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Abstract

Does adding a theorem to a paper affect its
chance of acceptance? Does labeling a post
with the author’s gender affect the post pop-
ularity? This paper develops a method to es-
timate such causal effects from observational
text data, adjusting for confounding features of
the text such as the subject or writing quality.
We assume that the text suffices for causal ad-
justment but that, in practice, it is prohibitively
high-dimensional. To address this challenge,
we develop causally sufficient embeddings, low-
dimensional document representations that pre-
serve sufficient information for causal identi-
fication and allow for efficient estimation of
causal effects. Causally sufficient embeddings
combine two ideas. The first is supervised di-
mensionality reduction: causal adjustment re-
quires only the aspects of text that are predictive
of both the treatment and outcome. The second
is efficient language modeling: representations
of text are designed to dispose of linguistically
irrelevant information, and this information is
also causally irrelevant. Our method adapts lan-
guage models (specifically, word embeddings
and topic models) to learn document embed-
dings that are able to predict both treatment and
outcome. We study causally sufficient embed-
dings with semi-synthetic datasets and find that
they improve causal estimation over related em-
bedding methods. We illustrate the methods by
answering the two motivating questions—the
effect of a theorem on paper acceptance and the
effect of a gender label on post popularity. Code
and data available at github.com/vveitch/causal-
text-embeddings-tf2.
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1 INTRODUCTION

This paper is about causal inference on text.

Example 1.1. Consider a corpus of scientific papers sub-
mitted to a conference. Some have theorems; others do
not. We want to infer the causal effect of including a the-
orem on paper acceptance. The effect is confounded by
the subject of the paper—more technical topics demand
theorems, but may have different rates of acceptance. The
data does not explicitly list the subject, but it does include
each paper’s abstract. We want to use the text to adjust
for the subject and estimate the causal effect.

Example 1.2. Consider comments from Reddit.com, an
online forum. Each post has a popularity score and the
author of the post may (optionally) report their gender.
We want to know the direct effect of a ‘male’ label on
the score of the post. However, the author’s gender may
affect the text of the post, e.g., through tone, style, or topic
choices, which also affects its score. Again, we want to
use the text to accurately estimate the causal effect.

In these two examples, the text encodes features such as
the subject of a scientific paper or the writing quality of
a Reddit comment. These features bias the estimation of
causal effects from observed text documents. By assump-
tion, the text carries sufficient information to identify the
causal effect; we can use adjustment methods from causal
inference to estimate the effects. But in practice we have
finite data and the text is high dimensional, prohibiting
efficient causal inference. The challenge is to reduce
the text to a low-dimensional representation that suffices
for causal identification and enables efficient estimation
from finite data. We refer to these text representations as
causally sufficient embeddings.

The method for learning causally sufficient embeddings
is based on two ideas. The first comes from examin-
ing causal adjustment. Causal adjustment only requires
the parts of text that are predictive of the treatment and
outcome. Causally sufficient embeddings preserve such
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predictive information while discarding the parts of text
that are irrelevant for causal adjustment. We use super-
vised dimensionality reduction to learn embeddings that
predict the treatment and outcome.

The second idea for learning the embeddings comes from
research on language modeling [e.g., Mik+13b; Mik+13a;
Dev+18; Pet+18]. Outcomes such as paper acceptance or
comment popularity are judgments made by humans, and
human judgments stem from processing natural language.
Thus, when performing causal adjustment for text, the
confounding aspects must be linguistically meaningful.
Consequently, causally sufficient embeddings model the
language structure in text.

We combine these two ideas to adapt modern methods for
language modeling — BERT [Dev+18] and topic models
[Ble+03] — in service of causal inference. Informally, we
learn embeddings of text documents that retain only in-
formation that is predictive of the treatment and outcome,
and relevant for language understanding.

We empirically study these methods. Any empirical eval-
uation must use semi-synthetic data since ground truth
causal effects are not available in real data. A key chal-
lenge is that text is hard to simulate, and realistic models
that explicitly relate text to confounding aspects are not
available. We show how to circumvent these issues by
using real text documents and extra observed features of
the documents as confounders. The empirical evaluation
demonstrates the advantages of supervised dimensionality
reduction and language modeling for producing causally
sufficient embeddings. Code and data to reproduce the
studies will be publicly available.

