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Abstract

We present a truncation-free stochastic variational inference algorithm for Bayesian
nonparametric models. While traditional variational inference algorithms require
truncations for the model or the variational distribution, our method adapts model
complexity on the fly. We studied our method with Dirichlet process mixture
models and hierarchical Dirichlet process topic models on two large data sets. Our
method performs better than previous stochastic variational inference algorithms.

1 Introduction

Bayesian nonparametric (BNP) models [1] have emerged as an important tool for building probability
models with flexible latent structure and complexity. BNP models use posterior inference to adapt
the model complexity to the data. For example, as more data are observed, Dirichlet process (DP)
mixture models [2] can create new mixture components and hierarchical Dirichlet process (HDP)
topic models [3] can create new topics.

In general, posterior inference in BNP models is intractable and we must approximate the posterior.
The most widely-used approaches are Markov chain Monte Carlo (MCMC) [4] and variational
inference [5]. For BNP models, the advantage of MCMC is that it directly operates in the unbounded
latent space; whether to increase model complexity (such as adding a new mixture component)
naturally folds in to the sampling steps [6, 3]. However MCMC does not easily scale—it requires
storing many configurations of hidden variables, each one on the order of the number of data
points. For scalable MCMC one typically needs parallel hardware, and even then the computational
complexity scales linearly with the data, which is not fast enough for massive data [7, 8, 9].

The alternative is variational inference, which finds the member of a simplified family of distributions
to approximate the true posterior [5, 10]. This is generally faster than MCMC, and recent innovations
let us use stochastic optimization to approximate posteriors with massive and streaming data [11,
12, 13]. Unlike MCMC, however, variational inference algorithms for BNP models do not operate
in an unbounded latent space. Rather, they truncate the model or the variational distribution to a
maximum model complexity [13, 14, 15, 16, 17, 18].' This is particularly limiting in the stochastic
approach, where we might hope for a Bayesian nonparametric posterior seamlessly adapting its model
complexity to an endless stream of data.

In this paper, we develop a truncation-free stochastic variational inference algorithm for BNP models.
This lets us more easily apply Bayesian nonparametric data analysis to massive and streaming data.

*Work was done when the author was with Princeton University.

In [17, 18], split-merge techniques were used to grow/shrink truncations. However, split-merge operations
are model-specific and difficult to design. It is also unknown how to apply these to the stochastic variational
inference setting we consider.



In particular, we present a new general inference algorithm, locally collapsed variational inference.
When applied to BNP models, it does not require truncations and gives a principled mechanism
for increasing model complexity on the fly. We demonstrate our algorithm on DP mixture models
and HDP topic models with two large data sets, showing improved performance over truncated
algorithms.

2 Truncation-free stochastic variational inference for BNP models

Although our goal is to develop an efficient stochastic variational inference algorithm for BNP
models, it is more succinct to describe our algorithm for a wider class of hierarchical Bayesian
models [19]. We will show how we apply our algorithm for BNP models in §2.3.

We consider the general class of hierarchical Bayesian models shown in Figure 1. Let the global
hidden variables be § with prior p(5 | n) (1 is the hyperparameter) and local variables for each data
sample be z; (hidden) and z; (observed) for ¢ = 1,...,n. The joint distribution of all variables
(hidden and observed) factorizes as,

P(B z1m, w1 [ ) = P(BI0) T1izy p(ais 2i | B) = p(BIm) 1=y pi | 23, B)p(zi | B). (D)

The idea behind the nomenclature is that the local variables are conditionally independent of each
other given the global variables. For convenience, we assume global variables [ are continuous and
local variables z; are discrete. (This assumption is not necessary.) A large range of models can be
represented using this form, e.g., mixture models [20, 21], mixed-membership models [3, 22], latent
factor models [23, 24] and tree-based hierarchical models [25].

