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ABSTRACT

Variational inference is a powerful tool for approximate inference, and it has been
recently applied for representation learning with deep generative models. We de-
velop the variational Gaussian process (VGP), a Bayesian nonparametric varia-
tional family, which adapts its shape to match complex posterior distributions.
The VGP generates approximate posterior samples by generating latent inputs and
warping them through random non-linear mappings; the distribution over random
mappings is learned during inference, enabling the transformed outputs to adapt
to varying complexity. We prove a universal approximation theorem for the VGP,
demonstrating its representative power for learning any model. For inference we
present a variational objective inspired by auto-encoders and perform black box
inference over a wide class of models. The VGP achieves new state-of-the-art re-
sults for unsupervised learning, inferring models such as the deep latent Gaussian
model and the recently proposed DRAW.

1 INTRODUCTION

Variational inference is a powerful tool for approximate posterior inference. The idea is to posit
a family of distributions over the latent variables and then find the member of that family closest
to the posterior. Originally developed in the 1990s (Hinton & Van Camp, 1993; Waterhouse et al.,
1996; Jordan et al., 1999), variational inference has enjoyed renewed interest around developing
scalable optimization for large datasets (Hoffman et al., 2013), deriving generic strategies for easily
fitting many models (Ranganath et al., 2014), and applying neural networks as a flexible parametric
family of approximations (Kingma & Welling, 2014; Rezende et al., 2014). This research has been
particularly successful for computing with deep Bayesian models (Neal, 1990; Ranganath et al.,
2015a), which require inference of a complex posterior distribution (Hinton et al., 2006).

Classical variational inference typically uses the mean-field family, where each latent variable is
independent and governed by its own variational distribution. While convenient, the strong inde-
pendence limits learning deep representations of data. Newer research aims toward richer families
that allow dependencies among the latent variables. One way to introduce dependence is to con-
sider the variational family itself as a model of the latent variables (Lawrence, 2000; Ranganath
et al., 2015b). These variational models naturally extend to Bayesian hierarchies, which retain the
mean-field “likelihood” but introduce dependence through variational latent variables.

In this paper we develop a powerful new variational model—the variational Gaussian process (VGP).
The VGP is a Bayesian nonparametric variational model; its complexity grows efficiently and to-
wards any distribution, adapting to the inference problem at hand. We highlight three main contri-
butions of this work:
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1. We prove a universal approximation theorem: under certain conditions, the VGP can capture
any continuous posterior distribution—it is a variational family that can be specified to be
as expressive as needed.

2. We derive an efficient stochastic optimization algorithm for variational inference with the
VGP. Our algorithm can be used in a wide class of models. Inference with the VGP is a
black box variational method (Ranganath et al., 2014).

3. We study the VGP on standard benchmarks for unsupervised learning, applying it to per-
form inference in deep latent Gaussian models (Rezende et al., 2014) and DRAW (Gregor
et al., 2015), a latent attention model. For both models, we report the best results to date.

Technical summary. Generative models hypothesize a distribution of observations x and latent
variables z, p(x, z). Variational inference posits a family of the latent variables q(z;λ) and tries
to find the variational parameters λ that are closest in KL divergence to the posterior. When we
use a variational model, q(z;λ) itself might contain variational latent variables; these are implicitly
marginalized out in the variational family (Ranganath et al., 2015b).

The VGP is a flexible variational model. It draw inputs from a simple distribution, warps those inputs
through a non-linear mapping, and then uses the output of the mapping to govern the distribution
of the latent variables z. The non-linear mapping is itself a random variable, constructed from a
Gaussian process. The VGP is inspired by ideas from both the Gaussian process latent variable
model (Lawrence, 2005) and Gaussian process regression (Rasmussen & Williams, 2006).

The variational parameters of the VGP are the kernel parameters for the Gaussian process and a set
of variational data, which are input-output pairs. The variational data is crucial: it anchors the
non-linear mappings at given inputs and outputs. It is through these parameters that the VGP learns
complex representations. Finally, given data x, we use stochastic optimization to find the variational
parameters that minimize the KL divergence to the model posterior.

2 VARIATIONAL GAUSSIAN PROCESS

Variational models introduce latent variables to the variational family, providing a rich construction
for posterior approximation (Ranganath et al., 2015b). Here we introduce the variational Gaussian
process (VGP), a Bayesian nonparametric variational model that is based on the Gaussian process.
The Gaussian process (GP) provides a class of latent variables that lets us capture downstream dis-
tributions with varying complexity.

We first review variational models and Gaussian processes. We then outline the mechanics of the
VGP and prove that it is a universal approximator.

