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Summary

Analysing data from large-scale, multiexperiment studies requires scientists to both analyse each
experiment and to assess the results as a whole. In this article, we develop double empirical Bayes
testing (DEBT), an empirical Bayes method for analysing multiexperiment studies when many
covariates are gathered per experiment. DEBT is a two-stage method: in the first stage, it reports
which experiments yielded significant outcomes and in the second stage, it hypothesises which
covariates drive the experimental significance. In both of its stages, DEBT builds on the work of
Efron, who laid out an elegant empirical Bayes approach to testing. DEBT enhances this framework
by learning a series of black box predictive models to boost power and control the false discovery
rate. In Stage 1, it uses a deep neural network prior to report which experiments yielded significant
outcomes. In Stage 2, it uses an empirical Bayes version of the knockoff filter to select covariates that
have significant predictive power of Stage 1 significance. In both simulated and real data, DEBT
increases the proportion of discovered significant outcomes and selects more features when signals
are weak. In a real study of cancer cell lines, DEBT selects a robust set of biologically plausible
genomic drivers of drug sensitivity and resistance in cancer.

Key words: cancer drug studies; empirical Bayes; knockoffs; multiple testing; two-groups
model.

1 Introduction

Multiple testing in most of the last century involved small-scale inference tasks, with a few
dozen test statistics treated in isolation. The last 20 years have seen a fundamental change
in the multiple testing landscape thanks to new high-throughput screening (HTS) techniques
like DNA sequencing and fMRI scanning. Scientists are now able to perform hundreds of
experiments in parallel, with each experiment containing rich contextual information about
the samples under study. The statistician is then tasked with making sense of the mountain
of noisy experimental outcomes while simultaneously sifting through the high-dimensional
side information to find potential drivers of significance. This article addresses both of
these tasks.

© 2020 International Statistical Institute.

International Statistical Review (2020), 88, S1, S91–S113 doi:10.1111/insr.12430

International Statistical Review

https://orcid.org/0000-0002-5588-4611


Figure 1 shows a slice of the Genomics of Drug Sensitivity in Cancer (GDSC) dataset (Yang
et al., 2012), an HTS study investigating how cancer cell lines (cells taken from a malignant
tumour and cultured in the lab) respond to different cancer therapeutics. The response measures
how many cancer cells die over a period of time; low numbers indicate a possible sensitivity
to the drug. The left panel of the figure shows the relative response of 30 different cancer cell
lines (C1, C2, : : : , C30), each treated with the drug Nutlin-3. For each cell-line experiment, the
treatment response (black triangles) is overlayed on top of the distribution of untreated controls
(grey box plots). Even when no drug is applied, each cell line still exhibits natural variation. In
analysing this data, the first question a scientist asks is whether each cell line responded to the
treatment. Answering this question involves multiple hypothesis tests, one for each cell line,
where the null hypothesis is that the drug had no effect.

The GDSC data also contain covariates that describe the molecular profile of each cell line
under experimentation. Each covariate corresponds to a binary property of a specific gene in a
cell line. The right panel of Figure 1 shows a subset of the molecular profile, with a black dot
indicating the cell line is positive for that molecular feature in that gene. Biologically, molecular
differences in a cell line can lead to different phenotypic behaviour that may, in turn, cause
sensitivity or resistance to a drug. Statistically, this means that the likelihood of a cell line
responding to treatment (the answer to the first question) is an unknown function of the cell
line's molecular profile. A second scientific question is which features of cancer cells potentially
drive the response of the drug. Answering this question again involves multiple hypothesis tests,
one for each feature, where the null hypothesis is that the feature does not drive the response.

In a series of seminal papers (Efron et al., 2001; Efron, 2003; 2004; 2008; 2019), Efron has
mapped out a practical and powerful framework for multiple hypothesis testing, focusing on
the types of inferences for the first question above. The foundation of this framework is the
formulation of multiple testing as an empirical Bayes problem, through the ‘two-groups model’.
The extra wrinkles in this article are the per-experiment covariates and the additional task of

Figure 1. Left: a subset of 30 cell line experiments from the Nutlin-3 case study in Section 7. Control replicates (grey box
plots) and cell line responses (black triangles) are measured as z-scores relative to mean control values. Right: a subset of
the corresponding molecular features for each experiment; black dots indicate a cell line has a recurrent mutation in the gene
labelled on the x-axis. The goal in Stage 1 analysis is to select cell lines that showed a significant response (double empirical
Bayes testing selections are circled in blue). In Stage 2, the molecular features are analysed to understand the mutations
driving drug response (double empirical Bayes testing selections are circled in orange). [Colour figure can be viewed at
wileyonlinelibrary.com]
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finding the significant ones. Extending the two-groups model to handle the GDSC dataset, and
others like it, is the goal.

The main contribution of the article is a method for analysing large, multiexperiment datasets
like the GDSC in a reliable fashion and without breaking the bank on the statistician's computa-
tional budget. More generally, consider data that are a large set of experiments and a large set of
covariates for each one. Formulate the two scientific questions above as a two-stage inference:

� Stage 1: Which individual experiments produced ‘significant’ or ‘interesting’ results?
� Stage 2: Which of the covariates are worthy of follow-up investigation as potential causal

mechanisms of experimental significance?

The proposed method uses Efron's empirical Bayes model at both stages, and so we call it
double empirical Bayes testing (DEBT).1

In Stage 1, DEBT builds a model of whether a given experiment generates significant out-
comes a priori, where the prior depends on the per-experiment covariates through a fitted neural
network. It then uses this prior model to adaptively select significant outcomes in a manner
that controls the overall false discovery rate (FDR) at a specified Stage 1 level. (These are the
blue circles in the left panel of Figure 1.) In Stage 2, DEBT builds a probabilistic model of the
covariates themselves and uses it to perform variable selection on the Stage 1 results, while con-
serving a specified Stage 2 FDR threshold. (These are the orange columns in the right panel of
Figure 1.) This second stage introduces an empirical Bayes extension of the model-X knockoffs
framework of (Candes et al., 2018) to perform simultaneous conditional independence testing
on all covariates in a fast ‘one-shot’ manner.

