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The rise of foundation models marks a paradigm shift in machine learning: instead
of training specialized models from scratch, foundation models are trained on massive
datasets before being adjusted or fine-tuned to make predictions on smaller datasets.
Initially developed for text, foundation models have also excelled at making predictions
about social science data. However, while many estimation problems in the social
sciences use prediction as an intermediate step, they ultimately require different
criteria for success. In this paper, we develop methods for fine-tuning foundation
models to perform these estimation problems. We first characterize an omitted
variable bias that can arise when a foundation model is fine-tuned in the standard
way: to minimize predictive error. We then provide a set of conditions for fine-
tuning under which estimates derived from a foundation model are

√
n-consistent.

Based on this theory, we develop fine-tuning algorithms that empirically mitigate this
omitted variable bias. To demonstrate our ideas, we study gender wage gap estimation.
Classical methods for estimating the adjusted wage gap employ simple predictive
models of wages, which can induce omitted variable bias because they condition on
coarse summaries of career history. Instead, we use a custom-built foundation model,
capturing a richer representation of career history. Using data from the Panel Study
of Income Dynamics, we find that career history explains more of the gender wage
gap than standard econometric models can measure, and we identify elements of
career history that are omitted by standard models but are important for explaining
the gap.

machine learning | foundation models | labor economics | econometrics

Foundation models have revolutionized the machine learning approach to prediction
(1–3). In contrast to traditional predictive models, which are trained to make predictions
on specific, individual tasks, foundation models are typically trained in two steps: they
first are trained on massive, passively collected datasets and then are adapted to specific
tasks. The success of these models stems from their ability to transfer information learned
during the initial training period to new prediction problems through approaches like
supervised fine-tuning—adjusting a model’s parameters to minimize prediction error
on labeled examples from a target task (1). For example, large language models (1, 2)
are foundation models that were originally trained to predict the next word of Internet
articles, but can be fine-tuned to make other predictions involving text, like the next
word of a conversation or the sentiment of a movie review.

While foundation models have been successful at making predictions about social
science data (4, 5), many core problems in social science require more than just
accurate predictions. For example, social scientists often aim to estimate causal effects
under the assumption of unconfoundedness (6) or decompose observed differences
between groups into explained and unexplained components based on observable factors
(7–9)—isomorphic problems that use prediction as an intermediate step but ultimately
require different criteria for success. While fine-tuning foundation models may be useful
for these analyses, optimizing for predictive accuracy alone does not guarantee valid
decompositions or causal estimates.

In this paper, we develop methods for adapting foundation models to perform
decomposition and causal effect estimation by modifying how they are fine-tuned.
Rather than fine-tuning foundation models to minimize prediction error, we develop
objectives specifically designed for these estimation problems. Our first contribution is
characterizing a statistical bias that arises when a foundation model discards information
that may not be important for prediction but is relevant for the estimation problem.
We then provide a set of conditions for fine-tuning under which estimates derived
from a foundation model are not only unbiased but also consistent at a fast asymptotic
rate. These conditions motivate debiased fine-tuning methods. Our key insight is that
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fine-tuning foundation models for these applications requires
addressing an omitted variable bias that standard supervised fine-
tuning does not address.

To demonstrate these ideas, we focus on an application that
addresses a classic decomposition problem from labor economics:
estimating the difference between how individuals with the same
labor market experience get paid when they belong to different
demographic groups (see refs. 10 and 11 for reviews). Accurately
estimating this unexplained wage gap is important to help
guide policy for reducing disparities. But the unexplained gap is
challenging to estimate with traditional econometric models. It
involves predicting an individual’s wage from their labor market
history, a high-dimensional and complicated variable. Our paper
demonstrates that foundation models of labor market history can
improve the predictions that underlie wage gap estimates.

We use CAREER, a foundation model of labor market history
(4), to estimate unexplained wage gaps. CAREER is initially fit to
a massive resume dataset to predict the next job an individual will
have, rather than their wage. Naively, we can fine-tune CAREER
to make accurate predictions of wage on the datasets used for wage
gap estimation. However, using this approach to estimate the un-
explained wage gap can amplify a classical problem: omitted vari-
able bias. Instead, we develop debiased fine-tuning methods to
fine-tune foundation models so they can properly estimate unex-
plained wage gaps. The key is to fine-tune foundation models
not to minimize predictive error but rather to reduce omitted
variable bias. In synthetic experiments, we show that debiased
fine-tuning methods form better estimates of the unexplained
wage gap than the standard fine-tuning approach.

We use our methods to estimate the explained gender wage
gap on survey data from the Panel Study of Income Dynamics
(PSID) (12). We first demonstrate that foundation models
form accurate predictions of wage and gender; they outperform
standard econometric models for predicting wage by 10 to 15%.
We then use debiased fine-tuning methods to estimate the
gender wage gap. We find that history consistently explains
more of the gap than the variables typically included in standard
econometric models. We conclude by studying which aspects of
work history, captured by foundation models but omitted from
prior approaches, are important for explaining the wage gap.

While this paper studies unexplained wage gaps in detail, the
results and methods we develop are applicable to a broader set
of problems, such as causal estimation. In particular, as observed
by Fortin et al. (13) and others in the literature, the problem
of estimating a decomposition of a wage gap into explained
and unexplained components is isomorphic to the problem of
estimating the average effect of a treatment under the assumption
of unconfoundedness. Although the interpretation of the estimate
is distinct for decompositions, the statistical theory that applies to
estimation is the same (see ref. 14 for a review). Thus, our results
also provide theory and methods for the problem of incorporating
foundation models into the estimation of treatment effects.

Relative to both the causal inference and decomposition
literatures, our theory is adapted to a scenario where a foundation
model may bring in information from a distinct, larger dataset,
and where we fine-tune the model to avoid omitted variable bias.
If we solve the latter problem well enough, then the traditional
semiparametric theory (e.g., ref. 15) can be applied as if the
representations of high-dimensional covariates derived from the
fine-tuned foundation model are sufficient statistics for the full
high-dimensional covariate vector. The methods we introduce
thus provide a widely applicable framework for leveraging the
capabilities of foundation models while mitigating biases due to
omitted variables that they may introduce.

