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Abstract

This paper introduces posterior mean match-
ing (PMM), a new method for generative
modeling that is grounded in Bayesian in-
ference. PMM uses conjugate pairs of dis-
tributions to model complex data of vari-
ous modalities like images and text, offer-
ing a flexible alternative to existing meth-
ods like diffusion models. PMM models it-
eratively refine noisy approximations of the
target distribution using updates from online
Bayesian inference. PMM is flexible because
its mechanics are based on general Bayesian
models. We demonstrate this flexibility by
developing specialized examples: a gener-
ative PMM model of real-valued data us-
ing the Normal-Normal model, a generative
PMM model of count data using a Gamma-
Poisson model, and a generative PMM model
of discrete data using a Dirichlet-Categorical
model. For the Normal-Normal PMM model,
we establish a direct connection to diffusion
models by showing that its continuous-time
formulation converges to a stochastic differ-
ential equation (SDE). Additionally, for the
Gamma-Poisson PMM, we derive a novel
SDE driven by a Cox process, which is a
significant departure from traditional Brown-
ian motion-based generative models. PMMs
achieve performance that is competitive with
generative models for language modeling and
image generation.

For further correspondence, please email {ssalazar,
michal}@lanl.gov.

1 Introduction

The goal of generative modeling is to use data {xxxi}ni=1

to produce new samples from a target distribution
p⋆(xxx). The challenge is that xxx is high dimensional
and p⋆(xxx) is complex (MacKay, 2003).

Here are some examples:

• The data are natural images; the target is the dis-
tribution of images found in the world; the goal is to
produce realistic images (Ho et al., 2020; Goodfellow
et al., 2014).

• The data are documents; the target is the distri-
bution of fluent language; the goal is to produce
coherent text (Vaswani, 2017).

• The data are gene sequences of proteins; the tar-
get is the distribution of stable proteins; the goal
is to produce new proteins with specific properties
(Watson et al., 2023).

• Probabilistic prediction in tabular data, where the
goal is to model the conditional distribution of
a response variable given a collection of features
(Beltran-Velez et al., 2024; Salazar, 2024).

In this paper, we develop posterior mean matching
(PMM), a new method of generative modeling that
is flexible enough to solve all of these problems. The
key property of PMM is that it is based on the ma-
chinery of online Bayesian inference. It inherits the
flexibility of Bayesian modeling, and so it is easy to
apply to many types of data and target distributions.

To develop PMM, we first posit a conjugate Bayesian
model and show how, in theory, it can be used to
sample exactly from the target p∗(xxx). We then show
how to use variational inference variational inference
to approximate a distribution that produces such ex-
act samples. PMM is flexible because it can employ
any conjugate Bayesian model in an inner routine.

We study PMM on images and text. For image gener-
ation, we develop a PMM method based on an under-
lying Gaussian/Gaussian model. We find that it pro-
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duces Frechet inception distance (FID) scores (Heusel
et al., 2017) that are comparable to most diffusion
models (Karras et al., 2022; Dhariwal and Nichol,
2021; Song et al., 2020). To apply PMM to text,
we simply swap the Gaussian model for a Dirichlet/-
Categorical. We find that the text-generating PMM
models offer competitive performance to diffusion non-
autoregressive language models (Lou et al., 2024; Sa-
hoo et al., 2024a; Shi et al., 2024).

Related Work. Generative modeling is an ac-
tive area of machine learning research. For images,
some popular methods include variational autoen-
coders (Kingma, 2013; Rezende et al., 2014), gener-
ative adversarial networks (Goodfellow et al., 2014),
normalizing flows (Dinh et al., 2014; Rezende and Mo-
hamed, 2015), autoregressive models (Van den Oord
et al., 2016), and diffusion models (Ho et al., 2020).
For text, the main method is the transformer-based
autoregressive models (Vaswani, 2017). PMM is a
contribution to this research area, providing an eas-
ily adaptable method for generative modeling, ap-
plicable to text, images, and many other types of
data. While on images PMM compares favorably
to diffusions, on text, its performance is competi-
tive with other non-autoregressive diffusion-based lan-
guage models (Austin et al., 2023; Lou et al., 2024;
Sahoo et al., 2024a; Shi et al., 2024). PMMs are also
related to diffusion models, we establish this technical
connection in Section 4.

Closest in spirit to PMMs is Bayesian flow nets (Graves
et al., 2024) (BFNs), which also use Bayesian methods
in the context of generative modeling. PMM is based
on exact sampling from the target, while BFNs are mo-
tivated by information theoretic principles. PMM pro-
vides a simpler algorithm than BFN, and performed
better in our studies of text data in Section 5.

Contribution. Posterior mean matching (PMM)
contributes to the field of generative modeling by of-
fering a unified and adaptable method grounded in
Bayesian inference. PMM easily applies to diverse
data types such as images, text, and count data.

2 Posterior Mean Matching

There are several ingredients to posterior mean match-
ing. Throughout, we assume that we are given a
dataset {xxx1, . . . ,xxxn} of i.i.d. samples from the target
distribution p∗(xxx).

Noisy observation model. The first ingredient is
the noisy observation model. It is a conditional dis-
tribution πα(yyy|xxx) that is easy to sample from (e.g., a
Gaussian, Poisson, Categorical). Samples from this
conditional are interpreted as noisy versions of xxx.

Augmented Target Distribution. We augment
the target distribution p∗(xxx) with the noisy observa-
tion model παs

(yyy | xxx) and define a joint distribution
over (xxx,yyy1:t), termed the augmented target distribu-
tion:

xxx ∼ p∗(xxx), (1)

ys | xxx
⊥∼ παs

(yyy | xxx), s = 1, . . . , t, (2)

p(xxx,yyy1:t) ≡ p∗(xxx)

t∏
s=1

παs(yyys | xxx). (3)

Where we have introduced a sequence of hyperparam-
eters α1, ..., αt, where αs can be interpreted as a pa-
rameter modulating the amount of noise in the sample
yyys (e.g., the precision parameter of a Normal distribu-
tion). The augmented model simply augments draws
xxx∗ from the target p∗(xxx) with a collection of noisy
observations yyy1, . . . , yyyt. Note the “prior” distribution
(1) of this generative process is the target distribution
p∗(xxx), which is not directly available.

Augmented Bayesian Model. The next ingredient
is the augmented Bayesian model. This model is iden-
tical to the augmented target distribution except that
the unknown target p∗(xxx) is replaced with a known
distribution π(xxx), that serves as a known “prior.” The
augmented Bayesian model is

xxx ∼ π(xxx), (4)

yyys | xxx
⊥∼ παs

(yyy | xxx), s = 1, . . . , t (5)

π(xxx,yyy1:t) ≡ π(xxx)

t∏
s=1

παs(yyys | xxx). (6)

We require the augmented Bayesian model to satisfy
the following three properties.

First, the posterior expectation Eπ(xxx|yyy1:t) must have
a known closed form. This is facilitated by pick-
ing a prior π(xxx) that is conjugate to the noise model
παs(yyy|xxx), e.g., a normal prior with a normal noisy ob-
servation model.

