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Abstract

This paper presents the Poisson-randomized gamma dynamical system (PRGDS), a
model for sequentially observed count tensors that encodes a strong inductive bias
toward sparsity and burstiness. The PRGDS is based on a new motif in Bayesian
latent variable modeling, an alternating chain of discrete Poisson and continuous
gamma latent states that is analytically convenient and computationally tractable.
This motif yields closed-form complete conditionals for all variables by way of the
Bessel distribution and a novel discrete distribution that we call the shifted confluent
hypergeometric distribution. We draw connections to closely related models and
compare the PRGDS to these models in studies of real-world count data sets of
text, international events, and neural spike trains. We find that a sparse variant of
the PRGDS, which allows the continuous gamma latent states to take values of
exactly zero, often obtains better predictive performance than other models and is
uniquely capable of inferring latent structures that are highly localized in time.

1 Introduction

Political scientists routinely analyze event counts of the number of times country ¢ took action a
toward country j during time step ¢ [1]. Such data can be represented as a sequence of count tensors
Y@, ..., Y each of which contains the V' xV x A event counts for that time step for every combina-
tion of V' sender countries, V' receivers, and A action types. International event data sets exhibit “com-
plex dependence structures” [2] like coalitions of countries and bursty temporal dynamics. These de-
pendence structures violate the independence assumptions of the regression-based methods that politi-
cal scientists have traditionally used to test theories of international relations [3—5]. Political scientists
have therefore advocated for using latent variable models to infer unobserved structures as a way of
controlling for them [6]. This approach motivates interpretable yet expressive models that are capable
of capturing a variety of complex dependence structures. Recent work has applied tensor factorization
methods to international event data sets [7—11] to infer coalition structures among countries and topic
structures among actions; however, these methods assume that the sequentially observed count tensors
are exchangeable, thereby failing to capture the bursty temporal dynamics inherent to such data sets.

Sequentially observed count tensors present unique statistical challenges because they tend to be bursty
[12], high-dimensional, and sparse [13, 14]. There are few models that are tailored to the challenging
properties of both time series and count tensors. In recent years, Poisson factorization has emerged
as a framework for modeling count matrices [15-20] and tensors [13, 21, 9]. Although factorization
methods generally scale with the size of the matrix or tensor, many Poisson factorization models
yield inference algorithms that scale linearly with the number of non-zero entries. This property
allows researchers to efficiently infer latent structures from massive tensors, provided these tensors
are sparse; however, this property is unique to a subset of Poisson factorization models that only posit
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Figure 1: Left: The PGDS imposes dependencies directly between the gamma latent states, preventing
closed-form complete conditionals. Right: The PRGDS (this paper) breaks these dependencies with discrete
Poisson latent states—doing so yields closed-form conditionals for all variables without data augmentation.

non-negative prior distributions, which are difficult to chain in state-space models for time series. Hier-
archical compositions of non-negative priors—notably, gamma and Dirichlet distributions—typically
introduce non-conjugate dependencies that require innovative approaches to posterior inference.

This paper fills a gap in the literature between Poisson factorization models that are tractable—i.e.,
yielding closed-form complete conditionals that make inference algorithms easy to derive—and those
that are expressive—i.e., capable of capturing a variety of complex dependence structures. To do
so, we introduce an alternating chain of discrete Poisson and continuous gamma latent states, a new
modeling motif that is analytically convenient and computationally tractable. We rely on this motif
to construct the Poisson-randomized gamma dynamical system (PRGDS), a model for sequentially
observed count tensors that is tractable, expressive, and efficient. The PRGDS is closely related to the
Poisson—gamma dynamical system (PGDS) [22], a recently introduced model for dynamic count ma-
trices, that is based on non-conjugate chains of gamma states. These chains are intractable; thus, poste-
rior inference in the PGDS relies on sophisticated data augmentation schemes that are cumbersome to
derive and impose unnatural restrictions on the priors over other variables. In contrast, the PRGDS in-
troduces intermediate Poisson states that break the intractable dependencies between the gamma states
(see Fig. 1). Although this motif is only semi-conjugate, it is tractable, yielding closed-form complete
conditionals for the Poisson states by way of the little-known Bessel distribution [23] and a novel
discrete distribution that we derive and call the shifted confluent hypergeometric (SCH) distribution.

We study the inductive bias of the PRGDS by comparing its smoothing and forecasting performance
to that of the PGDS and two other baselines on a range of real-world count data sets of text, interna-
tional events, and neural spike data. For smoothing, we find that the PRGDS performs better than or
similarly to the PGDS; for forecasting, we find the converse relationship. Both models outperform the
other baselines. Using a specific hyperparameter setting, the PRGDS permits the continuous gamma
latent states to take values of exactly zero, thereby encoding a unique inductive bias tailored to sparsity
and burstiness. We find that this sparse variant always obtains better smoothing and forecasting perfor-
mance than the non-sparse variant. We also find that this sparse variant yields a qualitatively broader
range of latent structures—specifically, bursty latent structures that are highly localized in time.

2 Poisson-randomized gamma dynamical systems (PRGDS)

Notation. Consider a data set of sequentially observed count tensors Y, ..., Y™ each of
which has M modes. An entry yi“‘) €{0,1,2,...} in the " tensor is subscripted by a multi-index
i = (i1,...,1ia) that indexes into the M modes of the tensor. As an example, the event count of
the number of times country ¢ took action a toward country j during time step ¢ can be written as
yi“) where the multi-index corresponds to the sender, receiver, and action type—i.e., i = (7, j, a).