1. Explaining Wage Gaps with Foundation
Models

The unexplained wage gap is the wage gap between two groups of
individuals with the same observed characteristics. We estimate
an unexplained wage gap that arises when individuals in different
groups have the same labor market history.

Consider the gender wage gap. In the United States, females
earn roughly 80% the male hourly wage (10). Motivated by the
fact that the male and female labor forces differ in observable
ways, a large literature seeks to explain this wage gap through
differences in these observable factors (7, 8, 10, 16). One of the
most important factors for explaining the gender wage gap is
differences in the number of years that males and females have
spent in the labor force (10). Understanding the difference in
wages between males and females with the same career histories
can help guide policy: if the unexplained gap is large, attempts to
close the gap may involve interventions to address problems in
bargaining or fairness in wage setting. On the other hand, if the
gap can be accounted for by gender differences in career histories,
these interventions might target career pathways.

More generally, consider N individuals, indexed by i =
1, . . . , N . Each individual belongs to a binary group Ai ∈ {0, 1}
(e.g. Ai = 0 denotes males and Ai = 1 denotes females). Each
individual also has a career history Xi, a sequence of T discrete
occupations and years, Xi = ((Ji1, Di1), . . . , (JiT , DiT )) ∈ X ,
and where each occupation label Jit ∈ {1, . . . , NJ } encodes the
occupation an individual worked in during year Dt (or their labor
status if they are not working, e.g. “unemployed” or “student”).
Finally, denote an individual’s log-wage by Yi ∈ ℝ. Each ind-
ividual is sampled i.i.d. from a joint distribution P(X, A, Y ). De-
fine the conditional expectation function, �a(x) = EP [Y |A = a,
X = x], and the propensity function, e(x) = P(A = 1|X = x).

The raw wage gap is

WG = Ep(x|a=1)[�1(X )]− Ep(x|a=0)[�0(X )].

This is the difference in the average wage between the two
groups. Our goal is to estimate the wage gap that is unexplained
by history:

UWG = Ep(x|a=1)[�1(X )− �0(X )].

This is the average difference in the expected wage between
individuals in the two groups who have the same career histories.
The unexplained and raw wage gaps are linked by a classic
decomposition (7, 8, 16):

WG =

unexplained wage gap︷ ︸︸ ︷
Ep(x|a=1) [�1(X )− �0(X )]

+ Ep(x|a=1) [�0(X )]− Ep(x|a=0) [�0(X )]︸ ︷︷ ︸
explained wage gap

.
[1]

The unexplained wage gap is the portion of the raw wage gap
that cannot be attributed to gender differences in career histories.

The explained wage gap could be conditioned on factors in
addition to labor market history, e.g., an individual’s educational
background. For simplicity our notation only includes history,
but we incorporate additional observed characteristics of individ-
uals in our empirical analyses. We also note that the unexplained
wage gap is only nonparametrically identifiable under an overlap
condition (see, e.g., ref. 6): P(A = 1|X ) < 1. We assume overlap
throughout this paper and we limit the sample of workers we
analyze empirically to those with histories where the condition is
satisfied.
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1.1. Foundation Models Can Improve Predictions. A common
approach for estimating the unexplained wage gap involves
constructing an estimator �̂g(x) for �g(x), which in turn can
be used to form an estimate of the unexplained wage gap:

1
N1

∑
i Ai ∗ (�̂1(Xi)− �̂0(Xi)), [2]

where N1 =
∑

i Ai.
However, estimating the relationship between history and

wage is challenging with realistic data sizes because career histories
are high-dimensional: the number of possible career histories
grows exponentially in the number of years someone has worked.
This challenge is compounded by the fact that unexplained wage
gaps are commonly estimated using small survey-based datasets,
particularly in the United States where administrative data about
worker histories are not generally available to researchers. For
this reason, traditional econometric approaches have used a
small number of hand-constructed summaries of labor market
experience, which keeps the number of covariates in the predictive
model small relative to the dataset size. But these summary
statistics do not capture the full complexity of labor market
history, and in particular they may omit factors of history that
are important for explaining the wage gap.

For example, a large body of literature has focused on deco-
mposing the gender wage gap in the United States by applying
Eq. 1 to small survey datasets (see refs. 10 and 11 for
surveys). Rather than including an individual’s career history,
most analyses include summary statistics about an individual’s
career history, such as the years of experience or tenure in the
current job (10, 17–19). Even though many occupational
taxonomies contain hundreds of fine-grained categories, it is
most common to include coarse-grained occupational categories
containing 20 to 30 categories (10, 20–22). Because these models
rely on a relatively small number of covariates, �̂0 and �̂1 are
typically constructed using relatively simple models, such as linear
regressions (8–10, 20) or Lasso models (21, 23).

However, these incomplete measures of experience discard
factors that help explain the wage gap. For example, Regan
and Oaxaca (24) and Blau and Kahn (19) find that potential
experience (an inexact measure of experience that does not
measure workforce interruptions) explains less of the wage gap
than years of actual work experience. Moreover, Light and Ureta
(25) estimate a wage model with detailed measures of year-by-year
experience, finding that the timing of work experience explains
a substantial portion of the wage gap. While incorporating full
histories into gender wage gap analyses could ensure these factors
are not discarded, the predictive models used for gender wage
gap analyses are too simple to include them.

Foundation models (3) offer an alternative approach. Foun-
dation models are machine learning models that learn low-
dimensional representations of high-dimensional variables from
data. These representations are initially learned on massive,
passively collected data after which they can be adapted on
specific datasets of interest. For example, in natural language
processing, foundation models that are trained to predict words
using terabytes of Internet text can be adapted to generate
responses to human questions (26, 27). While initially developed
for text, foundation models have successfully addressed seemingly
intractable prediction problems in domains such as computer
vision (28), music (29), and protein generation (30)

A foundation model of labor market history can help estimate
the unexplained wage gap by providing a low-dimensional
representation of history that is predictive of wage. Because

representations are learned from data, these estimates are not
limited to the features a researcher knows to include.

Formally define a representation to be a function �(X ) : X →
ℝD. Given a representation �, the wage gap unexplained by the
representation of history is

UWG(�) = Ep(x|a=1)[�1(�(X ))− �0(�(X ))],

where �a(�(x)) = E[Y |A = a, �(X ) = �(x)] is the expected
wage as a function of the representation �(x).