Second, the posterior mean must be consistent. Given
a collection of noisy samples yyys ∼ παs

(yyy|xxx∗) for s =
1, ..., t, we say that the posterior mean is consistent
if it eventually recovers the true xxx∗ that was used to
generate the noisy samples yyy1, ..., yyyt, namely

µµµt ≡ Eπ(xxx|yyy1:t)
a.s.→ xxx∗. (7)

All of the PMM models considered in this paper are
consistent (see Appendix for consistency proofs).

Finally, the augmented model must be amenable to on-
line Bayesian inference. This means that it is possible
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yyy1 yyy2 yyy3 · · ·

µµµ1 µµµ2 µµµ3 · · ·µµµ0

Figure 1: Diagram of the online Bayesian inference
update process. At each time step t, an observation
yyyt is incorporated to update the posterior mean µµµt.
The ellipsis (· · ·) indicates the iterative nature of the
updates, starting from the prior mean µµµ0.

Figure 2: Convergence of the posterior mean trajec-
tories µµµt to samples from the target xxx ∼ p∗(xxx) as
t increases for the Normal Posterior Mean Matching
(PMM) model. Refer to Figure C.1 in the Appendix
C for a more detailed view.

to write an update rule for the posterior mean

µµµt+1 = ft(µµµt, yyyt+1). (8)

Figure 1 diagrams online Bayesian inference.

Generative Modeling with online Bayesian In-
ference. With these ingredients—the augmented
target and the augmented model—we show how to use
augmented data from (3) and online Bayesian infer-
ence from the augmented Bayesian model (6) to pro-
duce a neural-network-based sampler from the target
distribution p∗(xxx).

We start by considering data from the augmented tar-
get distribution {xxx∗, yyy1, ..., yyyt}, which we generate by
taking a sample xxx∗ from the target distribution p∗(xxx)
and then producing a sequence of t noisy observations
yyy1:t using the noise model παt

(yyy|xxx). In practice, we
approximate the target distribution p∗(xxx) by taking a
random sample xxxi from our dataset {xxx1, ...,xxxn} of i.i.d.
samples from p∗(xxx).

Using the augmented sample {xxx∗, yyy1, ..., yyyt}, we con-
sider the sequence of posterior means µµµ1, ...,µµµt with re-
spect to the augmented Bayesian model; the sequence
of posterior means has the following properties:

• µµµ1, ...,µµµt is a sequence of random variables. Their
randomness is inherited from the noisy observation
model παt

(yyy|xxx).

• For all s ∈ {0, ..., t− 1}, it is easy to calculate µµµs+1

from µµµs and yyys+1 using online Bayesian inference.
This was one of the requirements of the augmented
Bayesian model.

• The limit limt→∞µµµt converges to xxx∗ — a sam-
ple from the target distribution p∗(xxx). This is a
consequence of the consistency of the posterior ex-
pectation, another requirement of the augmented
Bayesian model.

These three properties suggest a strategy to draw sam-
ples from the target p∗(xxx).

1. Obtain a sample {xxx∗, yyy1, ..., yyyt} and throw away xxx∗.
This results in a sequence yyy1, ..., yyyt, that is viewed
as a sample from the marginal distribution of the
augmented target (3).

2. Using the augmented Bayesian model, compute the
sequence of posterior means µµµ1, ...,µµµt using online
Bayesian Inference. It is worth highlighting that
the expectation is defined using the augmented
Bayesian model of equation (6), while the data yyy1:t
used to compute this expectation, are random vari-
ables drawn from the marginal distribution of the
augmented target (3).

3. Because this sequence is consistent, for t large
enough µµµt ≈ xxx∗. In other words, the posterior mean
µµµt is effectively a sample from the target distribu-
tion p∗(xxx).

This logic implies that sampling from the target dis-
tribution p∗(xxx) reduces to sampling µµµt from the joint
distribution of posterior means p(µµµ1, ...,µµµt).

We illustrate sample trajectories µµµ1, ...,µµµt in Figure 2,
where the target is a bimodal distribution. We can see
that µµµt converges to samples from the target p∗(xxx).

Approximately Sampling from the Target. In
practice, the joint distribution p(µµµ1, . . . ,µµµt) is in-
tractable to sample from exactly. So, we sample from
the target by approximating the joint distribution of
posterior means, and taking samples of µµµt.

We approximate p(µµµ1, . . . ,µµµt) by introducing a fam-
ily of distributions qφφφ(µµµ1, . . . ,µµµt) and minimizing the
following objective function:

LPMM(φφφ) = KL(p(µµµ1, . . . ,µµµt)∥qφφφ(µµµ1, . . . ,µµµt)). (9)

The form of qφφφ(µµµ1:t) is motivated by mechanics of on-



Posterior Mean Matching: Generative Modeling through Online Bayesian Inference

Algorithm 1 Sampling p∗(xxx) from a fitted PMM

1: Initialize: Set µµµ0 to the prior mean.
2: for s = 1 to t do
3: Compute x̂xxs ← gφφφ(µµµs−1, s)
4: Sample ŷ̂ŷys ∼ παs

(yyy | x̂xxs)
5: Update µµµs using the online Bayesian Inference

update rule µµµs = fs(µµµs−1, ŷ̂ŷys)
6: end for
7: Output: Return µµµt

line Bayesian inference and is defined implicitly:

ŷ̂ŷyt+1 ∼ παt+1(yyy | gφφφ(µµµt, t)) (10)

µµµt+1 = ft(µµµt, ŷ̂ŷyt+1). (11)

Here, gφφφ is a flexible function parameterized with a
neural network. Given data, we learn the neural net-
work gφφφ by minimizing the PMM objective in Equa-
tion (9). Once fit, we can obtain approximate samples
from the target distribution p∗(xxx) by iteratively apply-
ing equations (10) and (11). This sampling procedure
is detailed in Algorithm 1.

3 Examples of PMM Models

We now work out the components of posterior
mean matching using three conjugate pairs of dis-
tributions: Normal-Normal, Gamma-Poisson, and
Dirichlet-Categorical models. These models are suit-
able for real-valued, positive, and text data, respec-
tively.

3.1 Normal-Normal PMM: a generative
model of real-valued data

Data Representation. This section concerns the
Normal-Normal PMM, a generative model designed to
model real-valued data. This boils down to assuming
that samples from the target distribution p∗(xxx) are
vectors in Rd.

Augmented Target Distribution. The Normal-
Normal PMM posits a noisy observation model that
corrupts samples xxx∗ from the target distribution p∗(xxx)
through additive Gaussian noise yyyt ∼ N (xxx∗, α−1

t I).
This noisy observation model defines the following
augmented target distribution

p(xxx,yyy1:t) ≡ p∗(xxx)
∏
s

N (yyys;xxx, α
−1
s I) (12)

In this context, the precision parameter αt modulates
the level of corruption in the noisy observations.

Augmented Bayesian Model. Suppose we are
given a sample yyy1:t from the marginal distribution of

the augmented target

p(yyy1:t) =

∫
p∗(xxx)

∏
s

N (yyys;xxx, α
−1
s I)dxxx. (13)

Based on equations (12) and (13) we know that there
exists an xxx∗, that is a sample from p∗(xxx) such that
yyys ∼ N (xxx∗, α−1

s I). However, we only assume that yyy1:t
is given to us—the mean parameter xxx∗ of these normal
distributions is kept hidden. We infer xxx∗ by using a
Normal-Normal augmented Bayesian model

xxx ∼ N (000, β−1I) (14)

yyys|xxx, α−1
s ∼ N (xxx, α−1

s I). (15)

Online Bayesian Inference Update. It is possible
to calculate the posterior mean in the Normal-Normal
model using the following update rule (see Appendix
A.2.1)

µµµt|µµµt−1, yyyt =
β +

∑t−1
s=1 αs

β +
∑t

s=1 αs

µµµt−1 +
αtyyyt

β +
∑t

s=1 αs

(16)

where yyyt ∼ N (xxx, α−1
t I). The following theorem rig-

orously establishes the convergence of this posterior
mean to xxx∗.