Contributions. The contributions of this paper are the
following: 1) Adapting modern text representation learn-
ing methods to estimate causal effects from text doc-
uments; 2) Establishing the validity of this estimation
procedure; 3) A new approach for empirically validat-
ing causal estimation problems with text, based on semi-
synthetic data.

Related work. This paper connects to several areas of
related work.

The first area is causal inference for text. Roberts et al.
[Rob+18] also discuss how to estimate effects of treat-
ments applied to text documents. They rely (in part) on
topic modeling to reduce the dimension of the text. In
this paper, we adapt topic modeling to produce represen-
tations that predict the treatment and outcome well, and
demonstrate empirically that this strategy improves upon
unsupervised topic modeling for causal effect estimation.

In other work, Egami et al. [Ega+18] reduce raw text to
interpretable outcomes; Wood-Doughty et al. [WD+18]

Figure 1: Models for the ATT (left) and NDE (right).

estimate treatment effects when confounders are observed,
but missing or noisy treatments are inferred from text. In
contrast, we are concerned with text as the confounder.

A second area of related work addresses causal inference
with unobserved confounding when there is an observed
proxy for the confounder [KM99; Pea12; KP14; Mia+18;
Kal+18]. They usually assume that the observed proxy
variables are noisy realizations of the unobserved con-
founder, and then derive conditions under which causal
identification is possible. One view of our problem is
that each unit has a latent attribute (e.g., topic) such that
observing it would suffice for causal identification, and
the text is a proxy for this attribute. Unlike the proxy vari-
able approach, however, we assume the text fully captures
confounding. Our interest is in methods for finite-sample
estimation rather than infinite-data identification.

Finally, there is work on adapting representation learning
for effect estimation by directly optimizing causal criteria
such as balance and overlap [Joh+16; Joh+18; Joh+19;
Joh+20; DF]. As in this paper, Shi et al. [Shi+19] and
Veitch et al. [Vei+19] learn representations by predicting
the treatment and outcome. We extend these ideas to learn
text representations.

2 BACKGROUND

We begin by fixing notation and recalling some ideas from
the estimation of causal effects. Each statistical unit is
a document represented as a tuple Oi = (Yi, Ti,Wi),
where Yi is the outcome, Ti is the treatment, and Wi is
the sequence of words. The observed dataset contains
n observations drawn independently and identically at
random from a distribution, Oi ∼ P .

We review estimation of the average treatment effect on
the treated (ATT) and the natural direct effect (NDE).
For both, we assume that the words are sufficient for
adjustment.

ATT. The ATT is

ψ = E[Y | do(T = 1), T = 1]−E[Y | do(T = 0), T = 1].

Pearl’s do notation indicates that the effect of interest is
causal: what happens if we intervene by adding a theorem



to a paper, given that we observe that it has a theorem?
We assume that the words Wi carry sufficient information
to adjust for confounding (common causes) between Ti
and Yi. Figure 1 on the left depicts this assumption. We
define Zi = f(Wi) to be the part of Wi which blocks
all ‘backdoor paths’ between Yi and Ti. The causal effect
is then identifiable from observational data as:

ψ = E[E[Y | Z, T = 1]− E[Y | Z, T = 0] | T = 1].
(2.1)

Our task is to estimate the ATT ψ from a finite data sam-
ple. Define Q(t, z) = E[Y | t, z] to be the conditional
expected outcome and Q̂ to be an estimate for Q. Define
g(z) = P(T = 1 | z) to be the propensity score and ĝ to
be an estimate for g. The “plugin” estimator of 2.1 is

ψ̂plugin =
1

n

∑
i

[
Q̂(1, zi)− Q̂(0, zi)

]
ĝ(zi)/

(
1

n

∑
i ti

)
.

(2.2)
Here ψ is estimated by a two-stage procedure: First esti-
mate Q̂ and ĝ with predictive models; then plug Q̂ and ĝ
into a pre-determined statistic to compute the estimate of
the ATT. What is important is that the estimator depends
on zi only through Q̂(t, zi) and ĝ(zi).

The Q-only estimator, which only uses the conditional
expected outcomes, is

ψ̂Q =
1∑
i ti

∑
i

ti

[
Q̂(1, zi)− Q̂(0, zi)

]
. (2.3)

NDE. The direct effect is the expected change in out-
come if we apply the treatment while holding fixed any
mediating variables that are affected by the treatment and
that affect the outcome. Figure 1 on the right depicts the
text as mediator of the treatment and outcome. For the
estimation of the direct effect, we take Z = f(W) to be
the parts of Wi that mediate T and Y . The natural direct
effect of treatment β is average difference in outcome
induced by giving each unit the treatment, if the distribu-
tion of Z had been as though each unit received treatment.
That is,

β = EZ|T=1[E[Y | Z,do(T = 1)]−E[Y | Z,do(T = 0)]].

