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We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is
desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to
be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the well-known
clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given
our desire to tie the mixture models in the various groups, we consider a hierarchical model, specifically one in which the base measure for
the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet
processes necessarily share atoms. Thus, as desired, the mixture models in the different groups necessarily share mixture components.
We discuss representations of hierarchical Dirichlet processes in terms of a stick-breaking process, and a generalization of the Chinese
restaurant process that we refer to as the “Chinese restaurant franchise.” We present Markov chain Monte Carlo algorithms for posterior
inference in hierarchical Dirichlet process mixtures and describe applications to problems in information retrieval and text modeling.
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1. INTRODUCTION

A recurring theme in statistics is the need to separate obser-
vations into groups, and yet allow the groups to remain linked,
to “share statistical strength.” In the Bayesian formalism such
sharing is achieved naturally through hierarchical modeling; pa-
rameters are shared among groups, and the randomness of the
parameters induces dependencies among the groups. Estimates
based on the posterior distribution exhibit “shrinkage.”

In this article we explore a hierarchical approach to the prob-
lem of model-based clustering of grouped data. We assume that
the data are subdivided into a set of groups and that within each
group we wish to find clusters that capture latent structure in
the data assigned to that group. The number of clusters within
each group is unknown and is to be inferred. Moreover, in a
sense that we make precise, we wish to allow sharing of clus-
ters among the groups.

An example of the kind of problem that motivates us can
be found in genetics. Consider a set of k binary markers [e.g.,
single nucleotide polymorphisms (SNPs)] in a localized region
of the human genome. Although an individual human could ex-
hibit any of 2k different patterns of markers on a single chromo-
some, in real populations only a small subset of such patterns—
haplotypes—is actually observed (Gabriel et al. 2002). Given a
meiotic model for the combination of a pair of haplotypes into
a genotype during mating, and given a set of observed geno-
types in a sample from a human population, it is of great inter-
est to identify the underlying haplotypes (Stephens, Smith, and
Donnelly 2001). Now consider an extension of this problem in
which the population is divided into a set of groups, such as,
African, Asian, and European subpopulations. We not only may
want to discover the sets of haplotypes within each subpopula-
tion, but also may wish to discover which haplotypes are shared
between subpopulations. The identification of such haplotypes
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would have significant implications for the understanding of the
migration patterns of ancestral populations of humans.

As a second example, consider the problem from the field of
information retrieval (IR) of modeling of relationships among
sets of documents. In IR documents are generally modeled un-
der an exchangeability assumption, the “bag of words” assump-
tion, in which the order of words in a document is ignored
(Salton and McGill 1983). It is also common to view the words
in a document as arising from a number of latent clusters or
“topics,” where a topic is generally modeled as a multinomial
probability distribution on words from some basic vocabulary
(Blei, Jordan, and Ng 2003). Thus, in a document concerned
with university funding, the words in the document might be
drawn from the topics “education” and “finance.” Considering
a collection of such documents, we may wish to allow topics to
be shared among the documents in the corpus. For example, if
the corpus also contains a document concerned with university
football, then the topics may be “education” and “sports,” and
we would want the former topic to be related to that discovered
in the analysis of the document on university funding.

Moreover, we may want to extend the model to allow for
multiple corpora. For example, documents in scientific journals
are often grouped into themes (e.g., “empirical process theory,”
“multivariate statistics,” “survival analysis”), and it would be
of interest to discover to what extent the latent topics shared
among documents are also shared across these groupings. Thus
in general we wish to consider the sharing of clusters across
multiple, nested groupings of data.

Our approach to the problem of sharing clusters among mul-
tiple related groups is a nonparametric Bayesian approach,
reposing on the Dirichlet process (Ferguson 1973). The Dirich-
let process, DP(α0,G0), is a measure on measures. It has two
parameters, a scaling parameter, α0 > 0, and a base probabil-
ity measure, G0. An explicit representation of a draw from a
Dirichlet process (DP) was given by Sethuraman (1994), who
showed that if G ∼ DP(α0,G0), then, with probability 1,

G =
∞∑

k=1

βkδφk , (1)
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where the φk are independent random variables distributed ac-
cording to G0, where δφk is an atom at φk and the “stick-
breaking weights,” βk, are also random and depend on the
parameter α0. (The definition of the βk is provided in Sec. 3.1.)

The representation in (1) shows that draws from a DP are dis-
crete (with probability 1). The discrete nature of the DP makes
it unsuitable for general applications in Bayesian nonparamet-
rics, but it is well suited for the problem of placing priors on
mixture components in mixture modeling. The idea is basically
to associate a mixture component with each atom in G. Intro-
ducing indicator variables to associate data points with mixture
components, the posterior distribution yields a probability dis-
tribution on partitions of the data. A number of authors have
studied such DP mixture models (Antoniak 1974; Escobar and
West 1995; MacEachern and Müller 1998). These models pro-
vide an alternative to methods that attempt to select a particular
number of mixture components, or methods that place an ex-
plicit parametric prior on the number of components.

Let us now consider the setting in which the data are sub-
divided into a number of groups. Given our goal of solving a
clustering problem within each group, we consider a set of ran-
dom measures Gj, one for each group j, where Gj is distributed
according to a group-specific DP, DP(α0j,G0j). To link these
clustering problems, we link the group-specific DPs. Many au-
thors have considered ways to induce dependencies among mul-
tiple DPs through links among the parameters G0j and/or α0j
(Cifarelli and Regazzini 1978; MacEachern 1999; Tomlinson
1998; Müller, Quintana, and Rosner 2004; De Iorio, Müller,
and Rosner 2004; Kleinman and Ibrahim 1998; Mallick and
Walker 1997; Ishwaran and James 2004). Focusing on the G0j,
one natural proposal is a hierarchy in which the measures Gj
are conditionally independent draws from a single underlying
DP, DP(α0,G0(τ )), where G0(τ ) is a parametric distribution
with random parameter τ (Carota and Parmigiani 2002; Fong,
Pammer, Arnold, and Bolton 2002; Muliere and Petrone 1993).
Integrating over τ induces dependencies among the DPs.

That this simple hierarchical approach will not solve our
problem can be observed by considering the case in which
G0(τ ) is absolutely continuous with respect to Lebesgue mea-
sure for almost all τ (e.g., G0 is Gaussian with mean τ ). In this
case, given that the draws Gj arise as conditionally independent
draws from G0(τ ), they necessarily have no atoms in common
(with probability 1). Thus, although clusters arise within each
group through the discreteness of draws from a DP, the atoms
associated with the different groups are different and there is no
sharing of clusters between groups. This problem can be skirted
by assuming that G0 lies in a discrete parametric family, but
such an assumption would be overly restrictive.

Our proposed solution to the problem is straightforward: To
force G0 to be discrete and yet have broad support, we consider
a nonparametric hierarchical model in which G0 is itself a draw
from a DP, DP(γ,H). This restores flexibility in that the mod-
eler can choose H to be continuous or discrete. In either case,
with probability 1, G0 is discrete and has a stick-breaking repre-
sentation as in (1). The atoms φk are shared among the multiple
DPs, yielding the desired sharing of atoms among groups. In
summary, we consider the hierarchical specification

G0|γ,H ∼ DP(γ,H),

Gj|α0,G0 ∼ DP(α0,G0) for each j,
(2)

which we refer to as a hierarchical DP. The immediate exten-
sion to hierarchical DP mixture models yields our proposed for-
malism for sharing clusters among related clustering problems.

Related nonparametric approaches to linking multiple DPs
have been discussed by a number of authors. Our approach is a
special case of a general framework for “dependent DPs” due
to MacEachern (1999) and MacEachern, Kottas, and Gelfand
(2001). In this framework the random variables βk and φk in (1)
are general stochastic processes (i.e., indexed collections of ran-
dom variables); this allows very general forms of dependency
among DPs. Our hierarchical approach fits into this framework;
we endow the stick-breaking weights βk in (1) with a second
subscript indexing the groups j and view the weights βjk as de-
pendent for each fixed value of k. Indeed, as we show in Sec-
tion 4, the definition in (2) yields a specific, canonical form of
dependence among the weights βjk.

Our approach is also a special case of a framework referred
to as analysis of densities (AnDe) by Tomlinson (1998) and
Tomlinson and Escobar (2003). The AnDe model is a hier-
archical model for multiple DPs in which the common base
measure G0 is random, but rather than treating G0 as a draw
from a DP, as in our case, we treat it as a draw from a
mixture of DPs. The resulting G0 is continuous in general
(Antoniak 1974), which, as we have discussed, is ruinous for
our problem of sharing clusters. But it is an appropriate choice
for the problem addressed by Tomlinson (1998), that of sharing
statistical strength among multiple sets of density estimation
problems. Thus, whereas the AnDe framework and our hier-
archical DP framework are closely related formally, the infer-
ential goal is rather different. Moreover, as we show later, our
restriction to discrete G0 has important implications for the de-
sign of efficient Markov chain Monte Carlo (MCMC) inference
algorithms.