Theorem 1. (Concentration of posterior mean) Let
{yyy1, . . . , yyyt} be observations generated according to
equation (13). Suppose αt a known, positive, increas-
ing sequence satisfying limt→∞ αt = ∞. Then, the
posterior mean µµµt of the Bayesian model in equations
(14) and (15) is consistent, namely:

lim
t→∞

µµµt = xxx, almost surely, (17)

with respect to the joint distribution of (xxx,yyy1, yyy2, . . .)
in equation (12).

Theorem 1 establishes the correctness of the approx-
imate sampling scheme shown in Algorithm 1 for the
Normal-Normal model, which implies that in the limit,
the posterior mean of this Bayesian model is effectively
a sample from the target p∗(xxx). A visual demonstra-
tion of Theorem 1 is shown in Figure 2.

Putting together all of these components we now show
how to compute the PMM objective for this model.

Normal-Normal Posterior Mean Matching Ob-
jective. Using the online Bayesian Inference update,
we approximate the posterior mean updates of equa-
tion (16) using a Neural Network gφφφ as in equations
(10) and (11) as follows

ŷyys ∼ N (gφφφ(µµµs−1, s), α
−1
s ) (18)

µµµt|µµµt−1 =
β +

∑t−1
s=1 αs

β +
∑t

s=1 αs

µµµt−1 +
αtŷyyt

β +
∑t

s=1 αs

(19)
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Substituting (16) and (19) into the PMM objective we
obtain (see appendix A.2.3)

LPMM(φφφ) ∝ t · Es∼U({1,...,t})
xxx∼p∗(xxx)
µµµs−1|xxx

αs∥xxx− gφφφ(µµµs−1, s)∥22

(20)

3.2 Dirichlet-Categorical PMM: a generative
model of text

Data Representation. In this section, we develop
a Dirichlet-Categorical PMM to model a collection of
text documents. This boils down to assuming that
samples from the target distribution p∗(XXX) come from
a discrete, finite space. Specifically, we represent each
document in a corpus as a sequence of tokens X∗ =
(x1, . . . ,xC), where each token xc ∈ {0, 1}V ∩∆V−1 is
one-hot encoded from a fixed vocabulary of size V .

Augmented Target Distribution. For every doc-
ument XXX = (xxx1, ...,xxxC), suppose we generate a se-
quence of noisy documents YYY 1, ...,YYY T according to the
following generative process:1

(xxx1, ...,xxxC) ∼ p∗(xxx1, ...,xxxC), (21)

yyytc|xxxc, αtc ∼ CatV+1

(
αtcx

(1)
c , ..., αtcx

(V )
c , 1− αtc

)
.

(22)

Here, the V + 1th token of the categorical random
variable in equation (22) should be thought of as a
<mask> token, representing missing data in the noisy
observations of a document, and wtc ∈ [0, 1] represents
the probability that a token at position c is unmasked
at time t.

Augmented Bayesian Model. A sample from
the marginal distribution induced by augmented tar-
get distribution of equations (21) and (22) consists of a
sequence of noisy versions YYY 1, ...,YYY t of a documentXXX.
It is possible to infer XXX with the marginal samples of
this noisy observation model using the following aug-
mented Bayesian model.

(xxx1, ...,xxxC) ∼iid DirV (1/K), (23)

yyytc|xxxc, αtc ∼ CatV+1

(
αtcx

(1)
c , ..., αtcx

(V )
c , 1− αtc

)
.

(24)

Online Bayesian Inference: Encoding Prior
Knowledge with a Non-Informative Prior. We
present the online Bayesian update rule assuming a
non-informative Dirichlet Prior (i.e. taking K → ∞
in (23)). The purpose of this choice is twofold:

1. A non-informative Dirichlet prior pushes mass
towards the vertices of the probability simplex

1Where YYY t = (yyyt1, ..., yyytC) with yyytc ∈ {0, 1}V +1 ∩∆V

{0, 1}V ∩∆V−1; since we know that documents are
represented by vertices of the probability simplex,
this effectively encodes prior knowledge about the
generative process directly into the noisy observa-
tion model. Encoding prior knowledge about the
data this way is a noticeable advantage of PMMs
that is not present in other generative modeling
frameworks.

2. It simplifies the posterior mean dynamics which are
given by (more details in section A.3.1 of the ap-
pendix)

µµµsc|(µµµs−1,c =
1V

V
,xxx) =

{
yyy
(1:V )
sc , if yyy

(1:V )
sc ̸= 000

1V

V , if yyy
(1:V )
sc = 000

(25)

d
=

{
Cat(xxxc) w/prob αtc

1V

V w/prob 1− αtc

(26)

µµµtc|(µµµt−1,c ̸=
1V

V
,xxx) = µµµt−1,c. (27)

We use these updates to derive the PMM objective.

Dirichlet-Categorical Posterior Mean Matching
Objective. As before, we approximate the online
Bayesian inference updates from equations (26) and
(27), using a neural network.

x̂xxtc = gφφφ(µµµt−1, t) (28)

ŷyysc ∼ CatV+1(αscx̂
(1)
c , ..., αtcx̂

(V )
c , 1− αtc)

(29)

µµµsc|(µµµs−1,c =
1V

V
) =

{
Cat(x̂̂x̂xtc) w/prob αtc

1V

V w/prob 1− αtc

.

(30)

Substituting (26) and (30) into the PMM objective,
we obtain (see appendix A.3.1)

LPMM(φφφ) ∝

−
∑
c

tEs∼U({1,...,t})
xxx∼p∗(xxx)
µµµs−1|xxx

1

(
µµµt−1,c =

1V

V

)
αtc log g

(xc)
φφφ (µµµt−1)c

(31)

A continuous-time PMM objective for the
Dirichlet Categorical Model. It is relatively
straightforward to generalize the PMM objective of
the Dirichlet-Categorical model to a continuous-time
formulation. This generalization is obtained by taking
the continuum limit. We defer the technical details of
this formulation to Appendix A.3.4).
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3.3 Posterior Mean Matching with Other
Conjugate Pairs

In general, it is possible to apply the same logic
we used to derive the Normal-Normal and Dirichlet-
Categorical PMMs to other conjugate Bayesian mod-
els. Conjugacy is a powerful tool since it allows us
to compute the posterior mean of a Bayesian model
in closed form. We believe that generalizing Posterior
Mean Matching to situations where the posterior mean
is not available in closed form represents an exciting
avenue for future work. Now that we are equipped
with all of the tools necessary to derive PMM models,
we briefly state the components of a Gamma-Poisson
PMM below and defer the development of the Inverse
Gamma-Gamma model to the Appendix.

Data Representation. The Gamma-Poisson model
is suitable to model target distributions p∗(xxx) of posi-
tive or count data.