1.1 Related Work

Controlling the FDR in multiple hypothesis testing has a long history in statistics. Many
approaches handle the Stage 1 problem, where a collection of test statistics are observed and
selecting among them is the goal. The Benjamini–Hochberg (BH) procedure (Benjamini &
Hochberg, 1995) is the classic technique and still the most widely used in science. Many
other methods have since been developed to take advantage of study-specific information to
increase power. Recent examples include accumulation tests for ordering information (Li &
Barber, 2017), the p-filter for grouping and test statistic dependency (Ramdas et al., 2017),
FDR-smoothing for spatial testing (Tansey et al., 2017), FDR-regression for low-dimensional
covariates (Scott et al., 2015) and, most recently, NeuralFDR (Xia et al., 2017) and AdaPT (Lei
& Fithian, 2018) for high-dimensional covariates from a frequentist perspective. The empirical
Bayes approach proposed here follows FDR-regression but handles data with high-dimensional
covariates, as studied with NeuralFDR and AdaPT.

The Stage 2 problem of FDR-controlled covariate selection is more recent. The key idea in
most methods is to introduce uninformative variables that serve as a control or null sample for
comparison. Wu et al. (2007) was one of the earliest to consider the idea of such pseudovari-
ables and FDR control. Linear knockoffs (Barber & Candès, 2015) brought finite-sample FDR
control to the low-dimensional, linear model case with a fast one-shot procedure for selection.
The generalisation to model-X knockoffs (Candes et al., 2018) covers arbitrary models and
arbitrary response functions, while still providing finite-sample control over FDR. In the same
article, Candes et al. (2018) introduce the conditional randomisation test (CRT) as a more-
powerful alternative to knockoffs but discard it due to computational cost. A number of papers
have aimed at making CRTs more computationally efficient (Tansey et al., 2018; Katsevich &
Ramdas, 2020a; Liu et al., 2020), but knockoffs remain significantly faster if one is willing to
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accept the potential reduction of power. The covariate selection method proposed here bridges
the knockoff-CRT gap from the other direction: rather than make CRTs faster, it uses empiri-
cal Bayes to make knockoffs more powerful when signals are weak. Furthermore, we leverage
empirical null estimation to make the selection procedure more robust to imperfect estimation
of the null.

Algorithm 1 presents the complete DEBT algorithm. The final algorithm runs in approxi-
mately 5 min on a 2018 MacBook Pro for each of the drugs in the GDSC dataset. For concision,
we did not list the entire set of hyperparameters for the algorithm. In addition to the main param-
eters, the user must also provide the kernel bandwidth for predictive recursion, the stochastic
gradient descent (SGD) learning rate and the number of latent factors. In our implementation,
we add auto-tuning procedures over a range of values to alleviate this burden.2

1.2 Paper Outline

The paper builds the DEBT approach around the specific GDSC case study. Section 2
describes the data, giving details about the experiments and sample sizes. Section 3 reviews the
two-groups model and then augments it to involve covariates. Section 4 leverages the results of
Stage 1 to perform inference in Stage 2 (covariate selection) with an empirical Bayes knock-
offs procedure. Section 5 provides theory about the augmented two groups model in Stage 1.
Section 6 evaluates DEBT in a simulation setting where ground truths are known. Section 7
demonstrates both stages of DEBT on the GDSC dataset, analysing drug response in cancer
cell lines. In both simulation and real data, DEBT outperforms the conventional choices, BH
for Stage 1 and knockoffs for Stage 2. Section 8 presents the final discussion.

2 Setup

The data we study come from the GDSC (Yang et al., 2012; Garnett et al., 2012; Iorio
et al., 2016), an HTS study on therapeutic response in cancer cell lines. The goal of these
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experiments is to map the landscape of how different drugs respond to cancer and how different
genes interact to drive the sensitivity or resistance to therapy.

2.1 The Data

The GDSC data comprise the results of testing 1072 cancer cell lines against 265 cancer
therapeutic drugs, in vitro. The full data contain nearly every combination of drug and cell line.
We study a single exemplar drug, Nutlin-3, for which there are 832 cell line experiments.

In each experiment, the scientist places cells from the cancer cell line in several wells, treat-
ing some with the drug and leaving others as control. They then measure the growth of the cells
in each well after a 72 ho using a fluorescence assay. The outcome of the experiment is a mea-
surement of the cell growth among treated and untreated cells. (If the drug prevents the cancer
from growing, then this number will be negative.) The complete results of all the experiments
are the z-scores of the treated cells, derived using the outcomes of the control wells as the null
distribution,

outcomes: f´i ; i D 1; : : : ; n D 832g: (1)

Each cell line is also associated with molecular information about gene mutations, copy
number variations and gene expression. These covariates are preprocessed to be binary and then
filtered down to those that tend to appear frequently in large-scale observational cancer studies.
The binary features approximate binary biomarkers used in the clinical setting to stratify and
treat patients with targeted therapies. This process leaves 236 molecular features per cell line,

features: fxij ; j D 1; : : : ; m D 236g: (2)

Figure 1 (left) shows outcome for treatment and control; Figure 1 (right) shows the covariates
associated with these cell line experiments.

2.2 The Analysis Task

As we discussed above, there are two goals for the scientist. The first goal is the Stage 1 task:
determine whether, for each experiment, the drug had an effect (hi D 1) or not (hi D 0),

Stage 1 effects: fhi ; i D 1; : : : ; ng: (3)

This requires statistical inference. Cell line growth and response vary substantially between
replicates, and measurements of cell survival are imprecise and sometimes even erroneous.
Denote the Stage 2 discoveries as f Ohig.

The second goal is the Stage 2 task: determine the relationship between the covariates xi and
the efficacy of the drug hi. More formally, the goal is to determine whether covariate j carries
unique predictive power (gj D 1) or not (gj D 0),

Stage 2 effects: fgj ; j D 1; : : : ; mg: (4)

Mathematically, gj D 0 if and only if covariate j is independent of the response, conditioned
on all other features. As in Stage 1, noisy samples and measurements (let alone noisy out-
comes Ohi ) preclude us from detecting the important covariates without error. Denote the Stage 2
discoveries as f Ogj g.
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2.3 False Discovery Rate Control

Both goals target a similar end: maximising the number of true discoveries while minimising
the number of spurious ones. There are many ways one may formalise this objective. In this
article, we focus on FDR control (Benjamini & Hochberg, 1995).

A prediction Ohi is called a true positive or a true discovery if Ohi D 1 D hi ; it is called a false
positive or false discovery if Ohi D 1 ¤ hi . Let S D fi W hi D 1g be the set of observations for
which the treatment truly had an effect and OS D fi W Ohi D 1g be the set of predicted discoveries.
We would like a method that maximises the true positive rate (TPR), also known as power,
while controlling the FDR. The FDR is the expected proportion of the predicted discoveries
that are actually false positives,

FDR WD EŒFDP� ; FDP D
#fi W i 2 OSnSg

#fi W i 2 OSg
: (5)

FDP in (5) is the false discovery proportion: the proportion of false positives in the predicted
discoveries from a specific experiment. While we would ideally like to control the FDP, the
inherent randomness of the outcome variables makes this impossible. Modern scientific analysis
typically controls for the FDR.