Generative process. The PRGDS is a form of canonical polyadic decomposition [24] that assumes

K M
0~ Pois(p0 S weo [ o). (1)
k=1

m=1



where 6" represents the activation of the k™ component at time step ¢. Each component represents a

dependence structure in the data set by way of a factor vector ¢>§€"”) for each mode m. For international

events, the first factor vector qﬁg) = ( ;;1), R ;ﬂl‘)/) represents the rate at which each of the V'

countries acts as a sender in the k™ component while the second factor vector d)}f) represents the rate
at which each country acts as a receiver. The weights A\; and p* represent the scales of component

k and time step ¢. The PRGDS is stationary if p® = p. We posit the following conjugate priors:

p" ~ Gam (ag,by) and )" ~ Dir(ay,...,ao). )
The PRGDS is characterized by an alternating chain of discrete and continuous latent states. The
continuous states 6}, ..., 0:" evolve via the intermediate discrete states h{"’, ..., h\" as follows:

K
0, ~ Gam ()’ +hy’, 7) and h’ ~ Pois (T Z Thikey 9,?;”), (3)

ka=1
where we define 6}’ = \j, to be the per-component weight from Eq. (1). In other words, the
PRGDS assumes that 0" is conditionally gamma distributed with rate 7 and shape equal to A} plus
hyperparameter ¢}’ > 0. We adopt the convention that a gamma random variable will be zero, almost
surely, if its shape is zero. Therefore, setting €’ =0 defines a sparse variant of the PRGDS, where

the gamma latent state 6} takes the value of exactly zero provided A}’ =0—i.e., 8} = 0if A}’ =0.

The transition weight ., in Eq. (3) represents how strongly component ky excites component k
at the next time step. We view these weights collectively as a K x K transition matrix II and impose
Dirichlet priors over the columns of this matrix. We also place a gamma prior over concentration
parameter 7. This prior is conjugate to the gamma and Poisson distributions in which it appears:

7 ~ Gam (ag, g) and 7 ~ Dir (ag, ..., ap) such that Zg”klk =1. 4)
For the per-component weights A1, . . ., Ak, we use a hierarchical prior with a similar flavor to Eq. (3):

) .
e~ (4 a1, 5) and g~ P (). ®

(X)) (9)
0 0

where €’ is analogous to €, . Finally, we use the following gamma priors, which are both conjugate:

v ~ Gam (ag,by) and S ~ Gam (g, ap) . (6)
The PRGDS has five fixed hyperparameters: €., €5, ag, ag, and by. For the empirical studies in
§ 5, we set ag=by=0.01 to define weakly informative gamma and Dirichlet priors and set ap =10
to define a gamma prior that promotes values close to 1; we consider €} € {0,1} and set ¢;;” =1.

Properties. In Eq. (5), both e(()” and + are divided by the number of components K. This means that
as the number of components grows K — oo, the expected sum of the weights remains finite and fixed:

DD =30 (e +Eld)87 =3 (% + R8T = (0 )T )
k=1 k=1 k=1

This prior encodes an inductive bias toward small values of A\, and may be interpreted as the finite
truncation of a novel Bayesian nonparametric process. A small value of \j, shrinks the Poisson rates
of both yi“’) and the first discrete latent state hg)). As aresult, this prior encourages the PRGDS to only
infer components that are both predictive of the data and useful for capturing the temporal dynamics.

The marginal expectation of 8 = (0}, ..., 6%) takes the form of a linear dynamical system:
E[6V (6] =E[E [0V |h"]] =77 + 110", (8)

. _ K 1), — .

This is because E [0;] = (eg” +E [1"] )77 = (e¢” +7 204,y T, 04, ") 7" by iterated expec-
tation. Concentration parameter 7 appears in both the Poisson and gamma distributions in Eq. (3).
It contributes to the variance of the PRGDS, while simultaneously canceling out of the expectation

in Eq. (8), except for its role in the additive term 669)7'*1, which itself disappears when eg” =0.

Finally, we can analytically marginalize out all of the discrete Poisson latent states to obtain a purely

continuous dynamical system. When ¢}’ > 0, this dynamical system can be written as follows:

K
;" ~ RG1 (e(()e), T Z Ty Oy 7‘)7 9)
ka=1

where RG1 denotes the randomized gamma distribution of the first type [23, 25]. When €}’ =0, the
dynamical system can be written in terms of a limiting form of the RG1. We describe the RG1 in Fig. 2.
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Figure 2: The randomized gamma distribution of the first type (RG1) [23, 25] has support 6 > 0 and is defined
by three parameters: €, A, 8> 0. Its PDF is displayed in the figure; I._1(+) is the modified Bessel function of the
first kind [26]. When € < 1 (left), the RG1 resembles a soft “spike-and-slab” distribution; when € > 1 (middle
and right), it resembles a more-dispersed form of the gamma distribution. The Poisson-randomized gamma distri-
bution [27], which includes zeros in its support (i.e., & > 0), is a limiting case of the RG1 that occurs when € — 0.

