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ABSTRACT
A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distribu-
tions. To address this challenge, variational Bayes (VB) methods have emerged as a popular alternative to
the classical Markov chain Monte Carlo (MCMC) methods. VB methods tend to be faster while achieving
comparable predictive performance. However, there are few theoretical results around VB. In this article,
we establish frequentist consistency and asymptotic normality of VB methods. Specifically, we connect
VB methods to point estimates based on variational approximations, called frequentist variational approx-
imations, and we use the connection to prove a variational Bernstein–von Mises theorem. The theorem
leverages the theoretical characterizations of frequentist variational approximations to understand asymp-
totic properties of VB. In summary, we prove that (1) the VB posterior converges to the Kullback–Leibler (KL)
minimizer of a normal distribution, centered at the truth and (2) the corresponding variational expectation
of the parameter is consistent and asymptotically normal. As applications of the theorem, we derive
asymptotic properties of VB posteriors in Bayesian mixture models, Bayesian generalized linear mixed
models, and Bayesian stochastic blockmodels. We conduct a simulation study to illustrate these theoretical
results. Supplementary materials for this article are available online.

1. Introduction

Bayesian modeling is a powerful approach for discovering hid-
den patterns in data. We begin by setting up a probability
model of latent variables and observations.We incorporate prior
knowledge by setting priors on latent variables and a functional
form of the likelihood. Finally, we infer the posterior, the condi-
tional distribution of the latent variables given the observations.

Formanymodern Bayesianmodels, exact computation of the
posterior is intractable and statisticians must resort to approx-
imate posterior inference. For decades, Markov chain Monte
Carlo (MCMC) sampling (Hastings 1970; Gelfand and Smith
1990; Robert and Casella 2004) has maintained its status as
the dominant approach to this problem. MCMC algorithms are
easy to use and theoretically sound. In recent years, however,
data sizes have soared. This challenges MCMC methods, for
which convergence can be slow, and calls upon scalable alterna-
tives. One popular class of alternatives is variational Bayes (VB)
methods.

To describeVB,we introduce notation for the posterior infer-
ence problem. Consider observations x = x1:n. We posit local
latent variables z = z1:n, one per observation, and global latent
variables θ = θ1:d . This gives a joint,

p(θ, x, z) = p(θ )

n∏
i=1

p(zi | θ )p(xi | zi, θ ). (1)

The posterior inference problem is to calculate the posterior
p(θ, z | x).
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This division of latent variables is common in modern
Bayesian statistics. (In particular, our results are applicable to
general models with local and global latent variables (Hoffman
et al. 2013). The number of local variables z increases with
the sample size n; the number of global variables θ does not.
We also note that the conditional independence of Equation
(1) is not necessary for our results. But we use this common
setup to simplify the presentation.) In the Bayesian Gaussian
mixture model (GMM) (Roberts et al. 1998), the component
means, covariances, and mixture proportions are global latent
variables; the mixture assignments of each observation are local
latent variables. In the Bayesian generalized linear mixed model
(GLMM) (Breslow and Clayton 1993), the intercept and slope
are global latent variables; the group-specific random effects are
local latent variables. In the Bayesian stochastic block model
(SBM) (Hofman and Wiggins 2008), the cluster assignment
probabilities and edge probabilities matrix are two sets of global
latent variables; the node-specific cluster assignments are local
latent variables. In the latent Dirichlet allocation (LDA) model
(Blei, Ng, and Jordan 2003), the topic-specificword distributions
are global latent variables; the document-specific topic distribu-
tions are local latent variables. We will study all these examples
below.

VB methods formulate posterior inference as an optimiza-
tion (Jordan et al. 1999; Wainwright and Jordan 2008; Blei,
Kucukelbir, and McAuliffe 2016). We consider a family of dis-
tributions of the latent variables and then find the member of
that family that is closest to the posterior.
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Here, we focus on mean-field variational inference (though
our results apply more widely). First, we posit a family of factor-
izable probability distributions on latent variables

Qn+d =
⎧⎨
⎩q : q(θ, z) =

d∏
i=1

qθi (θi)

n∏
j=1

qzj (z j)

⎫⎬
⎭ .

This family is called the mean-field family. It represents a joint of
the latent variables with n + d (parametric) marginal distribu-
tions, {qθ1 , . . . , qθd , qz1 , . . . , qzn}.

VB finds the member of the family closest to the exact poste-
rior p(θ, z | x), where closeness is measured by KL divergence.
Thus VB seeks to solve the optimization,

q∗(θ, z) = argmin
q(θ,z)∈Qn+d

KL(q(θ, z) || p(θ, z|x)). (2)

In practice, VB finds q∗(θ, z) by optimizing an alternative
objective, the evidence lower bound (ELBO),

ELBO(q(θ, z)) = −
∫

q(θ, z) log
q(θ, z)
p(θ, x, z)

dθdz. (3)

This objective is called the ELBO because it is a lower bound on
the evidence log p(x). More importantly, the ELBO is equal to
the negative KL plus log p(x), which does not depend on q(·).
Maximizing the ELBO minimizes the KL (Jordan et al. 1999).

The optimum q∗(θ, z) = q∗(θ )q∗(z) approximates the pos-
terior, and we call it the VB posterior. (For simplicity, we will
write q(θ, z) = ∏d

i=1 q(θi)
∏n

j=1 q(z j), omitting the subscript
on the factors q(·). The understanding is that the factor is
indicated by its argument.) Though it cannot capture posterior
dependence across latent variables, it has hope to capture each of
their marginals. In particular, this article is about the theoretical
properties of the VB posterior q∗(θ ), the VB posterior of θ . We
will also focus on the corresponding expectation of the global
variable, that is, an estimate of the parameter. It is

θ̂∗
n :=

∫
θ · q∗(θ )dθ.

We call θ∗ the variational Bayes estimate (VBE).
VB methods are fast and yield good predictive performance

in empirical experiments (Blei, Kucukelbir, and McAuliffe
2016). However, there are few rigorous theoretical results. In
this article, we prove that (1) the VB posterior converges in total
variation (TV) distance to the KL minimizer of a normal distri-
bution centered at the truth and (2) the VBE is consistent and
asymptotically normal.

These theorems are frequentist in the sense that we assume
the data come from p(x, z ; θ0) with a true (nonrandom)
θ0. We then study properties of the corresponding posterior
distribution p(θ | x), when approximating it with variational
inference. What this work shows is that the VB posterior is con-
sistent even though the mean field approximating family can be
a brutal approximation. In this sense, VB is a theoretically sound
approximate inference procedure.

1.1. Main Ideas

Wedescribe the results of the article. Along theway, wewill need
to define some terms: the variational frequentist estimate (VFE),

Table . Glossary of terms.

Name Definition

Variational
log-likelihood

Mn(θ ; x) := supq(z)∈Qn
∫
q(z) log p(x,z|θ )

q(z) dz

Variational
frequentist
estimate (VFE)

θ̂n := argmax
θ
Mn(θ ; x)

VB ideal π∗(θ |x) := p(θ ) exp{Mn(θ ; x)}∫
p(θ ) exp{Mn(θ ; x)}dθ

Evidence Lower
Bound (ELBO)

ELBO(q(θ, z)) := ∫ ∫
q(θ )q(z) log p(x,z,θ )

q(θ )q(z)dθdz

VB posterior q∗(θ ) := argmaxq(θ )∈Qd supq(z)∈Qn ELBO(q(θ, z))
VB estimate
(VBE)

θ̂∗
n := ∫

θ · q∗(θ )dθ

the variational log-likelihood, the VB posterior, the VBE, and
the VB ideal. Our results center around the VB posterior
and the VBE. (Table 1 contains a glossary of terms.)

The variational frequentist estimate (VFE) and the variational
log-likelihood. The first idea that we define is the variational fre-
quentist estimate (VFE). It is a point estimate of θ that maxi-
mizes a local variational objective with respect to an optimal
variational distribution of the local variables. (The VFE treats
the variable θ as a parameter rather than a random variable.)
We call the objective the variational log-likelihood,

Mn(θ ; x) = max
q(z)

Eq(z)
[
log p(x, z | θ ) − log q(z)

]
. (4)

In this objective, the optimal variational distribution q†(z)
solves the local variational inference problem,

q†(z) = argmin
q

KL(q(z) || p(z | x, θ )). (5)

Note that q†(z) implicitly depends on both the data x and the
parameter θ .