The terminology of “hierarchical DP” has also been used by
Müller et al. (2004) to describe a different notion of hierar-
chy than that discussed here. These authors considered a model
in which a coupled set of random measures Gj are defined as
Gj = εF0 + (1− ε)Fj, where F0 and the Fj are draws from DPs.
This model provides an alternative approach to sharing clusters,
in which the shared clusters are given the same stick-breaking
weights (those associated with F0) in each of the groups. In
contrast, in our hierarchical model, the draws Gj are based on
the same underlying base measure G0, but each draw assigns
different stick-breaking weights to the shared atoms associated
with G0. Thus, atoms can be partially shared.

Finally, the term “hierarchical DP” has been used in yet a
third way by Beal, Ghahramani, and Rasmussen (2002) in the
context of a model known as the infinite hidden Markov model,
a hidden Markov model with a countably infinite state space.
But the “hierarchical DP” of Beal et al. (2002) is not a hierar-
chy in the Bayesian sense; rather, it is an algorithmic descrip-
tion of a coupled set of urn models. We discuss this model in
more detail in Section 7, where we show that the notion of hi-
erarchical DP presented here yields an elegant treatment of the
infinite hidden Markov model.

In summary, the notion of hierarchical DP that we explore
is a specific example of a dependency model for multiple DPs,
one specifically aimed at the problem of sharing clusters among
related groups of data. It involves a simple Bayesian hierarchy
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where the base measure for a set of DPs is itself distributed
according to a DP. Although there are many ways to couple
DPs, we view this simple, canonical Bayesian hierarchy as par-
ticularly worthy of study. Note in particular the appealing re-
cursiveness of the definition; a hierarchical DP can be readily
extended to multiple hierarchical levels. This is natural in appli-
cations. For example, in our application to document modeling,
one level of hierarchy is needed to share clusters among multi-
ple documents within a corpus, and second level of hierarchy is
needed to share clusters among multiple corpora. Similarly, in
the genetics example, it is of interest to consider nested subdivi-
sions of populations according to various criteria (geographic,
cultural, economic) and consider the flow of haplotypes on the
resulting tree.

As is the case with other nonparametric Bayesian methods,
a significant aspect of the challenge in working with the hier-
archical DP is computational. To provide a general framework
for designing procedures for posterior inference in the hierar-
chical DP that parallel those available for the DP, it is neces-
sary to develop analogs for the hierarchical DP of some of the
representations that have proved useful in the DP setting. We
provide these analogs in Section 4, where we discuss a stick-
breaking representation of the hierarchical DP, an analog of the
Pólya urn model that we call the “Chinese restaurant franchise,”
and a representation of the hierarchical DP in terms of an infi-
nite limit of finite mixture models. With these representations
as background, we present MCMC algorithms for posterior in-
ference under hierarchical DP mixtures in Section 5. We give
experimental results in Section 6 and present our conclusions
in Section 8.

2. SETTING

We are interested in problems in which the observations are
organized into groups and assumed to be exchangeable both
within each group and across groups. To be precise, letting
j index the groups and i index the observations within each
group, we assume that xj1, xj2, . . . are exchangeable within each
group j. We also assume that the observations are exchangeable
at the group level; that is, if xj = (xj1, xj2, . . .) denote all obser-
vations in group j, then x1,x2, . . . are exchangeable.

Assuming that each observation is drawn independently from
a mixture model, there is a mixture component associated with
each observation. Let θji denote a parameter specifying the mix-
ture component associated with the observation xji. We refer to
the variables θji as factors. Note that these variables are not gen-
erally distinct; we develop a different notation for the distinct
values of factors. Let F(θji) denote the distribution of xji given
the factor θji. Let Gj denote a prior distribution for the factors
θ j = (θj1, θj2, . . .) associated with group j. We assume that the
factors are conditionally independent given Gj. Thus we have
the following probability model:

θji|Gj ∼ Gj for each j and i,

xji|θji ∼ F(θji) for each j and i,
(3)

to augment the specification given in (2).

3. DIRICHLET PROCESSES

In this section we provide a brief overview of DPs. After a
discussion of basic definitions, we present three different per-
spectives on the DP: one based on the stick-breaking construc-
tion, one based on a Pólya urn model, and one based on a limit
of finite mixture models. Each of these perspectives has an ana-
log in the hierarchical DP, as described in Section 4.

Let (	,B) be a measurable space, with G0 a probabil-
ity measure on the space. Let α0 be a positive real number.
A Dirichlet process, DP(α0,G0), is defined as the distribu-
tion of a random probability measure G over (	,B) such that,
for any finite measurable partition (A1,A2, . . . ,Ar) of 	, the
random vector (G(A1), . . . ,G(Ar)) is distributed as a finite-
dimensional Dirichlet distribution with parameters (α0G0(A1),

. . . , α0G0(Ar)),
(
G(A1), . . . ,G(Ar)

) ∼ Dir
(
α0G0(A1), . . . , α0G0(Ar)

)
. (4)

We write G ∼ DP(α0,G0) if G is a random probability measure
with distribution given by the DP. The existence of the DP was
established by Ferguson (1973).

3.1 The Stick-Breaking Construction

Measures drawn from a DP are discrete with probability 1
(Ferguson 1973). This property is made explicit in the stick-
breaking construction due to Sethuraman (1994). The stick-
breaking construction is based on independent sequences of iid
random variables (π ′

k)
∞
k=1 and (φk)

∞
k=1,

π ′
k|α0,G0 ∼ beta(1, α0), φk|α0,G0 ∼ G0. (5)

Now define a random measure G as

πk = π ′
k

k−1∏

l=1

(1 − π ′
l ), G =

∞∑

k=1

πkδφk , (6)

where δφ is a probability measure concentrated at φ.
Sethuraman (1994) showed that G as defined in this way
is a random probability measure distributed according to
DP(α0,G0).

It is important to note that the sequence π = (πk)
∞
k=1 con-

structed by (5) and (6) satisfies
∑∞

k=1 πk = 1 with probability 1.
Thus we may interpret π as a random probability measure on
the positive integers. For convenience, we write π ∼ GEM(α0)

if π is a random probability measure defined by (5) and (6).
(Here GEM stands for Griffiths, Engen, and McCloskey; see,
e.g., Pitman 2002b.)

3.2 The Chinese Restaurant Process

A second perspective on the DP is provided by the Pólya
urn scheme (Blackwell and MacQueen 1973). The Pólya urn
scheme shows that draws from the DP are both discrete and
exhibit a clustering property.

The Pólya urn scheme does not refer to G directly; rather,
it refers to draws from G. Thus let θ1, θ2, . . . be a sequence of
iid random variables distributed according to G. That is, the
variables θ1, θ2, . . . are conditionally independent given G, and
hence are exchangeable. Let us consider the successive condi-
tional distributions of θi given θ1, . . . , θi−1, where G has been
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integrated out. Blackwell and MacQueen (1973) showed that
these conditional distributions have the following form:

θi|θ1, . . . , θi−1, α0,G0

∼
i−1∑

�=1

1

i − 1 + α0
δθ�

+ α0

i − 1 + α0
G0. (7)

We can interpret the conditional distributions in terms of a sim-
ple urn model in which a ball of a distinct color is associated
with each atom. The balls are drawn equiprobably; when a ball
is drawn, it is placed back in the urn together with another ball
of the same color. In addition, with probability proportional
to α0, a new atom is created by drawing from G0, and a ball
of a new color is added to the urn.

Expression (7) shows that θi has positive probability of being
equal to one of the previous draws. Moreover, there is a positive
reinforcement effect; the more often a point is drawn, the more
likely it is to be drawn in the future. To make the clustering
property explicit, it is helpful to introduce a new set of variables
that represent distinct values of the atoms. Define φ1, . . . , φK to
be the distinct values taken on by θ1, . . . , θi−1, and let mk be the
number of values θi′ that are equal to φk for 1 ≤ i′ < i. We can
re-express (7) as

θi|θ1, . . . , θi−1, α0,G0

∼
K∑

k=1

mk

i − 1 + α0
δφk + α0

i − 1 + α0
G0. (8)

Using a somewhat different metaphor, the Pólya urn scheme
is closely related to a distribution on partitions known as the
Chinese restaurant process (Aldous 1985). This metaphor has
turned out to be useful in considering various generalizations of
the DP (Pitman 2002a), and it is useful in this article as well.
The metaphor is as follows. Consider a Chinese restaurant with
an unbounded number of tables. Each θi corresponds to a cus-
tomer who enters the restaurant, whereas the distinct values φk

correspond to the tables at which the customers sit. The ith cus-
tomer sits at the table indexed by φk, with probability propor-
tional to the number of customers mk already seated there (in
which case we set θi = φk), and sits at a new table with prob-
ability proportional to α0 (increment K; draw φK ∼ G0 and set
θi = φK ).

