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Abstract

Empirical risk minimization is the main tool
for prediction problems, but its extension to
relational data remains unsolved. We solve
this problem using recent ideas from graph
sampling theory to (i) define an empirical risk
for relational data and (ii) obtain stochas-
tic gradients for this empirical risk that are
automatically unbiased. This is achieved by
considering the method by which data is sam-
pled from a graph as an explicit component
of model design. By integrating fast imple-
mentations of graph sampling schemes with
standard automatic differentiation tools, we
provide an efficient turnkey solver for the risk
minimization problem. We establish basic
theoretical properties of the procedure. Fi-
nally, we demonstrate relational ERM with
application to two non-standard problems:
one-stage training for semi-supervised node
classification, and learning embedding vectors
for vertex attributes. Experiments confirm
that the turnkey inference procedure is effec-
tive in practice, and that the sampling scheme
used for model specification has a strong effect
on model performance. Code is available at
github.com/wooden-spoon/relational-ERM.

1 Introduction

Relational data is data that can be represented as
a graph, possibly annotated with additional informa-
tion. An example is the link graph of a social network,
annotated by user profiles. We consider prediction
problems for such data. For example, how to predict

1Equal contribution

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

the preferences of a user of a social network using both
the preferences and profiles of other users, and the
network itself? In the classical case of i.i.d. sequence
data—where the observed data does not include link
structure—the data decomposes into individual exam-
ples. Prediction methods for such data typically rely
on this decomposition, e.g., predicting a user’s prefer-
ences from only the profile of the user, ignoring the
network structure. Relational data, however, does not
decompose; e.g., because of the link structure, a so-
cial network can not be decomposed into individual
users. Accordingly, classical methods do not generally
apply to relational data, and new methods cannot be
developed with the same ease as for i.i.d. sequence data.

With i.i.d. sequence data, prediction problems are typ-
ically solved with models fit by empirical risk mini-
mization (ERM) [24, 25, 22]. We give an (unusual)
presentation of ERM that anticipates the relational
case. The observed data is a set Sn = {X1, . . . , Xn}
that decomposes into examples Xi = (Xi, Yi). The task
is to choose a predictor π that completes X by estimat-
ing missing information Y , e.g., a class label. An ERM
model is defined by two parts: (i) a hypothesis class
{πθ|θ ∈ T } from which π is chosen, and (ii) a loss func-
tion L where L(x̄; θ) ∈ R+ measures the reconstruction
error of predictor πθ on example x̄. The empirical risk
is the expected loss on an example randomly selected
from the dataset:

R̂(θ, Sn) := EX∼F(Sn)[L(X; θ)|Sn], (1)

where F(Sn) is the empirical distribution.2 The ERM
dogma is to select the predictor πθ̂n

given by θ̂n =

argminθ R̂(θ, Sn). That is, the objective function that
defines learning is the empirical risk.

ERM has two useful properties. (1) It provides a prin-
cipled framework for defining new machine learning
methods. In particular, when examples are generated
i.i.d., model-agnostic results guarantee that ERM mod-
els cohere as more data is collected (e.g., in the sense

2The empirical risk is more often equivalently written
as R̂(θ, Sn) =

1
n

�
i≤n L(Xi; θ).
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of statistical convergence) [22]. (2) For differentiable
models, mini-batch stochastic gradient descent (SGD)
can efficiently solve the minimization problem (albeit,
approximately). The ease of SGD comes from the defi-
nition of the empirical risk as the expectation over a
randomly subsampled example: the gradient of the loss
on a randomly subsampled example is an unbiased es-
timate of the gradient of the empirical risk. Combined
with automatic differentiation, this provides a turnkey
approach to fitting machine-learning models.