As an example, consider a DP mixture model for document clustering. Each document is modeled
as a bag of words drawn from a distribution over the vocabulary. The mixture components are the
distributions over the vocabulary 6 and the mixture proportions 7 are represented with a stick-breaking

process [26]. The global variables 3 = (, §) contain the proportions and components, and the local
variables z; are the mixture assignments for each document z;. The generative process is:

1. Draw mixture component 6, and sticks m, for k =1,2,-- -,
0y ~ Dirichlet(n), m = g Hif;ll(l —Ty), 7 ~ Beta(l,a).

2. For each document z;,

(a) Draw mixture assignment z; ~ Mult (7).
(b) For each word z;;, draw the word z;; ~ Mult(6,,).

We now return to the general model in Eq. 1. In inference, we are interested in the posterior of the
hidden variables 8 and z1.,, given the observed data x1.,, i.e., p(8, 21.n | 1.n, 7). For many models,
this posterior is intractable. We will approximate it using mean-field variational inference.

2.1 Variational inference

In variational inference we try to find a distribution in a simple family that is close to the true posterior.
We describe the mean-field approach, the simplest variational inference algorithm [5]. It assumes the
fully factorized family of distributions over the hidden variables,

q(B; 21:n) = q(B) [TiZ, a(2i). 2

We call ¢(/3) the global variational distribution and ¢(z;) the local variational distribution. We want
to minimize the KL-divergence between this variational distribution and the true posterior. Under the
standard variational theory [5], this is equivalent to maximizing a lower bound of the log marginal
likelihood of the observed data x1.,,. We obtain this bound with Jensen’s inequality,

log p(x1.n [0) =log [ 32, p(T1:n, 21:0, B | 0)dB
> E, [logp(8) —log q(B) + > log p(ws, 2i|8) — log q(2:)] & L(q).  (3)
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Figure 1: Graphical model )
for hierarchical Bayesian models ~ Figure 2: Results on assigning document d = {w1, 0, ..., 0} to g(61) (case

with global hidden variables 8, A and B, shown in the figure above) or g(f2) = Dirichlet(0.1,0.1,...,0.1).
local hidden and observed vari- The y axis is the log-odds of g(z = 1) to q(z = 2)—if it is larger than 0,

ables z; and z;, ¢ = 1,...,n. itis more likely to be assigned to component 1. The mean-field approach
Hyperparameter 7 is fixed, nota  underestimates the uncertainty around 02, assigning d incorrectly for case B.
random variable. The locally collapsed approach does it correctly in both cases.

Algorithm 1 Mean-field variational inference. Algorithm 2 Locally collapsed variational inference.
1: Initialize (). 1: Initialize ¢(8).

2: for iter = 1 to M do 2: for iter = 1to M do

3: fori=1tondo 3 for i = 1ton do

4: Set local variational distribution g(z;) o 4 Set local distribution ¢(2;) o< Eq(g) [p(24, 2i | B))]-

exp {Eq(s) [log p(zi, zi | B)] }. 5: Sample from ¢(z;) to obtain its empirical §(z;).

5 end for 6 end for

6:  Set global variational distribution ¢(3) o< 7 Set global variational distribution ¢(8) o
exp {]EQ(ZI:'H.) [lng(mlim Zlin, /6)} } exp {Eﬁ(zl;n) [Ing(xlinv Rlin; 6)] }

7: end for 8: end for

8: return ¢(f3). 9: return ¢(f3).

Maximizing £(q) w.r.t. ¢(3, z1. ) defined in Eq. 2 (with the optimal conditions given in [27]) gives

Q(ﬁ) X exXp {Eq(zl;n) [logp(xlznv Z1n; ﬁ | 77)]} 4)
q(z) o exp {Eq(g) log p(xi, 2 | B)]} - &)

Typically these equations are used in a coordinate ascent algorithm, iteratively optimizing each factor
while holding the others fixed (see Algorithm 1). The factorization into global and local variables
ensures that the local updates only depend on the global factors, which facilitates speed-ups like
parallel [28] and stochastic variational inference [11, 12, 13, 29].

In BNP models, however, the value of z; is potentially unbounded (e.g., the mixture assignment in a
DP mixture). Thus we need to truncate the variational distribution [13, 14]. Truncation is necessary
in variational inference because of the mathematical structure of BNP models. Moreover, it is difficult
to grow the truncation in mean-field variational inference even in an ad-hoc way because it tends to
underestimate posterior variance [30, 31]. In contrast, its mathematical structure and that it gets the
variance right in the conditional distribution allow Gibbs sampling for BNP models to effectively
explore the unbounded latent space [6].