2.1 VARIATIONAL MODELS

Let p(z |x) denote a posterior distribution over d latent variables z = (z1, . . . , zd) conditioned on
a data set x. For a family of distributions q(z;λ) parameterized by λ, variational inference seeks
to minimize the divergence KL(q(z;λ) ‖ p(z |x)). This is equivalent to maximizing the evidence
lower bound (ELBO) (Wainwright & Jordan, 2008). The ELBO can be written as a sum of the
expected log likelihood of the data and the KL divergence between the variational distribution and
the prior,

L = Eq(z;λ)[log p(x | z)]−KL(q(z;λ)‖p(z)). (1)
Traditionally, variational inference considers a tractable family of distributions with analytic forms
for its density. A common specification is a fully factorized distribution

∏
i q(zi;λi), also known

as the mean-field family. While mean-field families lead to efficient computation, they limit the
expressiveness of the approximation.

The variational family of distributions can be interpreted as a model of the latent variables z, and
it can be made richer by introducing new latent variables. Hierarchical variational models consider
distributions specified by a variational prior of the mean-field parameters q(λ;θ) and a factorized
“likelihood”

∏
i q(zi | λi). This specifies the variational model,

q(z;θ) =

∫ [∏
i

q(zi | λi)
]
q(λ;θ) dλ, (2)
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Figure 1: (a) Graphical model of the variational Gaussian process. The VGP generates samples of
latent variables z by evaluating random non-linear mappings of latent inputs ξ, and then drawing
mean-field samples parameterized by the mapping. These latent variables aim to follow the posterior
distribution for a generative model (b), conditioned on data x.

which is governed by prior hyperparameters θ. Hierarchical variational models are richer than
classical variational families—their expressiveness is determined by the complexity of the prior
q(λ). Many expressive variational approximations can be viewed under this construct (Saul &
Jordan, 1996; Jaakkola & Jordan, 1998; Rezende & Mohamed, 2015; Tran et al., 2015).

2.2 GAUSSIAN PROCESSES

We now review the Gaussian process (GP) (Rasmussen & Williams, 2006). Consider a data set of m
source-target pairs D = {(sn, tn)}mn=1, where each source sn has c covariates paired with a multi-
dimensional target tn ∈ Rd. We aim to learn a function over all source-target pairs, tn = f(sn),
where f : Rc → Rd is unknown. Let the function f decouple as f = (f1, . . . , fd), where each
fi : Rc → R. GP regression estimates the functional form of f by placing a prior,

p(f) =

d∏
i=1

GP(fi; 0,Kss),

where Kss denotes a covariance function k(s, s′) evaluated over pairs of inputs s, s′ ∈ Rc. In this
paper, we consider automatic relevance determination (ARD) kernels

k(s, s′) = σ2
ARD exp

(
− 1

2

c∑
j=1

ωj(sj − s′j)2
)
, (3)

with parameters θ = (σ2
ARD, ω1, . . . , ωc). The weights ωj tune the importance of each dimension.

They can be driven to zero during inference, leading to automatic dimensionality reduction.

Given data D, the conditional distribution of the GP forms a distribution over mappings which inter-
polate between input-output pairs,

p(f | D) =

d∏
i=1

GP(fi; KξsK
−1
ss ti,Kξξ −KξsK

−1
ss K>ξs). (4)

Here, Kξs denotes the covariance function k(ξ, s) for an input ξ and over all data inputs sn, and ti
represents the ith output dimension.

2.3 VARIATIONAL GAUSSIAN PROCESSES

We describe the variational Gaussian process (VGP), a Bayesian nonparametric variational model
that admits arbitrary structures to match posterior distributions. The VGP generates z by generat-
ing latent inputs, warping them with random non-linear mappings, and using the warped inputs as
parameters to a mean-field distribution. The random mappings are drawn conditional on “varia-
tional data,” which are variational parameters. We will show that the VGP enables samples from the
mean-field to follow arbitrarily complex posteriors.

The VGP specifies the following generative process for posterior latent variables z:
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1. Draw latent input ξ ∈ Rc: ξ ∼ N (0, I).

2. Draw non-linear mapping f : Rc → Rd conditioned on D: f ∼
∏d
i=1 GP(0,Kξξ) | D.

3. Draw approximate posterior samples z ∈ supp(p): z = (z1, . . . , zd) ∼
∏d
i=1 q(fi(ξ)).

Figure 1 displays a graphical model for the VGP. Here, D = {(sn, tn)}mn=1 represents variational
data, comprising input-output pairs that are parameters to the variational distribution. Marginalizing
over all latent inputs and non-linear mappings, the VGP is

qVGP(z;θ,D) =

∫∫ [ d∏
i=1

q(zi | fi(ξ))

][
d∏
i=1

GP(fi; 0,Kξξ) | D

]
N (ξ; 0, I) df dξ. (5)

The VGP is parameterized by kernel hyperparameters θ and variational data.

As a variational model, the VGP forms an infinite ensemble of mean-field distributions. A mean-
field distribution is given in the first term of the integrand above. It is conditional on a fixed function
f(·) and input ξ; the d outputs fi(ξ) = λi are the mean-field’s parameters. The VGP is a form of
a hierarchical variational model (Eq.2) (Ranganath et al., 2015b). It places a continuous Bayesian
nonparametric prior over mean-field parameters.