3 Related work

The PRGDS is closely related to the Poisson—gamma dynamical system (PGDS) [22]. In the PGDS,

K
0y ~ Gam(T Z ﬂ'kaa;:;l), 7') such that E [0 |0 ] =110, (10)
ko=1

The PGDS imposes non-conjugate dependencies directly between the gamma latent states. The
complete conditional P(6’|—) is not available in closed form, and posterior inference relies on
a sophisticated data augmentation scheme. The PRGDS instead introduces intermediate Poisson
states that break the intractable dependencies between the gamma states; we visualize this in
Fig. 1. Although the Poisson distribution is not a conjugate prior for the gamma rate, this motif
is still tractable, yielding the complete conditional P(h;;) |—) in closed form, as we explain
in § 4. The PGDS is limited by the data augmentation scheme that it relies on for posterior
inference—specifically, this augmentation scheme does not allow \j to appear in the Poisson rate
of y* in Eq. (1). To encourage parsimony, the PGDS instead draws \;, ~ Gam(, 3) and then uses
these per-component weights to shrink the transition matrix IT. This approach introduces additional
intractable dependencies that require a different data augmentation scheme for posterior inference.
Finally, the data augmentation schemes additionally require that each factor vector qb;cm) and each
column 7, of the transition matrix are Dirichlet distributed. We note that although we also use
Dirichlet distributions in this paper, this is a choice rather than a requirement imposed by the PRGDS.

The PGDS and its “deep” variants [28, 29] generalize gamma process dynamic Poisson factor analysis
(GP-DPFA) [30], which assumes a simple random walk 9,(;) ~ Gam (9,:’_1), c(”); the model of Yang
and Koeppl is also closely related [31]. These models belong to a line of work exploring the “augment-
and-conquer” data augmentation scheme [32] for posterior inference in hierarchies of gamma variables
chained via their shapes and linked to Poisson observations. Beyond models for time series, this motif
can be used to build belief networks [33]. An alternative approach is to chain gamma variables via
their rates—e.g., 6 ~ Gam (a, #“ ). This motif is conjugate and tractable, and has been applied
to models for time series [34—36] and deep belief networks [37]. However, unlike the shape, the rate
contributes to the variance of the gamma quadratically. Rate chains can therefore be highly volatile.

More broadly, gamma shape and rate chains are examples of non-negative chains. Such chains
are especially well motivated in the context of Poisson factorization, which is particularly efficient
when only non-negative prior distributions are used. In general, Poisson factorization assumes
that each observed count y; is drawn from a Poisson distribution with a latent rate y; that is some

function of the model parameters—i.e., y; ~ Pois (p;). When the rate is linear—i.e., p; = 22{:1 Lik—

Poisson factorization is allocative [38] and admits a latent source representation [16, 18], where y; £

Zszl ik is defined to be the sum of K latent sources i1, - - - , Yix and yix ~ Pois (). Conditioning
on the latent sources often induces conditional independencies that, in turn, facilitate closed-form,
efficient, and parallelizable posterior inference. The first step in either MCMC or variational inference



is therefore to update each latent source from its complete conditional, which is multinomial [39]:

((yila"wyiK)‘ _) ~ Multinom (yia (,U/ila"' a,U/iK))a (11)

where the normalization of the non-negative rates i, ..., ix into a probability vector is left
implicit. When the observed count is zero—i.e., y; = 0—the sources are also zero—i.e., i E0—
and no computation is required to update them. As a result, any Poisson factorization model that
admits a latent source representation scales linearly with only the non-zero entries. This property
is indispensable when modeling count tensors which typically contain exponentially more zeros
than non-zeros [40]. We emphasize that although the PRGDS and PGDS are substantively different
models, they are both instances of allocative Poisson factorization, so the time complexity of posterior
inference for both models is the same and equal to O (SK) where S is the number of non-zero entries.

Because a latent source representation is only available when the rate y; is a linear function of
the model parameters and, by definition of the Poisson distribution, the rate must be non-negative,
efficient Poisson factorization is only possible with non-negative priors. Modeling time series and
other complex dependence structures via efficient Poisson factorization therefore requires developing
novel motifs that exclude the Gaussian priors that researchers have traditionally relied on for analytic
convenience and tractability. For example, the Poisson linear dynamical system [41—43] links the
widely used Gaussian linear dynamical system [44, 45] to Poisson observations via an exponential link
function—i.e., j; = exp (D, - - -). This approach, which is based on the generalized linear model
[46], relies on a non-linear link function and therefore does not admit a latent source representation.
Another approach is to use log-normal priors, as in dynamic Poisson factorization [47]; however, the
log-normal is not conjugate to the Poisson distribution and does not yield closed-form conditionals.

There is also a long tradition of autoregressive models for time series of counts, including variational
autoregressive models [48] and models that are based on the Hawkes process [49-52]. This approach
avoids the challenge of constructing tractable state-space models from non-negative priors by
modeling temporal correlations directly between the observed counts. However, for high-dimensional
data, such as sequentially observed count tensors, an autoregressive approach is often impractical.

4 Posterior inference

Iteratively re-sampling each latent variable in the PRGDS from its complete conditional constitutes
a Gibbs sampling algorithm. The complete conditionals for all variables are immediately available in
closed form without data augmentation. We provide conditionals for the variables with non-standard
priors below; the remaining conditionals are in the supplementary material. The PRGDS is based on
a new motif in Bayesian latent variable modeling. We introduce the motif in its general form, derive
its conditionals, and then use these to obtain the closed-form complete conditionals for the PRGDS.