3.3 Dirichlet Process Mixture Models

One of the most important applications of the DP is as a non-
parametric prior on the parameters of a mixture model. In par-
ticular, suppose that observations xi arise as

θi|G ∼ G,

xi|θi ∼ F(θi),
(9)

where F(θi) denotes the distribution of the observation xi

given θi. The factors θi are conditionally independent given G,
and the observation xi is conditionally independent of the other
observations given the factor θi. When G is distributed accord-
ing to a DP, this model is referred to as a DP mixture model.
A graphical model representation of a DP mixture model is
shown in Figure 1(a).

(a) (b)

Figure 1. Graphical Model Representation of a DP Mixture Model (a)
and a Hierarchical DP Mixture Model (b). In the graphical model formal-
ism, each node in the graph is associated with a random variable, where
shading denotes an observed variable. Rectangles denote replication of
the model within the rectangle. Sometimes the number of replicates is
given in the bottom right corner of the rectangle.

Because G can be represented using a stick-breaking con-
struction (6), the factors θi take on values φk with probabil-
ity πk. We may denote this using an indicator variable, zi, that
takes on positive integral values and is distributed according
to π (interpreting π as a random probability measure on the
positive integers). Hence an equivalent representation of a DP
mixture is given by the following conditional distributions:

π |α0 ∼ GEM(α0), zi|π ∼ π ,

φk|G0 ∼ G0, xi|zi, (φk)
∞
k=1 ∼ F(φzi).

(10)

Moreover, G = ∑∞
k=1 πkδφk and θi = φzi .

3.4 The Infinite Limit of Finite Mixture Models

A DP mixture model can be derived as the limit of a sequence
of finite mixture models, where the number of mixture compo-
nents is taken to infinity (Neal 1992; Rasmussen 2000; Green
and Richardson 2001; Ishwaran and Zarepour 2002). This lim-
iting process provides a third perspective on the DP.

Suppose that we have L mixture components. Let π =
(π1, . . . , πL) denote the mixing proportions. Note that we previ-
ously used the symbol π to denote the weights associated with
the atoms in G. We have deliberately overloaded the definition
of π here; as we show later, they are closely related. In fact, in
the limit L → ∞, these vectors are equivalent up to a random
size-biased permutation of their entries (Pitman 1996).

We place a Dirichlet prior on π with symmetric parameters
(α0/L, . . . , α0/L). Let φk denote the parameter vector associ-
ated with mixture component k, and let φk have prior distrib-
ution G0. Drawing an observation xi from the mixture model
involves picking a specific mixture component with probability
given by the mixing proportions; let zi denote that component.
We thus have the following model:

π |α0 ∼ Dir(α0/L, . . . , α0/L), zi|π ∼ π ,

φk|G0 ∼ G0, xi|zi, (φk)
L
k=1 ∼ F(φzi).

(11)



1570 Journal of the American Statistical Association, December 2006

Let GL = ∑L
k=1 πkδφk . Ishwaran and Zarepour (2002) showed

that for every measurable function f integrable with respect
to G0, we have, as L → ∞,

∫
f (θ)dGL(θ)

D→
∫

f (θ)dG(θ). (12)

A consequence of this is that the marginal distribution induced
on the observations x1, . . . , xn approaches that of a DP mixture
model.

4. HIERARCHICAL DIRICHLET PROCESSES

We propose a nonparametric Bayesian approach to the mod-
eling of grouped data, in which each group is associated with
a mixture model and we wish to link these mixture models. By
analogy with DP mixture models, we first define the appropri-
ate nonparametric prior, which we call the hierarchical DP. We
then show how this prior can be used in the grouped mixture
model setting. We present analogs of the three perspectives pre-
sented earlier for the DP: a stick-breaking construction, a Chi-
nese restaurant process representation, and a representation in
terms of a limit of finite mixture models.

A hierarchical DP is a distribution over a set of random prob-
ability measures over (	,B). The process defines a set of ran-
dom probability measures Gj, one for each group, and a global
random probability measure G0. The global measure G0 is dis-
tributed as a DP with concentration parameter γ and base prob-
ability measure H,

G0|γ,H ∼ DP(γ,H), (13)

and the random measures Gj are conditionally independent
given G0, with distributions given by a DP with base proba-
bility measure G0,

Gj|α0,G0 ∼ DP(α0,G0). (14)

The hyperparameters of the hierarchical DP consist of the
baseline probability measure H, and the concentration parame-
ters γ and α0. The baseline H provides the prior distribution for
the factors θji. The distribution G0 varies around the prior H,
with the amount of variability governed by γ . The actual dis-
tribution Gj over the factors in the jth group deviates from G0,
with the amount of variability governed by α0. If we expect the
variability in different groups to be different, then we can use a
separate concentration parameter αj for each group j. In this ar-
ticle, following Escobar and West (1995), we put vague gamma
priors on γ and α0.

A hierarchical DP can be used as the prior distribution over
the factors for grouped data. For each j, let θj1, θj2, . . . be iid
random variables distributed as Gj. Each θji is a factor corre-
sponding to a single observation xji. The likelihood is given by

θji|Gj ∼ Gj,

xji|θji ∼ F(θji).
(15)

This completes the definition of a hierarchical DP mixture
model. The corresponding graphical model is shown in Fig-
ure 1(b).

The hierarchical DP can readily be extended to more than
two levels. That is, the base measure H can itself be a draw from
a DP, and the hierarchy can be extended for as many levels as
are deemed useful. In general, we obtain a tree in which a DP

is associated with each node, in which the children of a given
node are conditionally independent given their parent, and in
which the draw from the DP at a given node serves as a base
measure for its children. The atoms in the stick-breaking repre-
sentation at a given node are thus shared among all descendant
nodes, providing a notion of shared clusters at multiple levels
of resolution.

4.1 The Stick-Breaking Construction

Given that the global measure G0 is distributed as a DP, it can
be expressed using a stick-breaking representation,

G0 =
∞∑

k=1

βkδφk , (16)

where φk ∼ H independently and β = (βk)
∞
k=1 ∼ GEM(γ ) are

mutually independent. Because G0 has support at the points
φ = (φk)

∞
k=1, each Gj necessarily has support at these points

as well, and thus can be written as

Gj =
∞∑

k=1

πjkδφk . (17)

Let π j = (πjk)
∞
k=1. Note that the weights π j are independent

given β , because the Gj’s are independent given G0. We now
describe how the weights π j are related to the global weights β .

Let (A1, . . . ,Ar) be a measurable partition of 	 and let Kl =
{k :φk ∈ Al} for l = 1, . . . , r. Note that (K1, . . . ,Kr) is a finite
partition of the positive integers. Further, assuming that H is
nonatomic, the φk’s are distinct with probability 1, and so any
partition of the positive integers corresponds to some partition
of 	. Thus, for each j, we have

(
Gj(A1), . . . ,Gj(Ar)

)

∼ Dir
(
α0G0(A1), . . . , α0G0(Ar)

)

⇒
(∑

k∈K1

πjk, . . . ,
∑

k∈Kr

πjk

)

∼ Dir

(
α0

∑

k∈K1

βk, . . . , α0

∑

k∈Kr

βk

)
, (18)

for every finite partition of the positive integers. Hence each
π j is independently distributed according to DP(α0,β), where
we interpret β and π j as probability measures on the positive
integers. If H is nonatomic, then a weaker result still holds; if
π j ∼ DP(α0,β), then Gj as given in (17) is still DP(α0,G0)-
distributed.

As in the DP mixture model, because each factor θji is dis-
tributed according to Gj, it takes on the value φk with probabil-
ity πjk. Again, let zji be an indicator variable such that θji = φzji .
Given zji, we have xji ∼ F(φzji). Thus we obtain an equivalent
representation of the hierarchical DP mixture through the fol-
lowing conditional distributions:

β|γ ∼ GEM(γ ),

π j|α0,β ∼ DP(α0,β), zji|π j ∼ π j,

φk|H ∼ H, xji|zji, (φk)
∞
k=1 ∼ F(φzji).

(19)
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We now derive an explicit relationship between the elements
of β and π j. Recall that the stick-breaking construction for DPs
defines the variables βk in (16) as

β ′
k ∼ beta(1, γ ), βk = β ′

k

k−1∏

l=1

(1 − β ′
l ). (20)

Using (18), we show that the following stick-breaking construc-
tion produces a random probability measure π j ∼ DP(α0,β):

π ′
jk ∼ beta

(
α0βk, α0

(
1 −

k∑

l=1

βl

))
,

πjk = π ′
jk

k−1∏

l=1

(1 − π ′
jl). (21)

To derive (21), first note that for a partition ({1, . . . ,

k − 1}, {k}, {k + 1, k + 2, . . .}), (18) gives
(

k−1∑

l=1

πjl,πjk,

∞∑

l=k+1

πjl

)
∼ Dir

(
α0

k−1∑

l=1

βl, α0βk, α0

∞∑

l=k+1

βl

)
.

(22)

Removing the first element, and using standard properties of the
Dirichlet distribution, we have

1

1 − ∑k−1
l=1 πjl

(
πjk,

∞∑

l=k+1

πjl

)
∼ Dir

(
α0βk, α0

∞∑

l=k+1

βl

)
.