Unlike the mean-field, the VGP can capture correlation between the latent variables. The reason is
that it evaluates the d independent GP draws at the same latent input ξ. This induces correlation
between their outputs, the mean-field parameters, and thus also correlation between the latent vari-
ables. Further, the VGP is flexible. The complex non-linear mappings drawn from the GP allow it to
capture complex discrete and continuous posteriors.

We emphasize that the VGP needs variational data. Unlike typical GP regression, there are no ob-
served data available to learn a distribution over non-linear mappings of the latent variables z. Thus
the "data" are variational parameters that appear in the conditional distribution of f in Eq.4. They
anchor the random non-linear mappings at certain input-ouput pairs. When optimizing the VGP, the
learned variational data enables finds a distribution of the latent variables that closely follows the
posterior.

2.4 UNIVERSAL APPROXIMATION THEOREM

To understand the capacity of the VGP for representing complex posterior distributions, we analyze
the role of the Gaussian process. For simplicity, suppose the latent variables z are real-valued, and
the VGP treats the output of the function draws from the GP as posterior samples. Consider the
optimal function f∗, which is the transformation such that when we draw ξ ∼ N (0, I) and calculate
z = f∗(ξ), the resulting distribution of z is the posterior distribution.

An explicit construction of f∗ exists if the dimension of the latent input ξ is equal to the number of
latent variables. Let P−1 denote the inverse posterior CDF and Φ the standard normal CDF. Using
techniques common in copula literature (Nelsen, 2006), the optimal function is

f∗(ξ) = P−1(Φ(ξ1), . . . ,Φ(ξd)).

Imagine generating samples z using this function. For latent input ξ ∼ N (0, I), the standard normal
CDF Φ applies the probability integral transform: it squashes ξi such that its output ui = Φ(ξi) is
uniformly distributed on [0, 1]. The inverse posterior CDF then transforms the uniform random
variables P−1(u1, . . . , ud) = z to follow the posterior. The function produces exact posterior
samples.

In the VGP, the random function interpolates the values in the variational data, which are optimized to
minimize the KL divergence. Thus, during inference, the distribution of the GP learns to concentrate
around this optimal function. This perspective provides intuition behind the following result.

Theorem 1 (Universal approximation). Let q(z;θ,D) denote the variational Gaussian process.
Consider a posterior distribution p(z |x) with a finite number of latent variables and continuous
quantile function (inverse CDF). There exists a sequence of parameters (θk,Dk) such that

lim
k→∞

KL(q(z;θk,Dk) ‖ p(z |x)) = 0.
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Figure 2: Sequence of domain mappings during inference, from variational latent variable space
R to posterior latent variable space Q to data space P . We perform variational inference in the
posterior space and auxiliary inference in the variational space.

See Appendix B for a proof. Theorem 1 states that any posterior distribution with strictly posi-
tive density can be represented by a VGP. Thus the VGP is a flexible model for learning posterior
distributions.

3 BLACK BOX INFERENCE

We derive an algorithm for black box inference over a wide class of generative models.

3.1 VARIATIONAL OBJECTIVE

The original ELBO (Eq.1) is analytically intractable due to the log density, log qVGP(z) (Eq.5). To ad-
dress this, we present a tractable variational objective inspired by auto-encoders (Kingma & Welling,
2014).

A tractable lower bound to the model evidence log p(x) can be derived by subtracting an expected
KL divergence term from the ELBO,

log p(x) ≥ EqVGP
[log p(x | z)]−KL(qVGP(z)‖p(z))− EqVGP

[
KL(q(ξ, f | z)‖r(ξ, f | z))

]
,

where r(ξ, f | z) is an auxiliary model (we describe r in the next subsection). Various versions of
this objective have been considered in the literature (Jaakkola & Jordan, 1998; Agakov & Barber,
2004), and it has been recently revisited by Salimans et al. (2015) and Ranganath et al. (2015b). We
perform variational inference in the posterior latent variable space, minimizing KL(q‖p) to learn the
variational model; for this to occur we perform auxiliary inference in the variational latent variable
space, minimizing KL(q‖r) to learn an auxiliary model. See Figure 2.

Unlike previous approaches, we rewrite this variational objective to connect to auto-
encoders:

L̃(θ,φ) = EqVGP
[log p(x | z)]− EqVGP

[
KL(q(z | f(ξ))‖p(z))

]
− EqVGP

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
,

(6)

where the KL divergences are now taken over tractable distributions (see Appendix C). In auto-
encoder parlance, we maximize the expected negative reconstruction error, regularized by two terms:
an expected divergence between the variational model and the original model’s prior, and an ex-
pected divergence between the auxiliary model and the variational model’s prior. This is simply a
nested instantiation of the variational auto-encoder bound (Kingma & Welling, 2014): a divergence
between the inference model and a prior is taken as regularizers on both the posterior and variational
spaces. This interpretation justifies the previously proposed bound for variational models; as we
shall see, it also enables lower variance gradients during stochastic optimization.

