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Comment

Dustin Tran and David M. Blei

Department of Computer Science and Statistics, Columbia University, New York, NY

We commend Wand (2017) for an excellent description of mes-
sage passing (MP) and for developing it to infer large semi-
parametric regression models. We agree with the author in fully
embracing the modular nature of message passing, where one
can define “fragments” that enables us to compose localized
algorithms. We believe this perspective can aid in the develop-
ment of new algorithms for automated inference.

Automated inference. The promise of automated algorithms is
that modeling and inference can be separated. A user can con-
struct large, complicated models in accordance with the assump-
tions he or she is willing to make about their data. Then the user
can use generic inference algorithms as a computational back-
end in a “probabilistic programming language,” that is, a lan-
guage for specifying generative probability models.

With probabilistic programming, the user no longer has to
write their own algorithms, which may require tedious model-
specific derivations and implementations. In the same spirit,
the user no longer has to bottleneck their modeling choices to
fit the requirements of an existing model-specific algorithm.
Automated inference enables probabilistic programming sys-
tems, such as Stan (Carpenter et al. 2016), through methods like
automatic differentiation variational inference (ADVT; Kucukel-
bir et al. 2016) and no U-turn sampler (NUTS; Hoftman and
Gelman 2014).

Though they aim to apply to a large class of models, auto-
mated inference algorithms typically need to incorporate mod-
eling structure to remain practical. For example, Stan assumes

that one can at least take gradients of a model’s joint density.
(Contrast this with other languages that assume one can only
sample from the model.) However, more structure is often nec-
essary: ADVI and NUTS are not fast enough by themselves to
infer very large models, such as hierarchical models with many
groups.

We believe MP and Wand’s work could offer fruitful avenues
for expanding the frontiers of automated inference. From our
perspective, a core principle underlying MP is to leverage struc-
ture when it is available—in particular, statistical properties in
the model—which provides useful computational properties.
In MP, two examples are conditional independence and condi-
tional conjugacy.

From conditional independence to distributed computation.
As Wand (2017) indicated, a crucial advantage of message
passing is that it modularizes inference; the computation can be
performed separately over conditionally independent posterior
factors. By definition, conditional independence separates a
posterior factor from the rest of the model, which enables MP
to define a series of iterative updates. These updates can be run
asynchronously and in a distributed environment.

We are motivated by hierarchical models, which substantially
benefit from this property. Formally, let y,x be the nth data point
in group k, with a total of Nj data points in group k and K many
groups. We model the data using local latent variables oy asso-
ciated with a group k, and using global latent variables ¢, which
are shared across groups. The model is depicted in Figure 1.
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Figure 1. A hierarchical model, with latent variables o, defined locally per group
and latent variables ¢ defined globally to be shared across groups.

The posterior distribution of local variables o and global
variables ¢ is

K Nk
ple, ly) o p@In [ | [p(ak 1) [T Ok | e ¢)} .
k=1 n=1

The benefit of distributed updates over the independent fac-
tors is immediate. For example, suppose the data consist of 1000
data points per group (with 5000 groups); we model it with 2
latent variables per group and 20 global latent variables. Passing
messages, or inferential updates, in parallel provides an attrac-
tive approach to handling all 10,020 latent dimensions. (In con-
trast, consider a sequential algorithm that requires taking 10,019
steps for all other variables before repeating an update of the
first.)

While this approach to leveraging conditional independence
is straightforward from the message passing perspective, it is not
necessarily immediate from other perspectives. For example, the
statistics literature has only recently come to similar ideas, moti-
vated by scaling up Markov chain Monte Carlo using divide and
conquer strategies (Huang and Gelman 2005; Wang and Dun-
son 2013). These first analyze data locally over a partition of
the joint density, and second aggregate the local inferences. In
our work in Gelman et al. (2014), we arrive at the continua-
tion of this idea. Like message passing, the process is iterated,
so that local information propagates to global information and
global information propagates to local information. In doing so,
we obtain a scalable approach to Monte Carlo inference, both
from a top-down view, which deals with fitting statistical mod-
els to large datasets and from a bottom-up view, which deals
with combining information across local sources of data and
models.

From conditional conjugacy to exact iterative updates.
Another important element of message passing algorithms
is conditional conjugacy, which lets us easily calculate the exact
distribution for a posterior factor conditional on other latent
variables. This enables analytically tractable messages (see Eqgs.
7 and 8 of Wand 2017).

Consider the same hierarchical model discussed above, and
set

POk ok | @) = h(yi, o) exp {@ "t (i, o) — a(@)}
p(@) = h(g) exp {n©Tt(¢) —a(no)}.
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The local factor p(yx, x| ¢) has sufficient statistics ¢ (yk, otk)
and natural parameters given by the global latent variable ¢. The
global factor p(¢) has sufficient statistics t(¢p) = (¢, —a(¢)),
and with fixed hyperparameters ¥, which has two compo-
nents: @ = (n{”, n{”).