(23)

Finally, define π ′
jk = πjk/(1 − ∑k−1

l=1 πjl) and observe that 1 −∑k
l=1 βl = ∑∞

l=k+1 βl to obtain (21). Together with (20), (16),
and (17), this completes the description of the stick-breaking
construction for hierarchical DPs.

4.2 The Chinese Restaurant Franchise

In this section we describe an analog of the Chinese restau-
rant process for hierarchical Dirichlet processes that we call the
Chinese restaurant franchise. Here the metaphor of the Chinese
restaurant process is extended to allow multiple restaurants that
share a set of dishes.

The metaphor is as follows (see Fig. 2). We have a restaurant
franchise with a shared menu across the restaurants. At each ta-
ble of each restaurant, one dish is ordered from the menu by the
first customer who sits there, and this dish is shared among all
of the customers who sit at that table. Multiple tables in multi-
ple restaurants can serve the same dish.

In this setup, the restaurants correspond to groups and the
customers correspond to the factors θji. We also let φ1, . . . , φK
denote K iid random variables distributed according to H; this
is the global menu of dishes. We also introduce variables, ψjt,
that represent the table-specific choice of dishes; in particular,
ψjt is the dish served at table t in restaurant j.

Note that each θji is associated with one ψjt, whereas each
ψjt is associated with one φk. We introduce indicators to de-
note these associations. In particular, let tji be the index of the
ψjt associated with θji, and let kjt be the index of φk associ-
ated with ψjt. In the Chinese restaurant franchise metaphor,
customer i in restaurant j sits at table tji whereas table t in
restaurant j serves dish kjt.

Figure 2. A Depiction of a Chinese Restaurant Franchise. Each
restaurant is represented by a rectangle. Customers (θ ji ’s) are seated
at tables (circles) in the restaurants. At each table a dish is served. The
dish is served from a global menu (φk), whereas the parameter ψ jt is
a table-specific indicator that serves to index items on the global menu.
The customer θ ji sits at the table to which it has been assigned in (24).

We also need a notation for counts. In particular, we need to
maintain counts of customers and counts of tables. We use the
notation njtk to denote the number of customers in restaurant j at
table t eating dish k. Marginal counts are represented with dots.
Thus njt· represents the number of customers in restaurant j at
table t, and nj·k represents the number of customers in restaurant
j eating dish k. The notation mjk denotes the number of tables
in restaurant j serving dish k. Thus mj· represents the number
of tables in restaurant j, m·k represents the number of tables
serving dish k, and m·· represents the total number of tables
occupied.

Let us now compute marginals under a hierarchical DP when
G0 and Gj are integrated out. First, consider the conditional dis-
tribution for θji given θj1, . . . , θj,i−1 and G0, where Gj is inte-
grated out. From (8),

θji|θj1, . . . , θj,i−1, α0,G0

∼
mj·∑

t=1

njt·
i − 1 + α0

δψjt + α0

i − 1 + α0
G0. (24)

This is a mixture, a draw from which can be obtained by draw-
ing from the terms on the right side with probabilities given
by the corresponding mixing proportions. If a term in the first
summation is chosen, then we increment njt, set θji = ψjt and
let tji = t for the chosen t. If the second term is chosen, then we
increment mj· by one, draw ψjmj· ∼ G0, and set θji = ψjmj· and
tji = mj·.

Now we proceed to integrate out G0. Note that G0 appears
only in its role as the distribution of the variables ψjt. Because
G0 is distributed according to a DP, we can integrate it out by
using (8) again and write the conditional distribution of ψjt as

ψjt|ψ11,ψ12, . . . ,ψ21, . . . ,ψj t−1, γ,H

∼
K∑

k=1

m·k
m·· + γ

δφk + γ

m·· + γ
H. (25)
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If we draw ψjt by choosing a term in the summation on the right
side of this equation, then we set ψjt = φk and let kjt = k for the
chosen k. If we choose the second term, then we increment K
by one, draw φK ∼ H, and set ψjt = φK and kjt = K.

This completes the description of the conditional distribu-
tions of the θji variables. To use these equations to obtain sam-
ples of θji, we proceed as follows. For each j and i, we first
sample θji using (24). If a new sample from G0 is needed, then
we use (25) to obtain a new sample ψjt and set θji = ψjt.

Note that in the hierarchical DP, the values of the factors are
shared between the groups as well as within the groups. This is
a key property of hierarchical DP.

4.3 The Infinite Limit of Finite Mixture Models

As in the case of a DP mixture model, the hierarchical DP
mixture model can be derived as the infinite limit of finite mix-
tures. In this section we present two apparently different finite
models that yield the hierarchical DP mixture in the infinite
limit, with each emphasizing a different aspect of the model.

Consider the following collection of finite mixture models,
where β is a global vector of mixing proportions and π j is a
group-specific vector of mixing proportions:

β|γ ∼ Dir(γ /L, . . . , γ /L),

π j|α0,β ∼ Dir(α0β), zji|π j ∼ π j,

φk|H ∼ H, xji|zji, (φk)
L
k=1 ∼ F

(
φzji

)
.

(26)

The parametric hierarchical prior for β and π in (26) has been
discussed by MacKay and Peto (1994) as a model for natural
languages. We show that the limit of this model as L → ∞
is the hierarchical DP. Let us consider the random probability
measures GL

0 = ∑L
k=1 βkδφk and GL

j = ∑L
k=1 πjkδφk . As in Sec-

tion 3.4, for every measurable function f integrable with respect
to H, we have

∫
f (θ)dGL

0(θ)
D→

∫
f (θ)dG0(θ), (27)

as L → ∞. Further, using standard properties of the Dirichlet
distribution, we see that (18) still holds for the finite case for
partitions of {1, . . . ,L}; hence we have

GL
j ∼ DP(α0,GL

0). (28)

It is now clear that as L → ∞, the marginal distribution that
this finite model induces on x approaches the hierarchical DP
mixture model.

There is an alternative finite model whose limit is also the
hierarchical DP mixture model. Instead of introducing depen-
dencies between the groups by placing a prior on β (as in the
first finite model), each group can instead choose a subset of T
mixture components from a model-wide set of L mixture com-
ponents. In particular, consider the following model:

β|γ ∼ Dir(γ /L, . . . , γ /L), kjt|β ∼ β,

π j|α0 ∼ Dir(α0/T, . . . , α0/T), tji|π j ∼ π j,

φk|H ∼ H, xji|tji, (kjt)
T
t=1, (φk)

L
k=1 ∼ F

(
φkjtji

)
.

(29)

As T → ∞ and L → ∞, the limit of this model is the Chi-
nese restaurant franchise process; hence the infinite limit of this
model is also the hierarchical DP mixture model.

5. INFERENCE

In this section we describe three related MCMC sampling
schemes for the hierarchical DP mixture model. The first
scheme is a straightforward Gibbs sampler based on the Chi-
nese restaurant franchise; the second is based on an augmented
representation involving both the Chinese restaurant franchise
and the posterior for G0; and the third is a variation on the sec-
ond sampling scheme with streamlined bookkeeping. To sim-
plify the discussion, we assume that the base distribution H
is conjugate to the data distribution F; this allows us to focus
on the issues specific to the hierarchical DP. The nonconjugate
case can be approached by adapting to the hierarchical DP tech-
niques developed for nonconjugate DP mixtures (Neal 2000).
Moreover, in this section we assume fixed values for the con-
centration parameters α0 and γ ; we present a sampler for these
parameters in the Appendix.

We recall the random variables of interest. The variables xji
are the observed data. Each xji is assumed to arise as a draw
from a distribution F(θji). Let the factor θji be associated with
the table tji in the restaurant representation, that is, let θji = ψjtji .
The random variable ψjt is an instance of mixture compo-
nent kjt, that is, ψjt = φkjt . The prior over the parameters φk
is H. Let zji = kjtji denote the mixture component associated
with the observation xji. We use the notation njtk to denote the
number of customers in restaurant j at table t eating dish k, mjk
to denote the number of tables in restaurant j serving dish k, and
K to denote the number of dishes being served throughout the
franchise. Marginal counts are represented with dots.

Let x = (xji : all j, i), xjt = (xji : all i with tji = t), t = (tji :
all j, i), k = (kjt : all j, t), z = (zji : all j, i), m = (mjk : all j, k),
and φ = (φ1, . . . , φK). When a superscript is attached to a set of
variables or a count (e.g., x−ji, k−jt, or n−ji

jt· ), this means that the
variable corresponding to the superscripted index is removed
from the set or from the calculation of the count. In the exam-
ples, x−ji = x\xji, k−jt = k\kjt, and n−ji

jt· is the number of obser-
vations in group j whose factor is associated with ψjt, leaving
out item xji.

Let F(θ) have density f (·|θ) and let H have density h(·).
Because H is conjugate to F, we integrate out the mixture
component parameters φ in the sampling schemes. Denote the
conditional density of xji under mixture component k given all
data items except xji as

f
−xji
k (xji) =

∫
f (xji|φk)

∏
j′i′ �=ji,zj′i′=k f (xj′i′ |φk)h(φk)dφk

∫ ∏
j′i′ �=ji,zj′ i′=k f (xj′i′ |φk)h(φk)dφk

. (30)

Similarly let f
−xjt
k (xjt) denote the conditional density of xjt

given all data items associated with mixture component k leav-
ing out xjt.