3.2 AUTO-ENCODING VARIATIONAL MODELS

An inference network provide a flexible parameterization of approximating distributions as used
in Helmholtz machines (Hinton & Zemel, 1994), deep Boltzmann machines (Salakhutdinov &
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Larochelle, 2010), and variational auto-encoders (Kingma & Welling, 2014; Rezende et al., 2014).
It replaces local variational parameters with global parameters coming from a neural network. For
latent variables zn (which correspond to a data point xn), an inference network specifies a neural
network which takes xn as input and its local variational parameters λn as output. This amortizes
inference by only defining a set of global parameters.

To auto-encode the VGP we specify inference networks to parameterize both the variational and
auxiliary models:

xn 7→ q(zn |xn;θn), xn, zn 7→ r(ξn, fn |xn, zn;φn).

Formally, the output of these mappings are the parameters θn and φn respectively. We write the
output as distributions above to emphasize that these mappings are a (global) parameterization of
the variational model q and auxiliary model r. The local variational parameters θn for q are the
variational data Dn. The auxiliary model r is specified as a fully factorized Gaussian with local
variational parameters φn = (µn ∈ Rc+d, σ2

n ∈ Rc+d). 1

3.3 STOCHASTIC OPTIMIZATION

We maximize the variational objective L̃(θ,φ) over both θ and φ, where θ newly denotes both
the kernel hyperparameters and the inference network’s parameters for the VGP, and φ denotes
the inference network’s parameters for the auxiliary model. Following the black box methods, we
write the gradient as an expectation and apply stochastic approximations (Robbins & Monro, 1951),
sampling from the variational model and evaluating noisy gradients.

First, we reduce variance of the stochastic gradients by analytically deriving any tractable expec-
tations. The KL divergence between q(z | f(ξ)) and p(z) is commonly used to reduce variance in
traditional variational auto-encoders: it is analytic for deep generative models such as the deep latent
Gaussian model (Rezende et al., 2014) and deep recurrent attentive writer (Gregor et al., 2015). The
KL divergence between r(f | ξ, z) and q(f | ξ) is analytic as the distributions are both Gaussian. The
difference log q(ξ) − log r(ξ | z) is simply a difference of Gaussian log densities. See Appendix C
for more details.

To derive black box gradients, we can first reparameterize the VGP, separating noise generation of
samples from the parameters in its generative process (Kingma & Welling, 2014; Rezende et al.,
2014). The GP easily enables reparameterization: for latent inputs ξ ∼ N (0, I), the transformation
f(ξ;θ) = Lξ + KξsK

−1
ss ti is a location-scale transform, where LL> = Kξξ − KξsK

−1
ss K>ξs.

This is equivalent to evaluating ξ with a random mapping from the GP. Suppose the mean-field
q(z | f(ξ)) is also reparameterizable, and let ε ∼ w such that z(ε; f) is a function of ξ whose output
z ∼ q(z | f(ξ)). This two-level reparameterization is equivalent to the generative process for z
outlined in Section 2.3.

We now rewrite the variational objective as

L̃(θ,φ) = EN (ξ)

[
Ew(ε)

[
log p(x | z(ε; f))

]
−KL(q(z | f)‖p(z))

]
(7)

− EN (ξ)

[
Ew(ε)

[
KL(q(f | ξ;θ)‖r(f | ξ, z(ε; f);φ)) + log q(ξ)− log r(ξ | z(ε; f))

]]
.

Eq.7 enables gradients to move inside the expectations and backpropagate over the nested reparam-
eterization. Thus we can take unbiased stochastic gradients, which exhibit low variance due to both
the analytic KL terms and reparameterization. The gradients are derived in Appendix D, including
the case when the first KL is analytically intractable.

We outline the method in Algorithm 1. For massive data, we apply subsampling on x (Hoffman et al.,
2013). For gradients of the model log-likelihood, we employ convenient differentiation tools such as
those in Stan and Theano (Carpenter et al., 2015; Bergstra et al., 2010). For non-differentiable latent
variables z, or mean-field distributions without efficient reparameterizations, we apply the black box
gradient estimator from Ranganath et al. (2014) to take gradients of the inner expectation.

1We let the kernel hyperparameters of the VGP be fixed across data points. Note also that unique from other
auto-encoder approaches, we let r’s inference network take both xn and zn as input: this avoids an explicit
specification of the conditional distribution r(ε, f | z), which may be difficult to model. This idea was first
suggested (but not implemented) in Ranganath et al. (2015b).

6
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Algorithm 1: Black box inference with a variational Gaussian process

Input: Model p(x, z), Mean-field family
∏
i q(zi | fi(ξ)).