In the Reddit example, this is the expected difference in
score between a post labeled as written by a man versus
labeled as written by a woman, where the expectation is
taken over the distribution of posts written by men.

Mathematically, β is equivalent to ψ in (2.1). The causal
parameters have different interpretations depending on
the graph. Under minimal conditions, the NDE may be
estimated from observational data [Pea14]. The estima-
tors for β are the same as those for the ATT, given in (2.2)
and (2.3) [LR11, Ch. 8].

3 CAUSAL TEXT EMBEDDINGS

Following the previous section, we want to produce esti-
mates of the propensity score g(zi) and the conditional
expected outcome Q(ti, zi). We assume that some prop-
erties of the text zi = f(wi) suffice for identification.
These properties are generally lower-dimensional than the
text wi itself and are linguistically meaningful (i.e., they
have to do with what the language means) But, we do not
directly observe the confounding features zi. Instead, we
observe the raw text.

A simple approach is to abandon zi and learn models
for the propensities and conditional outcomes directly
from the words wi. Since wi contains all information
about zi, the direct adjustment will also render the causal
effect identifiable. Indeed, in an infinite-data setting this
approach would be sound. However, the text is high-
dimensional and with finite data, this approach produces
a high-variance estimator.

To this end, our goal is to reduce the words wi to a feature
zi that contains sufficient information to render the causal
effect identifiable and that allows us to efficiently learn
the propensity scores and conditional outcomes with a
finite sample of data.

Our strategy is to use the words of each document to
produce an embedding vector λ(w) that captures the con-
founding aspects of the text. Using the embedding, the
propensity score is is g(λ(w)) = P(T = 1 | λ(w)). The
conditional outcomes are Q(t, λ(w)) = E[Y | t, λ(w)].
The embeddings λ(w) are causally sufficient if we can
use them to estimate the propensities and conditional out-
comes required by the downstream effect estimator. This
result builds on [RR83]; Theorem 3.1 makes this formal.

In finite sample, additional domain knowledge is useful
for finding these embeddings more efficiently. With text
in particular, we assume that features that are useful for
language understanding are also useful for eliminating
confounding. The reason is that humans interpret the
language and then produce the outcome based on aspects
such as topic, writing quality or sentiment.

To produce causally sufficient embeddings, we will adapt
models for language understanding and refine the rep-
resentations they produce to predict the treatment and
outcome. Informally, these models take in words wi and
produce a tuple (λi, Q̃(ti, λi), g̃(λi)), which contains an
embedding λi and estimates of g and Q that use that em-
bedding. Such models provide an effective black-box tool
for both distilling the words into the information relevant
to prediction problems, and for solving those prediction
problems.

Finally, to estimate the average treatment effect, we follow



the strategy of Section 2. Fit the embedding-based predic-
tion model to produce estimated embeddings λ̂i, propen-
sity scores g̃(λ̂i) and conditional outcomes Q̃(ti, λ̂i).
Then, plug these values into a downstream estimator.

We develop two methods that produce causally sufficient
document embeddings: causal BERT and the causal topic
model.

Causal BERT. We modify BERT, a state-of-the-art
language model [Dev+18]. Each input to BERT is the
document text, a sequence of word-piece tokens wi =
(wi1, . . . , wil). The model is tasked with producing three
kinds of outputs: 1) document-level embeddings, 2) a
map from the embeddings to treatment probability, 3) a
map from the embeddings to expected outcomes for the
treated and untreated.

The model assigns an embedding ξw to each word-piece
w. It then produces a document-level embedding for
document text wi as λi = f((ξwi1

, . . . , ξwil
), γU) for a

particular function f . The embeddings and global pa-
rameter γU are trained by minimizing an unsupervised
objective, denoted as LU(wi; ξ, γ

U). Informally, random
word-piece tokens are censored from each document and
the model is tasked with predicting their identities.1

Following Devlin et al. [Dev+18], we use a fine-tuning
approach to solve the prediction problem. We add a logit-
linear layer mapping λi → g̃(λi; γ

g) and a 2-hidden
layer neural net for each of λi → Q̃(0, λi; γ

Q0) and
λi → Q̃(1, λi; γ

Q1). We learn the parameters for the
embedding model and the prediction model jointly. This
supervised dimensionality reduction adapts the embed-
dings to be useful for the downstream prediction task, i.e.,
for causal inference.