Finally, we suppress references to all variables except those
being sampled in the conditional distributions to follow. In par-
ticular, we omit references to x, α0, and γ .

5.1 Posterior Sampling in the Chinese
Restaurant Franchise

The Chinese restaurant franchise presented in Section 4.2 can
be used to produce samples from the prior distribution over
the θji, as well as intermediary information related to the ta-
bles and mixture components. This framework can be adapted
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to yield a Gibbs sampling scheme for posterior sampling given
observations x.

Rather than dealing with the θji’s and ψjt’s directly, we in-
stead sample their index variables tji and kjt. The θji’s and ψjt’s
can be reconstructed from these index variables and the φk’s.
This representation makes the MCMC sampling scheme more
efficient (cf. Neal 2000). Note that the tji and the kjt inherit the
exchangeability properties of the θji and the ψjt; the conditional
distributions in (24) and (25) can be adapted to be expressed in
terms of tji and kjt. The state space consists of values of t and k.
Note that the number of kjt variables represented explicitly by
the algorithm is not fixed. We can think of the actual state space
as consisting of an infinite number of kjt’s, only a finitely num-
ber of which are actually associated with the data and repre-
sented explicitly.

Sampling t. To compute the conditional distribution of tji
given the rest of the variables, we make use of exchangeability
and treat tji as the last variable being sampled in the last group
in (24) and (25). We obtain the conditional posterior for tji by
combining the conditional prior distribution for tji with the like-
lihood of generating xji.

Using (24), the prior probability that tji takes on a particu-

lar previously used value t is proportional to n−ji
jt· , whereas the

probability that it takes on a new value (say, tnew = mj· + 1) is
proportional to α0. The likelihood due to xji given tji = t for

some previously used t is f
−xji
k (xji). The likelihood for tji = tnew

can be calculated by integrating out the possible values of kjtnew

using (25),

p(xji|t−ji, tji = tnew,k)

=
K∑

k=1

m·k
m·· + γ

f
−xji
k (xji) + γ

m·· + γ
f
−xji
knew (xji), (31)

where f
−xji
knew (xji) = ∫

f (xji|φ)h(φ)dφ is simply the prior density
of xji. The conditional distribution of tji is then

p(tji = t|t−ji,k)

∝
{

n−ji
jt· f

−xji
kjt

(xji) if t previously used

α0p(xji|t−ji, tji = tnew,k) if t = tnew.
(32)

If the sampled value of tji is tnew, then we obtain a sample
of kjtnew by sampling from (31),

p(kjtnew = k|t,k−jtnew
)

∝
{

m·k f
−xji
k (xji) if k previously used

γ f
−xji
knew (xji) if k = knew.

(33)

If as a result of updating tji, some table t becomes unoccupied
(i.e., njt· = 0), then the probability that this table will be reoccu-
pied in the future will be 0, because this is always proportional
to njt·. Consequently, we may delete the corresponding kjt from
the data structure. If as a result of deleting kjt some mixture
component k becomes unallocated, then we delete this mixture
component as well.

Sampling k. Because changing kjt actually changes the
component membership of all data items in table t, the likeli-
hood obtained by setting kjt = k is given by f

−xjt
k (xjt), so that

the conditional probability of kjt is

p(kjt = k|t,k−jt)

∝
{

m−jt
·k f

−xjt
k (xjt) if k is previously used

γ f
−xjt
knew (xjt) if k = knew.

(34)

5.2 Posterior Sampling With
an Augmented Representation

In the Chinese restaurant franchise sampling scheme, the
sampling for all groups is coupled because G0 is integrated
out. This complicates matters in more elaborate models (e.g., in
the case of the hidden Markov model considered in Sec. 7). In
this section we describe an alternative sampling scheme where
in addition to the Chinese restaurant franchise representation,
G0 is instantiated and sampled from, so that the posterior con-
ditioned on G0 factorizes across groups.

Given a posterior sample (t,k) from the Chinese restaurant
franchise representation, we can obtain a draw from the poste-
rior of G0 by noting that G0 ∼ DP(γ,H) and that ψjt for each
table t is a draw from G0. Conditioning on the ψjt’s, G0 is now
distributed as DP(γ +m··, (γ H + ∑K

k=1 m·kδφk)/(γ + m··)). An
explicit construction for G0 is now given as

β = (β1, . . . , βK, βu) ∼ Dir(m·1, . . . ,m·K, γ ),

Gu ∼ DP(γ,H),

p(φk|t,k) ∝ h(φk)
∏

ji : kjtji=k

f (xji|φk), (35)

G0 =
K∑

k=1

βkδφk + βuGu.

Given a sample of G0, the posterior for each group is factorized,
and sampling in each group can be performed separately. The
variables of interest in this scheme are t and k as in the Chinese
restaurant franchise sampling scheme and β earlier, whereas
both φ and Gu are integrated out (which introduces couplings
into the sampling for each group but is easily handled).

Sampling t and k. This is almost identical to the Chinese
restaurant franchise sampling scheme, with the only novelty be-
ing that we replace m·k by βk and γ by βu in (31), (32), (33),
and (34), and when a new component knew is instantiated, we
draw b ∼ beta(1, γ ) and set βknew = bβu and βnew

u = (1 − b)βu.
We can understand b as follows: When a new component is in-
stantiated, it is instantiated from Gu by choosing an atom in Gu

with probability given by its weight b. Using the fact that the
sequence of stick-breaking weights is a size-biased permutation
of the weights in a draw from a DP (Pitman 1996), the weight b
corresponding to the chosen atom in Gu will have the same dis-
tribution as the first stick-breaking weight, that is, beta(1, γ ).

Sampling β . This has already been described in (35):

(β1, . . . , βK, βu)|t,k ∼ Dir(m·1, . . . ,m·K, γ ). (36)
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5.3 Posterior Sampling by Direct Assignment

In both the Chinese restaurant franchise and augmented rep-
resentation sampling schemes, data items are first assigned to
some table tji, and the tables are then assigned to some mixture
component kjt. This indirect association with mixture compo-
nents can make the bookkeeping somewhat involved. In this
section we describe a variation on the augmented representa-
tion sampling scheme that directly assigns data items to mixture
components through a variable, zji, which is equivalent to kjtji
in the earlier sampling schemes. The tables are represented only
in terms of the numbers of tables mjk.

Sampling z. This can be realized by grouping together
terms associated with each k in (31) and (32),

p(zji = k|z−ji,m,β)

=
{

(n−ji
j·k + α0βk)f

−xji
k (xji) if k previously used

α0βu f
−xji
knew (xji) if k = knew,

(37)

where we have replaced m·k with βk and γ with βu.

Sampling m. In the augmented representation sampling
scheme, conditioned on the assignment of data items to mix-
ture components z, the only effect of t and k on other variables
is through m in the conditional distribution of β in (36). As a
result, it is sufficient to sample m in place of t and k. To obtain
the distribution of mjk conditioned on other variables, consider
the distribution of tji assuming that kjtji = zji. The probability
that data item xji is assigned to some table t such that kjt = k
is

p(tji = t|kjt = k, t−ji,k,β) ∝ n−ji
jt· , (38)

whereas the probability that it is assigned a new table under
component k is

p(tji = tnew|kjtnew = k, t−ji,k,β) ∝ α0βk. (39)

These equations form the conditional distributions of a Gibbs
sampler whose equilibrium distribution is the prior distribu-
tion over the assignment of nj·k observations to components in
an ordinary DP with concentration parameter α0βk. The corre-
sponding distribution over the number of components is then
the desired conditional distribution of mjk. Antoniak (1974) has
shown that this is

p(mjk = m|z,m−jk,β)

= 
(α0βk)


(α0βk + nj·k)
s(nj·k,m)(α0βk)

m, (40)

where s(n,m) are unsigned Stirling numbers of the first kind.
We have by definition that s(0,0) = s(1,1) = 1, s(n,0) = 0 for
n > 0 and s(n,m) = 0 for m > n. Other entries can be computed
as s(n + 1,m) = s(n,m − 1) + ns(n,m).

Sampling β . This is the same as in the augmented sampling
scheme and is given by (36).

5.4 Comparison of Sampling Schemes

Let us now consider the relative merits of these three sam-
pling schemes. In terms of ease of implementation, the direct
assignment scheme is preferred, because its bookkeeping is
straightforward. The two schemes based on the Chinese restau-
rant franchise involve more substantial effort. In addition, both
the augmented and direct assignment schemes sample rather
than integrate out G0, and thus the sampling of the groups is
decoupled given G0. This simplifies the sampling schemes and
makes them applicable in elaborate models, such as the hidden
Markov model in Section 7.