Output: Variational and auxiliary parameters (θ,φ).

Initialize (θ,φ) randomly.

while not converged do
Draw noise samples ξ ∼ N (0, I), ε ∼ w.

Parameterize variational samples z = z(ε; f(ξ)), f(ξ) = f(ξ;θ).

Update (θ,φ) with stochastic gradients∇θL̃,∇φL̃.
end

3.4 COMPUTATIONAL AND STORAGE COMPLEXITY

The algorithm has O(d + m3 + LH2) complexity, where d is the number of latent variables, m
is the size of the variational data, and L is the number of layers of the neural networks with H
the average hidden layer size. In particular, the algorithm is linear in the number of latent vari-
ables, which is competitive with other variational inference methods. The number of variational and
auxiliary parameters has O(c + LH) complexity; this complexity comes from storing the kernel
hyperparameters and the neural network parameters.

Unlike most GP literature, we require no low rank constraints, such as the use of inducing variables
for scalable computation (Quiñonero-Candela & Rasmussen, 2005). The variational data serve a
similar purpose, but inducing variables reduce the rank of a (fixed) kernel matrix; the variational data
directly determine the kernel matrix and thus the kernel matrix is not fixed. Although we haven’t
found it necessary in practice, see Appendix E for scaling the size of variational data.

4 RELATED WORK

Recently, there has been interest in applying parametric transformations for approximate inference.
Parametric transformations of random variables induce a density in the transformed space, with a
Jacobian determinant that accounts for how the transformation warps unit volumes. Kucukelbir et al.
(2016) consider this viewpoint for automating inference, in which they posit a transformation from
the standard normal to a possibly constrained latent variable space. In general, however, calculating
the Jacobian determinant incurs a costly O(d3) complexity, cubic in the number of latent variables.
Dinh et al. (2015) consider volume-preserving transformations which avoid calculating Jacobian
determinants. Salimans et al. (2015) consider volume-preserving transformations defined by Markov
transition operators. Rezende & Mohamed (2015) consider a slightly broader class of parametric
transformations, with Jacobian determinants having at most O(d) complexity.

Instead of specifying a parametric class of mappings, the VGP posits a Bayesian nonparametric prior
over all continuous mappings. The VGP can recover a certain class of parametric transformations by
using kernels which induce a prior over that class. In the context of the VGP, the GP is an infinitely
wide feedforward network which warps latent inputs to mean-field parameters. Thus, the VGP offers
complete flexibility on the space of mappings—there are no restrictions such as invertibility or linear
complexity—and is fully Bayesian. Further, it is a hierarchical variational model, using the GP as a
variational prior over mean-field parameters (Ranganath et al., 2015b). This enables inference over
both discrete and continuous latent variable models.

In addition to its flexibility over parametric methods, the VGP is more computationally efficient.
Parametric methods must consider transformations with Jacobian determinants of at most O(d)
complexity. This restricts the flexibility of the mapping and therefore the flexibility of the varia-
tional model (Rezende & Mohamed, 2015). In comparison, the distribution of outputs using a GP
prior does not require any Jacobian determinants (following Eq.4); instead it requires auxiliary in-
ference for inferring variational latent variables (which is fast). Further, unlike discrete Bayesian

7
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Model − log p(x) ≤
DLGM + VAE [1] 86.76
DLGM + HVI (8 leapfrog steps) [2] 85.51 88.30
DLGM + NF (k = 80) [3] 85.10
EoNADE-5 2hl (128 orderings) [4] 84.68
DBN 2hl [5] 84.55
DARN 1hl [6] 84.13
Convolutional VAE + HVI [2] 81.94 83.49
DLGM 2hl + IWAE (k = 50) [1] 82.90
DRAW [7] 80.97

DLGM 1hl + VGP 84.79
DLGM 2hl + VGP 81.32
DRAW + VGP 79.88

Table 1: Negative predictive log-likelihood for binarized MNIST. Previous best results are
[1] (Burda et al., 2016), [2] (Salimans et al., 2015), [3] (Rezende & Mohamed, 2015), [4] (Raiko
et al., 2014), [5] (Murray & Salakhutdinov, 2009), [6] (Gregor et al., 2014), [7] (Gregor et al., 2015).

nonparametric priors such as an infinite mixture of mean-field distributions, the GP enables black
box inference with lower variance gradients—it applies a location-scale transform for reparameteri-
zation and has analytically tractable KL terms.

Transformations, which convert samples from a tractable distribution to the posterior, is a classic
technique in Bayesian inference. It was first studied in Monte Carlo methods, where it is core to
the development of methods such as path sampling, annealed importance sampling, and sequential
Monte Carlo (Gelman & Meng, 1998; Neal, 1998; Chopin, 2002). These methods can be recast as
specifying a discretized mapping ft for times t0 < . . . < tk, such that for draws ξ from the tractable
distribution, ft0(ξ) outputs the same samples and ftk(ξ) outputs exact samples following the poste-
rior. By applying the sequence in various forms, the transformation bridges the tractable distribution
to the posterior. Specifying a good transformation—termed “schedule” in the literature—is crucial
to the efficiency of these methods. Rather than specify it explicitly, the VGP adaptively learns this
transformation and avoids discretization.