4.1 Poisson—-gamma—Poisson chains

Consider the following model of count m involving variables # and h and fixed ¢4, co, c3, eg’) > 0:
m ~ Pois (6c3), 0 ~ Gam (ef]e)Jrh, 02) , and h ~ Pois (¢1) . (12)
This model is semi-conjugate. The gamma prior over 6 is conjugate to the Poisson and its posterior is
(9\ —) ~ Gam (6(()9)+h+m, CQ—‘ng). (13)

The Poisson prior over h is not conjugate to the gamma; however, despite this, the posterior of h
is still available in closed form by way of the Bessel distribution [23], which we define in Fig. 3(a):

(h\ 7) ~ Bes(eg”—l7 2+/0 ¢y 01). (14)

The Bessel distribution can be sampled efficiently [53]; our Cython implementation is available

online." Provided that ¢} > 0, sampling ¢ and h iteratively from Egs. (13) and (14) constitutes a

valid Markov chain for posterior inference. When eg’) =0, though, 0 L0ifh =0, and vice versa. As
a result, this Markov chain has an absorbing condition at h =0 and violates detailed balance. In this
case, we must therefore sample i with 6 marginalized out. Toward that end, we prove Theorem 1.

"https://github.com/aschein/PRGDS
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Figure 3: Two discrete distributions that arise as posteriors in Poisson—gamma-Poisson chains.
Theorem 1: The incomplete conditional P(h|ey’ =0,-\0) = [ P(h,0]€;’ =0,—)d0 is
Pois(-£1%2- ifm=0
(h]=\0) ~ (%*“"2 c , (15)
SCH (m 12 ) otherwise,
? c3tca

where SCH denotes the shifted confluent hypergeometric distribution. We describe the SCH in
Fig. 3(b) and provide further information in the supplementary material, including the derivation
of its PMF, PGF, and mode, along with details of how we sample from it and the proof for Theorem 1.

4.2 Closed-form complete conditionals for the PRGDS

The PRGDS admits a latent source representation, so the first step of posterior inference is therefore
(W), | —) ~ Multinom ( O (w00 TIY_ o ) ) . (16)

We may similarly represent h;;" under its latent source representation—i.e., hg‘) = h;c") = ZkKZ hg,)m
) to denote

€ >

where h;;,i ~Pois (T wkkﬁ(’ >) When notationally convenient, we use dot-notation (“*-
summing over a mode. In this case, h“’ denotes the sum of the k™ row of the K x K matrix of latent
counts h(” The complete condmonal of the k" row of counts, when conditioned on their sum h“’ i

((hir)io=1 | =) ~ Multinom (b}, (T, 05" ) iy=1) - (17)

To derive the conditional for 6}, ) we aggregate the Poisson variables that depend on it. By Poisson addi-
tivity, the column sum 2™ = Z jy—1 i s distributed as 2™ ~Pois (0} 7 7.;,) and similarly y;)
is distributed as y;) ~ Pois (9,(;),0“))\ H%zl ™). The count m{’ £ h';"™ +y\" isolates all depen-
dence on 6" and is also Poisson distributed. By gamma-Poisson conjugacy, the conditional of 6" is

(0,1 =) ~ Gam(eg” +hi) +mp, 74+ 78 + pO Ak Hm 19)- (18)

When € > 0, we apply the identity in Eq. (14) and sample A}’ from its complete conditional:

(h) | =) ~ Bessel (e ~1, 24/6 725K mua, 01" ). (19)

When eg” =0, we instead apply Theorem 1 to sample h;c‘,), where m;;) is analogous to m in Eq. (15):

(h(f) | \0(”) Pois( ,(Ct)) lfm(t) a(t 1)
k- k SCH(m}”, ¢;”) otherwise

T Zkz 1 Tkko

T T+ A Hﬁle oy

where (" = (20)

The complete conditionals for A, and g, follow from applying the same Poisson—gamma-Poisson
identities, while the complete conditionals for -, 3, ¢§€m), T, and 7 all follow from conjugacy.
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S Empirical studies

As explained in the previous section, the Poisson—gamma-Poisson motif of the PRGDS (see § 4.1)
yields a more tractable (see Fig. 1) and flexible (see § 3) model than previous models. This motif
also encodes a unique inductive bias tailored to sparsity and burstiness that we test by comparing the
PRGDS to the PGDS (described in § 3). As we can see by comparing Egs. (9) and (10), comparing
these models isolates the impact of the Poisson—gamma-Poisson motif. Because the PGDS was pre-
viously introduced to model a 7'x V matrix Y of sequentially observed V' -dimensional count vectors
y® .y, we generalize the PGDS to M-mode tensors and provide derivations of its complete
conditionals in the supplementary material. Our Cython implementation of this generalized PGDS
(and the PRGDS) is available online. We also compare the variant of the PRGDS with eé” =1 to the
variant with €}’ =0, which allows the continuous gamma latent states to take values of exactly zero.

Setup. Our empirical studies all have the following setup. For each data set Y ... Y™, the
counts Y in randomly selected time steps are held out. Additionally, the counts in the last
two time steps are always held out. Each model is fit to the data set using independent MCMC
chains that impute the heldout counts and, ultimately, return a set of posterior samples of the la-
tent variables. We distinguish the task of predicting the counts in intermediate time steps, known
as smoothing, from the task of predicting the counts in the last two time steps, known as fore-
casting. To quantify the performance of each model, we use the S posterior samples returned
by the independent chains to approximate the information rate [54] of the heldout counts—i.e.,

R(A) = *K1| > (tivea log [% Zle Pois (y;"'; ,ul(t;)} , where A is the set of multi-indices of the
heldout counts and ui(ts) is the expectation of heldout count yi(t) (defined in Eq. (1)) computed from the

s posterior sample. The information rate quantifies the average number of nats needed to compress
each heldout count; it is equivalent to log perplexity [55] and to the negative of log pointwise predic-
tive density (LPPD) [56]. In each study, we also fit Bayesian Poisson tensor factorization (BPTF)
[9], a non-dynamic baseline that assumes that the count tensors at different time steps are i.i.d.—i.e.,
yi") ~Pois (). For each model, we then report the information gain over BPTF, where higher values
are better, which we compute by subtracting the information rate of the model from that of BPTF.