Returning to relational data, the observed data is now
a graph Gn of size n (e.g., the number of vertices
or edges). The graph is possibly annotated, e.g., by
vertex labels. We further consider Gn as an incomplete
version of Gn. For example, Gn may censor labels of
the vertices or some of the edges from Gn. In relational
learning, the task is to find a predictor π that completes
Gn by estimating the missing information. Typically,
π is chosen from a parameterized family {πθ|θ ∈ T } to
minimize an objective function On(θ, Gn). Unlike the
empirical risk, the objective On is not built from a loss
on individual examples; On must be specified for the
entire observed graph.

In relational learning, there is not yet a framework that
has properties (1) and (2) of ERM. The challenge is
that relational data does not decompose into individ-
ual examples. Regarding (1), theory is elusive because
the i.i.d. sequence assumption is meaningless for rela-
tional data. This makes it difficult to reason about
what happens as more data is collected. Regarding (2),
mini-batch SGD is not generally applicable even for
differentiable models. SGD requires unbiased estimates
of the full gradient. For a random subgraph Gk of
Gn, the stochastic gradient ∇θOk(πθ(Gk), Gk) is not
generally unbiased. In particular, the bias depends on
the choice of random sampling scheme used to select
the subgraph. Circumventing these two issues requires
either careful design of the objective function used for
learning [e.g., 19, 8, 3, 29, 9], or model-specific deriva-
tion and analysis. For example, graph convolutional
networks [11, 12, 21, 23] use full batch gradients, and
scaling training requires custom derivation of stochastic
gradients [4].

This paper introduces relational ERM, a generalization
of ERM to relational data. Relational ERM provides a
recipe for machine learning with relational data that
preserves the two important properties of ERM:

1. It provides a simple way to define (task-specific)
relational learning methods, and

2. For differentiable models, relational ERM min-
imization can be efficiently solved in a turnkey
fashion by mini-batch stochastic gradient descent.

Relational ERM mitigates the need for model-specific
analysis and fitting procedures.

Extending turnkey mini-batch SGD to relational data
allows the easy use of autodiff-based machine-learning
frameworks for relational learning. To facilitate this,
we provide fast implementations of a number of graph
subsampling algorithms, and integration with Tensor-
Flow.3

In Section 2 we define relational ERM models and show
how to automatically calculate unbiased mini-batch
stochastic gradients. In Section 3 we explain connec-
tions to previous work on machine learning for graph
data and we illustrate how to develop task-specific re-
lational ERM models. In Section 4 we review several
randomized algorithms for subsampling graphs. Rela-
tional ERM models require the specification of such
algorithms. In Section 5 we establish theory for rela-
tional ERM models. The main insights are: (i) the i.i.d.
assumption can be replaced by an assumption on how
the data is collected [18, 27, 1, 5], and, (ii) the choice of
randomized sampling algorithm is necessarily viewed as
a model component. In Section 6, we study relational
ERM empirically by implementing the models of Sec-
tion 3. We observe that the turnkey mini-batch SGD
procedure succeeds in efficiently fitting the models, and
that the choice of graph subsampling algorithm has a
large effect in practice.

2 Relational ERM and SGD

Our aim is to define relational ERM in analogy with
classical ERM. The fundamental challenge is that re-
lational data does not decompose into individual ex-
amples. Classical ERM uses the empirical distribution
to define the objective function Eq. (1). There is no
canonical analogue of the empirical distribution for
relational data.

The first insight is that the empirical distribution may
be viewed as a randomized algorithm for subsampling
the dataset. The required analogue is then a random-
ized algorithm for subsampling a graph. In the i.i.d.
setting, uniform subsampling is almost always used.
However, there are many possible ways to sample from
a graph. We review a number of possibilities in Sec-
tion 4. For example, the sampling algorithm might
draw a subgraph induced by sampling k vertices at
random, or the subgraph induced by a random walk
of length k. The challenge is that there is no a pri-
ori criterion for deciding which sampling algorithm is
“best.”

Our approach is to give up and declare victory: we
define the required analogue as a component of model

3github.com/wooden-spoon/relational-ERM
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design. We require the analyst to choose a randomized
sampling algorithm Sample, where Sample(Gn, k) is a
random subgraph of size k. The choice of Sample de-
fines a notion of “example.” This allows us to complete
the analogy to classical ERM.