With the objective defined, the VFE is

θ̂n = argmax
θ

Mn(θ ; x). (6)

It is usually calculated with variational expectation maximiza-
tion (EM) (Wainwright and Jordan 2008; Ormerod and Wand
2010), which iterates between the E step of Equation (5) and the
M step of Equation (6). Recent research has explored the theo-
retical properties of the VFE for stochastic block models (Bickel
et al. 2013), generalized linear mixed models (Hall et al. 2011b),
and Gaussianmixturemodels (Westling andMcCormick 2015).

We make two remarks. First, the maximizing variational dis-
tribution q†(z) of Equation (5) is different from q∗(z) in the VB
posterior: q†(z) is implicitly a function of individual values of
θ , while q∗(z) is implicitly a function of the variational distri-
butions q(θ ). Second, the variational log-likelihood in Equation
(4) is similar to the original objective function for the EM algo-
rithm (Dempster, Laird, and Rubin 1977). The difference is that
the EM objective is an expectation with respect to the exact con-
ditional p(z | x), whereas the variational log-likelihood uses a
variational distribution q(z).

Variational Bayes and ideal variational Bayes. While ear-
lier applications of variational inference appealed to variational
EM and the VFE, most modern applications do not. Rather
they use VB, as we described above, where there is a prior on
θ and we approximate its posterior with a global variational
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distribution q(θ ). One advantage of VB is that it provides regu-
larization through the prior. Another is that it requires only one
type of optimization: the same considerations around updating
the local variational factors q(z) are also at play when updating
the global factor q(θ ).

To develop theoretical properties of VB, we connect the VB
posterior to the variational log-likelihood; this is a stepping
stone to the final analysis. In particular, we define the VB ideal
posterior π∗(θ | x),

π∗(θ | x) = p(θ ) exp{Mn(θ ; x)}∫
p(θ ) exp{Mn(θ ; x)}dθ

. (7)

Here, the local latent variables z are constrained under the vari-
ational family but the global latent variables θ are not. Note that
because it depends on the variational log-likelihoodMn(θ ; x),
this distribution implicitly contains an optimal variational dis-
tribution q†(z) for each value of θ ; see Equations (4) and (5).

Loosely, the VB ideal lies between the exact posterior p(θ | x)
and a variational approximation q(θ ). It recovers the exact pos-
terior when p(z | θ, x) degenerates to a point mass and q†(z) is
always equal to p(z | θ, x); in that case the variational likelihood
is equal to the log-likelihood and Equation (7) is the posterior.
But q†(z) is usually an approximation to the conditional. Thus
the VB ideal usually falls short of the exact posterior.

That said, the VB ideal is more complex that a simple para-
metric variational factor q(θ ). The reason is that its value for
each θ is defined by the optimization within Mn(θ ; x). Such a
distribution will usually lie outside the distributions attainable
with a simple family.

In this work, we first establish the theoretical properties of
the VB ideal. We then connect it to the VB posterior.

Variational Bernstein–von Mises. We have set up the main
concepts. We now describe the main results.

Suppose the data come from a true (finite-dimensional)
parameter θ0. The classical Bernstein–von Mises theorem says
that, under certain conditions, the exact posterior p(θ | x)
approaches a normal distribution, independent of the prior, as
the number of observations tends to infinity. In this article, we
extend the theory around Bernstein–von Mises to the varia-
tional posterior. Here we summarize our results.

� Lemma 1 shows that the VB ideal π∗(θ | x) is consistent
and converges to a normal distribution around the VFE. If
the VFE is consistent, the VB ideal π∗(θ |x) converges to
a normal distribution whose mean parameter is a random
vector centered at the true parameter. (Note the random-
ness in the mean parameter is due to the randomness in
the observations x.)

� We next consider the point in the variational family that is
closest to the VB ideal π∗(θ |x) in KL divergence. Lemma
2 and Lemma 3 show that this KL minimizer is consistent
and converges to the KL minimizer of a normal distribu-
tion around the VFE. If the VFE is consistent (Hall et al.
2011b; Bickel et al. 2013), then theKLminimizer converges
to the KL minimizer of a normal distribution with a ran-
dom mean centered at the true parameter.

� Lemma 4 shows that the VB posterior q∗(θ ) enjoys the
same asymptotic properties as the KL minimizers of the
VB ideal π∗(θ | x).

� Theorem 5 is the variational Bernstein–von Mises theorem.
It shows that the VB posterior q∗(θ ) is asymptotically nor-
mal around the VFE. Again, if the VFE is consistent then
the VB posterior converges to a normal with a random
mean centered at the true parameter. Further, Theorem 6
shows that the VBE θ̂∗

n is consistent with the true parame-
ter and asymptotically normal.

� Finally, we prove two corollaries. First, if we use a full-rank
Gaussian variational family, then the corresponding VB
posterior recovers the true mean and covariance. Second,
if we use amean-field Gaussian variational family, then the
VBposterior recovers the truemean and themarginal vari-
ance, but not the off-diagonal terms. The mean-field VB
posterior is underdispersed.

Related work. This work draws on two themes. The first is the
body of work on theoretical properties of variational inference.
You, Ormerod, and Müller (2014) and Ormerod, You, and
Muller (2014) studied variational Bayes for a classical Bayesian
linear model. They used normal priors and spike-and-slab
priors on the coefficients, respectively. Wang and Tittering-
ton (2004) studied variational Bayesian approximations for
exponential family models with missing values. Wang and
Titterington (2005) andWang and Titterington (2006) analyzed
variational Bayes in Bayesian mixture models with conjugate
priors. More recently, Zhang and Zhou (2017) studied mean
field variational inference in stochastic block model (SBMs)
with a batch coordinate ascent algorithm: it has a linear con-
vergence rate and converges to the minimax rate within log n
iterations. Sheth and Khardon (2017) proved a bound for the
excess Bayes risk using variational inference in latent Gaussian
models. Ghorbani, Javadi, and Montanari (2018) studied a
version of latent Dirichlet allocation (LDA) and identified an
instability in variational inference in certain signal-to-noise
ratio (SNR) regimes. Zhang and Gao (2017) characterized the
convergence rate of variational posteriors for nonparametric
and high-dimensional inference. Pati, Bhattacharya, and Yang
(2017) provided general conditions for obtaining optimal risk
bounds for point estimates acquired frommean field variational
Bayes. Alquier, Ridgway, and Chopin (2016) and Alquier and
Ridgway (2017) studied the concentration of variational approx-
imations of Gibbs posteriors and fractional posteriors based on
PAC-Bayesian inequalities. Yang, Pati, and Bhattacharya (2017)
proposed α-variational inference and developed variational
inequalities for the Bayes risk under the variational solution.

On the frequentist side, Hall, Ormerod, and Wand (2011a);
Hall et al. (2011b) established the consistency of Gaussian vari-
ational EM estimates in a Poisson mixed-effects model with
a single predictor and a grouped random intercept. West-
ling and McCormick (2015) studied the consistency of varia-
tional EM estimates in mixture models through a connection to
M-estimation. Celisse, Daudin, and Pierre (2012) and Bickel
et al. (2013) proved the asymptotic normality of parameter esti-
mates in the SBMunder amean field variational approximation.

However, many of these treatments of variational methods—
Bayesian or frequentist—are constrained to specific models
and priors. Our work broadens these works by considering
more general models. Moreover, the frequentist works focus on
estimation procedures under a variational approximation. We
expand on these works by proving a variational Bernstein–von

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1149



Mises theorem, leveraging the frequentist results to analyze VB
posteriors.

The second theme is the Bernstein–von Mises theorem. The
classical (parametric) Bernstein–von Mises theorem roughly
says that the posterior distribution of

√
n(θ − θ0) “converges,”

under the true parameter value θ0, to N (X, 1/I(θ0)), where
X ∼ N (0, 1/I(θ0)) and I(θ0) is the Fisher information (Le
Cam 1953; Van der Vaart 2000; Ghosh and Ramamoorthi
2003; Le Cam and Yang 2012). Early forms of this theorem
date back to Laplace, Bernstein, and von Mises (Laplace 1809;
Bernstein 1917; Von Mises 1931). A version also appeared
in Lehmann and Casella (2006). Kleijn and Van der Vaart
(2012) established the Bernstein–von Mises theorem under
model misspecification. Recent advances include extensions to
semiparametric cases (Murphy and Van der Vaart 2000; Kim
2006; De Blasi and Hjort 2009; Rivoirard and Rousseau 2012;
Bickel and Kleijn 2012; Castillo 2012a, 2012b; Castillo and
Nickl 2014; Panov and Spokoiny 2014; Castillo and Rousseau
2015; Ghosal and van der Vaart 2017) and nonparametric
cases (Diaconis and Freedman 1986; Cox 1993; Diaconis and
Freedman 1997; 1998; Freedman 1999; Kim and Lee 2004; James
2008; Boucheron et al. 2009; Kim 2009; Johnstone 2010; Bon-
temps et al. 2011; Knapik et al. 2011; Leahu 2011; Rivoirard et al.
2012; Castillo and Nickl 2012; 2013; Spokoiny 2013; Castillo
2012, 2014; Ray 2017; Panov and Spokoiny 2015; Lu 2017). In
particular, Lu, Stuart, andWeber (2016) proved a Bernstein–von
Mises type result for Bayesian inverse problems, characterizing
Gaussian approximations of probability measures with respect
to the KL divergence. Below, we borrow proof techniques from
Lu, Stuart, andWeber (2016). But wemove beyond the Gaussian
approximation to establish the consistency of variational Bayes.