Limiting the VGP in various ways recovers well-known probability models as variational approxima-
tions. Specifically, we recover the discrete mixture of mean-field distributions (Bishop et al., 1998;
Jaakkola & Jordan, 1998). We also recover a form of factor analysis (Tipping & Bishop, 1999) in
the variational space. Mathematical details are in Appendix A.

5 EXPERIMENTS

Following standard benchmarks for variational inference in deep learning, we learn generative mod-
els of images. In particular, we learn the deep latent Gaussian model (DLGM) (Rezende et al., 2014),
a layered hierarchy of Gaussian random variables following neural network architecures, and the
recently proposed Deep Recurrent Attentive Writer (DRAW) (Gregor et al., 2015), a latent attention
model that iteratively constructs complex images using a recurrent architecture and a sequence of
variational auto-encoders (Kingma & Welling, 2014).

For the learning rate we apply a version of RMSProp (Tieleman & Hinton, 2012), in which we
scale the value with a decaying schedule 1/t1/2+ε for ε > 0. We fix the size of variational data
to be 500 across all experiments and set the latent input dimension equal to the number of latent
variables.

5.1 BINARIZED MNIST

The binarized MNIST data set (Salakhutdinov & Murray, 2008) consists of 28x28 pixel images
with binary-valued outcomes. Training a DLGM, we apply two stochastic layers of 100 random vari-
ables and 50 random variables respectively, and in-between each stochastic layer is a deterministic

8
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Model Epochs ≤ − log p(x)

DRAW 100 526.8
200 479.1
300 464.5

DRAW + VGP 100 460.1
200 444.0
300 423.9

Table 2: Negative predictive log-likelihood
for Sketch, learned over hundreds of epochs
over all 18,000 training examples.

Figure 3: Generated images from DRAW with a
VGP (top), and DRAW with the original variational
auto-encoder (bottom). The VGP learns texture and
sharpness, able to sketch more complex shapes.

layer with 100 units using tanh nonlinearities. We apply mean-field Gaussian distributions for the
stochastic layers and a Bernoulli likelihood. We train the VGP to learn the DLGM for the cases of
one stochastic layer and two stochastic layers.

For DRAW (Gregor et al., 2015), we augment the mean-field Gaussian distribution originally used to
generate the latent samples at each time step with the VGP, as it places a complex variational prior
over its parameters. The encoding recurrent neural network now outputs variational data (used for
the variational model) as well as mean-field Gaussian parameters (used for the auxiliary model). We
use the same architecture hyperparameters as in Gregor et al. (2015).

After training we evaluate test set log likelihood, which are lower bounds on the true value. See
Table 1 which reports both approximations and lower bounds of log p(x) for various methods. The
VGP achieves the highest known results on log-likelihood using DRAW, reporting a value of -79.88
compared to the original highest of -80.97. The VGP also achieves the highest known results among
the class of non-structure exploiting models using the DLGM, with a value of -81.32 compared to the
previous best of -82.90 reported by Burda et al. (2016).

5.2 SKETCH

As a demonstration of the VGP’s complexity for learning representations, we also examine the Sketch
data set (Eitz et al., 2012). It consists of 20,000 human sketches equally distributed over 250 object
categories. We partition it into 18,000 training examples and 2,000 test examples. We fix the archi-
tecture of DRAW to have a 2x2 read window, 5x5 write attention window, and 64 glimpses—these
values were selected using a coarse grid search and choosing the set which lead to the best training
log likelihood. For inference we use the original auto-encoder version as well as the augmented
version with the VGP.

See Table 2. DRAW with the VGP achieves a significantly better lower bound, performing better than
the original version which has seen state-of-the-art success in many computer vision tasks. (Until
the results presented here, the results from the original DRAW were the best reported performance for
this data set.). Moreover, the model inferred using the VGP is able to generate more complex images
than the original version—it not only performs better but maintains higher visual fidelity.

6 DISCUSSION

We present the variational Gaussian process (VGP), a variational model which adapts its shape to
match complex posterior distributions. The VGP draws samples from a tractable distribution, and
posits a Bayesian nonparametric prior over transformations from the tractable distribution to mean-
field parameters. The VGP learns the transformations from the space of all continuous mappings—it
is a universal approximator and finds good posterior approximations via optimization.