A relational ERM model is defined by three ingredients:

1. A sampling routine Sample.

2. A predictor class {πθ|θ ∈ T } with parameter θ.

3. A loss function L, where L(Gk; θ) measures the
reconstruction quality of πθ on example Gk.

The objective function is defined in analogy with the
empirical risk Eq. (1). The relational empirical risk is:

R̂k(π, Gn) := EGk=Sample(Gn,k)
[L(Gk; θ) | Gn]. (2)

Relational empirical risk minimization selects a predic-
tor π̂ that minimizes the relational empirical risk,

π̂ := πθ̂n
where θ̂n := argmin

θ
R̂k(πθ, Gn) . (3)

Stochastic gradient descent

A crucial property of relational ERM is that SGD can
be applied to solve the minimization problem Eq. (3)
without any model specific analysis. Define a stochastic
gradient as ∇θL(Sample(Gn, k); θ), the gradient of the
loss computed on a sample of size k drawn with Sample.
Observe that

∇θR̂r(θ, Gn) = ∇θE[L(Sample(Gn, k); θ) | Gn]

= E[∇θL(Sample(Gn, k); θ) | Gn].

That is, the random gradient ∇θL(Sample(Gn, k); θ)
is an unbiased estimator of the gradient of the full
relational empirical risk. If Sample is computationally
efficient, then SGD with this stochastic estimator can
solve the relational ERM.

To specify a relational ERM model in practice, the
practitioner implements the three ingredients in code.
Machine-learning frameworks provide tools to make it
easy to specify a class of predictors and a per-example
loss function, which are ingredients of classical ERM.
Relational ERM additionally requires implementing
Sample and integrating it with a machine-learning
framework. In practice, Sample can be chosen from a
standard library of sampling routines. To that end,
we provide efficient implementations of a number of
routines and integration with an automatic differentia-
tion framework (TensorFlow).4 This gives an effective
“plug-and-play” approach for defining and fitting mod-
els.

4github.com/wooden-spoon/relational-ERM

3 Example Models

We consider several examples of relational ERM models.
We split the parameter into a pair θ = (γ,λ): the global
parameters γ are shared across the entire graph, and
the embedding parameters λ provide low-dimensional
embeddings λv for each vertex v. Informally, global
parameters encode population properties—“people with
different political affiliation are less likely to be friends”—
and the embeddings encode per-vertex information—
“Bob is a radical vegan.”

Graph representation learning

Methods for learning embeddings of vertices are widely
studied; see [10] for a review. Many such methods rely
on decomposing the graph into neighborhoods deter-
mined by (random) walks of fixed size. One example
is Node2Vec [8] (an extension of DeepWalk [19]). The
basic approach is to draw a large collection of simple
random walks, view each of these walks as a “sentence”
where each vertex is a “word”, and learn vertex embed-
dings by applying a standard word embedding method
[16, 15]. To use mini-batch SGD, the objective function
is restricted to a uniform sum over all walks. Unbi-
ased stochastic gradients to be computed by uniformly
sampling walks.

Relational ERM models include graph representation
models of this kind. For example, Node2Vec [8] is
equivalent to a relational ERM model that (i) predicts
graph structure using a predictor parameterized only
by embedding vectors, (ii) uses a cross-entropy loss on
graph structure, and (iii) takes Sample as a random-
walk of fixed length (augmented with randomly sampled
negative examples).

A number of other relational learning methods also
enable SGD by restricting the objective function to a
uniform sum over fixed-size subgraphs [e.g., 8, 3, 29,
9]. Any such model is equivalent to a relational ERM
model that takes Sample as the uniform distribution
over fixed-size subgraphs. But, in general, relational
ERM does not require restricting to sampling schemes
of this kind. Note that “negative-sampling” algorithms—
which are critical in practice—do not uniformly sample
fixed size subgraphs.

The next examples illustrate relational ERM for prob-
lems that are difficult with existing approaches to graph
representation learning.