Matrices. We first replicated the empirical studies of Schein et al. [22]. These studies followed the
setup described above and compared the PGDS to GP-DPFA [30], a simple dynamic baseline (de-
scribed in § 3). The matrices in these studies were based on three text data sets—NeurIPS papers [57],
DBLP abstracts [58], and State of the Union (SOTU) speeches [59]—where y(? is the number of
times word v occurs in time step ¢, and two international event data sets—GDELT [60] and ICEWS
[61]—where ¥ is the number of times sender—receiver pair v interacted during time step ¢. We used
the matrices and heldout time steps, along with the posterior samples for both PGDS and GP-DPFA,
originally obtained by Schein et al. [22]. We then fit the PRGDS using the MCMC settings that they
describe. In this matrix setting, BPTF reduces to y{’ ~Pois(1, ), where v indexes a single mode, and
4, cannot be meaningfully factorized. We therefore posited a conjugate gamma prior over (i, directly
and drew exact posterior samples to compute the information rate. We depict the results in Fig. 4(a).
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Figure 5: The PRGDS is capable of inferring latent structures that are highly localized in time.

Tensors. We used two international event data sets—GDELT and ICEWS—where y“) is the

number of times country ¢ took action a toward country j during time step ¢. Each data set consists
of a sequence of count tensors, each of which contains the V' x V' x A event counts for that time
step, where V' = 249 countries and A = 20 action types. For both data sets, we used months as
time steps. For GDELT, we considered the date range 2003-2008, yielding 7' ="72; for ICEWS, we
considered the date range 1995-2013, yielding 7'=228. We also used a data set of multi-neuronal
spike train recordings of macaque monkey motor cortexes [62, 63]. In this data set, a count y“)
the number of times neuron ¢ spiked in trial j during time step ¢. These counts form a sequence of
N xV matrices, where N =100 is the number of neurons and V' =1, 716 is the number of trials. We
used 20-millisecond intervals as time steps, yielding 7'=162. For each data set, we created three
random masks, each corresponding to six heldout time steps in the range [2, T'—2]. We fit each model
to each data set and mask using two independent chains of 4,000 MCMC iterations, saving every 50
posterior sample after the first 1,000 iterations to compute the information rate. We also fit BPTF using
variational inference as described by Schein et al. [9], and then sampled from the fitted variational
posterior to compute the information rate. Following Schein et al. [22], we set K =100 for all models.
We depict the results in Fig. 4(b), where the error bars reflect variability across the random masks.

Quantitative results. In all sixteen studies, the dynamic models outperform BPTF. In all but one
study, the PGDS and a sparse variant of the PRGDS (i.e., €’ =0) outperform the other models. For
smoothing, the PRGDS performs better than or similarly to the PGDS. In five of the eight smoothing



studies, the sparse variant of the PRGDS obtains a higher information gain than the PGDS; in the
remaining three smoothing studies, there is no discernible difference between the models. For fore-
casting, we find the converse relationship. In four of the eight forecasting studies, the PGDS obtains
a higher information gain than the PGDS; in the remaining forecasting studies, there is no discernible
difference. In all studies, the sparse variant of the PRGDS obtains better smoothing and forecasting
performance than the non-sparse variant (i.e., €;’ = 1). We conjecture that the better performance
of the sparse variant can be explained by the form of the marginal expectation of 8 (see Eq. (8)).
When €} >0 this expectation includes an additive term that grows as more time steps are forecast.

When €' =0, this term disappears and the expectation matches that of the PGDS (see Eq. (10)).
0 pp p q

Qualitative analysis. We also performed a qualitative comparison of the latent structures inferred
by the different models and found that the sparse variant of the PRGDS inferred some components
that the other models did not. Specifically, the sparse variant of the PRGDS is uniquely capable of
inferring bursty latent structures that are highly localized in time; we visualize examples in Fig. 5. To
compare the latent structures inferred by the PGDS and the PRGDS, we aligned the models’ inferred
components using the Hungarian bipartite matching algorithm [64] applied to the models’ continuous
gamma latent states. The k™ component’s activation vector 8, = (6", ...,6;") constitutes a
signature of that component’s activity; these signatures are sufficiently unique to facilitate alignment.
In the supplementary material, we provide four components that are well aligned across the models.
In Fig. 5(a), we visualize two components inferred by the sparse variant of the PRGDS; one of these
components (blue) was also inferred by the other models, while the other component (red) was not.