For the rest of the paper, we consider estimating the un-
explained wage gap using CAREER, a foundation model of
labor market history (4). CAREER is trained to learn rep-
resentations that can predict the next occupation a worker
will have from a dataset of 24 million resumes posted online.
When these representations are adapted to small survey datasets,
CAREER makes more accurate predictions of an individual’s next
occupation than standard econometric approaches. We consider
using these representations to predict an individual’s wage.

1.2. Foundation Models Can Introduce Omitted Variable Bias.
Foundation models are effective because they compress high-
dimensional information into low-dimensional representations.
However, we demonstrate that replacing an individual’s history
with a representation can introduce an omitted variable bias (31).

We say the wage gap unexplained by a representation � is
biased if it differs from the wage gap unexplained by the full
history. Define this bias as OVB(�) = UWG(�)−UWG. It has
a closed-form expression:

OVB(�) = Ep(x,a)
[
(�A(�(X ))−�A(X )))∗(�A(�(X ))−�A(X ))

]
,

[3]
where

�a(x) = − 1−a
P(A=1)

(
e(x)

1−e(x)

)
,

�a(�(x)) = − 1−a
P(A=1)

(
e(�(x))

1−e(�(x))

)
,

for representation-based propensity function e(�(x)) = P(A =
1|�(X ) = �(x)). SI Appendix, section S1 contains a detailed
derivation. Eq. 3 can also be seen as a special case of the
general omitted-variable-bias formula in ref. 31, where �(�(X ))
and �(X ) correspond to the short and long Riesz representers,
respectively, as defined in equation 6.1 of ref. 31.

Eq. 3 provides intuition for how a representation can induce
bias. The omitted variable bias is a covariance of two differences:
the first term is the difference in expected wage as a function of
history and the representation of history, while the second term
is the difference in the group propensity odds ratio as a function
of history and the representation of history. A low-dimensional
representation by definition discards information; for there to be
no omitted variable bias, the discarded information that is related
to wage should be unrelated to group propensity, and vice-versa.
Eq. 3 is closely related to econometric results about the extent of
omitted variable bias in semiparametric models (see, e.g., ref. 31);
while this literature focuses on whether individual variables are
included or not in models, we focus on representations, which
can still omit variables despite being functions of all variables.
Focusing on representations, Veitch et al. (32) provide a sufficient
condition under which Eq. 3 is 0, but do not characterize the
exact level of bias; meanwhile, Eq. 3 exactly characterizes the
extent of omitted variable bias.
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1.3. Debiasing Foundation Models. Although CAREER is
a foundation model that is trained to learn representations
from data, it is not trained to minimize omitted variable bias
(Eq. 3). One reason is that its representations are trained to
optimize a single objective that does not naturally appear in
Eq. 3: the predictability of an individual’s next job. Moreover,
the representations are trained on a different population of
individuals than those for whom we would like to estimate the
unexplained wage gap.

Even biased, a foundation model can still be useful for
estimating the unexplained wage gap because it can be fine-
tuned. Empirically, when a foundation model’s representations
are adjusted to optimize a related but distinct objective from
the one they were initially trained to optimize, they often
outperform models trained on only the new objective (1, 33).
We do not have to learn unbiased representations of career
history from scratch; we can adjust the representations of a
pretrained foundation model to debias it.

The standard approach for modifying foundation models is
supervised fine-tuning (1). In our setting, supervised fine-tuning
would entail modifying a foundation model’s representation
� to be predictive of wage on the survey data used for wage
gap estimation. But while a foundation model would likely
form better wage predictions after supervised fine-tuning, it can
still be biased for estimating the unexplained wage gap; unless
the foundation model recovers the exact relationship between
labor market history and wage, supervised fine-tuning can still
introduce arbitrarily large omitted variable bias.

We now describe a set of conditions for fine-tuning under
which an estimator of a wage gap that conditions on representa-
tions derived from a foundation model is not only unbiased and
consistent but also converges at a rate proportional to n−1/2:

Theorem 1. Consider a sequence of wage models �̂n,0 : ℝD
→ ℝ,

propensity models ên : ℝD
→ (0, 1), and representations �n :

X → ℝD. Denote by  the true wage gap unexplained by history
and by  ̂n the representation-based augmented inverse probability
weighted (AIPW) estimator of the unexplained wage gap from n
i.i.d. samples (Xi, Ai, Yi) ∼ P:

 ̂n = 1∑
i Ai

∑
i

(
Ai −

(1−Ai)ên(�n(Xi))
1−ên(�n(Xi))

)
(Yi − �̂n,0(�n(Xi)).

[4]
Assume the following:

1. Omitted variable bias (Eq. 3) goes to 0 at a
√

n-rate:

OVB(�n) = oP(n−1/2).

2. Combined
√

n-consistency of wage/propensity models as a func-
tion of the representation:(

‖ên(�n(X ))− e(�n(X ))‖

∗ ‖�̂n,0(�n(X ))− �0(�n(X ))‖
)

= oP(n−1/2).

3. The representations �n converge to a representation �∗ in the
sense that
1
n
∑

i('�n(Xi, Ai, Yi; �n)−'�∗(Xi, Ai, Yi; �∗)) = oP(n−1/2),

with Var('�∗(X, A, Y )) <∞, where '� is the representation-
based influence function:

'�(X, A, Y ; �) = 1
P(A=1)

[ (
A− (1−A)e(�(X ))

1−e(�(X ))

)
∗ (Y − �0)(�(X ))− A �

]

and  � is the true gap unexplained by a representation �

 � = EP [�1(�(X ))− �0(�(X ))].

4. Additional assumptions in SI Appendix, section S2: cross-fitting
(�̂n, ên, and �n are estimated on a different sample than those
used to construct  ̂); consistency of wage and propensity models as
functions of the representations; strict overlap; and boundedness
of wage model errors.

Then,
√

n( ̂n −  )→ N (0, Var('�∗(X, A, Y ; ))) .