This article. The rest of the article is organized as follows.
Section 2 characterizes theoretical properties of the VB ideal.
Section 3 contains the central results of the article. It first con-
nects the VB ideal and the VB posterior. It then proves the
variational Bernstein–von Mises theorem, which characterizes
the asymptotic properties of the VB posterior and VB estimate.
Section 4 studies three models under this theoretical lens, illus-
trating how to establish consistency and asymptotic normality
of specific VB estimates. Section 5 reports simulation studies to
illustrate these theoretical results. Finally, Section 6 concludes
with article with a discussion.

2. The VB Ideal

To study the VB posterior q∗(θ ), we first study the VB ideal
of Equation (7). In the next section, we connect it to the VB
posterior.

Recall the VB ideal is

π∗(θ |x) = p(θ ) exp(Mn(θ ; x))∫
p(θ ) exp(Mn(θ ; x))dθ

,

where Mn(θ ; x) is the variational log-likelihood of Equation
(4). If we embed the variational log-likelihood Mn(θ ; x) in a
statistical model of x, this model has likelihood

�(θ ; x) ∝ exp(Mn(θ; x)).
Wecall it the frequentist variationalmodel. TheVB idealπ∗(θ |x)
is thus the classical posterior under the frequentist variational

model �(θ ; x); the VFE is the classical maximum likelihood
estimate (MLE).

Consider the results around frequentist estimation of θ under
variational approximations of the local variables z (Hall et al.
2011b; Bickel et al. 2013;Westling andMcCormick 2015). These
works consider asymptotic properties of estimators that max-
imize Mn(θ ; x) with respect to θ . We will first leverage these
results to prove properties of the VB ideal and their KL mini-
mizers in the mean field variational familyQd . Then we will use
these properties to study the VB posterior, which is what is esti-
mated in practice.

This section relies on the consistent testability and the local
asymptotic normality (LAN) of Mn(θ ; x) (defined later) to
show the VB ideal is consistent and asymptotically normal. We
will then show that its KL minimizer in the mean field family is
also consistent and converges to the KL minimizer of a normal
distribution in TV distance.

These results are not surprising. Suppose the variational log-
likelihood behaves similarly to the true log-likelihood, that is,
they produce consistent parameter estimates. Then, in the spirit
of the classical Bernstein–vonMises theorem under model mis-
specification (Kleijn et al. 2012), we expect the VB ideal to be
consistent as well. Moreover, the approximation through a fac-
torizable variational family should not ruin this consistency—
point masses are factorizable and thus the limiting distribution
lies in the approximating family.

2.1. The VB Ideal

The lemma statements and proofs adapt ideas from Ghosh and
Ramamoorthi (2003); Van der Vaart (2000); Bickel and Yahav
(1967); Kleijn et al. (2012); Lu, Stuart, and Weber (2017) to
the variational log-likelihood. Let � be an open subset of Rd .
Suppose the observations x = x1:n are a random sample from
the measure Pθ0 with density

∫
p(x, z|θ = θ0)dz for some fixed,

nonrandom value θ0 ∈ �. z = z1:n are local latent variables,
and θ = θ1:d ∈ � are global latent variables. We assume that
the density maps (θ, x) �→ ∫

p(x, z|θ )dz of the true model and
(θ, x) �→ �(θ ; x) of the variational frequentist models aremea-
surable. For simplicity, we also assume that for each n there
exists a single measure that dominates all measures with den-
sities �(θ ; x), θ ∈ � as well as the true measure Pθ0 .

Assumption 1. We assume the following conditions for the rest
of the article:

1. (Prior mass) The prior measure with Lebesgue-density
p(θ ) on � is continuous and positive on a neighbor-
hood of θ0. There exists a constant Mp > 0 such that
|(log p(θ ))′′| ≤ Mpe|θ |2 .

2. (Consistent testability) For every ε > 0, there exists a
sequence of tests φn such that

∫
φn(x)p(x, z|θ0)dzdx → 0

and

sup
θ :||θ−θ0||≥ε

∫
(1 − φn(x))

�(θ ; x)
�(θ0 ; x) p(x, z|θ0)dzdx → 0,
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3. (Local asymptotic normality (LAN)) For every compact
setK ⊂ R

d , there exist random vectors	n,θ0 bounded in
probability and nonsingular matricesVθ0 such that

sup
h∈K

|Mn(θ + δnh ; x) −Mn(θ ; x) − hVθ0	n,θ0

+1
2
hVθ0h|

Pθ0→ 0,

where δn is a d × d diagonal matrix. We have δn → 0 as
n → ∞. For d = 1, we commonly have δn = 1/

√
n.

These three assumptions are standard for Bernstein–von
Mises theorem. The first assumption is a prior mass assump-
tion. It says the prior on θ puts enoughmass to sufficiently small
balls around θ0. This allows for optimal rates of convergence
of the posterior. The first assumption further bounds the sec-
ond derivative of the log prior density. This is a mild technical
assumption satisfied by most nonheavy-tailed distributions.

The second assumption is a consistent testability assumption.
It says there exists a sequence of uniformly consistent (under
Pθ0 ) tests for testing H0 : θ = θ0 against H1 : ||θ − θ0|| ≥ ε for
every ε > 0 based on the frequentist variational model. This is
a weak assumption. For example, it suffices to have a compact�
and continuous and identifiable Mn(θ ; x). It is also true when
there exists a consistent estimator Tn of θ . In this case, we can
set φn := 1{Tn − θ ≥ ε/2}.

The last assumption is a local asymptotic normality assump-
tion onMn(θ ; x) around the true value θ0. It says the frequen-
tist variational model can be asymptotically approximated by a
normal location model centered at θ0 after a rescaling of δ−1

n .
This normalizing sequence δn determines the optimal rates of
convergence of the posterior. For example, if δn = 1/

√
n, then

we commonly have θ − θ0 = Op(1/
√
n). We often needmodel-

specific analysis to verify this condition, as we do in Section 4.
We discuss sufficient conditions and general proof strategies in
Section 3.4.

In the spirit of the last assumption, we perform a change-of-
variable step:

θ̃ = δ−1
n (θ − θ0). (8)

We center θ at the true value θ0 and rescale it by the reciprocal
of the rate of convergence δ−1

n . This ensures that the asymptotic
distribution of θ̃ is not degenerate, that is, it does not converge
to a point mass. We define π∗

θ̃
(·|x) as the density of θ̃ when θ

has density π∗(·|x):
π∗

θ̃
(θ̃ |x) = π∗(θ0 + δnθ̃ |x) · | det(δn)|.

Now we characterize the asymptotic properties of the VB
ideal.
Lemma 1. The VB ideal converges in total variation to a
sequence of normal distributions,

||π∗
θ̃
(·|x) − N

(·;	n,θ0 ,V
−1
θ0

) ||TV Pθ0→ 0.