2.2 Locally collapsed variational inference

We now describe locally collapsed variational inference, which mitigates the problem of underesti-
mating posterior variance in mean-field variational inference. Further, when applied to BNP models,
it is truncation-free—it gives a good mechanism to increase truncation on the fly.

Algorithm 2 outlines the approach. The difference between traditional mean-field variational inference
and our algorithm lies in the update of the local distribution ¢(z;). In our algorithm, it is

q(zi) o< Eqgy [p(i, 2 | B)], 6)

as opposed to the mean-field update in Eq. 5. Because we collapse out the global variational
distribution ¢(/3) locally, we call this method locally collapsed variational inference. Note the two
algorithms are similar when ¢(3) has low variance. However, when the uncertainty modeled in ¢(5)
is high, these two approaches lead to different approximations of the posterior.



In our implementation, we use a collapsed Gibbs sampler to sample from Equation 6. This is a local
Gibbs sampling step and thus is very fast. Further, this is where our algorithm does not require
truncation because Gibbs samplers for BNP models can operate in an unbounded space [6, 3].

Now we update ¢(3). Suppose we have a set of samples from ¢(z;) to construct its empirical
distribution §(z;). Plugging this into Eq. 3 gives the solution to ¢(5),

q(ﬁ) X exp {Eé(zlm) [Ing(xlznv Z1:m; ﬂ ‘ 77)]} ) (7)
which has the same form as in Eq. 4 for the mean-field approach. This finishes Algorithm 2.

To give an intuitive comparison of locally collapsed (Algorithm 2) and mean-field (Algorithm 1)
variational inference, we consider a toy document clustering problem with vocabulary size V' = 10.
We use a two-component Bayesian mixture model with fixed and equal prior proportions 71 = mg =
1/2. Suppose at some stage, component 1 has some documents assignments while component 2
has not yet and we have obtained the (approximate) posterior for the two component parameters 6;
and 05 as ¢(61) and g(62). For 61, we consider two cases, A) ¢(f;) = Dirichlet(0.1,1,...,1); B)
q(61) = Dirichlet(1,1,...,1). For 65, we only consider g(f2) = Dirichlet(0.1,0.1,...,0.1). In
both cases, ¢(61) has relatively low variance while g(62) has high variance. The difference is that the
g(61) in case A has a lower probability on word 1 than that in case B. Now we have a new document
d = {w1,0,...,0}, where word 1 is the only word and its frequency is w; . In both cases, document
d is more likely be assigned to component 2 when w; becomes larger. Figure 2 shows the difference
between mean-field and locally collapsed variational inference. In case A, the mean-field approach
does it correctly, since word 1 already has a very low probability in #;. But in case B, it ignores the
uncertainty around 6, resulting in incorrect clustering. Our approach does it correctly in both cases.

What justifies this approach? Alas, as for some other adaptations of variational inference, we do not
yet have an airtight justification [32, 33, 34]. We are not optimizing ¢(z;) and so the corresponding
lower bound must be looser than the optimized lower bound from the mean-field approach if the
issue of local modes is excluded. However, our experiments show that we find a better predictive
distribution than mean-field inference. One possible explanation is outlined in S.1 (section 1 of the
supplement), where we show that our algorithm can be understood as an approximate Expectation
Propagation (EP) algorithm [35].

Related algorithms. Our algorithm is closely related to collapsed variational inference (CVI) [15,
16, 36, 32, 33]. CVI applies variational inference to the marginalized model, integrating out the
global hidden variable . This gives better estimates of posterior variance. In CVI, however, the
optimization for each local variable z; depends on all other local variables, and this makes it difficult
to apply it at large scale. Our algorithm is akin to applying CVI for the intermediate model that treats
q(p3) as a prior and considers a single data point x; with its hidden structure z;. This lets us develop
stochastic algorithms that can be fit to massive data sets (as we show below).