Augmented Target Distribution. Given a sam-
ple from the target xxx ∼ p∗(xxx), we consider the follow-
ing noisy observation model yyyt|xxx ∼ Pois(αtxxx). These
components completely specify the augmented target
distribution p(yyy1:t) =

∫
p∗(xxx)

∏
s Pois(yyyt;αtxxx)dxxx.

Augmented Bayesian Model. Given a noisy sam-
ple yyy1:t from the marginal distribution p(yyy1:t), it is pos-
sible to recover the sample from the target xxx∗ ∼ p∗(xxx)
by using a Bayesian model with prior xxx ∼ Γ(β1, β2)
and likelihood yyyt|xxx ∼ Pois(αtxxx).

Online Bayesian Inference Update. For the
Gamma-Poisson PMM model the online Bayesian In-
ference update is given by

µµµs|µµµs−1,xxx
d
=

β2 +
∑s−1

k=1 αk

β2 +
∑s

k=1 αk
µµµs−1 +

αsyyys
β2 +

∑s
k=1 αk

,

(32)

where yyys ∼ Pois(αtxxx).

4 Diffusion Models and SDEs

Theorem 1 establishes that the posterior mean µµµt con-
verges to the true observation xxx as more observations
are incorporated. Intuitively, the iterative refinement
of online Bayesian inference is analogous to the de-
noising steps of diffusion models, where each step in-
crementally reduces noise to approach the underlying
data distribution. Here we formalize this intuition by
mathematically connecting PMMs and stochastic dif-
ferential equations (SDEs).

Specifically, the Bayesian update in the Normal-
Normal PMM model can be interpreted as a discrete-
time step in a type of diffusion process, with the pos-

terior mean µµµt acting as the denoising function steer-
ing towards the sample xxx from the target distribution
p∗(xxx). Although the continuous-time formulation of
the Normal-Normal PMM is, strictly speaking, a dif-
fusion process, we want to emphasize that the behav-
ior and functional form of the SDEs are different from
those typically appearing in the literature on diffusion
models (Song et al., 2020). We connect the Normal-
Normal PMMmodel to SDEs in the following theorem.

Theorem 2. (Online Bayesian Inference as a
Diffusion Process) Consider the update rule for the
posterior mean µµµt given by (16). Let f : [0, 1]→ R+ be

a monotonic function such that limt→1

∫ t

0
f(τ)dτ →∞

and consider a partition of the unit interval 0 = t1 <
t2 < . . . < tT = 1 . Moreover, define the sequence
α1, . . . , αT in (15) by αs = f(ts)δts. In the limit as
T → ∞ and δts → 0, the discrete updates of (16)
converge to a diffusion process defined by the following
Stochastic Differential Equation (SDE):

dµµµ(t) = f(t)
(xxx−µµµ(t))

b+
∫ t

0
f(τ) dτ

dt+

√
f(t)

b+
∫ t

0
f(τ) dτ

dWWW t,

(33)

xxx ∼ p∗(x). (34)

What is surprising is that the continuous-time formu-
lation of the Gamma-Poisson PMM model is also re-
lated to SDEs.

Theorem 3. (Gamma-Poisson SDE) Consider the
update rule of the posterior mean µt for the Gamma-
Poisson PMM shown in equation (32). Let f : [0, 1]→
R+ and consider 0 = t1 < t2 < . . . < tT = 1 a
partition of the unit interval. Moreover, define the
sequence α1, . . . , αT of the Gamma-Poison PMM by
αs = f(ts)δts. In the continuum limit T → ∞ and
maxs δts → 0, we have that the discrete updates of µµµt

converge to a Merton jump process characterized by
the following Stochastic Differential Equation (SDE):

dµµµ(t) =

(
L′(t) +

A′(t)

A(t)
(µµµ(t)− L(t))

)
dt+A(t)dNNN(t).

(35)

Where NNN(t) is a Cox Process with random base
measure xxxdt with xxx ∼ p∗(xxx), and A(t) = (β2 +∫ t

0
f(τ)dτ)−1 and L(t) = β1(β2 +

∫ t

0
f(τ)dτ)−1.

The proof is in the Appendix. Theorem 3 marks a sig-
nificant departure from traditional Brownian motion-
based generative models that typically appear in the
literature on diffusion models (Song et al., 2020).

The Computation / Quality Trade-off. The
connections between PMMs and SDEs established in
Theorems 2 and 3 allow PMM models to use numerical
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techniques that have been developed to solve stochas-
tic differential equations over many decades. This con-
nection to SDEs allows us to interpret algorithm 1
as using the Euler-Maruyama method to numerically
sample paths from an SDE. In the experiments of Sec-
tion 5, we use this connection to SDEs to trade com-
pute for sample quality.

5 Experiments

We evaluate the performance of Posterior Mean
Matching (PMM) models on image and text gener-
ation tasks. For image generation, we train Normal-
Normal and Gamma-Poisson PMMs on three bench-
mark datasets: CIFAR-10 (Krizhevsky et al., 2009),
FFHQ-64 (Karras et al., 2019), and AFHQv2-64 (Choi
et al., 2020). For our text experiments, we evaluate
the performance of a Dirichlet-Categorical PMM on
the text8 and OpenWebText dataset (Gokaslan and
Cohen, 2019; Mahoney, 2011). The following is a sum-
mary of our findings:

• The Normal-Normal PMM achieves a competitive
FID score of 2.18 on CIFAR-10, an FID score that
is comparable to most diffusion models.

• The Gamma-Poisson PMM achieves an FID score
of 4.36 on CIFAR-10. This score is lower than
other diffusion models based on the Poisson like-
lihood (Chen and Zhou, 2023; Santos et al., 2023).

• Using the SDE interpretation of PMMs, we show
that the FID scores of the Normal PMM degrade
marginally when using a reduced number of function
evaluations. Notably, on CIFAR-10 decreasing the
number of function evaluations from 5000 to 166 (a
factor of 30) reduces the FID score from 2.18 to 2.79.

• On OpenWebText the Dirichlet-Categorical PMM
achieves a generative perplexity of 37.06 and 42.58
using top-350 and top-500 sampling, respectively,
demonstrating performance on par with current
non-autoregressive diffusion-based language models
(Lou et al., 2024; Sahoo et al., 2024a; Shi et al.,
2024).

• On text8, PMM achieves a bits per character (BPC)
of 1.29, better than non-autoregressive language
models based on diffusion. It narrows the gap to au-
toregressive language models, which achieve a BPC
of 1.23.

5.1 Image Generation Tasks

Neural Network Architecture. In all of our ex-
periments, we use an open-source implementation of
the DDPM++ architecture (Karras et al., 2022; Dhari-
wal and Nichol, 2021).

Table 1: If FID scores are available for different
sources, we report both scores (lower is better). The
FID scores for these models may be found in Karras
et al. (2022); Song et al. (2020). All of our experiments
make use of class conditioning. The Normal-Normal
PMM also uses adaptive data augmentation.