We write γ for the full collection of global parameters.
The final model is trained as:

λ̂i = f((ξ̂n,wi1
, . . . , ξ̂n,wil

), γ̂U)

ξ̂, γ̂ = argmin
ξ,γ

1

n

∑
i

L(wi; ξ, γ),

where the objective is designed to predict both the treat-
ment and outcome. It is

L(wi; ξ, γ) =
(
yi − Q̃(ti, λi; γ)

)2
+ CrossEnt

(
ti, g̃(λi; γ)

)
+ LU(wi; ξ, γ).

Effect estimation. Computing causal effect estimates
simply requires plugging in the propensity scores and
expected outcomes that the trained model predicts on the

1BERT also considers a ‘next sentence’ prediction task,
which we do not use.

held-out units. For example, using the plug-in estimator
(2.2),

ψ̂Q :=
1

n

∑
i

Q̃(1, λ̂n,i; γ̂
Q
n )− Q̃(0, λ̂n,i; γ̂

Q
n ). (3.1)

The estimation procedure is the same for the NDE.

Causal Amortized Topic Model. We adapt the standard
topic model [Ble+03], a generative model of text docu-
ments. Formally, a document wi (a sequence of word
tokens) is generated from k latent topics by:

ri ∼ N (0, I)

θi = softmax(ri)

wij ∼ Cat(θ>i β)

The vector θi represents the document’s topic proportions,
drawn from log normal prior distribution. It is the embed-
ding λ(wi) of the document. The parameters β represent
topics.

Typically, this model is fit with variational inference,
which seeks to maximize a lower bound of the marginal
log likelihood of the documents. It is a sum of per-
document bounds. Each is

Li(β, η) = Eq(θ;η)[p(wi | θi;β)]−DKL(q(θi; η), p(θi)).

The first term pushes the variational distribution over doc-
ument representations q(θ; η) to reconstruct the observed
documents well. This term encourages language model-
ing.

We use amortized inference to define a variational family
q(θ | w; η) that depends on the observed documents.
It uses a feedforward neural network called an encoder
with parameters η to produce a representation θ. For
each document, the encoder produces two vectors (µi,Σi)
such that q(θi | w; η) = N (µi,Σi). This is the amortized
topic model (ATM).

We adapt the training objective of this model to produce
representations that predict the treatment and outcome
well. A logit linear mapping θi → g̃(θi; γ

g) produces
propensity scores from the document representation. A
linear mapping θi → Q̃(ti, θi; γ

Q) produces expected
outcomes from the document representations. The final
loss is

L(wi; η, β, γ) = −Li(β, η)

+ Eq(θ|w;η)[CrossEnt
(
ti, g̃(θi; γ)]

+ Eq(θ|w;η)[yi − Q̃(ti, θi; γ)2].

It encourages good reconstruction of both the observed
documents, and the treatment and outcome under the
learned representation. The objective is minimized with



stochastic optimization, forming noisy gradients using the
reparameterization trick. We refer to this model as the
causal amortized topic model (Causal ATM).

Validity. The central idea of the method is that instead
of adjusting for all of the information in w it suffices
to adjust for the limited information in λ(w). We now
formalize this observation and establish the validity of
our estimation procedure. To avoid notational overload,
we state the result for only the ATT. The same arguments
carry through for the NDE as well.

A key observation is that for z to be confounding, it must
causally influence both treatment assignment and the out-
come. Accordingly, z must be predictive of both the
treatment and outcome. Put differently: any information
in w that is not predictive for both T and Y is not relevant
for z, is not confounding, and may be safely excluded
from λ(w). Or, if λ(w) carries the relevant information
for the prediction task then it is also causally sufficient.
The next result formalizes the observation that predictive
sufficiency is also causal sufficiency.

Theorem 3.1. Suppose λ(w) is some function of the
words such that at least one of the following is λ(W)-
measurable:

1. (Q(1,W), Q(0,W)),
2. g(W),
3. g((Q(1,W), Q(0,W))) or

(Q(1, g(W)), Q(0, g(W))).

If adjusting for W suffices to render the ATT identifiable
then adjusting for only λ(W) also suffices. That is, ψ =
E[E[Y | λ(W), T = 1]− E[Y | λ(W), T = 0]].