The first condition is about omitted variable bias: it requires
that the omitted variable bias of the representations converges to
0 at a rate proportional to n−1/2. This will be trivial for some
representations: for example, �(X ) = X has no omitted variable
bias by definition. However, the second assumption imposes
restrictions about modeling wage and group membership: these
models must approximate the true relationship between the
representation of history and these outcomes such that error
goes to zero at a combined root-n rate. Note that these modeling
assumptions are with respect to the representation: the true
relationships between history and the outcomes do not need to
be reconstructed, only those between the representation and the
outcome. Therefore, satisfying the first two assumptions involves
striking a balance: representations must be detailed enough to
not have omitted variable bias, but also low-dimensional enough
so that outcomes can be efficiently estimated as a function of the
representation. SI Appendix, section S2 contains more details and
a proof.

Although Eq. 1 is stated in terms of the size n of the single
dataset used for fine-tuning, note that much larger datasets are
typically used to pretrain the foundation model. In practice,
training a high-dimensional representation �(X ) from scratch on
moderate-sized survey dataset would be intractable; however, the
fact that a much larger dataset contributes to the initial estimation
of �(X ) suggests that it may be feasible to adequately control
omitted variable bias with a larger dimensional representation
�(X ) than would be possible without the foundation model.
Indeed, under a repeated-sampling framework in which both the
pretraining and fine-tuning samples are repeatedly resampled,
we expect most of the sampling variation to arise from the
smaller fine-tuning sample rather than from the larger pretraining
sample used to train the foundation model. Consequently, our
formal results condition on the pretrained representation and
focus on the sampling variation arising from the fine-tuning
sample.

Empirical evidence in domains such as computer vision,
natural language processing, and protein structure suggests that
such large-scale pretraining often yields robust and transferable
representations for predictions (3). At the same time, we do
not require the foundation model to deliver a perfect or “true”
representation; we instead require that fine-tuning from the
pretrained representation allows for omitted variable to go to 0
at a
√

n rate. A general-purpose foundation model may still omit
some information relevant for a particular downstream task, and
it is precisely the role of subsequent fine-tuning to adapt the
representation to the problem at hand.

1.4. Relationship to Causal Methods. Theorem 1 relates to re-
sults from the causal inference literature (15, 34–37). Although
the unexplained wage gap is not a causal quantity, it is
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mathematically identical to an average treatment effect on the
treated (ATT). Specifically, Assumption 2 is similar to assump-
tions for

√
n-consistency in the doubly robust/double machine

learning literature, which often assume o(n−1/2) combined error
of outcome and propensity models (15, 37):

‖ên(X )− e(X )‖ ∗ ‖�̂n,0(X )− �0(X )‖ = oP(n−1/2). [5]

This is similar to Assumption 2, with one key difference: Eq. 5
requires o(n−1/2) combined error as a function of the full history,
while Assumption 2 only requires o(n−1/2) combined error as
a function of the representation �n(X ). When �n(X ) is lower-
dimensional than the full history X , Assumption 2 will be more
realistic than Eq. 5. In fact, when �n(X ) = X , Assumptions 2
and 3 are trivially satisfied and our result reduces to the standard
double-robustness result (15). Assumption 2 lifts the requirement
for full combined error to go to 0 while Assumption 1 imposes
restrictions on what constitutes a valid representation.

Theorem 1 relates to results from the variable selection liter-
ature in causal inference (38–41). This literature is motivated by
a classic result: to make valid causal inferences, it is sufficient to
condition only on variables that affect both treatment assignment
and outcome (42). Like Theorem 1, the results in this literature
do not necessarily assume that the full outcome or propensity
model can be consistently estimated as a function of the full
set of covariates. While this literature proposes techniques when
individual variables are shared in outcome and treatment models,
these techniques do not apply when there is a more complicated
shared structure; for example, the number of years spent in a
blue collar job may affect both treatment and outcome, but this
is a transformation rather than a single variable. In contrast, our
method is based on representations, or potentially complicated
functions of variables, rather than individual variables. A set of
selected variables is an example of a representation; but represen-
tations can be more complex than a set of variables constructed
by a researcher.

Other methods from the causal inference and econometrics
literature have also proposed using representations or latent vari-
ables from machine learning models. For example, Battaglia et al.
(43) demonstrate that latent variables from a machine learning
model should be jointly optimized with the econometric outcome
of interest rather than first estimated separately and then plugged
into an econometric model. Related to our method, Veitch et al.
(32) provide a sufficient condition under which a representation is
unbiased for estimating a causal effect, which motivates empirical
methods used by Shi et al. (44) and Chernozhukov et al. (45)
(and is the basis of the multitask debiased fine-tuning objective
we consider). In contrast, we provide an if-and-only-if condition
under which there is no bias, and we characterize the exact level of
bias with a connection to omitted variable bias (31). Additionally,
we provide conditions about the level of omitted variable bias
under which estimation is

√
n-consistent and asymptotically

normal.
A strand of literature in supervised machine learning has also

focused on integrating ideas from the causal inference literature
into predictive methods in order to improve the properties of
predictive models, such as stability (see ref. 46 for a review
of this literature). Similar to the approach in our paper, these
methods adjust the training of a predictive model to avoid
regularization-induced omitted variable bias, but the literature
on stable prediction considers reducing such bias for many
covariates simultaneously in a cross-sectional prediction problem.
For example, some such methods reweight data to reduce the
correlation among features.

1.5. Debiased Fine-Tuning. The exact level of omitted variable
bias (Eq. 3) cannot be computed from data; it involves calculating
the same high-dimensional function the representation is meant
to approximate, �A(X ). However, even if the bias cannot
be computed exactly, we can still learn representations that
are targeted to minimize it. Below, we develop three fine-
tuning methods for minimizing this bias. Each method addresses
omitted variable bias from a distinct angle. In principle, the
optimal approach may vary across applications. For instance,
multitask fine-tuning is straightforward to implement but can
require tuning an extra hyperparameter; projection fine-tuning
removes that hyperparameter but may converge more slowly;
difference-based fine-tuning can capture group disparities more
directly but does not deliver a direct wage or propensity predictor.
To choose among them, we recommend using validation metrics
such as the R-Learner metric (47) described (and subsequently
used for model selection) in Section 3.
1.5.1. Multitask fine-tuning. The expression for omitted variable
bias recalls a classic result from causal inference: to make valid
causal inferences, it is sufficient to condition only on variables
that affect both treatment assignment and outcome (42). Thus,
if a representation captures all the features of history that are
predictive of both wage and group membership, it will result in
zero omitted variable bias. While a representation that perfectly
captures all of the variables related to wage (or equivalently to
group membership) will result in zero omitted variable bias, it
might be more realistic to capture the potentially smaller set of
variables that affects both wage and group membership.