Method Cifar-10 FFHQ-64 AFHQv2-64

DDPM 3.17 – –

DDPM++ 2.78 – –

DDPM ++ (VP) 2.18∗/2.55 3.13∗ 2.43∗

DDPM ++ (VE) 2.48∗ 22.53∗ 23.12∗

NSCN++ (VE) 2.38 – –

NCSN ++ (VE, deep) 2.20 – –

DDPM++ (VP, deep) 2.41 – –

PFGM 2.48∗ – –

PFGM, deep 2.35∗ – –

Style GAN w/ADA 2.42 – –

SOTA Diffusion 1.79 2.39 1.96

Normal PMM (ours) 2.18 3.41 2.48

NFE: Neural Function Evaluations.
(deep): Methods with this marker use deeper networks.
*: Indicates use of a higher order solver like RK-45 or
Heun.

Table 2: FID scores for the Normal-Normal PMM as
a function of neural function evaluations (NFEs).

Method / NFE 100 166 500 1k 3k 5k

Cifar10 3.98 2.79 2.46 2.33 2.28 2.18

AFHQ-v2 – 3.04 2.62 2.52 2.48 –

FFHQ – 5.76 3.89 3.65 3.41 –

Discussion. The results of our experiments are
shown in Table 1. Unless otherwise stated, the meth-
ods in Table 1 use very similar Neural Network ar-
chitectures to the ones used in our experiments. A
notable exception to this rule is Style-GAN (Karras
et al., 2019). We report the performance of Style-GAN
to paint a more complete picture of the performance of
state-of-the-art models that are not based on diffusion.

We measure the quality of the generated images by
computing the FID score on a sample of 50, 000 im-
ages. We also evaluate the Normal-Normal PMM
on AFHQ-v2 and FFHQ-64, two higher-resolution
datasets consisting of images of animals and humans,
respectively. The performance of the Normal-Normal
PMM on these datasets is also comparable to other
popular diffusion models (see Table 1).

We compare the performance of the Gamma-Poisson
PMM against other Poisson diffusion models. The
Gamma-Poisson PMM achieves an FID score of 4.36,
which is a better score than previous generative mod-
els that use the Poisson distribution. The details of the
Gamma-Poisson model are shown in Appendix. In all
of our image generation experiments, we choose an ex-
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(a) CIFAR 10 samples. FID = 2.46 with 500 NFEs

(b) FFHQ samples. FID = 3.89 with 500 NFEs

Figure 3: Comparison of sample generations for the
Normal-Normal PMM model across CIFAR10 and
FFHQ datasets. See Appendix C for a larger sam-
ple of generated images.

ponential schedule for the αt’s in the noise model (see
Appendix B.1.2)

5.2 Language Modeling Tasks

For the text experiments, we fit a continuous-
time Dirichlet-Categorical PMM model using a non-
informative prior on two datasets: text8 and Open-
WebText. The text8 dataset consists of the first 100M
characters of cleaned English Wikipedia text, while
OpenWebText is a large-scale corpus derived from web
pages shared on Reddit with high engagement. On
text8 we find that the Dirichlet-Categorical PMM out-
performs all of the existing non-autoregressive base-
lines (see Table 3). Dirichlet-Categorical PMMs also
achieve competitive Generative Perplexity on Open-
WebText compared to other non-autoregressive (see
Table 4).

Language Modeling We evaluate our Dirichlet-
Categorical PMM against several baselines, includ-
ing traditional autoregressive models and recent non-
autoregressive approaches. On the text8 dataset, our
model achieves a bits per character (BPC) of 1.29.

Unconditional Language Generation Following
previous work (Lou et al., 2024; Sahoo et al., 2024a),
we assess the quality of unconditional text output
by computing generative perplexity relative to the
gpt2-large language model (Radford et al., 2019).
While generative perplexity is a standard metric for
evaluating traditional autoregressive language mod-
els, its estimation for non-autoregressive models is
more complex due to their inherently different gen-

Table 3: Bits per Character (BPC) Performance

Model BPC

Autoregressive (GPT-2) 1.23

D3PM (Uniform) 1.61

D3PM (Absorb) 1.45

SEDD (Absorb) 1.39

Bayesian Flow Nets 1.41

GenMD4 1.34

Dirichlet-Categorical PMM (Ours) 1.29

Table 4: Generative Perplexity (PPL) measured at
context length (CL) 1024 relative to GPT-2 large.

Model PPL

AR 20.98

SEDD 30.96

MDLM 31.69

Dirichlet-Categorical PMM 42.58

eration processes. To ensure a fair comparison, we
sample tokens using top-500 sampling and generate
1024 sequences of length 1024 from each model, us-
ing at most 1000 network evaluations for the non-
autoregressive models. The resulting generative per-
plexities are shown in Table 4. where our model at-
tains a competitive generative perplexity 2 with other
non-autoregressive models.

While this is an exciting finding, it is important to
note that evaluating unconditional non-autoregressive
language models remains challenging, and it is known
that benchmarks like generative perplexity are suscep-
tible to manipulation through temperature annealing
techniques (Lou et al., 2024). For this reason, we en-
courage readers to qualitatively assess the text gener-
ation capabilities of each model themselves by looking
at the samples provided in the Appendix. These sam-
ples showcase our model’s ability to generate coherent
and diverse text across various topics and styles.

6 Conclusion and Future Work

In this paper, we introduced Posterior Mean
Matching (PMM), a novel and flexible framework
for generative modeling grounded in Bayesian infer-
ence. PMM leverages conjugate pairs of distributions
to model complex data distributions across various
modalities, offering an alternative to traditional dif-
fusion models. Through comprehensive experiments,
we demonstrated the efficacy of PMM in both image
and language generation tasks.

2PMM results were obtained using a different tokenizer,
a smaller model with gpt2-based architecture, and without
applying exponential moving averages (EMA).
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Supplementary Materials

A Appendix: Details for PMM Models

In this section we ouline the details for the following PMM models

• Normal-Normal

• Gamma-Poisson

• Dirichlet-Categorical

• InverseGamma-Gamma

For each of these models we work out the following

1. The online Bayesian update.

2. A proof of consistency.

3. The closed-form of the PMM objective.

4. If applicable, a continuous time formulations and/or connections to stochastic differential equations.

All of the Bayesian models we consider form conjugate pairs in the exponential family.

We summarize these details in Table in Section A.1.
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A.1 Reference Table
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A.2 Normal-Normal Model

A.2.1 Online Bayesian Update

For the Normal-Normal Bayesian model:

xxx ∼ N (000, β−1I) (36)

yyys|xxx ∼ N (xxx, α−1
s I), ∀s ∈ {1, ..., t} (37)

the posterior distribution under this model is given by

p(xxx|yyy1, . . . , yyyt) = N

xxx

∣∣∣∣∣
∑t

i=1 αiyyyi

β +
∑t

i=1 αi

,

(
β +

t∑
i=1

αi

)−1

I

 (38)

From this we can read off the posterior mean

µµµt
d
=

∑t
i=1 αiyyyi

β +
∑t

i=1 αi

. (39)

The above expression can further be rewritten as

µµµt =

∑t−1
i=1 αiyyyi

β +
∑t

i=1 αt

+
αt

β +
∑t

i=1 αt

yyyt (40)

=
β +

∑t−1
i=1 αt

β +
∑t

i=1 αt

µµµt−1 +
αt

β +
∑t

i=1 αt

yyyt (41)

giving us the online Bayesian update from Equation 16.