Proof sketch of Lemma 1. This is a consequence of the classical
finite-dimensional Bernstein–von Mises theorem under model
misspecification (Kleijn et al. 2012). Theorem 2.1 of Kleijn and
Van der Vaart (2012) roughly says that the posterior is consistent
if the model is locally asymptotically normal around the true

parameter value θ0. Here, the true data-generating measure is
Pθ0 with density

∫
p(x, z|θ = θ0)dz, while the frequentist varia-

tional model has densities �(θ ; x), θ ∈ �.
What we need to show is that the consistent testabil-

ity assumption in Assumption 1 implies assumption (2.3) in
Kleijn et al. (2012): ∫

|θ̃ |>Mn

π∗
θ̃
(θ̃ |x)dθ̃

Pθ0→ 0

for every sequence of constants Mn → ∞. To show this, we
mimic the argument of Theorem 3.1 of Kleijn et al. (2012),
where they show this implication for the iid case with a common
convergence rate for all dimensions of θ . See Appendix A for
details. �

This lemma says the VB ideal of the rescaled θ , θ̃ = δ−1
n (θ −

θ0), is asymptotically normal with mean	n,θ0 . The mean,	n,θ0 ,
as assumed in Assumption 1, is a random vector bounded
in probability. The asymptotic distribution N (·;	n,θ0 ,V

−1
θ0

) is
thus also random, where randomness is due to the data x being
random draws from the true data-generating measure Pθ0 . We
notice that if the VFE, θ̂n, is consistent and asymptotically nor-
mal, we commonly have 	n,θ0 = δ−1

n (θ̂n − θ0) with E(	n,θ0 ) =
0. Hence, the VB ideal will converge to a normal distribution
with a random mean centered at the true value θ0.

2.2. The KLMinimizer of the VB Ideal

Next we study the KL minimizer of the VB ideal in the mean
field variational family. We show its consistency and asymptotic
normality. To be clear, the asymptotic normality is in the sense
that the KL minimizer of the VB ideal converges to the KL min-
imizer of a normal distribution in TV distance.

Lemma 2. The KLminimizer of the VB ideal over themean field
family is consistent: almost surely under Pθ0 , it converges to a
point mass,

argmin
q(θ )∈Qd

KL(q(θ )||π∗(θ |x)) d→ δθ0 .

Proof sketch of Lemma 2. The key insight here is that point
masses are factorizable. Lemma 1 above suggests that the VB
ideal converges in distribution to a point mass. We thus have
its KLminimizer also converging to a point mass, because point
masses reside within themean field family. In other words, there
is no loss, in the limit, incurred by positing a factorizable varia-
tional family for approximation. �

To prove this lemma, we bound the mass of Bc(θ0, ηn) under
q(θ ), whereBc(θ0, ηn) is the complement of anηn-sized ball cen-
tered at θ0 with ηn → 0 as n → ∞. In this step, we borrow ideas
from the proof of Lemma 3.6 and Lemma 3.7 in Lu, Stuart, and
Weber (2017). See Appendix B for details.

Lemma 3. The KL minimizer of the VB ideal of θ̃ converges to
that of N (· ; 	n,θ0 ,V

−1
θ0

) in total variation: under mild techni-
cal conditions on the tail behavior of Qd (see Assumption 2 in

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1151



Appendix C),∥∥∥∥ argmin
q∈Qd

KL(q(·)||π∗
θ̃
(·|x)) −

argmin
q∈Qd

KL
(
q(·)||N (· ; 	n,θ0 ,V

−1
θ0

)) ∥∥∥∥
TV

Pθ0→ 0.

Proof sketch of Lemma 3. The intuition here is that, if the two
distribution are close in the limit, their KL minimizers should
also be close in the limit. Lemma 1 says that the VB ideal of
θ̃ converges to N (·;	n,θ0 ,V

−1
θ0

) in total variation. We would
expect their KL minimizer also converges in some metric. This
result is also true for the (full-rank) Gaussian variational family
if rescaled appropriately.

Here we show their convergence in total variation. This is
achieved by showing the �-convergence of the functionals of q:
KL(q(·)||π∗

θ̃
(·|x)) to KL(q(·)||N (· ; 	n,θ0 ,V

−1
θ0

)), for paramet-
ric q’s. �-convergence is a classical tool for characterizing varia-
tional problems; �-convergence of functionals ensures conver-
gence of their minimizers (Braides 2006; Dal Maso 2012). See
Appendix C for proof details and a review of �-convergence. �

We characterized the limiting properties of the VB ideal and
their KL minimizers. We will next show that the VB posterior is
close to the KL divergence minimizer of the VB ideal. Section 3
culminates in the main theorem of this article—the variational
Bernstein–vonMises theorem—showing the VB posterior share
consistency and asymptotic normality with the KL divergence
minimizer of VB ideal.

3. Frequentist Consistency of Variational Bayes

We now study the VB posterior. In the previous section, we
proved theoretical properties for the VB ideal and its KL min-
imizer in the variational family. Here, we first connect the VB
ideal to the VB posterior, the quantity that is used in practice.
We then use this connection to understand the theoretical prop-
erties of the VB posterior.

We begin by characterizing the optimal variational distribu-
tion in a useful way. Decompose the variational family as

q(θ, z) = q(θ )q(z),

where q(θ ) = ∏d
i=1 q(θi) and q(z) = ∏n

i=1 q(zi). Denote the
prior p(θ ). Note d does not grow with the size of the data. We
will develop a theory aroundVB that considers asymptotic prop-
erties of the VB posterior q∗(θ ).

We decompose the ELBO of Equation (3) into the portion
associated with the global variable and the portion associated
with the local variables,

ELBO(q(θ )q(z)) =
∫ ∫

q(θ )q(z) log
p(θ, x, z)
q(θ )q(z)

dθdz

=
∫ ∫

q(θ )q(z) log
p(θ )p(x, z|θ )

q(θ )q(z)
dθdz

=
∫

q(θ ) log
p(θ )

q(θ )
dθ

+
∫

q(θ )

∫
q(z) log

p(x, z | θ )

q(z)
dθdz.

The optimal variational factor for the global variables, that
is, the VB posterior, maximizes the ELBO. From the decompo-
sition, we can write it as a function of the optimized local varia-
tional factor,

q∗(θ ) = argmax
q(θ )

sup
q(z)

∫
q(θ )

(
log
[
p(θ )

× exp
{∫

q(z) log
p(x, z|θ )

q(z)
dz
}]

− log q(θ )

)
dθ. (9)

One way to see the objective for the VB posterior is as the
ELBO profiled over q(z), that is, where the optimal q(z) is a
function of q(θ ) (Hoffman et al. 2013). With this perspective,
the ELBO becomes a function of q(θ ) only. We denote it as a
functional ELBOp(·):

ELBOp(q(θ )) : = sup
q(z)

∫
q(θ )

(
log
[
p(θ )

× exp
{∫

q(z) log
p(x, z|θ )

q(z)
dz
}]

− log q(θ )

)
dθ.

(10)

We then rewrite Equation (9) as q∗(θ ) = argmaxq(θ )

ELBOp(q(θ )). This expression for the VB posterior is key
to our results.

3.1. KLMinimizers of the VB Ideal

Recall that the KLminimization objective to the ideal VB poste-
rior is the functional KL(·||π∗(θ |x)). We first show that the two
optimization objectives KL(·||π∗(θ |x)) and ELBOp(·) are close
in the limit. Given the continuity of both KL(·||π∗(θ |x)) and
ELBOp(·), this implies the asymptotic properties of optimizers
of KL(·||π∗(θ |x))will be shared by the optimizers of ELBOp(·).
Lemma 4. The negative KL divergence to the VB ideal is equiv-
alent to the profiled ELBO in the limit: under mild technical
conditions on the tail behavior of Qd (see, e.g., Assumption 3
in Appendix D), for q(θ ) ∈ Qd,

ELBOp(q(θ )) = −KL(q(θ )||π∗(θ |x)) + oP(1).

Proof sketch of Lemma 4. We first notice that

−KL(q(θ )||π∗(θ |x)) (11)

=
∫

q(θ ) log
p(θ ) exp(Mn(θ ; x))

q(θ )
dθ (12)

=
∫

q(θ )

(
log
[
p(θ )

× exp
{
sup
q(z)

∫
q(z) log

p(x, z|θ )

q(z)
dz
}]

− log q(θ )

)
dθ.

(13)

Comparing Equation (13) with Equation (10), we can see that
the only difference between −KL(·||π∗(θ |x)) and ELBOp(·) is
in the position of supq(z). ELBOp(·) allows for a single choice
of optimal q(z) given q(θ ), while −KL(·||π∗(θ |x)) allows for
a different optimal q(z) for each value of θ . In this sense, if we
restrict the variational family of q(θ ) to be point masses, then
ELBOp(·) and −KL(·||π∗(θ |x)) will be the same.
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The onlymembers of the variational family of q(θ ) that admit
finite −KL(q(θ )||π∗(θ |x)) are ones that converge to point
masses at rate δn, so we expect ELBOp(·) and −KL(·||π∗(θ |x))
to be close as n → ∞.Weprove this by bounding the remainder
in the Taylor expansion of Mn(θ ; x) by a sequence converging
to zero in probability. See Appendix D for details. �

3.2. The VB Posterior

Section 2 characterizes the asymptotic behavior of the VB
ideal π∗(θ |x) and their KL minimizers. Lemma 4 estab-
lishes the connection between the VB posterior q∗(θ )

and the KL minimizers of the VB ideal π∗(θ |x). Recall
argminq(θ )∈Qd KL(q(θ )||π∗(θ |x)) is consistent and converges
to the KL minimizer of a normal distribution. We now build on
these results to study the VB posterior q∗(θ ).