We therefore fine-tune the representations to be predictive of
both wage and group membership. We consider two approaches.
In Multitask Fine-Tuning, we use the method proposed by
Veitch et al. (32) and (44) to learn a representation that jointly
minimizes wage and group membership predictive errors:

�̂, �̂, ê = arg min�,�,�
{∑N

i=1 `Y [Yi,�Ai(�(Xi))]

+ � ∗ `A[Ai, e(�(Xi))]
}
,

where � ∈ ℝ+ is a hyperparameter, `Y is the mean squared-error
loss, and `A is the binary cross-entropy loss. We also consider
a similar approach, Projection Fine-Tuning, that alternates
between losses: � is optimized to minimize mean-squared error
loss until convergence, then � is optimized to minimize binary
cross-entropy loss until convergence, and this process repeats
until the procedure converges. This procedure is based on
projected gradient descent (48) and does not require choosing
a hyperparameter �. See SI Appendix, section S4 for more details.
1.5.2. Difference-based fine-tuning. An alternative debiased fine-
tuning method is motivated by the heterogeneous treatment
effect literature (47, 49, 50), where the goal is to model the
difference in outcome functions for each group rather than each
group’s function individually. If the difference in these functions
is simpler than each individual function, a method that is targeted
to capture this difference will be more effective than modeling
each function separately.

Thus, we propose a method for fine-tuning foundation models
meant to capture group differences. This method is based on
the R-learner approach for estimating heterogeneous treatment
effects in causal inference (47, 51). It is based on the observation
that group differences can be written as the solution to an
objective:

arg min
�:X→ℝ

E
{
[(Y − m(X ))− (A− e(X ))�(X )]2

}
= �1(X )− �0(X ),

[6]
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where m(x) = E[Y |X = x] is the conditional wage function
averaged over the two groups.

The Difference-Based Fine-Tuning procedure begins by
estimating the conditional wage function m̂(�m(x)) and the
propensity function ê(�e(x)) using supervised fine-tuning. Start-
ing with the wage, we estimate a function m̂ and fine-tuned
representation �m in order to minimize the squared loss in
predicting the wage Y . We estimate ê and �e analogously.
Treating these functions and their respective representations as
fixed, we then fine-tune a new representation to minimize the
squared error:

�̂, �̂ = arg min
�,�

E
{
[(Y − m̂(�m(X )))

−(A− ê(�e(X )))�(�(X ))]2
}

,

where � : ℝD
→ ℝ is a flexible function; in the empirical studies

we use a two-layer feed-forward neural network. The unexplained
wage gap is then estimated as

1
N1

∑
i Ai ∗ �̂(�̂(Xi)), [7]

where N1 =
∑

i Ai. We refer to this method as difference-based
fine-tuning. This approach is based on the R-learner approach
but is based on representations: separate representations are used
for the wage, propensity, and wage-difference models, so that
the representation used for the last model is optimized to only
capture the differences in groups. See SI Appendix, section S4 for
more details.

This optimization procedure encourages a representation that
captures differences in group wages. The true relationship
between wage and labor market history may be complicated for
both groups. However, if the difference in relationships is not
as complicated, it will be easier to learn a representation that
captures the difference.

1.6. Implementation details of fine-tuning. In practice, we im-
plement each fine-tuning method by optimizing the respective
objective using Adam (52). Each model is initialized at the foun-
dation model’s parameters and all parameters are reoptimized
with respect to the new objective. The same neural architecture
from pretraining (e.g., the transformer layers of CAREER) is
retained, but we typically add extra parameters on top of the
representation for our downstream tasks (e.g., predicting wages
or propensities) and jointly update all parameters during fine-
tuning. These steps enable the representation to adapt to the new
objectives while preserving its broad, pretrained knowledge. See
SI Appendix, section S4 for more details.

2. Data

Our empirical analysis uses data from one of the leading U.S.
administrative surveys, the PSID (12). PSID is a longitudinal
survey that has followed a cohort of American families since
1968. It is constructed to be nationally representative and is
frequently used to estimate unexplained wage gaps (10, 53).
Because the same individuals are interviewed over the course of
the survey, labor market histories can be constructed by tracking
the trajectory of reported occupations each year an individual is
in the survey.

We encode occupations into one of 330 “occ1990dd” occu-
pational categories (54). Since the PSID includes information
about individuals who are not working, we add seven categories

for when an individual’s occupation is not listed but their
employment status is available (e.g., employed, laid off).

Following ref. 10, we restrict our sample to the surveys
conducted between 1990 and 2019, consisting of 91,391 obs-
ervations over 19 surveys, and further restrict our sample to
nonfarm and nonmilitary wage and salary workers between 25
and 64 y old who worked for at least 26 wk in nonfarm jobs.
We incorporate longitudinal sample weights into our analysis,
which are designed to adjust for differences in the probability of
selection into the sample. SI Appendix, section S3 contains more
details about how we construct the dataset.

3. Synthetic Experiments

We first validate our proposed methods for debiased fine-tuning.
Typically, machine learning models are evaluated using measures
of predictive accuracy on held-out data. However, our ultimate
goal is not forming more accurate wage predictions, but rather
more accurate estimates of the unexplained wage gap. To this end,
we turn to synthetic experiments, a common method to assess
causal estimation strategies in a controlled setting (e.g., ref. 55).
Synthetic experiments allow us to evaluate the performance of
different methods because the data generating process is known.