Posterior Mean Matching: Generative Modeling through Online Bayesian Inference

A.2.2 Consistency of the Normal-Normal Model

Theorem A.1. (Concentration of posterior mean) Let {yyy1, . . . , yyyt} be observations generated according to equa-
tion (13). Suppose αt a known, positive, increasing sequence satisfying limt→∞

∑t
s=1 αs = Ω(t1+η) for all η > 0.

Then, the posterior mean µµµt of the Bayesian model in equations (14) and (15) is consistent, namely:

lim
t→∞

µµµt = xxx, almost surely, (42)

with respect to the joint distribution of (xxx,yyy1, yyy2, . . .) in equation (12).

Proof. We give a proof for the one dimensional case with the understanding that it extends to the multidi-
mensional case by applying the same argument to each coordinate individually. The posterior mean under this
Bayesian Model is given by

µt ≡ E(x|y1:t) (43)

=

∑t
s=1 αsys

b+
∑t

s=1 αs

(44)

= N

( ∑t
s=1 αs

β +
∑t

s=1 αs

x,

∑t
s=1 αs

(β +
∑t

s=1 αs)2

)
(45)

Assuming that
∑t

s=1 αs → ∞, it we see that
∑t

s=1 αs

β+
∑t

s=1 αs
→ 1 while

∑t
s=1 αs

(β+
∑t

s=1 αs)2
→ 0. Putting these two things

together we see that the mean of E(µt)→ x and Var(µt)→ 0. This implies that µt
P→ x.

To obtain almost sure convergence, consider the event At = {|µt − atx| > ϵ} where at =
∑t

s=1 αs

β+
∑t

s=1 αt
→ 1. Using

Chebyshev’s inequality, we obtain

P(At) ≤ ϵ−2Var(µt) (46)

= ϵ−2

∑t
s=1 αs

(β +
∑t

s=1 αs)2
(47)

= ϵ−2O

( t∑
s=1

αs

)−1
 (48)

= ϵ−2O

(
1

t1+η

)
(49)

Thus, there’s a constant C such that ∑
t

P(At) ≲ ϵ−2
∑
s

1

s1+η
(50)

= Cϵ−2ζ(1 + η) (51)

<∞ (52)

Where ζ is the Riemann-Zeta function. By the Borel-Cantelli lemma, it follows that with probability 1, the
events At happen for at most finitely many t. In other words, for all ϵ > 0, there is a T such that for all t > T ,
|µt − atx| < ϵ. Therefore limt→∞ |µt − atx| = limt→∞ |µt − x| < ϵ. Since ϵ is an arbitrary real number, it follows

that limt→∞ |µt − x| = 0 with probability 1, namely µt
a.s→ x, as desired.
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A.2.3 PMM Objective

The PMM objective for the Normal-Normal model is proportional to

LPMM(φφφ) =

∫
p(µµµ1, ...,µµµt) log

p(µµµ1, ...,µµµt)

qφφφ(µµµ1, ...,µµµt)
dµµµ1:t (53)

∝ −
∫

p(µµµ1, ...,µµµt) log qφφφ(µµµ1, ...,µµµt)dµµµ1:t (54)

= −
∫ ∫

p(xxx,µµµ1, ...,µµµt) log qφφφ(µµµ1, ...,µµµt)dµµµ1:t (55)

= −Exxx∼p∗(xxx)Eµµµ1:t|xxx log

t∏
s=1

qφφφ(µµµs|µµµs−1) (56)

= −Exxx∼p∗(xxx)

∑
s

Eµµµs,µµµs−1|xxx log qφφφ(µµµs|µµµs−1) (57)

From Section A.2.1 we know that

µµµs−1|xxx
d
=

∑s−1
k=1 αkyyyk

β +
∑s−1

k=1 αk

(58)

Since yyyk ∼ N (xxx, α−1
k I), it follows that

µµµs−1|xxx
d
=

∑s−1
k=1 αkN (xxx, α−1

k I)

β +
∑s−1

k=1 αk

(59)

=
N
(∑s−1

k=1 αkxxx,
∑s−1

k=1 αkI
)

β +
∑s−1

k=1 αk

(60)

= N

( ∑s−1
k=1 αk

β +
∑s−1

k=1 αk

xxx,

∑s−1
k=1 αk

(β +
∑s−1

k=1 αk)2
I

)
(61)

Moreover, using the online update of equation 40 the conditional distribution of µµµt given µµµt−1 and xxx is given by

µµµs|µµµs−1, yyys =
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

αsyyys
β +

∑s
k=1 αk

(62)

d
=

β +
∑s−1

k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

αsN (xxx, α−1
s I)

β +
∑s

k=1 αk
(63)

=
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

N (αsxxx, αsI)

β +
∑s

k=1 αk
(64)

= N

(
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

αs

β +
∑s

k=1 αk
xxx,

αs

(β +
∑s

k=1 αk)2

)
(65)

Using this, the distribution of qφφφ(µµµs|µµµs−1) defined by equations (10) and (11) is given by

µµµs|µµµs−1
d
=

β +
∑s−1

k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

N (αsgφφφ(µµµs−1, t), αs)

β +
∑s

k=1 αk
(66)

d
= N

(
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

αs

β +
∑s

k=1 αk
gφφφ(µµµs−1, s),

αs

(β +
∑s

k=1 αk)2

)
(67)

Substituting these into the PMM objective we obtain

LPMM(φφφ) = −Exxx∼p∗(xxx)

∑
s

Eµµµs,µµµs−1|xxx log qφφφ(µµµs|µµµs−1) (68)

= Exxx∼p∗(xxx)

∑
s

Eµµµs,µµµs−1|xxx
(β +

∑s
k=1 αk)

2

αs

∥∥∥∥∥µµµs −
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 −

αsgφφφ(µµµs−1, s)

β +
∑s

k=1 αk

∥∥∥∥∥
2

2

(69)
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Using the reparametrization trick, we substitute

µµµs|µµµs−1,xxx =
β +

∑s−1
k=1 αk

β +
∑s

k=1 αk
µµµs−1 +

αsxxx

β +
∑s

k=1 αk
+

√
αs

β +
∑s

k=1 αk
ϵϵϵs (70)

into the loss to obtain

LPMM(φφφ) = Exxx∼p∗(xxx)

∑
s

Eµµµs−1|xxxEϵϵϵs∼N (0,I)
(β +

∑s
k=1 αk)

2

αs

∥∥∥∥ αs

β +
∑s

k=1 αk
(xxx− gφφφ(µµµs−1, s)) +

√
αs

β +
∑s

k=1 αk
ϵϵϵs

∥∥∥∥2
2

(71)

∝ Exxx∼p∗(xxx)

∑
s

Eµµµs−1|xxxEϵϵϵs∼N (0,I)
(β +

∑s
k=1 αk)

2

αs

∥∥∥∥ αs

β +
∑s

k=1 αk
(xxx− gφφφ(µµµs−1, s))

∥∥∥∥2
2

(72)

= Exxx∼p∗(xxx)

∑
s

Eµµµs−1|xxxαs∥xxx− gφφφ(µµµs−1, s)∥22 (73)

= t · Es∼U({1,...,t})Exxx∼p∗(xxx)Eµµµs−1|xxxαs∥xxx− gφφφ(µµµs−1, s)∥22 (74)

For the schedules that we use in this paper, this objective assigns less weight to timesteps containing less
information about xxx (i.e. those with large αs)

We parametrize the neural network using gφφφ(µµµs−1, s) =
(β+

∑s
k=1 αk)∑s

k=1 αk
µµµt−1 − 1√∑s

k=1 αk

ϵφφφ(µµµt−1, t). This

parametrization is given motivated by using the reparametrization trick to establish a relationship between

xxx and µµµs−1, which is given by xxx =
β+

∑s−1
k=1 αk∑s−1

k=1 αk
µµµs−1 − 1√∑s−1

k=1 αk

ϵϵϵ where ϵϵϵ ∼ N (0, I). Using this parametrization

the PMM objective is given by

LPMM(φφφ) ∝ t · Es∼U({1,...,t})Exxx∼p∗(xxx)Eµµµs−1|xxx
αs∑s
k=1 αk

∥ϵϵϵ− ϵϵϵφφφ(µµµs−1, s)∥22 (75)

For simplicity, the experiments in this paper drop the αs∑s
k=1 αk

weighting factor and rewrite the PMM loss.