In future work the VGP will be explored for application in Monte Carlo methods, where it may be an
efficient proposal distribution for importance sampling and sequential Monte Carlo. An important
avenue of research is also to characterize local optima inherent to the objective function. Such
analysis will improve our understanding of the limits of the optimization procedure and thus the
limits of variational inference.
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A SPECIAL CASES OF THE VARIATIONAL GAUSSIAN PROCESS

We now analyze two special cases of the VGP: by limiting its generative process in various ways,
we recover well-known models. This provides intuition behind the VGP’s complexity. In Section 4
we show many recently proposed models can also be viewed as special cases of the VGP.
Special Case 1. A mixture of mean-field distributions is a VGP without a kernel.

A discrete mixture of mean-field distributions (Bishop et al., 1998; Jaakkola & Jordan, 1998;
Lawrence, 2000) is a classically studied variational model with dependencies between latent vari-
ables. Instead of a mapping which interpolates between inputs of the variational data, suppose the
VGP simply performs nearest-neighbors for a latent input ξ—selecting the output tn tied to the near-
est variational input sn. This induces a multinomial distribution of outputs, which samples one of
the variational outputs’ mean-field parameters.2 Thus, with a GP prior that interpolates between
inputs, the VGP can be seen as a kernel density smoothing of the nearest-neighbor function.
Special Case 2. Variational factor analysis is a VGP with linear kernel and no variational data.

Consider factor analysis (Tipping & Bishop, 1999) in the variational space: 3

ξ ∼ N (0, I), zi ∼ N (w>ξ, I).

Marginalizing over the latent inputs induces linear dependence in z, q(z; w) = N (z; 0,ww>).
Consider the dual interpretation

ξ ∼ N (0, I), fi ∼ GP(0, k(·, ·)), k(s, s′) = s>s′, zi = fi(ξ),

with q(z | ξ) = N (z; 0, ξξ>). The maximum likelihood estimate of w in factor analysis is the
maximum a posteriori estimate of ξ in the GP formulation. More generally, use of a non-linear
kernel induces non-linear dependence in z. Learning the set of kernel hyperparameters θ thus learns
the set capturing the most variation in its latent embedding of z (Lawrence, 2005).

B PROOF OF THEOREM 1

Theorem 1. Let q(z;θ,D) denote the variational Gaussian process. Consider a posterior distri-
bution p(z |x) with a finite number of latent variables and continuous quantile function (inverse
CDF). There exists a sequence of parameters (θk,Dk) such that

lim
k→∞

KL(q(z;θk,Dk) ‖ p(z |x)) = 0.

2Formally, given variational input-output pairs {(sn, tn)}, the nearest-neighbor function is defined as
f(ξ) = tj , such that ‖ξ − sj‖ < ‖ξ − sk‖ for all k. Then the output’s distribution is multinomial with
probabilities P (f(ξ) = tj), proportional to areas of the partitioned nearest-neighbor space.

3 For simplicity, we avoid discussion of the VGP’s underlying mean-field distribution, i.e., we specify each
mean-field factor to be a degenerate point mass at its parameter value.
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Proof. Let the mean-field distribution be given by degenerate delta distributions

q(zi | fi) = δfi(zi).

Let the size of the latent input be equivalent to the number of latent variables c = d and fix σ2
ARD = 1

and ωj = 1. Furthermore for simplicity, we assume that ξ is drawn uniformly on the d-dimensional
hypercube. Then as explained in Section 2.4, if we let P−1 denote the inverse posterior cumulative
distribution function, the optimal f denoted f∗ such that

KL(q(z;θ) ‖ p(z |x)) = 0

is

f∗(ξ) = P−1(ξ1, ..., ξd).

DefineOk to be the set of points j/2k for j = 0 to 2k, and define Sk to be the d-dimensional product
of Ok. Let Dk be the set containing the pairs (si, f

∗(si)), for each element si in Sk. Denote fk
as the GP mapping conditioned on the dataset Dk, this random mapping satisfies fk(si) = f∗(si)
for all si ∈ Sk by the noise free prediction property of Gaussian processes (Rasmussen & Williams,
2006). Then by continuity, as k →∞, fk converges to f∗.

A broad condition under which the quantile function of a distribution is continuous is if that distri-
bution has positive density with respect to the Lebesgue measure.

The rate of convergence for finite sizes of the variational data can be studied via posterior contraction
rates for GPs under random covariates (Van Der Vaart & Van Zanten, 2011). Only an additional
assumption using stronger continuity conditions for the posterior quantile and the use of Matern
covariance functions is required for the theory to be applicable in the variational setting.

C VARIATIONAL OBJECTIVE

We derive the tractable lower bound to the model evidence log p(x) presented in Eq.6. To do this,
we first penalize the ELBO with an expected KL term,

log p(x) ≥ L = EqVGP
[log p(x | z)]−KL(qVGP(z)‖p(z))

≥ EqVGP
[log p(x | z)]−KL(qVGP(z)‖p(z))− EqVGP

[
KL(q(ξ, f | z)‖r(ξ, f | z))

]
.