In terms of convergence speed, the direct assignment scheme
changes the component membership of data items one at a time,
whereas in both schemes using the Chinese restaurant fran-
chise, changing the component membership of one table will
change the membership of multiple data items at the same time,
leading to potentially improved performance. This is akin to
split-and-merge techniques in DP mixture modeling (Jain and
Neal 2000). This analogy is, however, somewhat misleading
in that unlike split-and-merge methods, the assignment of data
items to tables is a consequence of the prior clustering effect of
a DP with nj·k samples. As a result, we expect that the probabil-
ity of obtaining a successful reassignment of a table to another
previously used component will often be small, and we do not
necessarily expect the Chinese restaurant franchise schemes to
dominate the direct assignment scheme.

The inference methods presented here should be viewed as
first steps in the development of inference procedures for hi-
erarchical DP mixtures. More sophisticated methods—such as
split-and-merge methods (Jain and Neal 2000) and variational
methods (Blei and Jordan 2005)—have shown promise for DPs,
and we expect that they will prove useful for hierarchical DPs
as well.

6. EXPERIMENTS

In this section we describe two experiments to highlight the
two aspects of the hierarchical DP: its nonparametric nature and
its hierarchical nature. In the next section we present a third
experiment highlighting the ease with which we can extend
the framework to more complex models, specifically a hidden
Markov model with a countably infinite state space.

The software that we used for these experiments is avail-
able at http://www.cs.berkeley.edu/~jordan/hdp. The software
implements a hierarchy of DPs of arbitrary depth.

6.1 Document Modeling

Recall the problem of document modeling discussed in Sec-
tion 1. Following standard methodology in the information re-
trieval literature (Salton and McGill 1983), we view a document
as a “bag of words”; that is, we make an exchangeability as-
sumption for the words in the document. Moreover, we model
the words in a document as arising from a mixture model, in
which a mixture component—a “topic”—is a multinomial dis-
tribution over words from some finite and known vocabulary.
The goal is to model a corpus of documents in such a way as to
allow the topics to be shared among the documents in a corpus.

A parametric approach to this problem is provided by the
latent Dirichlet allocation (LDA) model of Blei et al. (2003).

http://www.cs.berkeley.edu/~jordan/hdp
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This model involves a finite mixture model in which the mix-
ing proportions are drawn on a document-specific basis from
a Dirichlet distribution. Moreover, given these mixing propor-
tions, each word in the document is an independent draw from
the mixture model. That is, to generate a word, a mixture com-
ponent (i.e., a topic) is selected, and then a word is generated
from that topic.

Note that the assumption that each word is associated with a
possibly different topic differs from a model in which a mixture
component is selected once per document, and then words are
generated iid from the selected topic. Moreover, it is interesting
to note that the same distinction arises in population genetics,
where multiple words in a document are analogous to multi-
ple markers along a chromosome. Indeed, Pritchard, Stephens,
and Donnelly (2000) developed a model in which marker prob-
abilities are selected once per marker; their model is essentially
identical to LDA.

As in simpler finite mixture models, it is natural to try to
extend LDA and related models by using DPs to capture un-
certainty regarding the number of mixture components. This is
somewhat more difficult than in the case of a simple mixture
model, however, because in the LDA model the documents have
document-specific mixing proportions. We thus require multi-
ple DPs, one for each document. This then poses the problem
of sharing mixture components across multiple DPs, precisely
the problem that the hierarchical DP is designed to solve.

The hierarchical DP extension of LDA thus takes the fol-
lowing form. Given an underlying measure H on multinomial
probability vectors, we select a random measure, G0, which
provides a countably infinite collection of multinomial prob-
ability vectors; these can be viewed as the set of all topics
that can be used in a given corpus. For the jth document in
the corpus, we sample Gj using G0 as a base measure; this
selects specific subsets of topics to be used in document j.
From Gj, we then generate a document by repeatedly sampling
specific multinomial probability vectors θji from Gj and sam-
pling words xji with probabilities θji. The overlap among the
random measures Gj implements the sharing of topics among
documents.

We fit both the standard parametric LDA model and its
hierarchical DP extension to a corpus of nematode biology

abstracts (see http://elegans.swmed.edu/wli/cgcbib). There are
5,838 abstracts in total. After removing standard stop words
and words appearing fewer than 10 times, we are left with a to-
tal of 476,441 words. Following standard information retrieval
methodology, the vocabulary is defined as the set of distinct
words left in all abstracts; this has size 5,699.

Both models were as similar as possible beyond the dis-
tinction that LDA assumes a fixed finite number of topics,
whereas the hierarchical DP does not. Both models used a
symmetric Dirichlet distribution with parameters of .5 for the
prior H over topic distributions. The concentration parame-
ters were given vague gamma priors, γ ∼ gamma(1, .1) and
α0 ∼ gamma(1,1). The distribution over topics in LDA was as-
sumed to be symmetric Dirichlet with parameters α0/L, with
L being the number of topics; γ was not used in LDA. Poste-
rior samples were obtained using the Chinese restaurant fran-
chise sampling scheme, whereas the concentration parameters
were sampled using the auxiliary variable sampling scheme
presented in the Appendix.

We evaluated the models through 10-fold cross-validation.
The evaluation metric was the perplexity, a standard metric in
the information retrieval literature. The perplexity of a held-out
abstract consisting of words w1, . . . ,wI is defined as

exp

(
−1

I
log p(w1, . . . ,wI |training corpus)

)
, (41)

where p(·) is the probability mass function for a given model.
The results are shown in Figure 3. For LDA, we evaluated the

perplexity for mixture component cardinalities ranging from 10
to 120. As shown in Figure 3(a), the hierarchical DP mix-
ture approach—which integrates over the mixture component
cardinalities—performs as well as the best LDA model, doing
so without any form of model selection procedure. Moreover,
as shown in Figure 3(b), the posterior over the number of topics
obtained under the hierarchical DP mixture model is consistent
with this range of the best-fitting LDA models.

6.2 Multiple Corpora

We now consider the problem of sharing clusters among the
documents in multiple corpora. We approach this problem by
extending the hierarchical DP to a third level. A draw from a

(a) (b)

Figure 3. Results for Document Topic Modeling. (a) Comparison of LDA ( ) and the HDP ( ) Mixtures, With Results Averaged Over 10 Runs
(error bars are one standard error); and (b) Histogram of the Number of Topics for the Hierarchical Dirichlet Process Mixture Over 100 Posterior
Samples.

http://elegans.swmed.edu/wli/cgcbib
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top-level DP yields the base measure for each of a set of corpus-
level DPs. Draws from each of these corpus-level DPs yield the
base measures for DPs associated with the documents within
a corpus. Finally, draws from the document-level DPs provide
a representation of each document as a probability distribution
across topics (which are distributions across words). The model
allows sharing of topics both within each corpus and between
corpora.

The documents that we used for these experiments con-
sist of articles from the proceedings of the Neural Informa-
tion Processing Systems (NIPS) conference for the years 1988–
1999. The original articles are available at http://books.nips.cc;
we use a preprocessed version available at http://www.cs.
utoronto.ca/˜roweis/nips. The NIPS conference deals with a
range of topics covering both human and machine intelligence.
Articles are separated into nine sections: algorithms and ar-
chitectures (AA), applications (AP), cognitive science (CS),
control and navigation (CN), implementations (IM), learning
theory (LT), neuroscience (NS), signal processing (SP), and vi-
sion sciences (VS). (These are the sections used in the years
1995–1999. The sectioning in earlier years differed slightly;
we manually relabeled sections from the earlier years to match
those used in 1995–1999.) We treat these sections as corpora
and are interested in the pattern of sharing of topics among
these corpora.

There were 1,447 articles in total. Each article was modeled
as a bag of words. We culled standard stop words as well as
words occurring more than 4,000 times or fewer than 50 times
in the whole corpus. This left us with an average of slightly
more than 1,000 words per article.

We considered the following experimental setup. Given a set
of articles from a single NIPS section that we wish to model (the
VS section in the experiments that we report later), we wish to
know whether it is of value (in terms of prediction performance)
to include articles from other NIPS sections. This can be done
in one of two ways: We can lump all of the articles together
without regard for the division into sections, or we can use the

hierarchical DP approach to link the sections. Thus we consider
three models (see Fig. 4 for graphical representations of these
models):

M1. This model ignores articles from the other sections and
simply uses a hierarchical DP mixture of the kind pre-
sented in Section 6.1 to model the VS articles. This
model serves as a baseline. We used γ ∼ gamma(5, .1)

and α0 ∼ gamma(.1, .1) as prior distributions for the
concentration parameters.

M2. This model incorporates articles from other sections but
ignores the distinction into sections, using a single hi-
erarchical DP mixture model to model all of the arti-
cles. We used priors of γ ∼ gamma(5, .1) and α0 ∼
gamma(.1, .1).

M3. This model takes a full hierarchical approach and
models the NIPS sections as multiple corpora, linked
through the hierarchical DP mixture formalism. The
model is a tree, in which the root is a draw from a single
DP for all articles, the first level is a set of draws from
DPs for the NIPS sections, and the second level is set
of draws from DPs for the articles within sections. We
used priors of γ ∼ gamma(5, .1), α0 ∼ gamma(5, .1),
and α1 ∼ gamma(.1, .1).