Semi-supervised node classification

Consider a network Gn where each node i is labeled by
binary features—for example, hyperlinked documents
labeled by subjects, or interacting proteins labeled by
function. The task is to predict the labels of a subset
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of these nodes using the graph structure and the labels
of the remaining nodes.

The model has the following form: Each vertex i is
assigned a k-dimensional embedding vector λi ∈ Rk.
Labels are predicted using a parameterized function
f( • ; γ) : Rk → [0, 1]L that maps the node embed-
dings to the probability of each label. The presence or
absence of edge i, j is predicted based on λT

i λj . This
enables learning embeddings for unlabeled vertices. Let
σ denote the sigmoid function; let label lij ∈ {0, 1}
denote whether vertex i has label j; and let q ∈ [0, 1].
The loss on subgraphs Gk ⊂ Gn is:

L(Gk;λ, γ, l) = (4)

q
� �

i∈v(Gk)

L�

j=1

lij log f(λi; γ)j + (1−lij) log(1−f(λi; γ)j)
�

+(1−q)
�
−

�

i,j∈e(Gk)

log σ(λT
j λi)−

�

i,j∈ē(Gk)

log(1−σ(λT
j λi))

�
.

Here, v, e, and ē denote the vertices, edges, and non-
edges of the graph respectively. The loss on edge terms
is cross-entropy, a standard choice in embedding models
[10]. Intuitively, the predictor uses the embeddings
to predict both the vertex labels and the subgraph
structure.

The model is completed by choosing a sampling scheme
Sample. Relational ERM then fits the parameters as

(λ̂n, γ̂n) = argmin
λ,γ

E[L
�
λ, γ; Sample(Gn, k), l

�
| Gn].

We can vary the choice of Sample independent of op-
timization concerns; in Section 6 we observe that this
leads to improved predictive performance.

Older embedding approaches use a two-stage proce-
dure: node embeddings are first pre-trained using the
graph structure, and then used as inputs to a logistic
regression that predicts the labels [e.g., 19, 8]. Yang,
Cohen, and Salakhudinov [29] adapt a random-walk
based method to allow simultaneous training; their
approach requires extensive development, including a
custom (two-stage) variant of SGD. Relational ERM
allows simultaneous learning with no need for model
specific derivation.

Wikipedia category embeddings

We consider Wikipedia articles joined by
hyperlinks. Each article is tagged as a
member of one or more categories—for ex-
ample, “Muscles_of_the_head_and_neck”,
“Japanese_rock_music_groups”, or
“People_from_Worcester.” The task is to learn
embeddings that encode semantic relationships
between the categories.

Let Gn denote the hyperlink graph and let C(i) denote
the categories of article i. Each category c ∈ C is
assigned an embedding γc, and the embedding of each
article (vertex) is taken to be the sum of the embeddings
of its categories, λi :=

�
c∈C(i) γc. The loss is

L(Gk, C;λ) = (5)

−
�

i,j∈e(Gk)

log σ(λT
j λi) −

�

i,j∈ē(Gk)

log(1− σ(λT
j λi)) ,

where e and ē denote, respectively, the presence and
absence of hyperlinks between articles. Intuitively, the
predictor uses the category embeddings to predict the
hyperlink structure of subgraphs. Relational ERM
chooses the embeddings as

γ̂n = argmin
γ

E[L
�
λ(γ); Sample(Gn, k), C

�
| Gn] .

We write λ(γ) to emphasize that the article embeddings
are a function of the category embeddings. Category
embeddings obtained with this model are illustrated in
Fig. 1; see Section 6 for details on the experiment.

The point of this example is: relational ERM makes it
easy to implement this non-standard relational learning
model and fit it with mini-batch SGD. The use of mini-
batch SGD is important because the data graph is
large.

Statistical relational learning

Statistical relational learning takes the graph to encode
the dependency structure between the units [17, 6, e.g.].
The idea is to infer a joint probability distribution over
the entire dataset, respecting the dependency structure.
The distribution can then be used to make graph-aware
predictions. There is also work on adapting SGD to
this setting [28]. Despite the similar goals, Relational
ERM does not attempt to infer a distribution; the
precise relationship with statistical relational learning
is not clear.