Similarly, the TPR is the expected proportion of true positives that are selected by the model,

TPR WD EŒTPP� ; TPP D
#fi W i 2 OS

T
Sg

#fi W i 2 Sg
; (6)

where TPP is the true positive proportion: the proportion of true positives actually selected. In
both Stages 1 and 2, the objective is to maximise the TPR while controlling for FDR.

3 DEBT Stage 1: Finding Experiments With a Significant Response

Stage 1 in DEBT performs multiple testing on individual experimental outcomes. The model
extends the classic two-groups formulation and approach outlined in Efron (2008).

3.1 The Augmented Two-Groups Model and Empirical Bayes

The two-groups model is a simple model of test statistics (Efron et al., 2001; Efron, 2008).
It posits that each statistic zi comes from a mixture of two distributions: the null f0 and the
alternative f1,

´i � hif1.´i /C .1 � hi /f0.´i /

hi � Bernoulli.c/ :
(7)

Whether zi comes from the null or the alternative is coded by the latent variable hi, this model
deviates from the frequentist perspective on multiple testing by putting a prior on this variable.
The BH method (Benjamini & Hochberg, 1995), for instance, sets c D 1 and provides a bound
on the FDR, based on tail probabilities of f0. This bound ensures the FDR will be below the
target level for any choice of f1 but sacrifices power when information about f1 is available.

When the number of statistics is large, it is feasible to estimate (c, f0, f1) and perform multiple
hypothesis testing (Efron, 2008). For the null distribution, estimation typically means assuming
a parametric form for f0, either a theoretical null or one where the parameters are estimated
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Figure 2. The graphical model for double empirical Bayes testing.

from data. The prior c and alternative f1 are estimated with empirical Bayes, by estimating the
marginal f (z) then backing out c and f1 from f0 and f (Efron, 2019). Finally, the fitted two-
groups model is used for multiple hypothesis testing: calculate posterior probabilities of each
statistic coming from the alternative and reject those above a threshold to control for FDR.

Stage 1 of DEBT extends the two-groups model in (7) with experiment-specific priors, con-
ditional on the covariates. An experiment-specific weight ci models the prior probability of the
test statistic coming from the alternative, that is the probability of the treatment having an effect
a priori. We place a beta prior on each experiment-specific prior ci and model the parameters
of the beta with a black-box function of the covariates, �(x; � ). To handle the large number
of covariates and the possible nonlinear interactions between them, we choose � to be a deep
neural network, where � are the weights of the network.

The augmented two-groups model is

´i � hif1.´i /C .1 � hi /f0.´i /

hi � Bernoulli.ci /

ci � Beta.ai C 1; bi C 1/

ai ; bi D �.xi I �/:

(8)

Figure 2 shows the DEBT graphical model.
The beta prior is a departure from other two-groups extensions to covariates, which use a flat-

ter hierarchy and directly learn a predictive model for ci (Scott et al., 2015; Tansey et al., 2017).
We found the flat approach to be difficult to fit and lead to degenerate functions �(x; � ) that
always predicted the global mean as the prior. In contrast, the hierarchical prior allows the model
to assign different degrees of confidence to each experiment (via the beta distribution), which
is a heteroskedastic model. The beta parameters are both incremented by 1 to ensure concavity
of the beta distribution.

3.2 Inference

DEBT takes four steps to complete Stage 1 inference.
First, DEBT estimates f0, the distribution of the statistic for ineffective drugs. We follow the

zero assumption approach of Efron (2008), assuming most z-scores near zero are null and f0(z)
follows N.�0; �0/ with unknown shape and scale. DEBT fits a df D 5 degree polynomial
around the central region (z2 [� 3, 3]) of the observed statistics. The central peak of the fit is
used to estimate (�0, �0) using a second-order Taylor approximation to the normal density.
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DEBT then fixes f0 and estimates the alternative f1. To estimate f1, it temporarily considers
the original two-groups model and follows the g-modelling approach with predictive recursion.
In detail, use predictive recursion (Newton, 2002) to estimate the marginal f (z),

f .´/ D .1 � c/f0.´/C c

Z
N.´I ı; �2

1 /dı : (9)

Using predictive recursion in this way follows other recent extensions to the two-groups
model (Scott et al., 2015; Tansey et al., 2017). Predictive recursion enjoys strong empirical
performance and consistency guarantees (Tokdar et al., 2009).

Bayes' rule then yields an estimate of f1(z) via the following identities:

f1.´/ D 1 �
.1 � c/f0.´/

f .´/
(10)

c D E´�f .´/

�
f1.´/

f .´/

�
: (11)

Modelling the marginal instead of f1 directly reduces solving a difficult deconvolution
problem to a simpler density estimation problem (Efron et al., 2001; Efron, 2008).

Returning to the augmented model, DEBT fixes the null f0 and alternative f1 and fits the
conditional prior �(xi; � ). It optimises � by integrating out the significance indicator hi and
maximising the complete data log-likelihood,

p� .´i / D

Z 1

0
.cif1.´i /C .1 � ci /f0.´i //Beta.ci j�.xi I �//dci : (12)

Specifically, DEBT uses SGD with L2-regularisation,

minimise
�2Rj�j

�
X
i

logp� .´i /C ��.xi I �/
2
F ; (13)

where jj�jjF is the Frobenius norm. (In pilot studies, we found adding a small amount of
L2-regularisation prevented overfitting at virtually no cost to statistical power.) For computa-
tional purposes, we approximate the integral in (12) by a fine-grained numerical grid. More
optimisation details are available in Appendix A1.

Finally, DEBT follows the two-groups method to estimate the treatments with signifi-
cant responses. It calculates the posterior probability of each test statistic coming from the
alternative,

Owi D p O� .hi D 1j´i ; xi /

D

Z 1

0
p.hi D 1jci ; ´i /p O� .ci jxi /dci

D

Z 1

0

cif1.´i /Beta.ci j�.xi I O�//

cif1.´i /C .1 � ci /f0.´i /
dci ;

(14)

which uses the fitted per-experiment prior.
Assuming the posteriors are accurate, rejecting the i-th hypothesis will produce 1 � Owi false

positives in expectation. Therefore, DEBT maximises the total number of discoveries by a
step-down procedure, as in the original two-groups model (Efron, 2008). Sort the posteriors
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in descending order by the likelihood of the test statistics being drawn from the alternative;
then reject the first q hypotheses, where 0� q� n is the largest possible index such that the
expected proportion of false discoveries is below the FDR threshold. This procedure solves the
optimisation problem,

maximise
q

q

subject to

Pq
iD1.1 � Owi /

q
� ˛ ;

(15)

for a given FDR threshold ˛. (By convention 0
0 D 0.)