In order for the synthetic experiments to reflect real-world
data, we use real labor market histories from the PSID sample
(Section 2). Our synthetic experiments are based on forming a
“ground-truth” representation of the history and then generating
group labels and wages as a function of this history. To mimic
the fact that nature is often more complicated than the model
we might select, we use a more complicated representation to
generate data than the one used by the foundation model to
estimate wage gaps. Specifically, we use a transformer architecture
that is 20 times larger than the one used for estimation to
simulate a ground-truth representation �∗ : X → ℝD. For each
setting, we simulate group labels and wages as a function of the
representation �∗. We control how much of the representation is
shared between these functions by introducing binary variables
u, v ∈ {0, 1}D that mask the dimensions of the representation
used for the group and wage models, accordingly. We then
simulate from the following model:

Ai ∼ Bern
(
�
(∑

j uj�j ∗ �(Xi)j

))
Yi = �Ai +

∑
j vj�j ∗ �(Xi)j + �i,

where � ∈ ℝD is a random vector of regression coefficients,
� ∈ ℝ is the true unexplained gap, �i ∼ N (0, �2) is the
outcome noise, and �(·) is the inverse-logit function. In this
setup, u>v/D is the proportion of the representation that is
shared. For each experiment, we control the shared proportion
(u>v/D), the true gap (�), and the level of outcome noise (�2).
We consider 27 different settings, and perform multiple samples
in each setting by resampling Ai, �i, u, v, and �. See SI Appendix,
section S5 for more details.

We compare four methods for estimating the unexplained
wage gap from synthetic data. Our baseline is Supervised Fine-
Tuning (1): fine-tuning a foundation model to predict wage
without an explicit debiasing objective. We compare this baseline
to the three debiasing methods described above: Multitask Fine-
Tuning, Projection Fine-Tuning, and Difference-Based Fine-
Tuning. We perform 400 simulations, regenerating data and
retraining each method for each simulation. Here, we estimate the
unexplained gap using the outcome-only estimator (analogous
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Fig. 1. Debiased fine-tuning methods are better at estimating the unexplained wage gap than standard supervised fine-tuning (1) across 270 synthetic
experiments. For each synthetic experiment, the true unexplained wage gap is known, and each method provides a different estimate of this gap. This figure
compares each method’s average error for estimating this gap, evaluated via MSE between the true and estimated unexplained gap. Specifically, the Y-axis
compares each method’s estimation error to the error from estimates derived from a model using standard supervised fine-tuning (larger values on the Y-axis
correspond to larger improvements). Bars represent 95% CI.

to Eq. 2), while SI Appendix, section S5 shows results for the
AIPW estimator (Eq. 4), which we find to perform slightly
worse in practice. Although AIPW is theoretically advantageous
in large samples (34, 35), it can suffer from higher variance when
propensity models are difficult to estimate, thereby degrading its
finite-sample performance (56).

Fig. 1 compares the MSE of the estimate of the gender
wage gap (relative to the oracle gender wage gap) derived from
alternative estimation approaches. All three methods for debi-
asing foundation models consistently outperform the standard
supervised fine-tuning approach. The advantage of debiasing is
largest when more of the representation is shared across the wage
model and group labels. This reinforces the motivation behind
representation learning; as there is more shared structure in how
group labels and wages relate to history, sharing representations
can improve estimates. Projection fine-tuning and difference-
based fine-tuning are both more successful than multitask fine-
tuning, especially when more of the representation is shared. The
full set of results is in SI Appendix, Table S6.

How should we validate models on real-world data? While
wage and gender predictive metrics are important, they do not
directly assess estimation quality. While matching-based methods
(57) can also be used to validate estimation in principle, these
require low-dimensional covariates. We instead consider another
validation metric, inspired by the R-Learner objective in Eq. 6.
Because Eq. 6 is minimized when �(X ) is the true expected
difference female and male wages, we evaluate Eq. 6 given a
model’s estimate of �̂(X ) = �̂1(X )− �̂0(X ),

1
n
∑n

i=1[(Yi − m̂(Xi))− (Ai − ê(Xi))�̂(Xi)]2, [8]

where i = 1, . . . , n index n held-out samples and m̂(Xi) and
ê(Xi) are models trained to predict wage and gender, respectively,
using supervised fine-tuning of CAREER. We refer to Eq. 8 as
the R-Learner Metric. We note that because this metric relies
on estimates of wage and propensity models, it is sensitive to
the specification of m̂ and ê. However, we validate this metric
on synthetic data, finding it to be a useful proxy for model
performance (SI Appendix, Fig. S2).

4. Empirical Application

We now apply our methods to the (actual) PSID data. We
begin by evaluating the quality of wage predictions derived
from alternative models, including the standard econometric

models from the wage gap literature (10), since predictive
accuracy can be easily evaluated using held-out test data.
We show that foundation-based representations substantially
improve predictive performance relative to standard regression-
based econometric models, suggesting that our methods can
capture variables that have the potential to cause omitted variable
bias when estimating unexplained wage gaps. We then directly
demonstrate that representations derived from our methods
capture elements of history that are predictive of both wage and
gender, so that they indeed meet the criteria for omitted variable
bias, and that these are quantitatively important for explaining
wage gaps.

4.1. Predictive Accuracy. As baselines, we consider econometric
models that use hand-constructed summaries of an individual’s
career but not their full history to predict wage. Following the
econometric literature, we consider two linear models: regression
(fit with OLS) and LASSO. Given covariates Zi ∈ ℝP , these
models estimate the wage function as

�̂A(Zi) = �A + �>A Zi, [9]

for A ∈ {0, 1}, an intercept �A ∈ ℝ, and regression coefficients
�A ∈ ℝP . Following ref. 10, the covariates included in Z are
years of full-time and part-time experience (and their squares),
years of schooling, indicators for bachelors and advanced degrees,
race and ethnicity indicators, gender indicators, census and
region indicators, an indicator for collective bargaining coverage,
15 industry category indicators, and 21 occupation category
indicators. We also consider two different methods of encoding
occupations: “coarse-grained,” which uses the 21 coarse-grained
occupational categories above, and “fine-grained,” with an
additional 330 fine-grained occupational categories.