6 Conclusion

We presented the Poisson-randomized gamma dynamical system (PRGDS), a tractable, expressive,
and efficient model for sequentially observed count tensors. The PRGDS is based on a new modeling
motif, an alternating chain of discrete Poisson and continuous gamma latent states that yields
closed-form complete conditionals for all variables. We found that a sparse variant of the PRGDS,
which allows the continuous gamma latent states to take values of exactly zero, often obtains better
predictive performance than other models and infers latent structures that are highly localized in time.
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1 Shifted confluent hypergeometric (SCH) distribution

The SCH distribution arises in the context of Poisson—gamma—Poisson chains. Consider the following
generative process for count m involving latent variables 6 and h and fixed c1, ca, c3, €y’ > 0 :

m ~ Pois (Ocs) , (1)
0 ~ Gam (eé”—kh, CQ) , )
h ~ Pois (¢1) . 3)

As stated in the main paper, when ¢y = 0, a Gibbs sampler based on sampling h and 6 from their

complete conditionals violates detailed balance since h Loife= 0, and vice versa. Instead, we
should sample h from its incomplete conditional—i.e., its distribution conditioned on all variables
in its Markov blanket except 6:

P(h|ef)=0,-\0) £ / P(h,0] e =0, ) do. 4

Integrating 6 out of the generative process given in Equations (1) to (3) yields the following

. . . . . A
generative process for m as a negative binomial random variable, where p = c:;cch :

m ~ NB (h, p), (%)
h ~ Pois (c1) . (6)

By Bayes’ rule, the posterior of i given m is equal to:

Pois (h; ¢;) NB (m; h, p)
P(m | Clap) .

P(h\m,cl,p)z (7)
To find a closed form for this expression we need a closed form for the denominator. When the
negative binomial has a count-valued first parameter, it is referred to as the Pascal distribution
[1]. The construction in Equations (5) to (6) describes a Pascal variable with a Poisson-distributed
first parameter—the marginal distribution of m with h marginalized out has been called the
Poisson—Pascal distribution [2], which is a special case of the Polya—Aeppli distribution [1]:

P(m|c1,p) =) Pois (h; ¢1) NB (m; h, p) ®)
h=0
= Polya-Aeppli (m; ¢1,p) . 9)
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The Polya-Aeppli distribution is defined by two parameters—p € (0,1) and ¢ > 0—and PMF:

e P¢ ifm=0

10
e “ep™(1—p)1F1(m+1;2;¢(1—p)) otherwise, 10

Polya-Aeppli (m; ¢, p) = {

where 1F; (a; b; z) is Kummer’s confluent hypergeometric function [3].

Plugging in the Polya-Aeppli PMF into the denominator of Eq. (7) (and the Poisson and negative
binomial PMFs into the numerator) we obtain a closed-form expression for the posterior of h. Since
the Polya-Aeppli’s PMF is different for m =0 and m > 0, we first consider the case where m =0:

Pois (h; ¢1) NB (0; b, p)

P(h|m=0 = 11
(hm=0,c1,p) Polya-Aeppli(0; ¢1, p) (an
(c ) —c h
_ }lLI € 1(1*1}) (12)
e~ Pc1
h
— [Cl(l_p)] e—cl(l—p). (13)
h!
We recognize this as the form of a Poisson PMF with parameter ¢ = ¢;(1—p):
= Pois (h; () . (14)
Thus, when m =0, the posterior of & is Poisson. The posterior of i when m > 0 is:
Pois (h; ¢1) NB (m; h, p)
P(h 0 = 15
(h|m>0,c1,p) Polya-Aeppli(m; c1,p) (15
(el emer Leh pm (1 p)"
= (16)
et p™(1—p) 1F1 (m+1;2;¢1(1-p))
I'(m+h h—1
ek (e (1-p)) )
1F1(m+1;2;¢1(1-p))
Since c; and h always appear together, we plug in ( as defined in Eq. (14), to obtain
F’(m‘+h) Ch—l
h!'m!T'(h) (18)

TR (m+1;2;¢)’

which is a discrete distribution defined by two parameters—¢ > 0 and m € {1,2,...}. When
m>0,h a>S 0 since m == 0 if h=0. Thus, this distribution is defined on the support h € {1,2,...}.
What is this distribution? It is illustrative to consider its probability generating function (PGF):

a@:Ehqu (19)
[(m+h) ¢ht

_ gh _PTmIT) 20)
Pyt 1F1(m+1;2;¢)

. 1F1(m+1;2;s§). e

1F1 (m+1;2;¢)

The PGF in Eq. (21) nearly matches that of the confluent hypergeometric distribution [1]. The
confluent hypergeometric distribution i ~ ConfHyp(h; a, b, z) is a discrete distribution over counts

h €{0,1,2,...} defined by three parameters a, b, z > 0 and PGF equal to G'(s) = % The

s out in front of the PGF in Eq. (21) is the only difference between it and the PGF of a confluent
hypergeometric distribution with parameters a=m+1, b=2, and z = (. However, the following



manipulation reveals that the PGF in Eq. (21) defines a shifted confluent hypergeometric distribution:

G(s) = sG'(s) (22)
=5 _s"ConfHyp(h;m+1,2,() (23)
h=0
= ZshCOanyp(h—l;m—i-l,Q,C). (24)
h=1

The posterior distribution of » when m > 0 can thus appropriately be described as a shifted confluent
hypergeometric (SCH) distribution. An SCH random variable h ~ SCH(m, ¢) can be generated

as h £ n+1 where n ~ ConfHyp(m+1,2, ).

1.1 Proof of Theorem 1

Theorem 1: The incomplete conditional P(h|ey’ =0, —\0) £ [ P(h,0]e’=0,—)d0 is

Pois( e ) ifm=20
_ ~ cz+c2 2
(1-\0) {SCH(m, bict) othervise )

Proof: The preceding derivation constitutes the proof—in particular, see Eq. (14) and Eq. (18).

1.2 Sampling from the SCH distribution

As stated above, an SCH random variable can be generated in terms of a confluent hypergeometric
random variable. However, we are unaware of any open-source implementation for sampling from
the confluent hypergeometric distribution.