In words: the random variable λ(W) carries the infor-
mation about W relevant to the prediction of both the
propensity score and the conditional expected outcome.
While λ(W) will typically throw away much of the infor-
mation in the words, Theorem 3.1 says that adjusting for
it suffices to estimate causal effects. Item 1 is immediate
from (2.1), and says it suffices to preserve information
about Y . Item 2 is a classic result of [RR83, Thm. 3],
and says it suffices to preserve information about T . Item
3 weakens our requirements further: we can even throw
away information relevant to Y , so long as this informa-
tion is not also relevant to T (and vice versa).

The next result extends this identification result to es-
timation, establishing conditions for the validity of our
estimation procedure.

Theorem 3.2. Let η(z) = (E[Y | T = 0, z],E[Y | T =
1, z],P[T = 1 | z)) be the conditional outcomes and
propensities given z. Suppose that ψ̂({(ti, yi, zi)}; η) =
1
n

∑
i φ(ti, yi, η(zi))+op(1) is some consistent estimator

for the average treatment effect ψ. Further suppose that

there is some function λ of the words such that

1. (identification) λ satisfies the condition of Theo-
rem 3.1.

2. (consistency) ‖η(λ(Wi))− η̃(λ̂i)‖P,2 → 0 as n→
∞, where η̃ is the estimated conditional outcome
and propensity model.

3. (well-behaved estimator) ‖∇ηφ(t, y, η)‖2 ≤ C for
some constant C ∈ R+,

then, ψ̃({(ti, yi, λ̂i)}; η̃)
p−→ ψ.

Remark 3.3. The requirement that the estimator ψ̂ be-
haves asymptotically as a sample mean is not an impor-
tant restriction; most commonly used estimators have this
property [Ken16]. The third condition is a technical re-
quirement on the estimator. In the cases we consider, it
suffices that the range of Y and Q are bounded and that g
is bounded away from 0 and 1. This later requirement is
the common ‘overlap’ condition, and is anyway required
for the estimation of the causal effects.

The proof is given in the appendix.

As with all causal inference, the validity of the procedure
relies on uncheckable assumptions that the practitioner
must assess on a case-by-case basis. Particularly, we
require that:

1. (properties z of) the document text renders the effect
identifiable,

2. the embedding method extracts semantically mean-
ingful text information relevant to the prediction of
both t and y,

3. the conditional outcome and propensity score models
are consistent.

Only the second assumption is non-standard. In practice,
we use the best possible embedding method and take the
strong performance on (predictive) natural language tasks
in many contexts as evidence that the method effectively
extracts information relevant to prediction tasks. Addi-
tionally, we use the domain knowledge that features which
are useful for language understanding are also relevant
for adjusting for confounding. Informally, assumption 2
is satisfied if we use a good language model, so we satisfy
it by using the best available model.

4 EXPERIMENTS

We now empirically study the causally sufficient embed-
dings produced by causal BERT and causal ATM.2 The

2Code and data available at github.com/vveitch/causal-text-
embeddings-tf2
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question of interest is whether supervised dimensionality
reduction and language modeling produce embeddings
that admit efficient causal estimation.

Empirically validating effect estimation is difficult since
known causal effects in text are unavailable. We address
this gap with semi-synthetic data We use real text docu-
ments and simulate an outcome that depends on both the
treatment of interest and a confounder.

We find: 1) modeling language improves effect estima-
tion; 2) supervised representations perform better than
their unsupervised counterparts; 3) the causally sufficient
representations proposed in this paper effectively adjust
for confounding.

Finally, we apply causal BERT to the two motivating ex-
amples in the introduction. We estimate causal effects on
paper acceptance and post popularity on Reddit.com. Our
application suggest that much of the apparent treatment
effects is attributable to confounding in the text. Code and
data to reproduce all studies will be publicly available.

PeerRead. PeerRead is a corpus of computer-science
papers [Kan+18]. We consider a subset of the corpus
consisting of papers posted to the arXiv under cs.cl,
cs.lg, or cs.ai between 2007 and 2017 inclusive.
The data only includes papers which are not cross listed
with any non-cs categories and are within a month of
the submission deadline for a target conferences. The
conferences are: ACL, EMNLP, NAACL, EACL, TACL,
NeurIPS, ICML, ICLR and AAAI. A paper is marked
as accepted if it appeared in one of the target venues.
Otherwise, the paper is marked as rejected. The dataset
includes 11,778 papers, of which 2,891 are accepted.