Nowwe are ready to state themain theorem. It establishes the
asymptotic behavior of the VB posterior q∗(θ ).

Theorem 5 (Variational Bernstein–von-Mises Theorem).
1. The VB posterior is consistent: almost surely under Pθ0 ,

q∗(θ )
d→ δθ0 .

2. The VB posterior is asymptotically normal in the sense
that it converges to the KL minimizer of a normal
distribution:∥∥∥∥∥q∗

θ̃
(·) − argmin

q∈Qd
KL
(
q(·)||N (· ; 	n,θ0 ,V

−1
θ0

))∥∥∥∥∥
TV

Pθ0→ 0.

(14)
Here we transform q∗(θ ) to q

θ̃
(θ̃ ), which is centered

around the true θ0 and scaled by the convergence rate;
see Equation (8). WhenQd is the mean field variational
family, then the limiting VB posterior is normal:

argmin
q∈Qd

KL
(
q(·)||N (· ; 	n,θ0 ,V

−1
θ0

)) = N (· ; 	n,θ0 ,V
′−1
θ0

)),

(15)
whereV ′

θ0
is diagonal and has the same diagonal terms as

Vθ0 .

Proof sketch of Theorem 5. This theorem is a direct consequence
of Lemma 2, Lemma 3, Lemma 4. We need the same mild tech-
nical conditions on Qd as in Lemma 3 and Lemma 4. Equa-
tion (15) can be proved by first establishing the normality of
the optimal variational factor (see Section 10.1.2 of Bishop 2006
for details) and proceeding with Lemma 8. See Appendix E for
details. �

Given the convergence of theVBposterior, we can now estab-
lish the asymptotic properties of the VBE.

Theorem 6 (Asymptotics of the VBE). Assume
∫ |θ |2π(θ ) dθ <

∞. Let θ̂∗
n = ∫

θ · q∗
1(θ ) dθ denote the VBE.

1. The VBE is consistent: under Pθ0 ,

θ̂∗
n

a.s.→ θ0.

2. The VBE is asymptotically normal in the sense that it
converges in distribution to the mean of the KL mini-
mizer (The randomness in themean of theKLminimizer

comes from 	n,θ0 ): if 	n,θ0
d→ X for some X ,

δ−1
n (θ̂∗

n − θ0)
d→
∫

θ̃ · argmin
q∈Qd

KL
(
q(θ̃ )||N

(
θ̃ ; X,V−1

θ0

))
dθ̃ .

Proof sketch of Theorem 6. As the posterior mean is a continu-
ous function of the posterior distribution, we would expect the
VBE is consistent given the VB posterior is. We also know that
the posterior mean is the Bayes estimator under squared loss.
Thus, we would expect the VBE to converge in distribution to
squared lossminimizer of theKLminimizer of theVB ideal. The
result follows from a very similar argument fromTheorem 2.3 of
Kleijn and Van der Vaart (2012), which shows that the posterior
mean estimate is consistent and asymptotically normal under
model misspecification as a consequence of the Bernsterin–von
Mises theorem and the argmax theorem. See Appendix E for
details. �

We remark that	n,θ0 , as in Assumption 1, is a random vector
bounded in Pθ0 probability. The randomness is due to x being a
random sample generated from Pθ0 . In cases where VFE is con-
sistent, like in all the examples we will see in Section 4, 	n,θ0 is
a zero mean random vector with finite variance. For particular
realizations of x the value of 	n,θ0 might not be zero; however,
because we scale by δ−1

n , this does not destroy the consistency of
VB posterior or the VBE.

3.3. Gaussian VB Posteriors

We illustrate the implications of Theorem 5 and Theorem 6 on
two choices of variational families: a full-rank Gaussian varia-
tional family and a factorizable Gaussian variational family. In
both cases, the VB posterior and the VBE are consistent and
asymptotically normal with different covariance matrices. The
VB posterior under the factorizable family is underdispersed.

Corollary 7. Posit a full-rank Gaussian variational family, that
is,

Qd = {q : q(θ ) = N (m, )}, (16)

with  positive definite. Then
1. q∗(θ )

d→ δθ0 , almost surely under Pθ0 .

2. ||q∗
θ̃
(·) − N (· ; 	n,θ0 ,V

−1
θ0

)||TV
Pθ0→ 0.

3. θ̂∗
n

a.s.→ θ0.

4. δ−1
n (θ̂∗

n − θ0) − 	n,θ0 = oPθ0
(1).

Proof sketch of Corollary 7. This is a direct consequence of
Theorem 5 and Theorem 6.We only need to show that Lemma 3
is also true for the full-rank Gaussian variational family. The last
conclusion implies δ−1

n (θ̂∗
n − θ0)

d→ X if 	n,θ0
d→ X for some

random variable X . We defer the proof to Appendix F. �

This corollary says that under a full-rank Gaussian varia-
tional family, VB is consistent and asymptotically normal in
the classical sense. It accurately recovers the asymptotic nor-
mal distribution implied by the local asymptotic normality of
Mn(θ ; x).

Before stating the corollary for the factorizableGaussian vari-
ational family, we first present a lemma on the KL minimizer
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of a Gaussian distribution over the factorizable Gaussian family.
We show that the minimizer keeps the mean but has a diago-
nal covariance matrix that matches the precision. We also show
the minimizer has a smaller entropy than the original distri-
bution. This echoes the well-known phenomenon of VB algo-
rithms underestimating the variance.

Lemma 8. The factorizable KL minimizer of a Gaussian distri-
bution keeps the mean and matches the precision:

argmin
μ0∈Rd,0∈diag(d×d)

KL(N (·;μ0, 0)||N (·;μ1, 1)) = μ1, 
∗
1 ,

where ∗
1 is diagonal with ∗

1,ii = ((−1
1 )ii)

−1 for i =
1, 2, . . . , d. Hence, the entropy of the factorizable KLminimizer
is smaller than or equal to that of the original distribution:

H(N (·;μ0, 
∗
1 )) ≤ H(N (·;μ0, 1)).

Proof sketch of Lemma 8. The first statement is a consequence of
a technical calculation of the KL divergence between two nor-
mal distributions. We differentiate the KL divergence over μ0
and the diagonal terms of 0 and obtain the result. The second
statement is due to the inequality of the determinant of a pos-
itive matrix being always smaller than or equal to the product
of its diagonal terms (Amir-Moez and Johnston 1969; Becken-
bach and Bellman 2012). In this sense, mean field variational
inference underestimates posterior variance. See Appendix G
for details. �

The next corollary studies the VB posterior and the VBE
under a factorizable Gaussian variational family.

Corollary 9. Posit a factorizable Gaussian variational family,

Qd = {q : q(θ ) = N (m, )}, (17)

where  positive definite and diagonal. Then
1. q∗(θ )

d→ δθ0 , almost surely under Pθ0 .

2. ||q∗
θ̃
(·) − N (· ; 	n,θ0 ,V

′−1
θ0

)||TV
Pθ0→ 0, where V ′ is diag-

onal and has the same diagonal entries asVθ0 .
3. θ̂∗

n
a.s.→ θ0.

4. δ−1
n (θ̂∗

n − θ0) − 	n,θ0 = oPθ0
(1).

Proof of Corollary 9. This is a direct consequence of Lemma 8,
Theorem 5, and Theorem 6. �

This corollary says that under the factorizable Gaussian vari-
ational family, VB is consistent and asymptotically normal in the
classical sense. The rescaled asymptotic distribution for θ̃ recov-
ers the mean but underestimates the covariance. This under-
dispersion is a common phenomenon we see in mean field
variational Bayes.

As we mentioned, the VB posterior is underdispersed. One
consequence of this property is that its credible sets can suf-
fer from under-coverage. In the literature on VB, there are two
main ways to correct this inadequacy. One way is to increase the
expressiveness of the variational family Q to one that accounts
for dependencies among latent variables. This approach is taken
by much of the recent VB literature, for example, Tran et al.
(2015a); Tran, Ranganath, and Blei (2015b); Ranganath, Tran,
andBlei (2016b); Ranganath et al. (2016a); Liu andWang (2016).