We compare these models from the economics literature to
predictions based on foundation models that use CAREER
(4) to represent labor market history. CAREER is pretrained
to learn representations of career trajectories on a dataset
of 23.7 million resumes. We consider both supervised fine-
tuning (1) and debiased fine-tuning approaches to modify
CAREER’s representations. When we fine-tune CAREER, we
use both its representations of history and the covariates Zi
described above to predict an individual’s wage; see SI Appendix,
section S4 for more details. In order to understand how different
methods of including history affect predictions, we train two
additional versions of CAREER: one that uses the neural network
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Table 1. The CAREER foundationmodel, which incorporates an individual’s full labor market history, forms better
predictions of wage and gender on held-out data than standard econometric methods, which summarize history
with low-dimensional statistics

Wage R2 Gender R2

Regression models Coarse-grained regression 0.428 (0.004) 0.137 (0.002)
Coarse-grained LASSO 0.428 (0.003) 0.260 (0.003)
Fine-grained LASSO 0.455 (0.003) 0.314 (0.003)

Foundation models CAREER (no pretraining) 0.462 (0.003) 0.424 (0.004)
(supervised fine-tuning) CAREER (pretrained, current job only) 0.454 (0.004) 0.307 (0.003)

CAREER (pretrained, participation only) 0.467 (0.003) 0.309 (0.004)
CAREER (pretrained) 0.515 (0.004) 0.510 (0.004)

Foundation models CAREER (multitask fine-tuning) 0.468 (0.004) 0.514 (0.005)
(debiased fine-tuning) CAREER (projection fine-tuning) 0.503 (0.003) 0.513 (0.004)

Test-set bootstrapped SE are in parentheses.

to encode an individual’s current job but not their history
[“CAREER (current job only)”] and one that includes an indi-
vidual’s current job but only their workforce participation status
for previous jobs (e.g., “unemployed,” “out-of-labor force”),
which we refer to as “CAREER (participation only).”

Table 1 shows the held-out R2 for each model’s wage and
gender predictions. (Since gender is not real-valued, we use
pseudo R2 based on negative log-likelihood.) CAREER out-
performs all the econometric baselines. With the standard
supervised fine-tuning, CAREER has a held-out wage R2 of 0.515
and held-out gender R2 of 0.510. Its predictive performance is
not stemming from including a better functional form for an
individual’s current job or capturing employment spells more
fully. For the two debiased fine-tuning methods, we find that
wage R2 slightly worsens, while gender predictions might slightly
improve, although this improvement is within the SE. (We do
not have wage or gender predictions for difference-based fine-
tuning because it predicts the difference in group wages rather
than individual wages or genders.) These results extend a finding
from ref. 4, which also shows that transformer-based methods
can improve wage predictions relative to econometric baselines.
What Table 1 additionally shows is that gender predictions are
improved by a larger margin and that these gains are still present
for debiased fine-tuning methods. This result demonstrates
another benefit of representation learning; if group membership
and wage are correlated with similar transformations of input
data, then learning representations that are predictive of both
can improve predictions.

4.2. Analyzing the Gender Wage Gap. We now compare gender
wage gaps estimated with standard econometric techniques to
those estimated with a foundation model’s representations of
labor market history, following the approaches described above.
For the econometric models, we use a linear regression using the
same covariates described in Section 4.1, encoding occupation
into one of 21 coarse-grained labels. For the foundation models,
we fine-tune CAREER using each of the three debiased fine-
tuning methods described in Section 3. In addition to using the
machine learned representations of history, these methods also
incorporate the same hand-constructed covariates as the linear
model. Because the unexplained wage gap is only identified when
there is overlap (e.g., when there are workers with similar histories
in both groups), we trim the study population. Specifically, we
fine-tune CAREER with supervised fine-tuning to estimate a
propensity model ê(�(Xi)), and only include individuals i such

that 0.01 < ê(�(Xi)) < 0.99. We consider other trimming
strategies in SI Appendix, section S7, finding similar results. We
compute SE with bootstrapping, where the SE reflect sampling
uncertainty conditional on the fine-tuned model. We do not
retrain models for each bootstrap sample. Instead, we keep models
fixed, evaluating each model on the bootstrapped sample; we refer
to this as test-set bootstrapping.

The results are summarized in Table 2. Across all fine-tuning
methods, full history explains more of the gender wage gap than
hand-constructed summaries of history, which are typically used
to explain gender wage gaps (10, 58, 59). While the wage ratio
unexplained by summaries of history is 88.6%, the ratio is above
90% for all methods that use representations of full history,
ranging from 90.4% for projection fine-tuning to 93.4% to
difference-based fine-tuning. Note that these numbers vary a little
depending on the trimming threshold and whether the AIPW
estimator (Eq. 4) is used instead of the outcome-only estimator;
additional results are presented in SI Appendix, section S7. Table 2
also shows the R-Learner metric in Eq. 8 for each model, which
is minimized by difference-based fine-tuning. The last column
of Table 2 shows that the difference-based fine-tuning method’s
R-Learner metric improvement over the regression and multitask
fine-tuning improvement is significant at the 95% level. Our
analysis for the remainder of the paper considers results from the
difference-based fine-tuning approach.

To further investigate where history is explaining the gender
wage gap, we consider different cuts of the survey data. SI
Appendix, Fig. S3 shows the gender wage ratios over time.
Compared to the methods that adjust the wage gap for summary
statistics of history, the learned representations of history are
explaining the least of the gap in 1990 to 1995 and the most
of the gap in 2014 to 2019. Overall, we find that compared to
methods that adjust the gap for summary statistics of history,
full history explains more of the gap for later years. While this
may reflect changes in the underlying wage dynamics between
these two periods, it may also reflect the fact that more history is
available in the later versions of the survey. To further investigate,
SI Appendix, Fig. S4 fixes the time period to 2014 to 2019 and
considers different wage ratios by age. For the youngest workers,
history explains the least of the gap; the history-explained ratio
is almost the same as the unadjusted ratio for 25- to 34-y-old
workers. However, history consistently explains more of the gap
as workers become older. Further, SI Appendix, Fig. S5 breaks
down the adjusted wage gap by the occupational categories
considered in ref. 10. Compared to the wage gap explained
by summary statistics of history, the wage gap explained by
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Table 2. Machine-learned representations of career history explain more of the gender wage gap than
hand-constructed summary statistics typically used to estimate the gap

R-Learner metric relative
Adjustment method Wage ratio R-Learner metric to difference-based fine-tuning

Unadjusted — 0.775 (0.005) — —
Adjusted for summary statistics Linear regression 0.886 (0.001) 0.1841 (0.0019) −0.00122 (0.00029)
Adjusted for full history Multitask fine-tuning 0.907 (0.001) 0.1835 (0.0019) −0.00059 (0.00027)

Projection fine-tuning 0.904 (0.001) 0.1833 (0.0019) −0.00036 (0.00025)
Difference-based fine-tuning 0.934 (0.000) 0.1829 (0.0018) —

These representations are also validated by better performance on the R-Learner metric (Eq. 8). All results are estimated with cross-fitting on fivefolds, using the outcome-only estimator.
Data are for PSID from 1990 to 2019 with 1% clipping. Test-set bootstrapped SE are in parentheses.

representations of full history is smoother across occupational
categories. The occupational category where history explains
the most of the wage gap is in nonphysician healthcare-related
occupations; the category where it explains the least of the wage
gap is for computer-related occupations.