4 Stage 2: Identifying Important Covariates

The Stage 1 portion of DEBT produces two quantities:

1. Posterior probability estimates . Ow1; : : : ; Own/ for each of the experiments being a success,
14.

2. Parameter estimates O� , for the neural-network prior that maps the covariates x to the
probability of an experiment being a success.

With these new quantities, DEBT enters a second stage of inference. In this stage, the goal
is to use Ow and � to understand which of the covariates x are responsible for driving the
outcomes z.

Figure 1 (right) illustrates the second stage. Unlike the Stage 1 inference task (Figure 1, left),
identifying the important covariates is a cross-cutting concern. For each variable, its importance
is assessed across all experiments. As with Stage 1, the goal will be to select as many true
positives (i.e. important variables) as possible while controlling the FDR.

4.1 Conditional Randomisation Tests, Knockoffs and Variable Selection in DEBT

We formalise inference as a multiple testing problem, where the null hypothesis is conditional
independence,

Xj ?? ZjX�j ; (16)

where X�j is every feature in X except Xj.3 Under the null, the feature Xj contains no additional
information about Z that is not contained in the other features X�j.

Testing 16 is challenging when using the deep neural network for � in 8. Simply inspecting
the parameter weights � , as one might in a linear model, will not be sufficient to extract non-null
features reliably. Neural network models are black boxes, with no analytic null distribution.

A recent work in the frequentist testing literature has produced two methods for variable
selection: CRTs and model-X knockoffs (Candes et al., 2018). The CRT repeatedly resamples
from the null distribution for Xj and calculates the test statistic using the null sample,

QXj � P.Xj jX�j /; QTj D T. QXj ; X�j ; Z/: (17)

Given a collection of r null test statistics .Qt .1/j ; : : : ; Qt
.r/
j /, a one-sided p value can be cal-

culated for the true feature test statistic tj, and standard multiple testing tools can be brought
to bear. The CRT is powerful, but computationally expensive. A number of approaches have
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sought to reduce this computational burden (Tansey et al., 2018; Katsevich & Ramdas, 2020a;
Liu et al., 2020), but CRTs are still too expensive to run (on a laptop) in a few minutes for
high-dimensional machine learning models.

Candes et al. (2018) addresses this computational issue with the model-X knockoffs
approach, which is a single-shot procedure. To perform inference, generate a ‘knockoff’ feature
QX for every feature in the dataset and then fit a distribution of both the original and knockoff

features. Valid knockoffs satisfy two key conditions,

X
d
D QX

.X; QX/
d
D .X; QX/swap.J/ ;

(18)

where the second condition states that any subset of columns J � f1; : : : ; mg can be swapped
between X and QX and the joint distribution remains the same. With a single knockoff sample
in hand, Barber & Candès (2015) propose a step-up selection procedure to select features with
finite sample (frequentist) control over the FDR. Typically, the procedure selects on the differ-
ence of variable importance heuristics (	1, : : : , 	m), such as the difference in lasso coefficient
magnitudes between the original feature and its corresponding knockoff.

By avoiding the need to resample, knockoffs dramatically lower the computational cost of
simultaneous conditional independence testing. But this speed-up comes at a cost: power. Gen-
erally, knockoffs are less powerful than CRTs (Candes et al., 2018), and so once one has valid
knockoffs, maximising power becomes a top criterion. Stage 2 of DEBT boosts power in this
stage by merging model-X knockoffs with empirical Bayes. We first discuss two requirements
of model-X knockoffs: generating the knockoffs and choosing a test statistic.

4.1.1 Generating knockoffs with a logistic factor model

To generate knockoffs, it suffices to find a latent factor model such that the Xj are
conditionally independent (Liu & Zheng, 2018; Bates et al., 2020),

P.X1; : : : ; XmjU / D

mY
jD1

P.Xj jU /: (19)

Conditioned on finding the latent factors U, sampling from 19 generates valid knockoffs.
In the GDSC data, the molecular features are binary. We use a logistic factor model,

P.xij j!i ; �j / D

mY
jD1

Bern.�.!>i �j // ; (20)

where � is the logistic function,

�.
/ D
1

1C e��
: (21)

The number of factors is a modelling decision; for the GDSC dataset, we use 20 latent factors.
The model is fit by maximum likelihood, running an alternating minimisation algorithm until
numerical convergence to a local minimum. Once the factor model has been fit, each knockoff
feature Qxij is drawn independently, conditioned on the latent variables (!i, �j).
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4.1.2 The choice of test statistic

As a measure of variable importance, DEBT uses the change in the posterior probability of
zi coming from the Stage 1 alternative f1. For each knockoff, Qxij , DEBT swaps out the original
feature for the knockoff and calculates the posterior Qw. j /i D p O� .hi D 1j´i ; Qxi / from 14.

The test statistic is the difference between posterior entropies, with and without the knockoff,

Entropy.w/ D �
X
i

wi logwi �
X
i

.1 � wi / log.1 � wi /

tj D Entropy. Ow/ � Entropy. Qw/:
(22)

If a feature is useful in predicting an outcome, then it should (stochastically) reduce the
overall entropy of the posterior, relative to the null. By definition, a feature sampled from
the null adds no new information to the model; it cannot systematically reduce the entropy.
The entropy statistic in 22 can analogously be thought of as a difference in empirical risk, which
has been shown to be an optimal choice of test statistic (Katsevich & Ramdas, 2020b).

4.2 Empirical Bayes Knockoffs

Given the collection of test statistics {t1, : : : , tm}, the last step of Stage 2 is to select among
them. This is where DEBT differs from the frequentist knockoffs approach.

Again, DEBT takes an empirical Bayes view. We assume that, given the choice of test statis-
tic, the distribution of null statistics is symmetric. (This is a stronger assumption than the
frequentist knockoff filter where, under the null hypothesis, only the sign of each knockoff
statistic is independent and a symmetric fair coin flip.) With this assumption in place, we then
use the familiar empirical Bayes method of Efron (2008) to boost power in the variable selection
problem.