As long as the expanded variational familyQ contains the mean
field family, Theorem 5 and Theorem 6 remain true.

Alternative methods to handling underdispersion center
around sensitivity analysis and bootstrap. Giordano, Broderick,
and Jordan (2017a) identified the close relationship between
Bayesian sensitivity and posterior covariance. They estimated
the covariance with the sensitivity of the VB posterior means
with respect to perturbations of the data. Chen, Wang, and
Erosheva (2017) explored the use of bootstrap in assessing the
uncertainty of a variational point estimate. They also studied the
underlying bootstrap theory. Giordano et al. (2017b) assessed
the clustering stability in Bayesian nonparametric models based
on an approximation to the infinitesimal jackknife.

3.4. The LAN Condition of the Variational Log-Likelihood

Our results rest on Assumption 1.3, the LAN expansion of the
variational log-likelihood Mn(θ ; x). For models without local
latent variables z, their variational log-likelihood Mn(θ ; x) is
the same as their log-likelihood log p(x|θ ). The LAN expansion
for thesemodels have beenwidely studied. In particular, iid sam-
pling from a regular parametric model is locally asymptotically
normal; it satisfies Assumption 1.3 (Van der Vaart 2000). When
models do contain local latent variables, however, as we will see
in Section 4, finding the LAN expansion requiresmodel-specific
characterization.

For a certain class of models with local latent variables, the
LAN expansion for the (complete) log-likelihood log p(x, z|θ )

concurs with the expansion of the variational log-likelihood
Mn(θ ; x). Below we provide a sufficient condition for such
a shared LAN expansion. It is satisfied, for example, by the
stochastic block model (Bickel et al. 2013) under mild identi-
fiability conditions.

Proposition 10. The log-likelihood log p(x, z|θ ) and the varia-
tional log likelihood Mn(θ ; x) will have the same LAN expan-
sion if:

1. The conditioned nuisance posterior is consistent under
δn-perturbation at some rate ρn with ρn ↓ 0 and
δ−2
n ρn → 0:
For all bounded, stochastic hn = OPθ0

(1), the conditional
nuisance posterior converges as∫

Dc(θ,ρn )

p(z|x, θ = θ0 + δnhn) dz = oPθ0
(1),

where Dc(θ, ρn) = {z : dH (z, zprofile) ≥ ρn} is
the Hellinger ball of radius ρn around zprofile =
argmaxz p(x, z|θ ), the maximum profile likelihood
estimate of z.

2. ρn should also satisfy that the likelihood ratio is
dominated:

sup
z∈{z:dH (z,zprofile )<ρn}

Eθ0

p(x, z|θ0 + δnhn)
p(x, z|θ0) = O(1),

where the expectation is taken over x.

Proof sketch of Proposition 10. The first condition roughly says
the posterior of the local latent variables z contracts faster than
the global latent variables θ . The second condition is a regularity
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condition. The two conditions together ensure the log marginal
likelihood log

∫
p(x, z|θ ) dz and the complete log-likelihood

log p(x, z|θ ) share the same LAN expansion. This condition
shares a similar flavor with the condition (3.1) of the semipara-
metric Bernstein–vonMises theorem in Bickel et al. (2012). This
implication can be proved by a slight adaptation of the proof
of Theorem 4.2 in Bickel et al. (2012): We view the collection
of local latent variables z as an infinite-dimensional nuisance
parameter.

This proposition is due to the following key inequality. For
simplicity, we state the version with only discrete local latent
variables z:

log p(x, z|θ ) ≤ Mn(θ ; x) ≤ log
∫

p(x, z|θ ) dz. (18)

The continuous version of this inequality can be easily adapted.
The lower bound is due to

p(x, z|θ ) =
∫

q(z) log
p(x, z|θ )

q(x)
dz
∣∣∣∣
q(z)=δz

,

and

Mn(θ ; x) = sup
q∈Qd

∫
q(z) log

p(x, z|θ )

q(x)
dz.

The upper bound is due to the Jensen’s inequality. This inequal-
ity ensures that the same LAN expansion for the leftmost and
the rightmost terms would imply the same LAN expansion for
the middle term, the variational log-likelihood Mn(θ ; x). See
Appendix H for details. �

In general, we can appeal to Theorem 4 of Le Cam and Yang
(2012) to argue for the preservation of the LANcondition, show-
ing that if it holds for the complete log-likelihood then it holds
for the variational log-likelihood too. In their terminology, we
need to establish the VFE as a “distinguished” statistic.

4. Applications

We proved consistency and asymptotic normality of the vari-
ational Bayes (VB) posterior (in total variation (TV) distance)
and the variational Bayes estimate (VBE). We mainly relied on
the prior mass condition, the local asymptotic normality of the
variational log-likelihoodMn(x ; θ ) and the consistent testabil-
ity assumption of the data-generating parameter.

We now apply this argument to three types of Bayesian
models: Bayesian mixture models (Bishop 2006; Murphy 2012),
Bayesian generalized linear mixed models (McCulloch and
Neuhaus 2001; Jiang 2007), and Bayesian stochastic block
models (Wang and Wong 1987; Snijders and Nowicki 1997;
Hofman and Wiggins 2008; Mossel, Neeman, and Sly 2012;
Abbe and Sandon 2015). For each model class, we illustrate
how to leverage the known asymptotic results for frequentist
variational approximations to prove asymptotic results for VB.
We assume the prior mass condition for the rest of this section:
the prior measure of a parameter θ with Lebesgue density p(θ )

on � is continuous and positive on a neighborhood of the true
data-generating value θ0. For simplicity, we posit a mean field
family for the local latent variables and a factorizable Gaussian
variational family for the global latent variables.

4.1. BayesianMixtureModels

The Bayesian mixture model is a versatile class of models for
density estimation and clustering (Bishop 2006; Murphy 2012).

Consider a Bayesian mixture of K unit-variance univariate
Gaussians with means μ = {μ1, . . . , μK}. For each observation
xi, i = 1, . . . , n, we first randomly draw a cluster assignment ci
from a categorical distribution over {1, . . . ,K}; we then draw
xi randomly from a unit-variance Gaussian with mean μci . The
model is

μk ∼ pμ, k = 1, . . . ,K,

ci ∼ Categorical(1/K, . . . , 1/K), i = 1, . . . , n,
xi|ci, μ ∼ N (ci μ, 1). i = 1, . . . , n.

For a sample of size n, the joint distribution is

p(μ, c, x) =
K∏
i=1

pμ(μi)

n∏
i=1

p(ci)p(xi|ci, μ).

Here μ is a K-dimensional global latent vector and c1:n are local
latent variables. We are interested inferring the posterior of the
μ vector.

We now establish asymptotic properties of VB for Bayesian
Gaussian mixture model (GMM).

Corollary 11. Assume the data-generating measure Pμ0 has den-
sity

∫
p(μ0, c, x) dc. Let q∗(μ) and μ∗ denote the VB posterior

and the VBE. Under regularity conditions (A1–A5) and (B1,2,4)
of Westling and McCormick (2015), we have∥∥∥∥q∗(μ) − N

(
μ0 + Y√

n
,
1
n
V0(μ0)

)∥∥∥∥
TV

Pμ0→ 0,

and
√
n(μ∗ − μ0)

d→ Y,

whereμ0 is the true value ofμ that generates the data. We have

Y ∼ N (0,V (μ0)),

V (μ0) = A(μ0)
−1B(μ0)A(μ0)

−1,

A(μ) = EPμ0
[D2

μm(μ ; x)],
B(μ) = EPμ0

[Dμm(μ ; x)Dμm(μ ; x)],

m(μ ; x) = sup
q(c)∈Qn

∫
q(c) log

p(x, c|μ)

q(c)
dc.

The diagonal matrixV0(μ0) satisfies (V0(μ0)
−1)ii = (A(μ0))ii.

The specification of Gaussian mixture model is invariant to per-
mutation among K components; this corollary is true up to per-
mutations among the K components.