We can combine all terms into the expectations as follows:

L̃ = Eq(z,ξ,f)
[

log p(x | z)− log q(z) + log p(z)− log q(ξ, f | z) + log r(ξ, f | z)
]

= Eq(z,ξ,f)
[

log p(x | z)− log q(z | f(ξ)) + log p(z)− log q(ξ, f) + log r(ξ, f | z)
]
,

where we apply the product rule q(z)q(ξ, f | z) = q(z | f(ξ))q(ξ, f). Recombining terms as KL
divergences, and written with parameters (θ,φ), this recovers the auto-encoded variational objective
in Section 3:

L̃(θ,φ) = EqVGP
[log p(x | z)]− EqVGP

[
KL(q(z | f(ξ))‖p(z))

]
− EqVGP

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
.

The KL divergence between the mean-field q(z | f(ξ)) and the model prior p(z) is analytically
tractable for certain popular models. For example, in the deep latent Gaussian model (Rezende
et al., 2014) and DRAW (Gregor et al., 2015), both the mean-field distribution and model prior are
Gaussian, leading to an analytic KL term: for Gaussian random variables of dimension d,

KL(N (x; m1,Σ1)‖N (x; m2,Σ2)) =

1

2

(
(m1 −m2)>Σ−11 (m1 −m2) + tr(Σ−11 Σ2 + log Σ1 − log Σ2)− d

)
.
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In general, when the KL is intractable, we combine the KL term with the reconstruction term, and
maximize the variational objective

L̃(θ,φ) = EqVGP
[log p(x, z)− log q(z | f(ξ))]

− EqVGP

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
.

(8)

We expect that this experiences slightly higher variance in the stochastic gradients during optimiza-
tion.

We now consider the second term. Recall that we specify the auxiliary model to be a fully factorized
Gaussian, r(ξ, f | z) = N ((ξ, f(ξ))> | z; m,S), where m ∈ Rc+d, S ∈ Rc+d. Further, the varia-
tional priors q(ξ) and q(f | ξ) are both defined to be Gaussian. Therefore it is also a KL divergence
between Gaussian distributed random variables. Similarly, log q(ξ) − log r(ξ | z) is simply a dif-
ference of Gaussian log densities. The second expression is simple to compute and backpropagate
gradients.

D GRADIENTS OF THE VARIATIONAL OBJECTIVE

We derive gradients for the variational objective (Eq.7). This follows trivially by backpropaga-
tion:

∇θL̃(θ,φ) = EN (ξ)[Ew(ε)[∇θf(ξ)∇fz(ε)∇z log p(x | z)]]

− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(z | f(ξ;θ))‖p(z))

]]
− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))

]]
,

∇φL̃(θ,φ) = −EN (ξ)[Ew(ε)[∇φ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))−∇φ log r(ξ | z;φ)]],

where we assume the KL terms are analytically written from Appendix C and gradients are prop-
agated similarly through their computational graph. In practice, we need only be careful about
the expectations, and the gradients of the functions written above are taken care of with automatic
differentiation tools.

We also derive gradients for the general variational bound of Eq.8—it assumes that the first KL term,
measuring the divergence between q and the prior for p, is not necessarily tractable. Following the
reparameterizations described in Section 3.3, this variational objective can be rewritten as

L̃(θ,φ) = EN (ξ)

[
Ew(ε)

[
log p(x, z(ε; f))− log q(z(ε; f) | f)

]]
− EN (ξ)

[
Ew(ε)

[
KL(q(f | ξ;θ)‖r(f | ξ, z(ε; f);φ)) + log q(ξ)− log r(ξ | z(ε; f))

]]
.

We calculate gradients by backpropagating over the nested reparameterizations:

∇θL̃(θ,φ) = EN (ξ)[Ew(ε)[∇θf(ξ)∇fz(ε)[∇z log p(x, z)−∇z log q(z | f)]]]

− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))

]]
∇φL̃(θ,φ) = −EN (ξ)[Ew(ε)[∇φ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))−∇φ log r(ξ | z;φ)]].

E SCALING THE SIZE OF VARIATIONAL DATA

If massive sizes of variational data are required, e.g., when its cubic complexity due to inversion
of a m ×m matrix becomes the bottleneck during computation, we can scale it further. Consider
fixing the variational inputs to lie on a grid. For stationary kernels, this allows us to exploit Toeplitz
structure for fast m × m matrix inversion. In particular, one can embed the Toeplitz matrix into
a circulant matrix and apply conjugate gradient combined with fast Fourier transforms in order to
compute inverse-matrix vector products in O(m logm) computation and O(m) storage (Cunning-
ham et al., 2008). For product kernels, we can further exploit Kronecker structure to allow fast
m × m matrix inversion in O(Pm1+1/P ) operations and O(Pm2/P ) storage, where P > 1 is
the number of kernel products (Osborne, 2010). The ARD kernel specifically leads to O(cm1+1/c)
complexity, which is linear in m.
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