To model the knockoffs, adopt the original two-groups model,

tj � gjk1.tj /C .1 � gj /k0.tj /

gj � Bernoulli.�/ :
(23)

This is the classic multiple testing setup considered in Efron et al. (2001), because there is
no side information about the knockoff statistics. We estimate the null k0, the alternative k1, and
the prior �. We calculate posterior probabilities of coming from the alternative, and then use the
step-down procedure to control FDR. As in Stage 1, we use predictive recursion to estimate the
margial k(t), including an estimate of the prior �; we estimate k1 using k and k0.

The wrinkle here, however, is that the null distribution is estimated in a different way, which
is particular to the knockoffs setting. Similar to Efron (2004), there are reasons to doubt the
theoretical null in the empirical Bayes knockoffs setup.

DEBT leverages two properties of the knockoff statistics to estimate the empirical null. First,
the null distribution, although not necessarily normal, is assumed to be symmetric if the factor
model has been estimated well. Second, the alternative distribution should concentrate nearly
all its mass on the left of the central peak of the null distribution. This motivates an extension
of the traditional empirical null of Efron (2004) to a one-sided empirical null estimator.

The first step is to estimate k(t), the marginal distribution of the observed statistics. We follow
Efron (2004) and use Lindsey's method (Efron & Tibshirani, 1996) with a 5th-degree polyno-
mial Poisson regression on the histogram bin counts. The central peak c is then located in the
polynomial by filtering down to the centre 35% of the data and taking the value of c for which
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Ok.t/ is maximised. Once the central peak is located, we assume all points to the right represent
null observations and use a mirrored estimation approach,

k0.t/ D

8<
:

k.t/

2
R inf
c k.t/dt

; if t � c

k.2c�t/

2
R inf
c k.t/dt

; if t < c :
(24)

The estimate of the null distribution for points above c in 24 is proportional marginal prob-
ability. The density on the left-hand side of c is proportional to the mirrored image of the
marginal on the right-hand side of c. This is similar in design to the empirical null used in Efron
et al. (2001).

4.3 The Choice of a Null Hypothesis

Why do we estimate the empirical null in this way? Theoretically, the null distribution for test
statistics in both stages should be centred at 0 and symmetric. Efron (2004) outlines how the
null distribution may deviate from the theoretical null due to latent confounders, technical error
or a large number of small-but-uninteresting effects may cause the null distribution. In practice,
estimating the null empirically from the data is essential to prevent spurious false positives.

In Stage 2, the null knockoff statistics in 22 are summations of differences of negative log-
likelihoods. Standard central limit theorem assumptions could be applied to straightforwardly
derive an asymptotic normal approximation,

k0.t=n/
d
!N.0; �2/ ; (25)

where �2 is the population variance. Similar to Efron (2004), there are reasons to doubt this
theoretical null in the empirical Bayes knockoffs setup.

First, the experimental design of the HTS experiments produces correlations between
presumed-independent test statistics. Each HTS experiment is conducted on microwell plates,
similar to the DNA microarray setup. These plates contain a single batch of controls but many
different treatments. The z-scores for each treatment on the same plate are estimated using the
same set of controls, inducing dependence between the plates. Further, wells near each other
on the same plate, or run on different plates but in the same lab on the same day, tend to have
similar z-scores independent of the treatment applied. These ‘batch effects’ are a common prob-
lem in HTS experiments (Mazoure et al., 2017), which leads to violations of the independence
assumption.

Second, the empirical Bayes approach used in DEBT explicitly reuses the data. The same
dataset is used first to estimate O� , the prior parameters, and then again to calculate the knockoff
statistics. This double-dipping is routine in empirical Bayes methods but is lamented by those
demanding strict independence in the test statistics (Efron, 2019).

Third, the factor model parameters . O!; O�/ must be estimated from the data. If the estimate
is too aggressive, capturing independent sources of variation as well as shared variation, the
power of the model will be low. It therefore behoves the statistician to estimate a minimal factor
model—one that accounts for all of the shared variation and no more. If, in the pursuit of higher
power, the estimated factors fail to render the covariates conditionally independent, there will
be lingering dependence between the test statistics.
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5 FDR Control and Power Analysis

We discuss the FDR control and the power of Stage 1 of DEBT (DEBT-1). We show that
the existing theory about the two-groups model still holds in the augmented model of 8. (Stage
2 of DEBT adopts the original two groups model, so the existing theory about the two groups
model applies.)

The existing theory about the two groups model says that local FDR controls average FDR
at a specified level (Efron, 2005), assuming that the prior probability of the null is known.
Moreover, Lei & Fithian (2018) show that under FDR control, local FDR is the most powerful
rejection rule. Below, we present two analogous propositions for the augmented model.

Begin with the FDR control. Assume that we know the local probability of the alternative ci.
Suppose the set of independent test statistics ´ D .´1; : : : ; ´n/ are drawn from

´i � c
�
i f
�

1 .´i /C .1 � c
�
i /f

�
0 .´i /; i D 1; : : : ; n:

Further consider the ideal setting where DEBT-1 learns the true data-generating prior proba-
bilities .c�1 ; : : : ; c

�
n/ and null and alternative distributions f �0 ; f

�
1 . In this setting, the average

FDR will be bounded by ˛ if we apply DEBT-1 with an FDR threshold ˛.

Proposition 1 (FDR control of DEBT-1). Assume DEBT-1 learns the true data-generating
prior probabilities, Beta.�.xi I �// D ıc�

i
; i D 1; : : : ; n and the true data-generating null and

alternative distributions .f0; f1/ D .f
�

0 ; f
�

1 /: Then, DEBT-1 with an FDR threshold ˛ controls
FDR at ˛,

jZ1j
�1

X
i W´i2Z1

FDR.´i / � ˛;

where Z1	 {z1, : : : , zn} denotes the set of rejected hypotheses and FDR(zi) denotes the FDR of
hypothesis i.

Proposition 1 shows that DEBT-1 is tight in FDR control, that is DEBT-1 controls FDR at
the nominal rate ˛ a user sets. To prove Proposition 1, we show that the expected posterior
probabilities of the rejected hypotheses coincides with their FDR P.Hi D 0j´i is rejected). The
proof is in Appendix B1.

Next, we study the power of DEBT-1. We will show that DEBT-1 maximises the power under
FDR ˛ by connecting it to rejecting with local FDR surfaces. Again assume that ci is known.

Proposition 2 (Power analysis of DEBT-1). Assume DEBT-1 learns the true data-generating
prior probabilities, Beta.�.xi I �// D ıc�

i
; i D 1; : : : ; n and the true data-generating null and

alternative distributions .f0; f1/ D .f
�

0 ; f
�

1 /: Then, DEBT-1 maximises the power under FDR
control at level ˛.