Our algorithm is also related to the recently proposed a hybrid approach of using Gibbs sampling
inside stochastic variational inference to take advantage of the sparsity in text documents in topic
modeling [37]. Their approach still uses the mean-field update as in Eq. 5, where all local hidden
topic variables (for a document) are grouped together and the optimal ¢(z;) is approximated by a
Gibbs sampler. With some adaptations, their fast sparse update idea can be used inside our algorithm.

Stochastic locally collapsed variational inference. We now extend our algorithm to stochastic
variational inference, allowing us to fit approximate posteriors to massive data sets. To do this, we
assume the model in Figure 1 is in the exponential family and satisfies the conditional conjugacy [11,
13, 29]—the global distribution p(/3 | ) is the conjugate prior for the local distribution p(x;, z; | 5),

p(B1n) = h(B)exp {n"t(B) — a(n)}, ®)

p(@i, 2| B) = h(ws, z) exp { B t(2i,2) —a(B) } )

where we overload the notation for base measures h(-), sufficient statistics ¢(-), and log normalizers
a(+). (These will often be different for the two families.) Due to the conjugacy, the term ¢(/3) has

the form ¢(5) = [B; —a(B)]. Also assume the global variational distribution ¢(3 | A) is in the same
family as the prior ¢(/3 | ). Given these conditions, the batch update for ¢(8| A) in Eq. 7 is

A=n+ Z?:l E@(Zz‘) [E(‘ri’ Zl)] . (10



The term #(x;, z;) is defined as #(z;, 2;) = [t(zs, 2;); 1].

Analysis in [12, 13, 29] shows that given the conditional conjugacy assumption, the batch update
of parameter A in Eq. 10 can be easily turned into a stochastic update using natural gradient [38].
Suppose our parameter is \; at step t. Given a random observation x;, we sample from g(z; | 2, At)
to obtain the empirical distribution §(z;). With an appropriate learning rate p;, we have

Aty1 < Ae + oy ( e + 14 nEqz, [EHa, Zt)]) (11)

This corresponds to an stochastic update using the noisy natural gradient to optimize the lower bound
in Eq. 3 [39]. (We note that the natural gradient is an approximation since our ¢(z;) in Eq. 6 is
suboptimal for the lower bound Eq. 3.)

Mini-batch. A common strategy used in stochastic variational inference [12, 13] is to use a small
batch of samples at each update. Suppose we have a batch size S, and the set of samples x;, t € S.
Using our formulation, the g(z;,t € S) becomes

q(ztes) < Eqeg ) [[Ties P(@e, 2¢18)] -

We choose not to factorize z; ;cs, since factorization will potentially lead to the label-switching
problem when new components are instantiated for BNP models [7].

2.3 Truncation-free stochastic variational inference for BNP models

We have described locally collapsed variational inference in a general setting. Our main interests in
this paper are BNP models, and we now show how this approach leads to truncation-free variational
algorithms. We describe the approach for a DP mixture model [21], whose full description was
presented in the beginning of §2.1. See S.2 for the details on the HDP topic models [3].

The global variational distribution. The variational distribution for the global hidden variables,
mixture components 3 and stick proportions 7 is

Q(aa ™ | A, U) = Hk q(@ | )‘k)Q(ﬁ—k | U, Uk)v
where ), is the Dirichlet parameter and (uy, vg) is the Beta parameter. The sufficient statistic term
t(z;, z;) defined in Eq. 9 can be summarized as

t(@i, 2 ) = Lzomh) 2 Ly =uls 8(@is 20)we = Lzi=n)s 8@ 20)oe = D jmprn Lzi=)»
where 11 is the indicator function. Suppose at time ¢, we have obtained the empirical distribution
G(z;) for observation x;, we use Eq. 11 to update Dirichlet parameter A and Beta parameter (u, v),

AMew < Mew + pt(=Aew + 0+ 1420 = k) 325 1y =)
ug < up + pe(—up + 1+ ng(z = k))
Uk < Vg + pe(—vk +a+ nZZ:k+1 4(zi = 1)).
Although we have a unbounded number of mixture components, we do not need to represent them
explicitly. Suppose we have T components that are associated with some data. These updates indicate
q(0x | A\x) = Dirichlet(n) and ¢(7;) = Beta(l,a), i.e., their prior distributions, when k > T.