4 Subsampling algorithms

In classical ERM, sampling uniformly (with or without
replacement) is typically the only choice. In contrast,
there are many ways to sample from a graph. Each
such sampling algorithm Sample leads to a different
notion of empirical risk in (2).

As described above, random walks underlie graph rep-
resentation methods built in analogy with language
models. A simple random walk of length k on a graph
Gn selects vertices v1, . . . , vk by starting at a given ver-
tex v1, and drawing each vertex vi+1 uniformly from the
neighbors of vi. Typically, random-walk based methods
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;

Figure 1: Trained Wikipedia category embeddings. Category embeddings are projected into a 2-dimensional
space, with a projection chosen to maximally separate “France” and “United_states” horizontally, and “Math”
and “Food” vertically. Highlighted categories are nearest neighbors of “French_physicists.”

augment the sample by hallucinating additional edges
using a strategy borrowed from the Skipgram model
[16]:

Algorithm 1 (Random walk: Skipgram [19]).

(i) Sample a random walk v1, . . . , vk starting at
a uniformly selected vertex of Gn.

(ii) Report Gk = {(vi, vj) : d(vi, vj) < W}.
The window W is a sampler parameter, and
d(vi, vj) is the number of steps between vi
and vj .

Since relational ERM is indifferent to the connection
with language models, a natural alternative augmenta-
tion strategy is:

Algorithm 2 (Random walk: Induced).

(i) Sample a random walk v1, . . . , vk starting at
a uniformly selected vertex of Gn.

(ii) Report Gk as the edge list of the vertex in-
duced subgraph of the walk.

A simple choice is to sample k vertices uniformly at
random and report Gk as the induced subgraph. Such
an algorithm will not work well in practice since it is not
suitable for sparse graphs. We are typically interested
in the case k � n. If Gn is sparse then such a sample
typically includes few or no edges, and thus carries little
information about Gn. The next algorithm modifies
uniform vertex sampling to fix this pathology. The idea
is to over-sample vertices and retain only those vertices
that participate in at least one edge in the induced
subgraph.

Algorithm 3 (p-sampling [27]).

(i) Select each vertex in Gn independently, with
a fixed probability p ∈ [0, 1].

(ii) Extract the induced subgraph Gk of Gn on
the selected vertices.

(iii) Delete all isolated vertices from Gk, and re-
port the resulting graph.

Another natural sampling scheme is:

Algorithm 4 (Uniform edge sampling).

(i) Select k edges in Gn uniformly and indepen-
dently from the edge set.

(ii) Report the graph Gk consisting of these edges,
and all vertices incident to these edges.

Many other sampling schemes are possible; see Leskovec
and Faloutsos [14] for a discussion of possible options
in a related context.

4.1 Negative sampling

For a pair of vertices in an input graph Gn, a sampling
algorithm can report three types of edge information:
The edge may be observed as present, observed as
absent (a non-edge), or may not be observed. The
algorithms above do not treat edge and non-edge infor-
mation equally: Algorithms 1, 2 and 4 cannot report
non-edges, and the deletion step in Algorithm 3 biases
it towards edges over non-edges. However, the locations
of non-edges can carry significant information.

Negative sampling schemes are “add-on” algorithms
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that are applied to the output of a graph sampling
algorithm and augment it by non-edge information. Let
Gk denote a sample generated by one of the algorithms
above from an input graph Gn.

Algorithm A (Negative sampling: Induced).

(i) Report the subgraph induced by Gk, in the
input graph Gn from which Gk was drawn.

Another method, originating in language modeling [15,
7], is based on the unigram distribution: Define a
probability distribution on the vertex set of Gk by
Pn(v) := Prob{v ∈ Hk}, the probability that v would
occur in a separate, independent sample Hk generated
from Gn by the same algorithm as Gk. For τ > 0, we
define a distribution P τ

n (v) := (Pn(v))
τ/Z(τ), where

Z(τ) is the appropriate normalization.