The promise of incorporating more complete representations
of history into wage gap analyses is that they can include variables
that are typically omitted (recall from Section 1 that omitted
variables include variables that are correlated with both wage and
gender). This is not unique to machine learning methods; for
example, prior studies have found that potential experience (an
inexact measure of experience that does not measure workforce
interruptions) explains less of the wage gap than years of actual
work experience (19, 24), as do representations of history that
do not include timing of labor force participation (25). What
machine learning offers is the ability to automatically learn these
variables without prespecifying them.

Here, we investigate the aspects of history that are captured by
the foundation model but omitted by traditional methods that
summarize history with summary statistics. While our model
learns representations of history for each individual, they are
difficult to interpret directly because they are continuous. To
better understand these representations of histories, we form
clusters of histories. We constrain each history in a cluster to
have the same current occupational category but allow the kinds
of history in a cluster to vary. We then study which clusters are
important for predicting wages by building a regression tree to
predict wage from the clusters. The regression tree adds clusters
one-at-a-time in the order that is most useful for minimizing wage
error. This ordering allows us to identify and interpret which
occupation patterns—beyond an individual’s current job—are
most predictive of wage.

Fig. 2 shows the six most predictive groups (SI Appendix,
section S6 for more details and SI Appendix, Table S2 for
the top 15 groups). These groups reveal important aspects
of history that are omitted by hand-constructed summaries.
For example, one of the most predictive types of histories

consists of managers who were previously computer scientists
and engineering technicians. This is a predominantly male group
(83% male), and managers with these jobs in their histories get
paid more than managers without them. There are multiple
interpretations for why managers with these histories are paid
more than managers without them; perhaps these managers
have different skills than other managers, or perhaps they
are performing different jobs that are not captured by the
occupational encoding scheme (e.g., there is no occupational
category for engineering manager). In addition to this group,
the other top groups that are important for wage predictions
are also correlated with gender. Omitting these variables—
like standard econometric methods do—induces omitted vari-
able bias. SI Appendix, Table S3 includes additional analyses
of omitted variables found at the fine-grained occupational
level.

5. Discussion

We used foundation models to study a classic problem from labor
economics: estimating the difference between how individuals
with the same labor market experience get paid when they belong
to different groups. With foundation models, wage predictions
improve over econometric baselines by up to 15%. We also
showed that an omitted variable bias arises when a foundation
model discards relevant information about group differences.
To mitigate this problem, we proposed procedures for debias-
ing foundation models, which we validated on semisynthetic
data. On survey data from the PSID, we found that labor
market history explains more of the gender wage gap than
the summary statistics of history used by standard econometric
methods.

These findings are suggestive of how to use foundation models
in social science research. One direct application is using the
debiasing methods we propose to estimate causal effects with
foundation models. While we study a foundation model of
labor market history trained on resume data, these methods

Current job:

Subdivision 
based on history:

Manager

17% female

secretary,
bookkeeper

79% female

human 
resource clerk, 

bookkeeper

59% female 32% female

Sales

retail 
salesperson, 
truck driver

31% female

Education/legal

child care 
worker, 

primary school 
teacher

80% female

computer 
scientist,

engineering 
technician

manager, 
salesperson

Fig. 2. CAREER finds omitted variables from a worker’s job history that are important for explaining the gender wage gap. These omitted variables, which are
identified by a regression tree as being most predictive of wage, are correlated with both wage and gender.
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can extend to analyses involving other foundation models.
For example, foundation models trained on rich, nationwide
administrative data can help answer a variety of descriptive and
causal questions (5).

Additionally, our methods can help address questions about
the representativeness of large language models (LLMs), the most
common type of foundation model. A recent literature has found
that large language models, when queried to answer questions
from surveys, do not respond in ways that are representative
of the national population (60). The problem of representative
predictions and debiased foundation models are closely related.
Our methods could be adapted to improve the representativeness
of LLMs.

Materials and Methods

The foundation for this work consists of theoretical development and empirical
analysis using real-world data. The key components are as follows:

5.1. Data Source. We analyze data from the PSID, a longitudinal survey
following American families since 1968. We focus on surveys from 1990 to 2019,
comprising 91,391 observations across 19 surveys. Following prior literature,
the sample includes nonfarm and nonmilitary wage workers aged 25 to 64 who
worked at least 26 wk. Longitudinal sample weights are incorporated to adjust
for selection probabilities.

5.2. Model Architecture. We employ CAREER, a foundation model pretrained
on 24 million resumes, using a transformer architecture with 64-dimensional
representations, 4 encoder layers, 4 attention heads, and 256 hidden units for
feedforward neural networks. The model is ensembled over 16 instances.

5.3. Methodology. Our approach involves three key steps:

• Theoretical development of conditions for unbiased estimation using
foundation models

• Development of debiased fine-tuning methods to meet these conditions

• Empirical validation through both semisynthetic experiments and real-world
analysis

For the debiased fine-tuning, we implement three distinct approaches in
addition to the supervised fine-tuning approach:

• Multitask fine-tuning
• Projection fine-tuning
• Difference-based fine-tuning

Detailed mathematical derivations, proof of theoretical results, and compre-
hensive experimental protocols are provided in SI Appendix.

Data, Materials, and Software Availability. The data and code for reproduc-
ing the tables and figures in this paper are available in the GitHub repository:
https://github.com/gsbDBI/career-wage-gaps-replication (61). The Panel Study
of Income Dynamics (PSID) data used for fine-tuning and evaluation are
available through the University of Michigan’s Institute for Social Research
(University of Michigan, 2024). Due to the proprietary nature of the resume
data used for pretraining the CAREER model, the data and pretrained models
are not publicly accessible. However, a dataset containing all predictions from
these models is included in the repository, from which all the figures and tables
presented in the analysis can be reproduced.
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