Proof sketch for Corollary 11. The consistent testability con-
dition is satisfied by the existence of a consistent estimate
due to Theorem 1 of Westling and McCormick (2015). The
local asymptotic normality is proved by a Taylor expansion
of m(μ ; x) at μ0. This result then follows directly from our
Theorem 5 and Theorem 6 in Section 3. The technical condi-
tions inherited from Westling and McCormick (2015) allow us
to use their Theorems 1and 2 for properties around variational
frequentist estimate (VFE). See Appendix I for proof details. �
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4.2. Bayesian Generalized LinearMixedModels

Bayesian generalized linear mixed model (GLMMs) are a pow-
erful class of models for analyzing grouped data or longitudinal
data (McCulloch and Neuhaus 2001; Jiang 2007).

Consider a Poisson mixed model with a simple linear rela-
tionship and group-specific random intercepts. Each observa-
tion reads (Xi j,Yi j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the Yi j’s are
nonnegative integers and the Xi j’s are unrestricted real num-
bers. For each group of observations (Xi j,Yi j), 1 ≤ j ≤ n, we
first draw the random effect Ui independently from N(0, σ 2).
We follow by drawingYi j from a Poisson distribution withmean
exp(β0 + β1Xi j +Ui). The probability model is

β0 ∼ pβ0 ,

β1 ∼ pβ1 ,

σ 2 ∼ pσ 2 ,

Ui
iid∼ N (0, σ 2),

Yi j|xi j,Ui ∼ Poi(exp(β0 + β1Xi j +Ui)).

The joint distribution is

p(β0, β1, σ
2,U1:m,Y1:m,1:n|x1:m,1:n)

= pβ0 (β0)pβ1 (β1)pσ 2 (σ 2)

m∏
i=1

N (Ui; 0, σ 2)

×
m∏
i=1

n∏
j=1

Poi(Yi j; exp(β0 + β1Xi j +Ui)).

Weestablish asymptotic properties of VB in Bayesian Poisson
linear mixed models.

Corollary 12. Consider the true data-generating distribution
Pβ0

0 ,β
0
1 ,(σ

2)0 with the global latent variables taking the true val-
ues {β0

0 , β
0
1 , (σ 2)0}. Let q∗

β0
(β0), q∗

β1
(β1), q∗

σ 2 (σ
2) denote the VB

posterior of β0, β1, σ
2. Similarly, let β∗

0 , β
∗
1 , (σ 2)∗ be the VBEs

accordingly. Consider m = O(n2). Under regularity conditions
(A1–A5) of Hall et al. (2011b), we have∥∥∥∥q∗

β0
(β0)q∗

β1
(β1)q∗

σ 2 (σ
2) − N

( (
β0
0 , β

0
1 , (σ 2)0

)
+
(
Z1√
n
,

Z2√
mn

,
Z3√
n

)
, diag(V1,V2,V3)

)∥∥∥∥
TV

P
β00 ,β01 ,(σ2 )0→ 0,

where

Z1 ∼ N (0, (σ 2)0),Z2 ∼ N (0, τ 2),Z3 ∼ N (0, 2{(σ 2)0}2),
V1 = exp

(
−β0 + 1

2
(σ 2)0

)
/φ
(
β0
1
)
,

V2 = exp
(

−β0
0 + 1

2
σ 2
)

/φ′′ (β0
1
)
,

V3 = 2{(σ 2)0}2,
τ 2 = exp{−(σ 2)0/2 − β0

0 }φ(β0
1 )

φ′′(β0
1 )φ(β0

1 ) − φ′(β0
1 )

2 .

Here φ(·) is the moment-generating function of X .

Also,

(
√
m
(
β∗
0 − β0

0
)
,
√
mn

(
β∗
1 − β0

1
)
,

√
m((σ 2)∗ − (σ 2)0))

d→ (Z1,Z2,Z3).

Proof sketch for Corollary 12. The consistent testability assump-
tion is satisfied by the existence of consistent estimates of the
global latent variables shown in Theorem 3.1 of Hall et al.
(2011b). The local asymptotic normality is proved by a Taylor
expansion of the variational log-likelihood based on estimates
of the variational parameters based on eqs. (5.18) and (5.22) of
Hall et al. (2011b). The technical conditions inherited fromHall
et al. (2011b) allow us to leverage their Theorem 3.1 for proper-
ties of the VFE. The result then follows directly from Theorem
5 and Theorem 6 in Section 3. See Appendix K for proof
details. �

4.3. Bayesian Stochastic BlockModels

Stochastic block models are an important methodology for
community detection in network data (Wang and Wong 1987;
Snijders andNowicki 1997;Mossel, Neeman, and Sly 2012; Abbe
and Sandon 2015).

Consider n vertices in a graph. We observe pairwise linkage
between nodes Ai j ∈ {0, 1}, 1 ≤ i, j ≤ n. In a stochastic block
model, this adjacency matrix is driven by the following process:
first assign each node i to one of the K latent classes by a cat-
egorical distribution with parameter π . Denote the class mem-
bership as Zi ∈ {1, . . . ,K}. Then draw Ai j ∼ Bernoulli(HZi,Zj ).
The parameterH is a symmetric matrix in [0, 1]K×K that speci-
fies the edge probabilities between two latent classes; the param-
eter π are the proportions of the latent classes. The Bayesian
stochastic block model is

π ∼ p(π ),

H ∼ p(H),

Zi|π iid∼ Categorical(π ),

Ai j|Zi,Zj,H
iid∼ Bernoulli(HZiZj ).

The dependence in stochastic block model is more complicated
than the Bayesian GMM or the Bayesian GLMM.

Before establishing the result, we reparameterize (π,H) by
θ = (ω, ν), where ω ∈ R

K−1 is the log odds ratio of belonging
to classes 1, . . . ,K − 1, and ν ∈ R

K×K is the log odds ratio of an
edge existing between all pairs of the K classes. The reparame-
terization is

ω(a) = log
π(a)

1 −∑K−1
b=1 π(b)

, a = 1, . . . ,K − 1,

ν(a, b) = log
H(a, b)

1 − H(a, b)
, a, b = 1, . . . ,K.

The joint distribution is

p(θ,Z,A) =
K−1∏
a=1

⎡
⎣eω(a)na

(
1 +

K−1∑
a=1

eω(a)

)−n
⎤
⎦

×
K∏

a=1

K∏
b=1

[eν(a,b)Oab (1 + eν(a,b))nab]1/2,
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where

na(Z) =
n∑
i=1

1{Zi = a},

nab(Z) =
n∑
i=1

n∑
j �=i

1{Zi = a,Zj = b},

Oab(A,Z) =
n∑
i=1

n∑
j �=i

1{Zi = a,Zj = b}Ai j.

We now establish the asymptotic properties of VB for
stochastic block models.

Corollary 13. Consider ν0, ω0 as true data-generating parame-
ters. Let q∗

ν (ν), q∗
ω(ω) denote the VB posterior of ν and ω. Sim-

ilarly, let ν∗, ω∗ be the VBE. Then∥∥∥∥q∗
ν (ν)q∗

ω(ω) −

N
(

(ν, ω); (ν0, ω0) +
(

−1
1 Y1√
nλ0

,
−1

2 Y2√
n

)
,Vn(ν0, ω0)

)∥∥∥∥
TV

Pν0,ω0→ 0,

where λ0 = EPν0 ,ω0
(degree of each node), (log n)−1λ0 → ∞. Y1

and Y2 are two zero mean random vectors with covariance
matrices 1 and 2, where 1, 2 are known functions of
ν0, ω0. The diagonal matrixV (ν0, ω0) satisfiesV−1(ν0, ω0)ii =
diag(1, 2)ii. Also,(√

nλ0(ν
∗ − ν0),

√
n(ω∗ − ω0)

)
d→ (

−1
1 Y1, −1

2 Y2
)
,

The specification of classes in stochastic block model (SBM) is
permutation invariant. So the convergence above is true up to
permutation with the K classes. We follow Bickel et al. (2013) to
consider the quotient space of (ν, ω) over permutations.

Proof sketch of Corollary 13. The consistent testability assump-
tion is satisfied by the existence of consistent estimates by
Lemma1of Bickel et al. (2013). The local asymptotic normality,

sup
q(z)∈QK

∫
q(z) log

p(A, z|ν0 + t√
n2ρn

, ω0 + s√
n )

q(z)
dz

= sup
q(z)∈QK

∫
q(z) log

p(A, z|ν0, ω0)

q(z)
dz

+sY1 + tY2 − 1
2
s1s − 1

2
t2t + oP(1), (19)

for (ν0, ω0) ∈ T for compact T with ρn =
1
nE(degree of each node), is established by Lemma 2, Lemma
3, and Theorem 3 of Bickel et al. (2013). The result then follows
directly from our Theorem 5 and Theorem 6 in Section 3. See
Appendix K for proof details. �

5. Simulation Studies

We illustrate the implication of Theorem 5 and Theorem 6 by
simulation studies on Bayesian GLMM (McCullagh 1984). We
also study the VB posteriors of latent Dirichlet allocation (LDA)
(Blei, Ng, and Jordan 2003). This is a model that shares similar
structural properties with SBM but has no consistency results
established for its VFE.