Proposition 2 shows that DEBT-1 maximises power. To analyse the power of DEBT-1, we
draw a connection between DEBT-1 and rejecting hypotheses based on the local FDR surface.
We show that any solution to DEBT-1 can be generated by rejecting hypotheses based on the
local FDR surface. Because DEBT-1 is tight in FDR control and the local FDR rejection rule
maximises the power (Lei & Fithian, 2018), DEBT-1 also maximises the power. The proof is in
Appendix C1.

Propositions 1 and 2 establish the FDR control of DEBT-1 and show it maximises power.
They provide theoretical guarantees for DEBT-1 and demonstrate its optimality. Note that
both theorems rely on the key assumptions that DEBT-1 learns the true prior probabilities
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and null/alternative distributions. While these assumptions are never true with finite datasets,
previous work shows Stage 1 of DEBT-1 to be robust and empirically powerful (Tansey
et al., 2018).

6 Simulation

We study the performance of DEBT on a simulation setup that resembles the real data case
study in Section 7. The simulated data contains n D 500 samples and m D 100 features. The
features are binary and drawn according to a correlated latent variable model,

˙jk D e
jj�kj

� � N.0; ˙/
Xj � Bern.logistic.�j //;

(26)

where the function logistic is the logistic function,

logistic.x/ D
1

1C e�x
: (27)

The responses z are drawn from a sparse, second-order interaction model,

 i D
X
j2S

ˇj;0Xij C
X

. j;k/2pairs.S/
ˇj;kXijXik � 1

hi � Bern.logistic. i //

´i � N.�2hi ; 1/ :

(28)

The pairs function divides S into two sets uniformly at random to create pairwise interactions
in addition to the linear terms. The alternative distribution is a normal distribution with mean
�2, whereas the null is centred at 0; both distributions have variance 1. Offsetting the logits  i

by �1 leads to a sparser set of non-null results in Stage 1, representing the sparse results we
typically expect in real data. Each coefficient ˇj, 0 and ˇj, k is drawn i.i.d. from a centred normal,

N

0
@0;

 
s

3
2 jSj

!2
1
A ; (29)

where s is the signal strength. We set s D 3 and select jSj D 20 features uniformly at random
without replacement. These settings lead to 20% true non-null features and approximately 20%
non-null z scores on average. We run 100 independent trials and compare the results of DEBT
in Stages 1 and 2 to BH and knockoffs, respectively, with a nominal FDR of 0.2 in both stages.

Figure 3 shows the number of discoveries made by DEBT in comparison with the baseline
methods. In Stage 1 (left panel), DEBT consistently outperforms BH, with roughly twice as
many discoveries in most trials. In Stage 2 (right panel), DEBT performs similarly to knockoffs
when both methods discover large numbers of features. This is indicated by the overlapping
lines starting at the minimum of x D 6 true discoveries. When the number of discoveries is
small, however, DEBT outperforms knockoffs. This is due to the knockoff filter requiring an
offset term in the numerator and denominator that makes rejecting a small number of features
impossible while still controlling FDR. Thus, when signals are sparse (as in many biological
experiments), DEBT will be able to provide an answer while knockoffs cannot.
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Figure 3. Power comparisons for DEBT in simulation. Left: Stage 1 results compared with Benjamini–Hochberg (BH); each
point is a single trial with the number of true positives discovered by each method. Right: Stage 2 results compared with
model-X knockoffs (Knockoffs); the curves show the number of trials where the method selected at least x features for each
point on the x-axis. DEBT, double empirical Bayes testing.
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Figure 4. False discovery proportions for DEBT and the two baseline methods in each of the two stages of inference. The
baseline methods, BH and knockoffs, tend to be conservative; DEBT has an FDP closer to the target (dashed line). BH,
Benjamini–Hochberg; DEBT, double empirical Bayes testing.

Figure 4 shows the false discovery proportions for each method across all 100 simulations.
The two baseline methods (BH and knockoffs) are generally conservative. Both baseline meth-
ods typically have a much lower FDP than the nominal FDR target of 0.2, as indicated by the
central line in the box plots. The two stages of DEBT inference, however, have results much
closer to the target level. The box plot central lines show the median rather than the average
FDP. In DEBT, the average FDP is 20.22% in Stage 1 and 30.86% in Stage 2. While the Stage
2 average FDP is above the nominal target, the small number of true positives in Stage 2 leads
to a high-variance FDP (standard error 3.20% after 100 trials). Thus, it is possible that the FDR
is closer to the target rate and the inflation is a side effect of finite trials. Further, although
the knockoffs method controls the FDR in Figure 4, the real data analysis in Section 7.2 shows
knockoffs are more brittle under less ideal data modelling conditions and DEBT produces more
robust Stage 2 discoveries.
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7 Cancer Drug Screening

We use DEBT to study cancer drug effects in the GDSC (Yang et al., 2012) study. We first
focus on the drug Nutlin-3, a well-studied drug designed to target a specific protein. Nutlin-3
has many known biomarkers of sensitivity and resistance, making it an ideal case study for a
deep dive into the meaningfulness of the discoveries. We then run on all drugs in the GDSC and
report high-level discovery statistics mirroring those presented in the simulation study. In both
the deep dive and multidrug study, DEBT finds more Stage 1 discoveries than BH and more
plausible Stage 2 results than model-X knockoffs.

The data for each drug are the results of experiments on n cell lines with m features. In each
experiment, some cells are treated with the drug, and others are untreated (control) cells. The
result of each experiment is the difference in cell growth between the treated and untreated.
Following Algorithm 1, DEBT analyses this data in two stages. In the first stage, it determines
which cell lines responded to the drug; in the second stage, it determines which molecular
features drive sensitivity and resistance to the drug.

7.1 Case Study: Nutlin-3

We first focus on the experiments for the drug Nutlin-3, with n D 832 cell lines and m D
236 features. Nutlin-3 is a well-studied drug with a known target and mechanism of action.
Further, many biomarkers for predicting the effectiveness of Nutlin-3 have been discovered
experimentally in previous studies. Thus, true positive features in Stage 2 are likely to appear
in the literature, making assessing their biological plausibility more viable.

7.1.1 Stage 1 analysis

Figure 5 shows the aggregate number of treatment effects discovered by BH, model-X
knockoffs and DEBT. DEBT reports 130 more discoveries in Stage 1 discoveries compared
with BH.