For each paper, we consider the text of abstract, the ac-
cept/reject decision, and two attributes that can be pre-
dicted from the abstract text:

1. buzzy: the title contains any of ‘deep’, ‘neural’,
‘embed’, or ‘adversarial net’.

2. theorem: the word ‘Theorem’ appears in the pa-
per.

Reddit. Reddit is an online forum divided into topic-
specific subforums called ‘subreddits’. We consider three
subreddits: keto, okcupid, and childfree. In
these subreddits, we identify users whose username flair
includes a gender label (usually ‘M’ or ‘F’). We collect
all top-level comments from these users in 2018. We use
each comment’s text and score, the number of likes minus
dislikes from other users. The dataset includes 90k com-
ments in the selected subreddits. We consider the direct
effect of the labeled gender on posts’ scores.

4.1 Empirical Setup

Empirical evaluation of causal estimation procedures re-
quires semi-synthetic data because ground truth causal
effects are usually not available. We want semi-synthetic
data to be reflective of the real world. This is challeng-
ing in the text setting: it is difficult to generate text on
the basis of confounding aspects such as topic or writing
quality.

We use real text and metadata —subreddit and title
buzziness—as the confounders z̃ for the simulation. We
checked that these confounders are related to the text. We
simulate only the outcomes, using the treatment and the
confounder. We compute the true propensity score π(z̃)
as the proportion of units with ti = 1 in each strata of z̃.
Then, Yi is simulated from the model:

Yi = ti + b1(π(z̃i)− 0.5) + εi εi ∼ N(0, γ).

Or, for binary outcomes,

Yi ∼ Bernoulli(σ(0.25ti + b1(π(z̃i)− 0.2)))

The parameter b1 controls the level of confounding;
e.g., the bias of the unadjusted difference E[Y |T =
1] − E[Y |T = 0] increases with b1. For PeerRead, we
report estimates of the ATE for binary simulated out-
comes. For Reddit, we compute the NDE for simulated
real-valued outcomes.

Methods. The goal is to study the utility of language
modeling and supervision in representation learning. We
use Causal BERT (C-BERT) and Causal ATM (C-ATM),
explained in Section 3, to test these ideas.

First, we compare the methods to two that omit language
modeling. We fit C-BERT and C-ATM without the loss
terms that encourage language modeling: in BERT, it
is the censored token prediction and in ATM, it is the
expected reconstruction loss. They amount to fitting
attention-based or multi-layer feedforward supervised
models. We refer to these baselines as BERT (sup. only)
and NN.

Second, we consider methods that omit supervised repre-
sentation learning. These include fitting regression mod-
els for the expected outcomes and propensity scores with
fixed representations of documents. We compare four: 1)
bag-of-words (BOW), 2) out-of-the-box BERT embed-
dings, 3) the document-topic proportions produced by
latent Dirichlet allocation (LDA), 4) and the document
representation produced by ATM. To produce document-
level embeddings from BERT, the embeddings for each
token in the document are summed together.

Estimator. For each experiment, we consider two down-
stream estimators: the plugin estimator (2.2) and the Q-
only estimator (2.3). For all estimators, we exclude units



that have a predicted propensity score greater than 0.97
or less than 0.03.

BERT pre-processing. For BERT models, we truncate
PeerRead abstracts to 250 word-piece tokens, and Red-
dit posts to 128 word-piece tokens. We begin with a
BERT model pre-trained on a general English language
corpus. We further pre-train a BERT model on each
dataset, running training on the unsupervised objective
until convergence.

Figure 2: The method improves the unadjusted estimator even
with exogeneous mediatiors. Plot shows estimates of NDE from
simulated data based on Reddit. Ground truth is 1.

4.2 Results

Semi-synthetic data is used to investigate three questions
about causal adjustment: 1) does language modeling help?
2) does supervised dimensionality reduction help? 3)
do C-BERT and C-ATM produce embeddings that suffi-
ciently adjust for confounding? Results are summarized
in Tables 1 to 3.

Language modeling helps. The left table in Table 1
illustrates the point that representations that model lan-
guage produce better causal estimates. C-ATM and C-
BERT recover the simulated treatment effect in Reddit
and PeerRead more accurately than NN and BERT (sup.
only) . Among them, C-BERT performs best. This exper-
iment uses the confounding setting β1 = 10.0, γ = 1.0
for Reddit and β1 = 5.0 for PeerRead.