This exponential family structure implies that, conditionally,
the posterior factors are also in the same exponential families as

the prior factors (Diaconis and Ylvisaker 1979),

P |y, ) =h()exp{n(y, o) t(@) —aly, )},
pla |y @) = hla) exp {n (e, ¢) "t () — a(ye, @)} -

The global factor’s natural parameter is n(y, a) = (n{o) +

Stk @), 0+ Y No).

With this statistical property at play—namely, that conju-
gacy gives rise to tractable conditional posterior factors—we
can derive algorithms at a conditional level with exact itera-
tive updates. This is assumed for most of the message passing
of semiparametric models in Wand (2017). Importantly, this is
not necessarily a limitation of the algorithm. It is a testament
to leveraging model structure: without access to tractable con-
ditional posteriors, additional approximations must be made.
Wand (2017) provided an elegant way to separate out these non-
conjugate pieces from the conjugate pieces.

In statistics, the most well-known example that leverages
conditionally conjugate factors is the Gibbs sampling algorithm.
From our own work, we apply the idea to access fast natu-
ral gradients in variational inference, which accounts for the
information geometry of the parameter space (Hoffman et al.
2013). In other work, we demonstrate a collection of methods
for gradient-based marginal optimization (Tran, Gelman, and
Vehtari 2016). Assuming forms of conjugacy in the model class
arrives at the classic idea of iteratively reweighted least squares as
well as the EM algorithm. Such structure in the model provides
efficient algorithms—both statistically and computationally—
for their automated inference.

Open challenges and future directions. Message passing is a
classic algorithm in the computer science literature, which is
ripe with interesting ideas for statistical inference. In particular,
MP enables new advancements in the realm of automated infer-
ence, where one can take advantage of statistical structure in the
model. Wand (2017) made great steps following this direction.

With that said, important open challenges still exist to realize
this fusion.

First is about the design and implementation of probabilis-
tic programming languages. To implement Wand’s (2017) mes-
sage passing, the language must provide ways of identifying local
structure in a probabilistic program. While that is enough to let
practitioners use MP, a much larger challenge is to then auto-
mate the process of detecting local structure.

Second is about the design and implementation of inference
engines. The inference must be extensible, so that users cannot
only employ the algorithm in Wand (2017) but easily build on
top of it. Further, its infrastructure must be able to encompass
a variety of algorithms, so that users can incorporate MP as one
of many tools in their toolbox.

Third, we think there are innovations to be made on tak-
ing the stance of modularity to a further extreme. In prin-
ciple, one can compose not only localized message passing
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updates but compose localized inference algorithms of any
choice—whether it be exact inference, Monte Carlo, or varia-
tional methods. This modularity will enable new experimenta-
tion with inference hybrids and can bridge the gap among infer-
ence methods.

Finally, while we discuss MP in the context of automation, we
point out that fully automatic algorithms are not possible. Asso-
ciated with all inference are statistical and computational trade-
offs (Jordan 2013). Thus, we need algorithms along the fron-
tier, where a user can explicitly define a computational budget
and employ an algorithm achieving the best statistical proper-
ties within that budget; or conversely, define desired statistical
properties and employ the fastest algorithm to achieve them.
We think ideas in MP will also help in developing some of these
algorithms.
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1. Introduction

Matt Wand’s article describes a computational paradigm for
semiparametric regression through variational message passing
(VMP), an approximate inference technique originated from
Bayesian networks but found increasing application in main-
stream statistical modeling. By expressing semiparametric mod-
els as factor graphs, Wand showed that factorized modeling
components could be used as bases for fast estimation and infer-
ence, through mean field variational Bayes and VMP algorithms.
I applaud Wand’s effort in identifying and formulating com-
mon factor graph fragments for frequently used parametric and
semiparametric models; these fragments are designed to func-
tion as the basic building blocks for more complex models and
algorithms. Wand’s work, in my opinion, represents an initial
but important step toward the development of general-purpose
model fitting algorithms and user-friendly software for larger
semiparametric models.

Technical contributions aside, the article’s dissemination of
the computational details, illustrated by frequently used mod-
els together with real-data applications, makes it an excellent
introduction to variational Bayes and related message passing
algorithms in a more familiar modeling setting. The educational

values of the piece should not be underestimated, as adoption
of a new methodology is usually contingent on the pedagogical
quality of its initial introduction. Wand deserves compliments
for his clear articulation of the problem and explicit provision
of the solution.

In this short discussion, I would like to recap some of the
basic tenets of VMP, comment on its use in semiparametric
regression, and give my reasons on why we should be excited
about Wand’s article, all from the viewpoint of someone who
uses semiparametric methods in real scientific investigations. Of
course, it would not be so interesting if  am in complete agree-
ment with Wand—I will comment on a few things that I thought
deserved greater attention.

2. VMP in a Nutshell

VMP is an approximate inference algorithm that initially arises
in the context of graphical models. An earlier algorithm based
on a similar idea appeared under the name of belief propaga-
tion (Pearl 1986; Spiegelhalter 1986; Lauritzen and Spiegelhalter
1988). The VMP technique as we currently understand is framed
by Winn (2003) and Winn and Bishop (2005), upon which this
review is based.
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