We implement a table sampler for the SCH distribution by directly evaluating its PMF at candidate
values. This sampler is efficient if we begin with mode h* as the first candidate value and then step
out h*—1 or h*+1 (if the mode is not accepted). Since the confluent hypergeometric distribution
is unimodal and underdispersed [1], the SCH is as well—thus, a table sampler that begins at the
mode frequently terminates after a small number iterations, since the PMF quickly and monotonically
decays in both directions from the mode.

To derive the mode of the SCH, we appeal to the fact that any PMF has the following property,

P(H=h*-1)< P(H=h")>P(H =h"+1), (26)
which can be equivalently stated in terms of the following two equations:
P(H = h*)
- >1 27
P(H=h*—1) 7 @7)
P(H = h*)
—_ < 1. 28
P(H=h*+1) — (28)
Plugging in the PMF of the SCH distribution we obtain the following two inequalities:
¢(h*+m—1)
= >1 29
W —1) =0 29
¢(h* +m)
- = < 1. 30
h*(h*+1) — 30)

Solving this system of inequalities gives us the following bounds on h*:

where f(¢,m) £ % (\/2((277171) +C24+1+ C). Since h discrete, the mode of the SCH is

mode (h;m, ¢) = E (¢2<(2m—1)+<2 +1+<)J, 32)

which does involve any special functions and is thus efficient to compute.



2 Closed-form complete conditionals for the PRGDS

Recall that the per-component weights A\, appear in the Poisson rate of each observed count
y? o~ Pois(p(” S A0 TIM ("‘)) as well as in the Poisson rate of the first la-

m=1 "ki,,
tent discrete state hj. ~ Pois (T ZkKQ:l Wkkz/\k2>. Consider the following sum of latent

sources ¥ 2 21 ST yP—it is a Poisson random variable y; ~ Pois (Aywy,) where
wi 2T, oy ST, p60L. Now define h()) 2 370 _| ), to be the sum of the k™ column of
the first (= 1) matrix of latent counts—it is distributed h;’ ~ Pois (Ax77.1). Finally, define the sum
myY £ k) 4y} which isolates all dependence on A, and is Poisson m" ~ Pois (A (7.5 + wy)).
By gamma—Poisson conjugacy, the complete conditional for Ay, is thus

(M| =) ~ Gam (e§” +gx +my”, B+ 7Tk + wi) (33)
T K
my) £ (ZZ%‘;)) + (Z hﬁ;@) , (34)
t=1 i k=1
M T
wp 2 [T o> 000 (35)
m=1 t=1

We may apply the identifies on Poisson—gamma—Poisson chains provided in the main paper to derive
the complete conditional for g5, when €;” > 0 as

(9| —) ~ Bessel (ef)*)—L 24 /)\kﬁ%) , (36)

and for 5" =0 as

Pois (¢) ifm{ =0
— ) ~SCH k k 37
(gk | ) {SCH (mg), ,(f”) otherwise, @37

ol
~na_ P 38
k Ty +wi + B (38)
By gamma-Poisson and gamma—gamma conjugacy the complete conditionals for v and 3 are

(v| =) ~ Gam(ag +g., bo + 1), (39)
(B] =) ~ Gam (ap + Kei” + g., ap + ). (40)

By both gamma—gamma and gamma—Poisson conjugacy, the complete conditional for 7 is gamma:

K T-1 K
(r| =) ~ Gam <ao+TKe((f)+2 R, oot A +00+3 3N wma,;’;“) . @D
k=1 t=2 ko=1
By Dirichlet-multinomial conjugacy, the complete conditional for 7y, is Dirichlet:

(k| — ) ~ Dir <a0+h§',3,...,a0+h§'{>k). 42)

By Dirichlet-multinomial conjugacy, the complete conditional for each factor vector ¢|™ is

(¢ | —) ~ Dir <a0+ D v a0+ Y y;,;’>, (43)

it =1 i =L
where the sum )~,; _, sums over all values of the multi-index i = (i1, ... ,ias) that have the m™
index equal to a specific value i, =d.

By gamma-Poisson conjugacy, the complete conditional for p™ or p (for the stationary variant) are

(p] =) ~ Gam (ao +y® by + w(t)) , (44)
T

(p‘ —) ~ Gam <ao+yf'),bo+2w(t)> , 45)
t=1

) & K M (m) ()
where w® £ 3™ A []_, 60005



3 Tensor generalization of the PGDS

3.1 Original generative process

Schein et al. (2016) [4] originally introduced the PGDS to model 7' x V' count matrices Y —the
PGDS assumes each count y{” in the matrix is a Poisson random variable:

K
yl ~ Pois(p " 00 bra)- (46)

k=1

The states 6" evolve as

K
0\ ~ Gam <T > Tk 05, T> : (47)

ko=1
The columns of the factor matrix ® are Dirichlet distributed:

¢k ~ Dir (ao, . ao) . (48)

See the original paper [4] for more details.

3.2 Generative process for tensor generalization

The PGDS can be generalized to be a canonical polyadic (CP) decomposition [5] of sequentially
observed M-mode tensors by assuming each count yi(t) is

K M
y ~ Pois(p > 00 TT i) )- (49)
=1

k=1

The states 9,(;) evolve the same as in Eq. (47). There are now M different factor matrices—the
columns of the m™ matrix ®™ are Dirichlet distributed:

(]5;67”) ~ Dir (CLQ, S ao) . (50)

All other aspects are the same as the matrix version.