Supervision helps. The right table in Table 1 sum-
marizes effect estimation for fixed representations that
are used to fit expected outcomes and propensity scores.
Among these, LDA, ATM and BERT model language
structure. No method estimates the treatment effects as
accurately as C-BERT or C-ATM. The finding suggests
supervising representations to discard information not
relevant to predicting the treatment or outcome is useful
for effect estimation. The improvement of C-ATM over

ATM and C-BERT over BERT suggests that combining
language modeling with supervision works best.

Methods adjust for confounding. Tables 2 and 3 show
the quality of effect estimation as the amount of confound-
ing increases. For Reddit, the confounding setting β1
varies across 1.0, 10.0, 100.0 and the noise γ varies across
1.0 and 4.0. For PeerRead, β1 varies across 1.0, 5.0, 25.0.
Results from the NN method are shown as a baseline.

Compared to the unadjusted estimate, all methods per-
form adjustments that reduce confounding. However,
C-BERT and C-ATM recover the most accurate causal
estimate in all settings. In the Reddit setting, C-ATM per-
forms best when the outcome variance is higher (γ = 4.0).
However, C-BERT is best when the outcome variance is
lower (γ = 1.0). In the PeerRead setting, C-BERT per-
forms best.

The effect of exogeneity. We assume that the text car-
ries all information about the confounding (or mediation)
necessary to identify the causal effect. In many situations,
this assumption may not be fully realistic. For example,
in the simulations just discussed, it may not be possible to
exactly recover the confounding from the text. We study
the effect of violating this assumption by simulating both
treatment and outcome from a confounder that consists
of a part that can be fully inferred from the text and part
that is wholly exogenous.

The challenge is finding a realistic confounder that can be
exactly inferred from the text. Our approach is to (i) train
BERT to predict the actual treatment of interest, produc-
ing propensity scores ĝi for each i, and (ii) use ĝi as the
inferrable part of the confounding. Precisely, we simulate
propensity scores as logit gsim = (1 − p) logit ĝi + pξi,
with ξi

iid∼ N(0, 1). The outcome is simulated as above.

When p = 0, the simulation is fully-inferrable and closely
matches real data. Increasing p allows us to study the
effect of exogeneity; see Section 4.1. As expected, the
adjustment quality decays. Remarkably, the adjustment
improves the naive estimate at all levels of exogeneity—
the method is robust to violations of the theoretical as-
sumptions.

Application We apply causal BERT to estimate the treat-
ment effect of buzzy and theorem, and the effect of
gender on log-score in each subreddit. Although unad-
justed estimates suggest strong effects, our results show
this is in large part explainable by confounding or medi-
ating. See Tables 4 and 5. On PeerRead, both estimates
suggest a positive effect from including a theorem on
paper acceptance. On Reddit, both estimates suggest a
positive effect from labeling a post as female on its score
in okcupid and childfree.



Table 1: Comparisons on semi-simulated data show that effect estimation is improved by: (a) language modeling (left);
(b)supervised dimensionality reduction (right). (a) C-BERT and C-ATM improve effect estimation over NN and BERT
(sup. only), which do not model language structure. (b) C-BERT and C-ATM improve effect estimation over BOW,
BERT, LDA and ATM, which produce representations that are not supervised to predict the treatment and outcome. The
tables report estimated NDE for Reddit and estimated ATT for PeerRead. Shaded numbers are closest to the ground
truth. The simulation setting used is β1 = 10.0, γ = 1.0 for Reddit and β1 = 5.0 for PeerRead.

(a) Language Modeling Helps
Dataset: Reddit PeerRead

(NDE) (ATT)

Ground truth 1.00 0.06
Unadjusted 1.24 0.14

NN ψ̂Q 1.17 0.10
NN ψ̂plugin 1.17 0.10
BERT (sup. only) ψ̂Q 0.93 0.19
BERT (sup. only) ψ̂plugin 1.17 0.18
C-ATM ψ̂Q 1.16 0.10
C-ATM ψ̂plugin 1.13 0.10
C-BERT ψ̂Q 1.07 0.07
C-BERT ψ̂plugin 1.15 0.09

(b) Supervision Helps
Dataset: Reddit PeerRead

(NDE) (ATT)

Ground truth 1.00 0.06
Unadjusted 1.24 0.14

BOW ψ̂Q 1.17 0.13
BOW ψ̂plugin 1.18 0.14
BERT ψ̂Q -15.0 -0.25
BERT ψ̂plugin -14.1 -0.28
LDA ψ̂Q 1.20 0.07
LDA ψ̂plugin 1.20 0.09
ATM ψ̂Q 1.17 0.08
ATM ψ̂plugin 1.17 0.08

Table 2: Embedding adjustment recovers the NDE on Reddit. This persists even with high confounding and high
noise. Table entries are estimated NDE. Columns are labeled by confounding level. Low, Med., and High correspond to
β1 = 1.0, 10.0 and 100.0.