Similar to a Gibbs sampler [6], the model is “truncated” automatically. (We re-ordered the sticks
according to their sizes [15].)

The local empirical distribution ¢(z;). Since the mixture assignment z; is the only hidden variable,
we obtain its analytical form using Eq. 6,
q(zi = k) oc [ p(xi|0)p(zi = k| 7)q(0k | \e)g(7)dOrdr
_ F(Ew Akw) Hw F()‘kw""zj' 1[1'172':“1]) Up H v
T 1L, TO%w) T(X, MewTlzil) up+vy L 10= 1 ug+vg?
where |x;| is the document length and I'(+) is the Gamma function. (For mini batches, we do not have
an analytical form, but we can sample from it.) The probability of creating a new component is

I(pv) [L, T+, 1z =w])
4(zi > T) o< W) v b1

We sample from ¢(z;) to obtain its empirical distribution G(z;). If z; > T, we create a new component.



Discussion. Why is “locally collapsed” enough? This is analogous to the collapsed Gibbs sampling
algorithm in DP mixture models [6]— whether or not exploring a new mixture component is initialized
by one single sample. The locally collapsed variational inference is powerful enough to trigger this.
In the toy example above, the role of distribution g(62) = Dirichlet(0.1,...,0.1) is similar to that
of the potential new component we want to maintain in Gibbs sampling for DP mixture models.

Note the difference between this approach and those found in [17, 18], which use mean-field methods
that can grow or shrink the truncation using split-merge moves. These approaches are model-specific
and difficult to design. Further, they do not transfer to the stochastic setting. In contrast, the approach
presented here grows the truncation as a natural consequence of the inference algorithm and is easily
adapted to stochastic inference.

3 Experiments

We evaluate our methods on DP mixtures and HDP topic models, comparing them to truncation-based
stochastic mean-field variational inference. We focus on stochastic methods and large data sets.

Datasets. We analyzed two large document collections. The Nature data contains about 350K
documents from the journal Nature from years 1869 to 2008, with about S8M tokens and a vocabulary
size of 4,253. The New York Times dataset contains about 1.8M documents from the years 1987 to
2007, with about 461M tokens and a vocabulary size of 8,000. Standard stop words and those words
that appear less than 10 times or in more than 20 percent of the documents are removed, and the
final vocabulary is chosen by TF-IDF. We set aside a test set of 10K documents from each corpus on
which to evaluate its predictive power; these test sets were not given for training.

Evaluation Metric. We evaluate the different algorithms using held-out per-word likelihood,

likelihood ,y, = 1og p(Diest | Dirain) /D0, €Dy

Higher likelihood is better. Since exact computing the held-out likelihood is intractable, we use
approximations. See S.3 for details of approximating the likelihood. There is some question as to
the meaningfulness of held-out likelihood as a metric for comparing different models [40]. Held-out
likelihood metrics are nonetheless suited to measuring how well an inference algorithm accomplishes
the specific optimization task defined by a model.

4,

Experimental Settings. For DP mixtures, we set component Dirichlet parameter 7 = 0.5 and the
concentration parameter of DP @ = 1. For HDP topic models, we set topic Dirichlet parameter
n = 0.01, and the first-level and second-level concentration parameters of DP a = b = 1 as in [13].
(See S.2 for the full description of HDP topic models.) For stochastic mean-field variational inference,
we set the truncation level at 300 for both DP and HDP. We run all algorithms for 10 hours and took
the model at the final stage as the output, without assessing the convergence. We vary the mini-batch
size S = {1, 2,5, 10,50, 100, 500}. (We do not intend to compare DP and HDP; we want to show
our algorithm works on both methods.)