3.3 Complete conditionals

The latent sources for the tensor PGDS have the following complete conditional:
¢ . ¢ t M m) \ K
(W | =) ~ Multinom (4, (6 TIh_ 650y ) - 51)

By Dirichlet-multinomial conjugacy, each column of the m™ has the following complete conditional:

(4| —) ~ Dir <a0+ Syl a0+ > y§,§>>, (52)

i, =1 i, =L,

where the sum )~,; _, sums over all values of the multi-index i = (i1, ... ,ias) that have the m™
index equal to a specific value i,, =d.

All other complete conditionals are the same as in matrix version (see the original paper).



4 Qualitative analysis of latent structure inferred from ICEWS data

We qualitatively compared the latent structure inferred by the two PRGDS variants and the PGDS
on ICEWS international events data. To do so, we aligned the inferred components of one model to
another using the Hungarian bipartite matching algorithm [6] applied to their inferred K xT" gamma
state matrices. The k™ component’s activation vector 8, = (6}, ..., 6,") constitutes a signature
of that component’s activity; these signatures are sufficiently unique to facilitate alignment.

We interpret the components as multilateral relations [7], where a component is characterized by its

activation vector 8y, (i.e., when that component is active), who the typical sender 4’;@1) and receiver ¢}

countries are, and what action types ¢>§:’> are typically used. We found the vast majority of inferred
components to be well aligned across all three models. In Figures | to 4, we provide four examples
of components inferred by each of the three models that were aligned to each other by the matching
algorithm. We visualize each component’s 6} in chronological order in the top panel of each plot. The
bottom-left stem plot displays the top values of sender parameters, in descending order. If fewer than
ten senders account for more than 99% of the mass, we only display their names; otherwise, the top
seven are given. The same is true for the bottom-middle and bottom-right stem plots, corresponding
to receivers and action types. We see that all four aligned components measure a qualitatively similar
multilateral relation corresponding respectively to the Israeli-Palestinian conflict (Fig. 1), Vietnamese
international relations (Fig. 2), Central European relations (Fig. 3), and West African relations (Fig. 4).

There were only a few instances where the aligned components were qualitatively dissimilar. In
particular, we found a few cases where the aligned components of the PGDS and the non-sparse
variant of the PRGDS were qualitatively similar, but the component inferred by the sparse variant
of the PRGDS had no counterpart. This occurred when the component inferred by the sparse variant
featured a highly localized pattern. The component visualized in the main text is such an example.
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(c) Component inferred by the PGDS.

Figure 1: A component aligned across all three models that measures the Israeli-Palestinian conflict.
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(c) Component inferred by the PGDS.

Figure 3: A component aligned across all three models that measures Central European relations



(t)

&

Value of ¢

0
- Mar 1995 Nov 1996

ime steps

Jul 1998 Mar 2000 Nov 2001  Jul 2003 ~ Mar 2005 Nov 2006  Jul 2008 ~ Mar 2010 Nov 2011  Aug 2013
1.00
073 Senders Receivers Action types
S o (m=1) (m=2) (m=3
L
3 02
§ 000 T ! ? e o o o o o . T ! ¢ ¢ o o o o o o I ! t ? e o o o o
© G “,J NG g\g\(} @o 6\ O d,’a Pﬁd\c o ‘8"{\3\;\“0“@ Ko \,é,x\ @)\‘\z < é"‘(\ & é&@\ o c‘\s\s &a\ @\ @\Q\ Qv,\gq (lo”":'a W Q\@‘w&\)\‘
3 oo oe® O i «®
e \5{\\@ « o
0
(a) Component inferred by the sparse PRGDS (e( )= 0).
s
7 ime steps
=1
G 5
5
o ¢
Tjﬂ 3
> o
1
0
= Mar 1995 Nov 1996  Jul 1998  Mar 2000 Nov 2001  Jul 2003 ~ Mar 2005 Nov 2006  Jul 2008 ~ Mar 2010 Nov 2011  Aug 2013
.§ 1.00
S on Senders Receivers Action types
o«
S om (m=1) m=2 m*%
q:), 0.25
§ 000 T 't ¢ o o o o o . T T ? ® o o o o o o ! ¢ e e o o .
\&\%'5\1\‘1“{\ \S%P (,\x“\z = & .',)o}\'%% ' @.6‘“\ AR € »°°° S o & %@@@ w “’% o @6‘\ \,@0 @\Q\ > v‘°q = ¥ et o
& & [ %\z‘ & 5 o
\)‘\\V O
. 0
(b) Component inferred by the non-sparse PRGDS (ef) )= 1).
- ime steps
=,
o«
5
L
3
o
>
0
< Mar 1995 Nov 1996  Jul 1998  Mar 2000 Nov 2001  Jul 2003 ~ Mar 2005 Nov 2006  Jul 2008 ~ Mar 2010 Nov 2011  Aug 2013
= 100
f 075 Senders Receivers Actlon types
[ (m=1) (m=: (m g
; 000 T ¢ o o o o o o o o Tt ¢ ¢ o o o o o o ? %t ® o o o o o
\\\\%z Ku"“ z° o\‘ \35?*(}@0(3\07,’6 <« ,‘0%6 V\\ & ‘a‘\ 5\“‘0\ \9&(}\%@@;\“@ K2 ’(OQ?‘\%Q’DQOC) a\"‘z\(’o“r’ «a\ &?y @\Q\WQQ Q‘O&(‘ o (o
s\e“ (,o‘?’ S S g o S o

(c) Component inferred by the PGDS.

Figure 4: A component aligned across all three models that measures West African relations.
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