Algorithm B (Negative sampling: Unigram). For
each vertex v in Gn:

(i) Select k vertices v1, . . . , vk
iid∼ P τ

n .

(ii) If (v, vj) is a non-edge in Gn, add it to Gn.

The canonical choice in the embeddings literature is
τ = 3

4 [15].

5 Theory

We now turn to formalizing and establishing theoreti-
cal properties of relational ERM. Particularly, (i) rela-
tional ERM satisfies basic theoretical desiderata, and
(ii) Sample should be viewed as a model component.
We first give the results, and then discuss their inter-
pretation and significance.

When the data is unstructured (i.e., no link structure),
theoretical analysis of ERM relies on the assumption
that the data is generated i.i.d. The i.i.d. assumption
is ill-defined for relational data. Any analysis requires
some analogous assumption for how the data Gn is
generated. Following recent work emphasizing the role
of sampling theory in modeling graph data [18, 27, 1,
5], we model Gn as a random sample drawn from some
large population network. Specifically, we consider a
population graph G with |G| edges, and assume that the
observed sample Gn of size n is generated by p-sampling
from G, with p = n/

�
|G|. We assume the population

graph is “very large,” in the sense that |G| → ∞. The
distribution of Gn in the “infinite population” case is
well-defined [1].

The analogy with i.i.d. data generation is two-fold:
Foundationally, the i.i.d. assumption is equivalent to
assuming the data is collected by uniform sampling
from some population [20], and p-sampling is a direct

analogue [27, 1, 18]. Pragmatically, both assumptions
strike a balance between being flexible enough to cap-
ture real-world data [2, 26] and simple enough to allow
precise theoretical statements.

We establish results for several choices of Sample(Gn, k).
Edges may be selected by either p-sampling with
p = k/

√
n—note the size of Sample(Gn, k) is free of

n—or by using a simple random walk of length k (Al-
gorithm 1 or Algorithm 2). Negative examples may be
chosen by Algorithm A or Algorithm B.

The main result guarantees that the limiting risk of the
parameter we learn depends only on the population
and the model, and not on idiosyncrasies of the training
data.
Theorem 5.1. Suppose that Gn is collected by p-
sampling as described above, that k ∈ N is fixed, and
that Sample is fixed to a sampling algorithm based on
either p-sampling or random walk sampling as described
above. Suppose further that the loss is bounded and
parameter setting θ̄ = (γ̄, λ̄) satisfies mild technical
conditions given in the appendix. Then there is some
constant cθ̄(Sample, k) ∈ R+ such that

R̂k(θ̄;Gn) → cθ̄(Sample, k) (6)

both in probability and in L1 as n → ∞. Moreover,
there is some constant c∗(Sample, k) ∈ R+ such that

min
θ

R̂k(θ;Gn) → c∗(Sample, k) (7)

both in probability and in L1, as n → ∞.

The limits depend on the choice of Sample (and k),
and usually do not agree between different sampling
schemes.

The result is proved for Sample based on p-sampling in
supplement C and for random-walk based sampling in
supplement D.

Classical ERM guarantees usually apply even to the
parameter itself, not just its risk. In the relational set-
ting, the possibly complicated interplay of the learned
embeddings makes such results more difficult. The next
two results build on Theorem 5.1 to establish (partial)
guarantees for the parameter itself.

We establish a convergence result for the global pa-
rameters output by a two-stage procedure where the
embedding vectors are learned first. Such a result is ap-
plicable, for example, when predicting vertex attributes
from embedding vectors that are pre-trained to explain
graph structure. The proof is given in supplement E.
Theorem 5.2. Suppose the conditions of Theorem 5.1,
and also that the loss function verifies a certain strong
convexity property in γ, given explicitly in the ap-
pendix. Let γ̃n = argminγ minλ R̂k(γ,λ;Gn). Then
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γ̃n → γ̃∗(Sample, k) in probability for some constant
γ̃∗(Sample, k).