LPMM reweighted(φφφ) = t · Es∼U({1,...,t})Exxx∼p∗(xxx)Eµµµs−1|xxx

s∑
k=1

αk∥xxx− gφφφ(µµµs−1, s)∥22 (76)

= t · Es∼U({1,...,t})Exxx∼p∗(xxx)Eµµµs−1|xxx∥ϵϵϵ− ϵϵϵφφφ(µµµs−1, s)∥22 (77)

When αs is a positive increasing sequence, this weighting scheme is very similar to the original PMM objective
in the sense that timesteps containing less information about xxx recieve less weight. Empirically, we found this
modification of the loss to simplify implementation and to have a negligible effect on sample quality. To see why
it simplifies implementation, consider the noise schedule used in our experiments

N := Number of posterior mean updates (i.e. 3000 or 5000). (78)

αs =
13

250
e13tsδt (79)

δt = 1/N (80)

ts = s/N (81)
s∑

k=1

αs ≈
∫ s

0

13

250
e13tdt =

1

250
(e13t − 1) (82)

Thus, we have that

αs

13δt
≈

s∑
k=1

αs +
1

250
≈

s∑
k=1

αs. (83)

Now, note that

η∇gφφφLPMM = ηαs(xxx− gφφφ) = η
13

250
e13tδt(xxx− gφφφ) (84)

∇gφφφLPMM reweighted =

s∑
k=1

αs(xxx− gφφφ) ≈
1

250
e13t(xxx− gφφφ) (85)
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Thus, choosing η = (13δt)−1, we see that η∇gφφφLPMM ≈ ∇gφφφLPMM reweighted. However, note that ∇gφφφLPMM

depends on the resolution δt used to approximate the sum in equation (82) with an integral. The reason this
simplifies the implementation of PMMs is that the gradient of the objective ∇LPMM(φφφ) using the exponential
weighting of equation (79) depends on δt. This means that the training dynamics depend on the number of
posterior mean updates. However, replacing the factor of αs with the corresponding sum

∑s
k=1 αk, gets rid of

this dependency. This makes the training dynamics less sensitive to the choice of the learning rate, which is why
we use the reweighted version of the PMM loss in our experiments. However, we want to emphasize that this
choice implicitly corresponds to a simple adjustment of the learning rate.
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A.2.4 Connection to SDEs and Diffusion

Theorem A.2. (Online Bayesian Inference as a Diffusion Process)
Consider the update rule for the posterior mean µt given by (86):

µµµt =
b+

∑t−1
s=1 αs

b+
∑t

s=1 αs

µµµt−1 +
αt

b+
∑t

s=1 αs

yyyt. (86)

Let f : [0, 1] → R+ and consider 0 = t1 < t2 < . . . < tT = 1 a partition of the unit interval. Moreover, define
the sequence α1, . . . , αT from (37) by αs = f(ts)δts. In the limit as T →∞ and δts → 0, the discrete updates of
(86) converge to a diffusion process defined by the following Stochastic Differential Equation (SDE):

dµµµ(t) = f(t)
(xxx−µµµ(t))

b+
∫ t

0
f(τ) dτ

dt+

√
f(t)

b+
∫ t

0
f(τ) dτ

dWWW t, 0 ≤ t ≤ 1 (87)

xxx ∼ p∗(xxx) (88)

µ(0) = 0 (89)

Proof. Let µµµ(ts) ≡ µµµs. Using this notation, the posterior update rule is given by

µµµ(ts) =
b+

∑s−1
s′=1 f(ts′)δts′

b+
∑s

s′=1 f(ts′)δts′
µµµ(ts−1) +

f(ts)δts
b+

∑s
s′=1 f(ts′)δts′

yyys (90)

Substituting yyys ∼ N (xxx, (f(ts)δts)
−1I), we have:

µµµ(ts) =
b+

∑s−1
s′=1 f(ts′)δts′

b+
∑s

s′=1 f(ts′)δts′
µµµ(ts−1) +

f(ts)δts
b+

∑s
s′=1 f(ts′)δts′

N (xxx, (f(ts)δts)
−1I) (91)

Rearranging terms:

µµµ(ts)−µµµ(ts−1) =
−f(ts)δts

b+
∑s

s′=1 f(ts′)δts′
µµµ(ts−1) +

(
f(ts)δtsxxx+

√
f(ts)ϵts

√
δts

b+
∑s

s′=1 f(ts′)δts′

)
(92)

=
(xxx−µµµ(ts−1))f(ts)

b+
∑s

s′=1 f(ts′)δts′
δts +

√
f(ts)

b+
∑s

s′=1 f(ts′)δts′
ϵϵϵts
√
δts (93)

Where ϵϵϵts is an independent standard normal random variable. Taking the continuum limit δts → 0 and T →∞,
this process converges to the diffusion process

dµµµ(t) =
(xxx−µµµ(t))f(t)

b+
∫ t

0
f(τ)dτ

dt+

√
f(t)

b+
∫ t

0
f(τ)dτ

dWWW t (94)
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A.3 Diriclet-Categorical Model

A.3.1 Posterior Mean Updates

The posterior distribution of the Dirichlet-Categorical model is given by

xxxc|yyy1:t,c, w1:t,c ∼ DirichletV

(
1V

K
+

t∑
t′=1

yyyt′c

)
(95)

This closed-form posterior allows us to update of our beliefs about the true tokens as we observe more noisy
versions. The posterior mean is given by:

µµµtc = E (xxxc|yyy1:t,c, w1:t,c) (96)

=
1V

K +
∑t

t′=1 yyyt′c
V
K +

∑t
t′=1

∑V
d=1 y

(d)
t′c

(97)

To simplify notation, let Ntc =
∑t

t′=1

∑V
d=1 y

(d)
t′c be the number of non-mask tokens observed up to timestep t.

