
Control for âPPCA -1.4
Control for âPF -1.2
Control for âDEF -1.3
Control for (âPPCA, X ) -1.4
Control for (âPF, X ) -1.3
Control for (âDEF, X ) -1.2

Table 18: Average predictive log-likelihood on the holdout set of non-drama/comedy/action
movies. (X represents the observed covariates.) On a test set of uncommon movies, causal models
with the deconfounder predict better than prediction models.
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Model Simulation details

Balding-Nichols
Model (Balding-
Nichols)

Each row i of ° has i.i.d. three independent and identically dis-
tributed draws from the Balding- Nichols model: ∞ik

iidª BN(pi,Fi),
where k 2 {1,2,3}. The pairs (pi,Fi) are computed by randomly se-
lecting a SNP in the HapMap data set, calculating its observed al-
lele frequency and estimating its FST value using the Weir & Cock-
erham estimator (Weir and Cockerham, 1984). The columns of S were
Multinomial(60/210,60/210,90/210), which reflect the subpopulation
proportions in the HapMap data set.

1000 Genomes
Project (TGP)

The matrix ° was generated by sampling ∞ik
iidª 0.9£Uniform(0,0.5),

for k = 1,2 and setting ∞i3 = 0.05. In order to generate S, we compute
the first two principal components of the TGP genotype matrix after
mean centering each SNP. We then transformed each principal com-
ponent to be between (0,1) and set the first two rows of S to be the
transformed principal components. The third row of S was set to 1, i.e.
an intercept.

Human Genome
Diversity Project
(HGDP)

Same as TGP but generating S with the HGDP genotype matrix.

Pritchard-
Stephens-
Donnelly (PSD)

Each row i of ° has i.i.d. three independent and identically distributed
draws from the Balding- Nichols model: ∞ik

iidª BN(pi,Fi), where
k 2 {1,2,3}. The pairs (pi,Fi) are computed by randomly selecting a
SNP in the HGPD data set, calculating its observed allele frequency
and estimating its FST value using the Weir & Cockerham estimator
(Weir and Cockerham, 1984). The estimator requires each individual
to be assigned to a subpopulation, which were made according to the
K = 5 subpopulations from the analysis in Rosenberg et al. (2002).
The columns of S were sampled (s1 j, s2 j, s3 j

iidª Dirichlet(Æ,Æ,Æ) for
j = 1, . . . ,m,Æ= 0.01,0.1,0.5,1.

Spatial The matrix ° was generated by sampling ∞ik
iidª 0.9£Uniform(0,0.5),

for k = 1,2 and setting ∞i3 = 0.05. The first two rows of S correspond
to coordinates for each individual on the unit square and were set to
be independent and identically distributed samples from Beta(ø,ø),ø =
0.1,0.25,0.5,1, while the third row of S was set to be 1, i.e. an intercept.
As ø ! 0, the individuals are placed closer to the corners of the unit
square, while when ø= 1, the individuals are distributed uniformly.

Table 19: Simulating allele frequencies.
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