The molecular profiles of the cell lines provide enough prior information that even some
outcomes with a z-score above zero are found to be significant. This is possible for two reasons.
First, the flexibility provided by the prior model of the covariates has the ability to lower the bar
for test statistics. In extreme cases, where the model predicts a high prior probability of success,
the data are unlikely to outweigh the alternative. To see this visually, Figure 6 shows the prior,
outcomes and posteriors. On the far right, points with high prior probability can have positive
z-scores but still have high probability of posterior success.

The other reason for rejecting z-scores with high values is due to an idiosyncrasy of FDR. In
the Bayesian setup, FDR is formulated as an average over posterior probabilities. This average
creates a rolling budget for each successive posterior. If the posteriors are sorted in decreasing
order . Ow.1/; : : : ; Ow.n//; then the rejection threshold for the i-th posterior is a function of the
posteriors,

˛.i/ D i 
 .1 � ˛/ � .i � 1/
i�1X
`D1

Ow.`/ : (30)

As long as Ow.i/ � 1 � ˛.i/, the null hypothesis will be rejected while conserving FDR.
Thus, if the first few posteriors indicate high probability that the treatment is significant,
then even experiments with a dubious chance of significant treatment can be added without
violating FDR.
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Figure 5. Discoveries found by DEBT on the drug Nutlin-3, compared with the discoveries found by a naive BH approach.
DEBT leverages the molecular profiling information of the cell lines to identify more discoveries at the same FDR threshold.
BH, Benjamini–Hochberg; DEBT, double empirical Bayes testing. [Colour figure can be viewed at wileyonlinelibrary.com]

7.1.2 Stage 2 analysis

Table 1 lists the genes reported by DEBT in Stage 2. The first column lists the discover-
ies reported by both DEBT and the knockoffs filter; the second column lists the discoveries
reported by DEBT but not selected by the knockoffs filter. Interpreting the quality of the results
requires familiarity with genomics and cancer biology. Below, we briefly detail the scientific
rational behind the biological plausibility of some of the Stage 2 results and refer the reader to
Weinberg (2013) for a full review.

Nutlin-3 is an inhibitor of the oncogene MDM2. The MDM2-encoded protein tags the
P53 protein for ubiquitylation. When highly overexpressed, MDM2 can functionally inacti-
vate TP53. By targeting MDM2, Nutlin-3 enables a nonmutated (‘wild type’) TP53 to trigger
apoptosis in cancer cells. However, if TP53 is mutated, Nutlin-3 will be ineffective, and hence,
its mutation state is an important driver of Nutlin-3 sensitivity. The discovery by both DEBT
and knockoffs that TP53 mutation and MDM2 overexpression are important features is a good
indication that the selected features match biological processes underlying the cells.

Five genes were selected by DEBT but not by the knockoffs filter. Each of these five
cases has biological plausibility and scientific evidence to support its selection as a driver of
response. In cases where Nutlin-3 produces TP53-independent effects, it has been shown that
Nutlin-3 interacts with RB1 to induce tumour suppression (Laurie et al., 2006); inactivating
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Figure 6. Visualisation of the Stage 1 data for the Nutlin-3 dataset. The x-axis is the prior P.hi D 1jxi /; the y-axis is the
observed z-score; the background gradient is the posterior P.hi D 1jxi ; ´i /. Orange crosses are selected discoveries; blue
x's are data points not selected. The strong prior information leads to some points being selected even with z-scores greater
than zero (upper right corner). [Colour figure can be viewed at wileyonlinelibrary.com]

Table 1. Significant molecular features identified by DEBT that are predictive of
sensitivity or resistance to Nutlin-3.

Feature type Selected by DEBT & KO Selected by DEBT only

Mutation TP53 CDKN2A, RB1
Copy loss RB1
Copy gain CYLD
Low expression JAK2, VHL, CDKN2A FBXW7
High expression CCND2, CCND3, MDM2, PTEN

CDKN2A, MLLT3, SMARCB1

DEBT, double empirical Bayes testing.

mutations in RB1 would remove this Nutlin-3 response pathway. CDKN2A mutations have
both been shown to MDM2-based inactivation of P53 (Walter et al., 2015). Both PTEN and
CYLD are tumor suppressor genes that have been shown to directly regulate P53 (Puszynski
et al., 2014; Fernández-Majada et al., 2016). FBXW7 cooperates with PTEN in suppression
(Mao et al., 2008), but its direct link to Nutlin-3 response has not been established, making this
a potential new discovery.

7.2 All Drugs in the GDSC Dataset

We replicate the case study above for 214 drugs in the GDSC dataset. We use the same
settings as in the simulation study in Section 6.

Figure 7 shows the results of both Stages 1 and 2 across the entire GDSC. As in the simulation
results, DEBT discovers substantially more Stage 1 discoveries than BH. Also similar to the
simulations, DEBT experiences the same small-scale discovery boost in Stage 2, indicated by
the offset of black curve in the right panel of Figure 7. Unlike in the simulations, knockoffs
appear to have a heavier tail, suggesting it discovers more features than DEBT in Stage 2. The
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Figure 7. Power comparisons for DEBT on the Genomics of Drug Sensitivity in Cancer dataset. Results mirror those of
Figure 3 but show model-X knockoffs with a heavier tail of discoveries. DEBT, double empirical Bayes testing.

Figure 8. An example where the empirical null technique in DEBT prevents inflated false discoveries. Gray bars indicate
unselected features; orange bars indicate selected features. The knockoffs approach selects an implausibly-large number of
features because it assumes the null test statistics are well-calibrated and symmetric around the origin. The empirical null
in DEBT (gray line) is centered around the central peak, which is shifted to the right of the origin. DEBT, double empirical
Bayes testing. [Colour figure can be viewed at wileyonlinelibrary.com]

knockoff results seem implausible, however, as it is unlikely that there are truly hundreds of
driver features in many of the experiments.

A closer look at the results provides a resolution to this issue: a failure of the theoretical
null. Figure 8 shows the Stage 2 results for a single drug (Camptothecin) where the knockoffs
approach selects a large number of features based on a null distribution assumed to be symmet-
ric about the origin (left panel). The DEBT empirical null (right panel, grey line) recalibrates
the null distribution to be shifted to the right, centred at roughly 0.5. Consequently, DEBT
selects a much smaller—but more biologically plausible—set of features than knockoffs.

The failure of the theoretical null is due to insufficient factor modelling. In practice, such
factor modelling will always fail to completely capture the true null distribution of the tar-
get features. The empirical null adds a layer of robustness to DEBT that protects against an
imperfect null model. The trade-off is a more conservative estimate of the null distribution.
We consider this worth the cost, as the theoretical null is too brittle to be trusted in real data
applications.
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8 Conclusion
This article proposed DEBT, a method that increases statistical power in multiexperiment

scientific studies when side information is available for each experiment. DEBT leverages
empirical Bayes testing techniques to boost power without sacrificing interpretability. In a case
study on high-throughput drug screening, DEBT finds more experimental discoveries than
conventional testing approaches and provides robust scientific insight into the mechanisms
associated with differential treatment response.