We next establish a stability result showing that col-
lecting additional data does not dramatically change
learned embeddings. The proof is given in supple-
ment F.

Theorem 5.3. Suppose the conditions of Theorem 5.1,
and also that the loss function is twice differentiable
and the Hessian of the empirical risk is bounded. Let
λ̂n+1|n denote the restriction of the embeddings λ̂n+1

to the vertices present in Gn. Then λ̂n − λ̂n+1|n → 0
in probability, as n → ∞.

The examples of Section 3 do not satisfy the condi-
tions of the theorem because the cross-entropy loss is
unbounded. However, the models can be trivially modi-
fied to bound the output probabilities away from 0 and
1. In this case, the loss is bounded. Further, for the
logistic regression model used in the experiments the
convexity and Hessian conditions also hold, by direct
computation.

Interpretation and Significance

The properties we establish are minimal desiderata that
one might demand of any sensible learning procedure.
Nevertheless, such results have not been previously
established for relational learning methods. The ob-
struction is the need for a suitable analogue of the i.i.d.
assumption. The demonstration that population sam-
pling can fill this role is itself a main contribution of the
paper. Indeed, the results we establish are weaker than
the analogous guarantees for classical ERM, and main
significance is perhaps the demonstration that such re-
sults can be established at all. This is important both
as a foundational step towards a full theoretical anal-
ysis of relational learning, and because it strengthens
the analogy with classical ERM.

A strength of our arguments is that they are largely ag-
nostic to the particular choice of model, mitigating the
need for model-specific analysis and justification. For
example, our results include random-walk based graph
representation methods as a special case, providing
some post-hoc support for the use of such methods.

The limits in Theorems 5.1 and 5.2 depend on the
choice of Sample. Accordingly, the limiting risk and
learned parameters depend on Sample in the same sense
they depend on the choice of predictor class and the
loss function; i.e., Sample is a model component. This
underscores the need to consider the choice in model
design, either through heuristics—e.g., random-walk
sampling upweights the importance of high degree ver-
tices relative to p-sampling—or by trying several choices
experimentally.

6 Experiments

The practical advantages of using relational ERM to
define new, task-specific, models are: (i) Mini-batch
SGD can be used in a plug-and-play fashion to solve the
optimization problem. This allows inference to scale
to large data. And, (ii) by varying Sample we may
improve model quality. We have used relational ERM
to define novel models in Section 3. The models are
determined by (4) and (5) up to the choice of Sample.
We now study these example models empirically.5 The
main observations are: (i) SGD succeeds in quickly
fitting the models in all cases. And, (ii) the choice of
Sample has a dramatic effect in practice. Additionally,
we observe that the best model for the semi-supervised
node classification task uses p-sampling. p-sampling
has not previously been used in the embedding litera-
ture, and is very different from the random-walk based
schemes that are commonly used.

Node classification problems

We begin with the semi-supervised node classi-
fication task described in Section 3, using the
model Eq. (4) with different choices of Sample.

Blogs Protein

Vertices 10,312 3,890
Edges 333,983 76,584

Label Dim. 39 50

We study the
blog catalog and
protein-protein
interaction data
reported in [8],
summarized by
the table to the
right. We pre-process the data to remove self-edges,
and restrict each network to the largest connected
component. Each vertex in the graph is labeled, and
50% of the labels are censored at training time. The
task is to predict these labels at test time.

Table 1: Average Macro-F1 for Two-Stage Training.

Choice of Sample Alg. # Blogs Protein

rw/skipgram+ns 1+B 0.18 0.16
rw/induced+ind 2+A 0.08 0.08
rw/induced+ns 2+B 0.18 0.16
p-samp+ind. 3+A 0.17 0.14
p-samp+ns 3+B 0.22 0.16
unif. edge+ns 4+B 0.21 0.15

Two-stage training. We first train the model (4)
using no label information to learn the embeddings
(that is, with q = 0). We then fit a logistic regression
to predict vertex features from the trained embeddings.