Noise: γ = 1.0 γ = 4.0
Confounding: Low Med. High Low Med. High

Ground truth 1.00 1.00 1.00 1.00 1.00 1.00
Unadjusted 1.03 1.24 3.48 0.99 1.22 3.51

NN ψ̂Q 1.03 1.18 2.04 0.89 1.08 2.24

NN ψ̂plugin 1.03 1.18 1.40 0.85 1.05 2.07

C-ATM ψ̂Q 1.01 1.16 2.45 1.04 1.04 1.72

C-ATM ψ̂plugin 1.01 1.13 2.09 0.95 0.94 1.11

C-BERT ψ̂Q 1.07 1.07 1.14 1.50 0.95 1.12

C-BERT ψ̂plugin 1.08 1.15 0.94 2.07 1.07 1.27

5 DISCUSSION

We have examined the use of black box embedding meth-
ods for causal inference with text. The challenge is to
produce a low-dimensional representation of text that is
sufficient for causal adjustment. We adapt two modern
tools for language modeling — BERT and topic modeling
— to produce representations that predict the treatment and
outcome well. This marries two ideas to produce causally
sufficient text representations: modeling language and
supervision relevant to causal adjustment. We propose a
methodology for empirical evaluation that uses real text
documents to simulate outcomes with confounding. The

studies in this simulated setting validate the representa-
tion learning insights of this paper. The application to real
data completes the demonstration of our methods.

There are several directions for future work. First, the
black box nature of the embedding methods makes it
difficult for practitioners to assess whether the causal as-
sumptions hold: is it possible to develop visualizations
and sensitivity analyses to aid these judgments? Second,
we require both the treatment and outcome to be external
to the text. How can the approach here be extended to
estimate the causal effect of (or on) aspects of the writing
itself? Third, the deep learning methods we have used are
mainly geared towards predictive performance. Are there



Table 3: Embedding adjustment recovers the ATT on PeerRead. This persists even with high confounding. Table entries
are estimated ATT. Columns are labeled by confounding level. Low, Med., and High correspond to β1 = 1.0, 5.0 and
25.0.

Confounding: Low Med. High

Ground truth 0.06 0.05 0.03
Unadjusted 0.08 0.15 0.16

NN ψ̂Q 0.05 0.10 0.30

NN ψ̂plugin 0.05 0.10 0.30

C-ATM ψ̂Q 0.07 0.10 0.32

C-ATM ψ̂plugin 0.07 0.10 0.32

C-BERT ψ̂Q 0.09 0.07 0.04

C-BERT ψ̂plugin 0.10 0.09 0.05

Table 4: Embedding adjustment reduces estimated treatment effects in PeerRead. Entries are estimated treatment effect
and 10-fold bootstrap standard deviation.

buzzy theorem

Unadjusted 0.08± 0.01 0.21± 0.01

C-BERT ψ̂Q −0.03± 0.01 0.16± 0.01

C-BERT ψ̂plugin −0.02± 0.01 0.18± 0.02

Table 5: Embedding adjustment reduces estimated direct effects in Reddit. Entries are estimated treatment effect and
10-fold bootstrap standard deviation.

okcupid childfree keto

Unadjusted −0.18± 0.01 −0.19± 0.01 −0.00± 0.00

C-BERT ψ̂Q −0.10± 0.04 −0.10± 0.04 −0.03± 0.02

C-BERT ψ̂plugin −0.15± 0.05 −0.16± 0.05 −0.01± 0.00

improvements that will help with estimation accuracy?
For example, should we adapt methods that specifically
target well-calibrated predictions? Finally, how can meth-
ods in this domain be reliably empirically evaluated? We
have developed a new strategy for realistic semi-synthetic
simulations in this paper. Can our approach be extended
to a complete approach for benchmarking?
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