We use two automated inference algorithms offered in Stan,
a probabilistic programming system (Carpenter et al. 2015): VB
through automatic differentiation variational inference (ADVI)
(Kucukelbir et al. 2017) and Hamiltonian Monte Carlo (HMC)
simulation through No-U-Turn sampler (NUTS) (Hoffman and
Gelman 2014). We note that optimization algorithms used for
VB in practice only find local optima.

In both cases, we observe the VB posteriors get closer to the
truth as the sample size increases; when the sample size is large
enough, they coincide with the truth. They are underdispersed,
however, compared with HMCmethods.

5.1. Bayesian Generalized LinearMixedModels

We consider the Poisson linear mixed model studied in Section
4. Fix the group size as n = 10.We simulate datasets of sizeN =
(50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000). As the size
of the dataset grows, the number of groups also grows; so does
the number of local latent variablesUi, 1 ≤ i ≤ m.We generate a
four-dimensional covariate vector for each Xi j, 1 ≤ i ≤ m, 1 ≤
j ≤ n, where the first dimension follows iid N (0, 1), the sec-
ond dimension follows iid N (0, 25), the third dimension fol-
lows iid Bernoulli(0.4), and the fourth dimension follows iid
Bernoulli(0.8). We wish to study the behaviors of coefficient
efficients for underdispersed/overdispersed continuous covari-
ates and balanced/imbalanced binary covariates. We set the true
parameters as β0 = 5, β1 = (0.2,−0.2, 2,−2), and σ 2 = 2.

Figure 1 shows the boxplots of VB posteriors for β0, β1,

and σ 2. All VB posteriors converge to their corresponding
true values as the size of the dataset increases. The box plots
present rather few outliers; the lower fence, the box, and the
upper fence are about the same size. This suggests normal
VB posteriors. This echoes the consistency and asymptotic
normality concluded from Theorem 5. The VB posteriors are
underdispersed, compared to the posteriors via HMC. This also
echoes our conclusion of underdispersion in Theorem 5 and
Lemma 8.

Regarding the convergence rate, VB posteriors of all dimen-
sions of β1 quickly converge to their true value; the VB pos-
teriors center around their true values as long as N ≥ 1000.
The convergence of VB posteriors of slopes for continuous vari-
ables (β11, β12) are generally faster than those for binary ones
(β13, β14). The VB posterior of σ 2 shares a similarly fast con-
vergence rate. The VB posterior of the intercept β0, however,
struggles; it is away from the true value until the dataset size hits
N = 20, 000. This aligns with the convergence rate inferred in
Corollary 12,

√
mn for β1 and

√
m for β0 and σ 2.

Computation wise, VB takes orders of magnitude less time
than HMC. The performance of VB posteriors is comparable
with that from HMC when the sample size is sufficiently large;
in this case, we need N = 20, 000.

5.2. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative statistical
model commonly adopted to describe word distributions in
documents by latent topics.

Given M documents, each with Nm,m = 1, . . . ,M words,
composing a vocabulary of V words, we assume K latent top-
ics. Consider two sets of latent variables: topic distributions for
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Figure . VB posteriors and HMC posteriors of Poisson generalized linear mixed model versus size of datasets. VB posteriors are consistent and asymptotically normal but
underdispersed than HMS posteriors. β0 and σ 2 converge to the truth slower than β1 does. They echo our conclusions in Theorems  and Corollary .

document m, (θm)K×1, m = 1, . . . ,M and word distributions
for topic k, (φk)V×1, k = 1, . . . ,K. The generative process is

θm ∼ pθ , m = 1, . . . ,M,

φk ∼ pφ, k = 1, . . . ,K,

zm, j ∼ Mult(θm), j = 1, . . . ,Nm,m = 1, . . . ,M,

wm, j ∼ Mult(φzm, j ), j = 1, . . . ,Nm,m = 1, . . . ,M.

The first two rows are assigning priors assigned to the latent vari-
ables. wm, j denotes word j of document m and zm, j denotes its
assigned topic.

We simulate a dataset with V = 100 sized vocabulary and
K = 10 latent topics inM = (10, 20, 50, 100, 200, 500, 100) doc-
uments. Each document hasNm wordswhereNm

iid∼Poi(100). As
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Figure . Mean of Kullback–Leibler (KL) divergence between the true topics and the fitted VB and HMC posterior topics versus size of datasets. (a) VB posteriors (dark blue)
converge to the truth; they are very close to the truth as we hitM = 1000 documents. (b) VB posteriors are consistent but underdispersed compared to HMC posteriors
(light blue). These align with our conclusions in Theorem .

the number of documents M grows, the number of document-
specific topic vectors θm grows while the number of topic-
specificword vectorsφk stays the same. In this sense, we consider
θm,m = 1, . . . ,M as local latent variables and φk, k = 1, . . . ,K
as global latent variables. We are interested in the VB posteriors
of global latent variables φk, k = 1, . . . ,K here. We generate
the datasets with true values of θ and φ, where they are random
draws from θm

iid∼Dir((1/K)K×1) and φk
iid∼Dir((1/V )V×1).

Figure 2 presents the KL divergence between the K =
10 topic-specific word distributions induced by the true
φk’s and the fitted φk’s by VB and HMC. This KL diver-
gence equals to KL(Mult(φ0

k )||Mult(φ̂k)) = ∑V
i=1 φ0

ki(logφ0
ki −

log φ̂ki), where φ0
ki is the ith entry of the true kth topic and φ̂ki is

the ith entry of the fitted kth topic.
Figure 2(a) shows that VB posterior (dark blue) mean KL

divergences of all K = 10 topics get closer to 0 as the num-
ber of documentsM increase, faster than HMC (light blue). We
become very close to the truth as the number of documents M
hits 1000. Figure 2(b) (we only show boxplots for Topic 2 here.
The boxplots of other topics look very similar) shows that the
boxplots of VB posterior mean KL divergences get closer to 0 as
M increases. They are underdispersed compared toHMCposte-
riors. These align with our understanding of how VB posterior
behaves in Theorem 5.

Computation wise, again VB is orders of magnitude faster
than HMC. In particular, optimization in VB in our simulation
studies converges within 10,000 steps.

6. Discussion

Variational Bayes (VB) methods are a fast alternative to Markov
chainMonte Carlo (MCMC) for posterior inference in Bayesian
modeling. However, few theoretical guarantees have been estab-
lished. This work proves consistency and asymptotic normal-
ity for variational Bayes (VB) posteriors. The convergence is in
the sense of total variation (TV) distance converging to zero
in probability. In addition, we establish consistency and asymp-
totic normality of variational Bayes estimate (VBE). The result is
frequentist in the sense that we assume a data-generating

distribution driven by some fixed nonrandom true value for
global latent variables.

These results rest on ideal variational Bayes and its connec-
tion to frequentist variational approximations. Thus this work
bridges the gap in asymptotic theory between the frequentist
variational approximation, in particular the variational frequen-
tist estimate (VFE), and variational Bayes. It also assures us that
variational Bayes as a popular approximate inference algorithm
bears some theoretical soundness.

We present our results in the classical VB framework but
the results and proof techniques are more generally applica-
ble. Our results can be easily generalized to more recent devel-
opments of VB beyond Kullback–Leibler (KL) divergence, α-
divergence, or χ-divergence, for example (Li and Turner 2016;
Dieng et al. 2017). They are also applicable to more expressive
variational families, as long as they contain the mean field fam-
ily. We could also allow for model misspecification, as long as
the variational log-likelihoodMn(θ ; x) under the misspecified
model still enjoys local asymptotic normality.

There are several interesting avenues for future work. The
variational Bernstein–von Mises theorem developed in this
work applies to parametric and semiparametric models. One
direction is to study the VB posteriors in nonparametric set-
tings. A second direction is to characterize the finite-sample
properties of VB posteriors. Finally, we characterized the
asymptotics of an optimization problem, assuming that we
obtain the global optimum. Though our simulations cor-
roborated the theory, VB optimization typically finds a local
optimum. Theoretically characterizing these local optima
requires further study of the optimization loss surface.

Supplementary Materials
The online supplementary materials contain the appendices for the article.
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