In all models a finite and known vocabulary is assumed, and the
base measure H used is a symmetric Dirichlet distribution with
parameters of .5.

We conducted experiments in which a set of 80 articles was
chosen uniformly at random from one of the sections other than
VS. (This was done to balance the impact of different sections,
which are of different sizes.) A training set of 80 articles was
also chosen uniformly at random from the VS section, as was
an additional set of 47 test articles distinct from the training ar-
ticles. Our results report predictive performance on VS test ar-
ticles based on a training set consisting of the 80 articles in the
additional section and N VS training articles with N varying
between 0 and 80. The direct assignment sampling scheme is

(a) (b) (c)

Figure 4. Three Models for the NIPS Data: (a) M1, (b) M2, and (c) M3.

http://books.nips.cc
http://www.cs.utoronto.ca/�roweis/nips
http://www.cs.utoronto.ca/�roweis/nips
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(a) (b)

Figure 5. Results for Multi-Corpora Document Topic Modeling. (a) Perplexity of single words in test VS articles given training articles from VS
and another section for three different models. Curves shown are averaged over the other sections and five runs ( M1: additional section ignored;

M2: flat, additional section; M3: hierarchical, additional section). (b) Perplexity of test VS articles given LT, AA, and AP articles, using M3,
averaged over five runs ( LT; AA; AP). In both plots, the error bars represent one standard error.

used, and concentration parameters are sampled using the aux-
iliary variable sampling scheme given in the Appendix.

Figure 5(a) presents the average predictive performance for
all three models over five runs as the number N of VS train-
ing articles ranged from 0 to 80. The performance is measured
in terms of the perplexity of single words in the test articles
given the training articles, averaged over the choice of which
additional section was used. As the figure shows, the fully hi-
erarchical model M3 performs best, with perplexity decreasing
rapidly with modest values of N. For small values of N, the per-
formance of M1 is quite poor, but the performance approaches
that of M3 when more than 20 articles are included in the VS
training set. The performance of the partially hierarchical M2
was poorer than that of the fully hierarchical M3 throughout the
range of N. M2 dominated M1 for small N, but yielded poorer
performance than M1 for N > 14. Our interpretation is that the
sharing of strength based on other articles is useful when lit-
tle other information is available (small N), but that eventually
(medium to large N) there is crosstalk between the sections,
and it is preferable to model them separately and share strength
through the hierarchy.

Although the results in Figure 5(a) are an average over the
sections, it is also of interest to see which sections are the most
beneficial in terms of enhancing the prediction of the articles
in VS. Figure 5(b) plots the predictive performance for model
M3 when given data from each of three particular sections: LT,
AA, and AP. Whereas articles in the LT section are concerned
mostly with theoretical properties of learning algorithms, those
in AA are concerned mostly with models and methodology, and
those in AP are concerned mostly with applications of learning
algorithms to various problems. As the figure shows, predictive
performance is enhanced the most by previous exposure to arti-
cles from AP, less by articles from AA, and still less by articles
from LT. Given that articles in VS tend to be concerned with
the practical application of learning algorithms to problems in
computer vision, this pattern of transfer seems reasonable.

Finally, it is of interest to investigate the subject matter con-
tent of the topics discovered by the hierarchical DP model. We
did so in the following experimental setup. For a given section
other than VS (e.g., AA), we fit a model based on articles from

that section. We then introduced articles from the VS section
and continued to fit the model, while holding the topics found
from the earlier fit fixed and recording which topics from the
earlier section were allocated to words in the VS section. Ta-
ble 1 displays representations of the two most frequently oc-
curring topics in this setup. (A topic is represented by the set
of words that have highest probability under that topic.) These
topics provide qualitative confirmation of our expectations re-
garding the overlap between VS and other sections.

7. HIDDEN MARKOV MODELS

The simplicity of the hierarchical DP specification—the base
measure for a DP is distributed as a DP—makes it straightfor-
ward to exploit the hierarchical DP as a building block in more
complex models. In this section we demonstrate this in the case
of the hidden Markov model (HMM).

Recall that an HMM is a doubly stochastic Markov chain in
which a sequence of multinomial “state” variables (v1, v2, . . . ,

vT) are linked through a state transition matrix and each el-
ement yt in a sequence of “observations” (y1, y2, . . . , yT) is
drawn independently of the other observations conditional on vt
(Rabiner 1989). This is essentially a dynamic variant of a finite
mixture model, in which one mixture component corresponds
to each value of the multinomial state. As with classical finite
mixtures, it is interesting to consider replacing the finite mix-
ture underlying the HMM with a DP.

Note that the HMM involves not a single mixture model, but
rather a set of mixture models—one for each value of the cur-
rent state. That is, the “current state” vt indexes a specific row of
the transition matrix, with the probabilities in this row serving
as the mixing proportions for the choice of the “next state” vt+1.
Given the next state vt+1, the observation yt+1 is drawn from the
mixture component indexed by vt+1. Thus, to consider a non-
parametric variant of the HMM that allows an unbounded set
of states, we must consider a set of DPs, one for each value of
the current state. Moreover, these DPs must be linked, because
we want the same set of “next states” to be reachable from each
of the “current states.” This amounts to the requirement that
the atoms associated with the state-conditional DPs should be
shared—exactly the framework of the hierarchical DP.
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Table 1. Topics Shared Between VS and the Other NIPS Sections

CS task representation pattern processing trained representations three process unit
patterns
examples concept similarity Bayesian hypotheses generalization numbers positive
classes hypothesis

NS cells cell activity response neuron visual patterns pattern single fig
visual cells cortical orientation receptive contrast spatial cortex stimulus tuning

LT signal layer Gaussian cells fig nonlinearity nonlinear rate eq cell
large examples form point see parameter consider random small optimal

AA algorithms test approach methods based point problems form large paper
distance tangent image images transformation transformations pattern vectors convolu-
tion simard

IM processing pattern approach architecture single shows simple based large control
motion visual velocity flow target chip eye smooth direction optical

SP visual images video language image pixel acoustic delta lowpass flow
signals separation signal sources source matrix blind mixing gradient eq

AP approach based trained test layer features table classification rate paper
image images face similarity pixel visual database matching facial examples

CN ii tree pomdp observable strategy class stochastic history strategies density
policy optimal reinforcement control action states actions step problems goal

NOTE: These topics are the most frequently occurring in the VS fit, under the constraint that they are associated with a
significant number of words (>2,500) from the other section.

Thus, we can define a nonparametric HMM by simply replac-
ing the set of conditional finite mixture models underlying the
classical HMM with a hierarchical DP mixture model. We refer
to the resulting model as a hierarchical Dirichlet process hid-
den Markov model (HDP–HMM). The HDP–HMM provides an
alternative to methods that place an explicit parametric prior on
the number of states or use model selection methods to select a
fixed number of states (Stolcke and Omohundro 1993).

In work that served as an inspiration for the HDP–HMM,
Beal et al. (2002) discussed a model known as the infinite
HMM, in which the number of hidden states of a hidden Markov
model is allowed to be countably infinite. Indeed, Beal et al.
(2002) defined a notion of “hierarchical DP” for this model,
but their “hierarchical DP” was not hierarchical in the Bayesian
sense—involving a distribution on the parameters of a DP—
but was instead a description of a coupled set of urn models.
We briefly review this construction and relate it to our formula-
tion.

Beal et al. (2002) considered the following two-level proce-
dure for determining the transition probabilities of a Markov
chain with an unbounded number of states. At the first level,
the probability of transitioning from a state u to a state v is
proportional to the number of times that the same transition
is observed at other time steps, whereas with probability pro-
portional to α0, an “oracle” process is invoked. At this second
level, the probability of transitioning to state v is proportional
to the number of times that state v has been chosen by the ora-
cle (regardless of the previous state), whereas the probability of
transitioning to a novel state is proportional to γ . The intended
role of the oracle is to tie together the transition models so that
they have destination states in common, in much the same way
that the baseline distribution G0 ties together the group-specific
mixture components in the hierarchical DP.

To relate this two-level urn model to the hierarchical DP
framework, we describe a representation of the HDP–HMM us-
ing the stick-breaking formalism. In particular, consider the hi-
erarchical DP representation shown in Figure 6. The parameters

in this representation have the following distributions:

β|γ ∼ GEM(γ ),

π k|α0,β ∼ DP(α0,β),

φk|H ∼ H,

(42)

for each k = 1,2, . . . , whereas for time steps t = 1, . . . ,T , the
state and observation distributions are

vt|vt−1, (πk)
∞
k=1 ∼ πvt−1 and

yt|vt, (φk)
∞
k=1 ∼ F(φvt), (43)

where we assume for simplicity that there is a distinguished
initial state v0. If we now consider the Chinese restaurant fran-
chise representation of this model as discussed in Section 5,
then it turns out that the result is equivalent to the coupled urn
model of Beal et al. (2002), and hence the infinite HMM is an
HDP–HMM.