The investigation here was the first for the DEBT method. A number of open questions
remain:

� How should one choose the predictive prior model? DEBT uses a deep neural network,
but the best model will be application-specific.
� What are the theoretical properties of Stage 2? We have provided theory that is centred on

Stage 1, but an investigation of Stage 2 would be useful to better understand the asymptotic
properties of DEBT.
� Can the factor model be calibrated empirically? Choosing the factor model component

counts was chosen arbitrarily here at a reasonably large number. Principled choice of the
number of latent factors and the specific latent factor model is an open problem.
� Can Stage 2 be extended to CRTs? Using CRTs instead of knockoffs in Stage 2 could

potentially boost power. However, the computational cost of CRTs may prohibitive without
further modifications to the approach. Adapting CRTs for Stage 2 inference is left for future
work.

Appendix A: Optimisation Details

The hierarchical prior enables more stable optimisation. This is partially due to low-level details
of stochastic gradient descent. With the flat prior, the output of the neural network at the last
layer must be mapped through a logistic transform. This can lead to saturated or exploding
gradients, resulting in poor convergence. The output of the neural network in the hierarchical
model is a two-vector that is passed through an elementwise soft-plus transform,

Softplus.x/ D log.1C exp.x// :

This function is more numerically stable as it is numerically identical to a linear function for
values of x above around 10.

We divide the data into K folds and learn for a different model for each fold. Fold-specific
models are trained on all other data, with 10% of the training data used as a validation set; fold
data are used as a holdout dataset for prediction. After every epoch, we evaluate the model on
the validation set and use the best-performing model across all epochs to predict on the test set.

When the model is well-fit, the SGD gradients are small and make effectively random minute
perturbations to the model. By random chance, then it is likely that a slightly-overfit model
will perform slightly better on the validation set, leading to overestimation of confidence on the
holdout set and a violation of the FDR threshold. This phenomenon is known as Freedman's
paradox (Freedman, 1983). The regularisation term in (13) is added to correct for this concern
that the model will overfit due to the training evaluation procedure.

Appendix B: Proof of Proposition 1

Proof. DEBT-1 rejects hypothesis by controlling the Bayesian local false discovery rate
(BFLDR). To establish its FDR control, we show that the expected posterior probabilities of the
rejected hypotheses coincides with their FDR P.Hi D 0j´i is rejected).
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In more detail, DEBT-1 solves the following optimisation problem when it learns the true
prior probabilities and null/alternative distributions:

max jZ1j

s:t: bf ldr.´/ D jZ1j
�1

X
i W´i2Z1

.1 � w.´i // � ˛;

where

w.´i / D
cif1.´i /

cif1.´i /C .1 � ci /f0.´i /
:

Denote the marginal distribution of zi as f .´i / D cif1.´i /C .1 � ci /f0.´i / and the rejection
region as Rw. (We note that .f0; f1/ D .f �0 ; f

�
1 / and ci D c�i ; i D 1; : : : ; n per the assump-

tions of Proposition 1.) Below, we show that expected posterior probabilities 1�w(zi) is equal
to FDR(zi) when hypothesis i is rejected.

E..1 � wi /j´i 2 Z1/ D

R
w.´i /2Rw

f .´i /.1 � w.´i //d´iR
w.´i /2Rw

f .´i /d´i

D

R
w.´i /2Rw

.1 � ci /f0.´i /d´iR
w.´i /2Rw

f .´i /d´i

D
P.is rejected andHi D 0/

P.´i is rejected/
DFDR.´i /:

This calculation implies that the DEBT-1 constraint jZ1j
�1
P
i W´i2Z1

.1 � w.´i // � ˛ controls
the average FDR,

jZ1j
�1

X
i W´i2Z1

FDR.´i / D E.jZ1j
�1

X
i W´i2Z1

.1 � wi // � ˛: (B1)

That is, the mean false discovery rate of the rejected hypotheses is ˛. In other words, DEBT-1
is tight in the FDR control.

Appendix C: Proof of Proposition 2

Proof. To analyse the power of DEBT-1, we draw a connection between DEBT-1 and rejecting
hypotheses based on the local FDR surface. We show that any solution to DEBT-1 can be
generated by rejecting hypotheses based on the local FDR surface. Because DEBT-1 is tight
in FDR control and the local FDR surface leads to the most powerful rejection rule (Lei &
Fithian, 2018), DEBT-1 also maximises the power.

More specifically, we first show that any solution jZ1j to DEBT-1 can be achieved by rejecting
using the local FDR surface:

local FDR D 1 � w.´i / � ˛
0

for some ˛0. Given a set of hypotheses Z1 that achieves the optimal jZ1j, consider the jZ1j
hypotheses with the smallest local FDR:

Z01 WD fi W jfi
0 W w.´0i / � w.´i /gj � jZ1jg;
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where j{i0 : w(zi0)�w(zi)}j counts the number of hypotheses with a smaller or equal local FDR.
The set of rejected hypotheses Z10 must also be a solution to the DEBT-1 optimisation because

jZ01j
�1

X
i W´i2Z

0
1

.1 � w.´i // � jZj
�1

X
i W´i2Z

.1 � w.´i // 8Z s.t. jZj D jZ01j

and jZ01j D jZ1j. This way, we can turn any DEBT-1 solution Z1 to an equally good one Z10

generated by rejecting using the local FDR surface.
This equivalence between DEBT-1 and rejecting using the local FDR surface implies that

DEBT-1 maximises the power. The reason is that the most powerful rejection threshold for FDR
control is local FDR surfaces (theorem 2 of Lei and Fithian, 2018). Together with Proposition 1
that shows DEBT-1 is tight in FDR control, it implies that DEBT-1 maximises power under
FDR control at ˛.

Finally, we note that DEBT-1 being tight in FDR control is essential for this argument. A
method with FDR control at ˛0 strictly smaller than ˛ would not maximises the power even if
it uses the most powerful rejection rule. The reason is the same method with a relaxed FDR
control to reach ˛ would be more powerful.

Notes
1This article is an expansion of our earlier work(Tansey et al., 2018). This article expands on

the ideas, scales up the second stage and provides new theory about the first stage.
2Code is available at https://github.com/tansey/debt.
3We will use capital letters to denote random variables, with feature indexing (e.g. Xj).
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