For stochastic mean-field approach, we set the learning rate according to [13] with p; = (79 +¢) "
with k = 0.6 and 79 = 1. We start our new method with 0 components without seeing any data. We
cannot use the learning rate schedule as in [13], since it gives very large weights to the first several
components, effectively leaving no room for creating new components on the fly. We set the learning
rate p; = S/ny, for ny < n, where n; is the size of corpus that the algorithm has seen at time ¢. After
we see all the documents, n; = n. For both stochastic mean-field and our algorithm, we set the lower
bound of learning rate as S/n. We found this works well in practice. This mimics the usual trick
of running Gibbs sampler—one uses sequential prediction for initialization and after all data points
have been initialized, one runs the full Gibbs sampler [41]. We remove components with fewer than
1 document for DP and topics with fewer than 1 word for HDP topic models each time when we
process 20K documents.
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Figure 3: Results on DP mixtures. (a) Held-out likelihood comparison on both corpora. Our approach is more
robust to batch sizes and gives better predictive performance. (b) The inferred number of mixtures on New York
Times. (Nature is similar.) The left of figure (b) shows the number of mixture components inferred after 10
hours; our method tends to give more mixtures. Small batch sizes for the stochastic mean-field approach do not
really work, resulting in very small number of mixtures. The right of figure (b) shows how different methods
infer the number of mixtures. The stochastic mean field approach shrinks it while our approach grows it.
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Figure 4: Results on HDP topic models. (a) Held-out likelihood comparison on both corpora. Our approach is
more robust to batch sizes and gives better predictive performance most of time. (b) The inferred number of
topics on Nature. (New York Times is similar.) The left of figure (b) show the number of topics inferred after 10
hours; our method tends to give more topics. Small batch sizes for the stochastic mean-field approach do not
really work, resulting in very small number of topics. The right of figure (b) shows how different methods infer
the number of topics. Similar to DP, the stochastic mean field approach shrinks it while our approach grows it.

Results. Figure 3 shows the results for DP mixture models. Figure 3(a) shows the held-out
likelihood comparison on both datasets. Our approach is more robust to batch sizes and usually gives
better predictive performance. Small batch sizes of the stochastic mean-field approach do not work
well. Figure 3(b) shows the inferred number of mixtures on New York Times. (Nature is similar.)
Our method tends to give more mixtures than the stochastic mean-field approach. The stochastic
mean-field approach shrinks the preset truncation; our approach does not need a truncation and grows
the number of mixtures when data requires.

Figure 4 shows the results for HDP topic models. Figure 4(a) shows the held-out likelihood com-
parison on both datasets. Similar to DP mixtures, our approach is more robust to batch sizes and
gives better predictive performance most of time. And small batch sizes of the stochastic mean-field
approach do not work well. Figure 4(b) shows the inferred number of topics on Nature. (New York
Times is similar.) This is also similar to DP. Our method tends to give more topics than the stochastic
mean-field approach. The stochastic mean-field approach shrinks the preset truncation while our
approach grows the number of topics when data requires.

One possible explanation that our method gives better results than the truncation-based stochastic
mean-field approach is as follows. For truncation-based approach, the algorithm relies more on
the random initialization placed on the parameters within the preset truncations. If the random
initialization is not used well, performance degrades. This also explains that smaller batch sizes
in stochastic mean-fields tend to work much worse—the first fewer samples might dominate the
effect from the random initialization, leaving no room for later samples. Our approach mitigates this
problem by allowing new components/topics to be created as data requires.

If we compare DP and HDP, the best result of DP is better than that of HDP. But this comparison is
not meaningful. Besides the different settings of hyperparameters, computing the held-out likelihood
for DP is tractable, but intractable for HDP. We used importance sampling to approximate. (See S.3



for details.) [42] shows that importance sampling usually gives the correct ranking of different topic
models but significantly underestimates the probability.

4 Conclusion and future work

In this paper, we have developed truncation-free stochastic variational inference algorithms for
Bayesian nonparametric models (BNP models) and applied them to two large datasets. Extensions
to other BNP models, such as Pitman-Yor process [43], Indian buffet process (IBP) [23, 24] and
the nested Chinese restaurant process [18, 25] are straightforward by using their stick-breaking
constructions. Exploring how this algorithm behaves in the true streaming setting where the program
never stops—a “never-ending learning machine” [44]—is an interesting future direction.
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