5Code at github.com/wooden-spoon/relational-ERM
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Table 2: Average Macro-F1 for Simultaneous Training. Columns are labeled by the sampling scheme used to
draw test vertices.

Blog catalog Protein-Protein
Sample Unif. p-samp rw Unif. p-samp rw

rw/skipgram+ns (Alg. 1+B) 0.20 0.26 0.27 0.25 0.32 0.34
p-samp+ns (Alg. 3+B) 0.30 0.34 0.35 0.30 0.37 0.39
Node2Vec (reported) 0.26 - - 0.18 - -

This two stage approach is a standard testing procedure
in the graph embedding literature, e.g. [19, 8]. We use
the same scoring procedure as Node2Vec [8] (average
macro F1 scores), and, where applicable, the same
hyperparameters.

Table 1 shows the effect of varying the sampling scheme
used to train the embeddings. As expected, we observe
that the choice of sampling scheme affects the embed-
dings produced via the learning procedure, and thus
also the outcome of the experiment. We further observe
that sampling non-edges by unigram negative sampling
gives better predictive performance relative to selecting
non-edges from the vertex induced subgraph.

Simultaneous training. Next, we fit the model of
Section 3 with q = 0.001—training the embeddings and
global variables simultaneously. Recall that simultane-
ous training is enabled by the use of relational ERM.
We choose label predictor πγ as logistic regression, and
adapt the label prediction loss to measure the loss only
on vertices in the positive sample.

There is not a unique procedure for creating a test set
for relational data. We report test scores for test-sets
drawn according to several different sampling schemes.
Results are summarized by Table 2. We observe:

• Simultaneous training improves performance.

• p-sampling outperforms the standard rw/skipgram
procedure.

• This persists irrespective of how the test set is se-
lected (i.e., it is not an artifact of the data splitting
procedure).

Note that the average computed with uniform vertex
sampling is the standard scoring procedure used in
the previous table. The last observation is somewhat
surprising: we might have expected a mismatch be-
tween the training and testing objectives to degrade
performance. One possible explanation is that the
random-walk based sampler excessively downweights
low-connectivity vertices, and thus fails to fully exploit
their label information.

Wikipedia Category Embeddings

We consider the task of discovering semantic relations
between Wikipedia categories, as described in Section 3.
This task is not standard; wholly new model is required.

We define a relational ERM model by choosing category
embedding dimension k = 128, the loss function L in
(5), and Sample as 1+B, the skipgram random walk
sampler with unigram negative sampling. The data Gn

is the Wikipedia hyperlink network from [13], consisting
of Wikipedia articles from 2011-09-01 restricted to
articles in categories containing at least 100 articles.

The challenge for this task is that the dataset is rela-
tively large—about 1.8M nodes and 28M edges—and
the model is unusual—embeddings are assigned to ver-
tex attributes instead of the vertices themselves. SGD
converges in about 90 minutes on a desktop computer
equipped with a Nvidia Titan Xp GPU. Fig. 1 on page
5 visualizes example trained embeddings, which clearly
succeed in capturing latent semantic structure.

7 Conclusion

Relational ERM is a generalization of ERM from i.i.d.
data to relational data. The key ideas are introducing
Sample as a component of model design, which defines
an analogue of the empirical distribution, and using
the assumption that the data is sampled from a popu-
lation network as an analogue of the i.i.d. assumption.
Relational ERM models can be fit automatically using
SGD. Accordingly, relational ERM provides an easy
method to specify and fit relational data models.

The results presented here suggest a number of di-
rections for future inquiry. Foremost: what is the
relational analogue of statistical learning theory? The
theory derived in Section 5 establishes initial results.
A more complete treatment may provide statistical
guidelines for model development. Our results hinge
critically on the assumption that the data is collected
by p-sampling; it is natural to ask how other data-
generating mechanisms can be accommodated. Simi-
larly, it is natural to ask for guidelines for the choice
of Sample.
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