Unfortunately, posterior inference using the Chinese restau-
rant franchise representation is awkward for this model, involv-
ing substantial bookkeeping. Indeed, Beal et al. (2002) did not
present an MCMC inference algorithm for the infinite HMM,
proposing instead a heuristic approximation to Gibbs sampling.
On the other hand, both the augmented representation and di-
rect assignment representation lead directly to MCMC sam-
pling schemes that can be implemented straightforwardly. In

Figure 6. A Graphical Representation of an HDP–HMM.
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the experiments reported in the following section, we used the
direct assignment representation.

Practical applications of HMMs often consider sets of se-
quences and treat these sequences as exchangeable at the level
of sequences. Thus, in applications to speech recognition, an
HMM for a given word in the vocabulary is generally trained
through replicates of that word being spoken. This setup is
readily accommodated within the hierarchical DP framework
by simply considering an additional level of the Bayesian hi-
erarchy, letting a master DP couple each of the HDP–HMMs,
each of which is a set of DPs.

7.1 Alice in Wonderland

In this section we report experimental results for the prob-
lem of predicting strings of letters in sentences taken from
Lewis Carroll’s Alice’s Adventures in Wonderland, comparing
the HDP–HMM with other HMM-related approaches.

Each sentence is treated as a sequence of letters and spaces
(rather than as a sequence of words). There are 27 distinct sym-
bols (26 letters and space); cases and punctuation marks are
ignored. There are 20 training sentences with average length of
51 symbols, along with 40 test sentences with an average length
of 100. The base distribution H is a symmetric Dirichlet distri-
bution over 27 symbols with parameters .1. The concentration
parameters γ and α0 are given gamma(1,1) priors.

Using the direct assignment sampling method for posterior
predictive inference, we compared the HDD–HMM with vari-
ous other methods for prediction using HMMs: (1) a classical
HMM using maximum likelihood (ML) parameters obtained
through the Baum–Welch algorithm (Rabiner 1989), (2) a clas-
sical HMM using maximum a posteriori (MAP) parameters,
taking the priors to be independent symmetric Dirichlet distri-
butions for both the transition and emission probabilities, and
(3) a classical HMM trained using an approximation to a full
Bayesian analysis—in particular, a variational Bayesian (VB)
method due to MacKay (1997) and described in detail by Beal
(2003). For each of these classical HMMs, we conducted ex-
periments for each value of the state cardinality ranging from 1
to 60.

We present the perplexity on test sentences in Figure 7(a).
For VB, computing the predictive probability is intractable, so

we used the modal setting of parameters. Both the MAP and
VB models were given optimal settings of the hyperparameters
found using the HDP–HMM. We see that the HDP–HMM has
a lower perplexity than all of the models tested for ML, MAP,
and VB. Figure 7(b) shows posterior samples of the number of
states used by the HDP–HMM.

8. DISCUSSION

In this article we have described a nonparametric approach
to modeling groups of data in which each group is charac-
terized by a mixture model and we allow sharing of mixture
components between groups. We have proposed a hierarchical
Bayesian solution to this problem, in which a set of DPs is cou-
pled through their base measure, which is itself distributed ac-
cording to a DP.

We have described three different representations that capture
aspects of the hierarchical DP: a stick-breaking representation
that describes the random measures explicitly, a representation
of marginals in terms of an urn model that we call the “Chi-
nese restaurant franchise,” and a representation of the process
in terms of an infinite limit of finite mixture models. These rep-
resentations led to the formulation of three MCMC sampling
schemes for posterior inference under hierarchical DP mixtures.
The first scheme is based directly on the Chinese restaurant
franchise representation, the second scheme represents the pos-
terior using both a Chinese restaurant franchise and a sample
from the global measure, and the third scheme uses a direct
assignment of data items to mixture components.

Clustering is an important activity in many large-scale data
analysis problems in engineering and science, reflecting the het-
erogeneity often present when data are collected on a large
scale. Clustering problems can be approached within a prob-
abilistic framework through finite mixture models (Fraley and
Raftery 2002; Green and Richardson 2001), and recent years
have seen numerous examples of applications of finite mixtures
and their dynamical cousins the HMMs in such areas as bioin-
formatics (Durbin, Eddy, Krogh, and Mitchison 1998), speech
recognition (Huang, Acero, and Hon 2001), information re-
trieval (Blei et al. 2003), and computational vision (Forsyth
and Ponce 2002). These areas also provide numerous instances
of data analyses that involve multiple linked sets of clustering

(a) (b)

Figure 7. Results for HMMs. (a) Comparing the HDP–HMM (solid horizontal line) with ML ( ), MAP ( ), and VB ( ) trained hidden Markov
models. The error bars represent one standard error (those for the HDP–HMM are too small to see). (b) Histogram for the number of states in the
HDP–HMM over 1,000 posterior samples.
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problems, for which classical clustering methods (model-based
or non–model-based) provide little in the way of leverage. In
bioinformatics, we have already alluded to the problem of find-
ing haplotype structure in subpopulations. Other examples in
bioinformatics include the use of HMMs for amino acid se-
quences, where a hierarchical DP version of the HMM would
allow the discovery of and sharing of motifs among different
families of proteins. In speech recognition, multiple HMMs are
already widely used, in the form of word-specific and speaker-
specific models, and ad hoc methods are generally used to share
statistical strength among models. We have discussed exam-
ples of grouped data in information retrieval; other examples
include problems in which groups are indexed by author or by
language. Finally, computational vision and robotics problems
often involve sets of descriptors or objects that are arranged in
a taxonomy. Examples such as these, in which there is substan-
tial uncertainty regarding appropriate numbers of clusters, and
in which the sharing of statistical strength among groups is nat-
ural and desirable, suggest that the hierarchical nonparametric
Bayesian approach to clustering presented here may provide a
generally useful extension of model-based clustering.

APPENDIX: POSTERIOR SAMPLING FOR
CONCENTRATION PARAMETERS

MCMC samples from the posterior distributions for the concentra-
tion parameters γ and α0 of the hierarchical DP can be obtained us-
ing straightforward extensions of analogous techniques for DP. Let the
number of observed groups be equal to J, with nj·· observations in
the jth group. Consider the Chinese restaurant franchise representa-
tion. The concentration parameter α0 governs the distribution of the
number of ψjt’s in each mixture. As noted in Section 5.3, this is given
by

p(m1·, . . . ,mJ·|α0,n1··, . . . ,nJ··)

=
J∏

j=1

s(nj··,mj·)α
mj·
0


(α0)


(α0 + nj··)
. (A.1)

Further, α0 does not govern other aspects of the joint distribution;
hence (A.1) along with the prior for α0 is sufficient to derive MCMC
updates for α0 given all other variables.

In the case of a single mixture model (J = 1), Escobar and West
(1995) proposed a gamma prior and derived an auxiliary variable up-
date for α0, and Rasmussen (2000) observed that (A.1) is log-concave
in log(α0) and proposed using adaptive rejection sampling instead.
The adaptive rejection sampler of Rasmussen (2000) can be directly
applied to the case where J > 1, because the conditional distribu-
tion of log(α0) is still log-concave. The auxiliary variable method of
Escobar and West (1995) requires a slight modification for the case
where J > 1. Assume that the prior for α0 is a gamma distribution
with parameters a and b. For each j, we can write


(α0)


(α0 + nj··)
= 1


(nj··)

∫ 1

0
wα0

j (1 − wj)
nj··−1

(
1 + nj··

α0

)
dwj. (A.2)

We define auxiliary variables w = (wj)
J
j=1 and s = (sj)

J
j=1, where each

wj is a variable taking on values in [0,1] and each sj is a binary {0,1}
variable, and define the following distribution:

q(α0,w, s) ∝ α
a−1+m··
0 e−α0b

J∏

j=1

wα0
j (1 − wj)

nj··−1
(

nj··
α0

)sj

. (A.3)

Now marginalizing q to α0 gives the desired conditional distribution
for α0. Hence q defines an auxiliary variable sampling scheme for α0.
Given w and s, we have

q(α0|w, s) ∝ α
a−1+m··−∑J

j=1 sj

0 e−α0(b−∑J
j=1 log wj), (A.4)

which is a gamma distribution with parameters a + m·· − ∑J
j=1 sj and

b − ∑J
j=1 log wj. Given α0, the wj and sj are conditionally indepen-

dent, with distributions

q(wj|α0) ∝ wα0
j (1 − wj)

nj··−1 (A.5)

and

q(sj|α0) ∝
(

nj··
α0

)sj

, (A.6)

which are beta and Bernoulli distributions. This completes the auxil-
iary variable sampling scheme for α0. We used the auxiliary variable
sampling scheme in our simulations, because it is easier to implement
and typically mixes quickly (within 20 iterations).

Given the total number, m··, of the ψjt’s, the concentration parame-
ter γ governs the distribution over the number of components K,

p(K|γ,m··) = s(m··,K)γ K 
(γ )


(γ + m··)
. (A.7)

Again, other variables are independent of γ given m·· and K, hence we
may apply the techniques of Escobar and West (1995) or Rasmussen
(2000) to sampling γ .

[Received October 2004. Revised December 2005.]
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