Then, we can express the distribution of µµµtc|µµµt−1,c,xxxc as:

µµµtc|µµµt−1,c,xxx =


1V
K +Nt−1,c

V
K +Nt−1,c+1

µµµt−1,c +
ỹ̃ỹytc

V
K +Nt−1,c+1

with probability wtc

µµµt−1,c with probability 1− wtc

(98)

ỹ̃ỹytc ∼ CatV (x
(1)
c , ..., x(V )

c ) (99)

To use a non-Informative Dirichlet prior, we take K →∞, and results in the following update equations

µµµsc|(µµµs−1,c =
1V

V
,xxx)

d
=

{
Cat(xxxc) w/prob αtc

1V

V w/prob 1− αtc

(100)

µµµtc|(µµµt−1,c ̸=
1V

V
,xxx) = µµµt−1,c. (101)

By applying this update, the posterior mean simplifies substantially, becoming either (a) a uniform distribution
over all tokens or (b) a one-hot encoded vector. This means that the mean vector is no longer a dense vector,
which leads to massive gains in computational efficiency.
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A.3.2 Consistency of Dirichlet Categorical PMM

Theorem A.3. (Concentration of posterior mean: Dirichlet-Categorical) Consider a Dirichlet Categorical PMM
for text of context length C. Suppose that for all c ∈ {1, ..., C}, we have

∏t
s=1(1−αtc)→ 0. Then, the Dirichlet-

Categorical model is consistent under a non-informative Dirichlet prior.

Proof. The probability that µµµtc =
1V

V is given by

P
(
µµµtc =

1V

V

)
=

t∏
s=1

(1− αtc)→ 0 (102)

Under a non-informative prior, we also know that µµµtc ̸= 1V

V ⇐⇒ µµµtc = xxxtc. Thus,

P (µµµt ̸= xxx) = P
(
∃c : µµµtc =

1V

V

)
(103)

≤
∑
c

t∏
s=1

(1− αtc)→ 0 (104)

This implies that µµµt → xxx in probability as t→∞.
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A.3.3 PMM Objective using a Non-Informative Prior

We calculate the PMM objective under a non-informative Dirichlet prior using the distribution qφφφ(µµµ1, ...,µµµt) of
equations (29) and (30)

LDirCat(φφφ) ∝ −
T∑

t=1

Ex,µµµt−1
Eµµµt|µµµt−1

log qφφφ(µµµt|µµµt−1) (105)

= −
T∑

t=1

Ex,µµµt−1Eµµµt|µµµt−1

∑
c

log qφφφ(µµµtc|µµµt−1) (106)

= −
∑
tc

Ex,µµµt−1
Eµµµtc|µµµt−1

log qφφφ(µµµtc|µµµt−1) (107)

= −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c
Eµµµtc|µµµt−1,c

log qφφφ(µµµtc|µµµt−1) (108)

= −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c1 (µµµt−1,c = 1/V )Eµµµtc|µµµt−1,c=1/V log qφφφ(µµµtc|µµµt−1) (109)

+ 1(µµµt−1,c ̸= 1/V )Eµµµtc|µµµt−1,c ̸=1/V log qφφφ(µµµtc|µµµt−1) (110)

= −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c
1 (µµµt−1,c = 1/V )Eµµµtc|µµµt−1,c=1/V log qφφφ(µµµtc|µµµt−1) (111)

= −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c
1 (µµµt−1,c = 1/V )αtc log f

(xc)
φφφ (µµµt−1)c (112)
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A.3.4 Continuous-time Objective for the Dirichlet-Categorical PMM

To obtain a continuous-time formulation of the Dirichlet Categorical PMM model we consider a partition of
the unit interval 0 = t0 < t1 < ... < tT = 1 and define αsc = fc(ts)δts where f is a positive function defined
on the unit interval [0, 1]. Using this notation we index the posterior mean using this partition µµµts . With a
non-informative prior, the continuous time formulation of the Posterior Mean Matching Objective is given by

L(∞)
DirCat(φφφ) ∝ −

T∑
s=1

Ex,µµµts−δts
Eµµµts |µµµts−δts

∑
c

log qφφφ(µµµts,c|µµµt−δts) (113)

= −
T∑

s=1

Ex,µµµts−δts

∑
c

Eµµµts,c|µµµts−δts,c=1/V
1(µµµts−δts,c = 1/V ) log qφ(µµµts,c|µµµts−δts) (114)

+ Eµµµts,c|µµµts−δts,c ̸=1/V
1(µµµts−δts,c ̸= 1/V ) log qφ(µµµts,c|µµµts−δts) (115)

= −
T∑

s=1

Ex,µµµts−δts

∑
c

Eµµµts,c|µµµts−δts,c=1/V
1(µµµts−δts,c = 1/V ) log qφ(µµµts,c|µµµts−δts) (116)

= −
T∑

s=1

Ex,µµµts−δts

∑
c

1(µµµts−δts,c = 1/V )f(ts)δts log x̂
xc
φφφ (µµµts−δts)c (117)

→ −
∫ 1

0

Ex,µµµs−

∑
c

1(µµµs−,c = 1/V )f(s) log x̂(xc)
φφφ (µµµs−)ds (118)

To obtain a Monte Carlo estimator of the PMM objective, we need to obtain samples from µµµs−,c at an arbitrary
time-step. This is possible by noting that the event µµµs−,c = 1/V has probability

P(µµµts,c = 1/V ) = 1−
s∏

s′=1

(1− αs′c) (119)

= 1−
s∏

s′=1

(1− fc(ts′)δts′) (120)

≈ 1−
s∏

s′=1

exp{−fc(ts′)δts′} (121)

= 1− exp

{
−

s∑
s′=1

fc(ts′)δts′

}
δt→0→ 1− exp

{
−
∫ s

0

f(τ)dτ

}
(122)

Otherwise, µµµs−,c = xxxc .



Sebastian Salazar1,3, Michal Kucer1, Yixin Wang2, Emily Casleton1, David Blei3

A.4 Details of the Gamma-Poisson PMM

A.4.1 Online Bayesian Updates

Notation If xxx ∈ Nd, we write xxx ∼ Poisson(λ) to mean that each coordinate of xxx is sampled independently
from a Poisson distribution with rate parameter λ. Similarly, if xxx ∈ Rd we write xxx ∼ Γ(β1, β2) to mean that
each coordinate of the vector xxx is sampled from a Gamma distribution with shape and rate parameters β1 and
β2, respectively.

For the Gamma-Poisson Bayesian model:

xxx ∼ Γ(β1, β2) (123)

yyys|xxx ∼ Poisson(αtxxx), ∀s ∈ {1, ..., t} (124)

the posterior distribution under this model is given by

p(xxx|yyy1, . . . , yyyt) = Poisson

(
xxx;

β1 +
∑t

s=1 yyyt

β2 +
∑t

s=1 αt

)
(125)

From this we can read off the posterior mean

µµµt
d
=

β1 +
∑t

s=1 yyyt

β2 +
∑t

s=1 αt

(126)

Note that we can rewrite the above expression as:

µµµt =
β1 +

∑t−1
i=1 yyyi

β2 +
∑t

i=1 αi

+
1

β2 +
∑t

i=1 αi

yyyt (127)

=
β2 +

∑t−1
i=1 αi

β2 +
∑t

i=1 αi

µµµt−1 +
1

β2 +
∑t

i=1 αi

yyyt, (128)

giving us the following expressions for the online Bayesian update for the Gamma-Possion model:

µµµt =
At

At−1
µµµt−1 +Atyyyt, (129)

where At =
(
β2 +

∑t
i=1 αi

)−1

.
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A.4.2 Consistency of Gamma-Poisson Model

Theorem A.4. Let xxx∗ > 0 be a sample drawn from some underlying true distribution xxx∗ ∼ p∗(xxx), and let
{yyy1, yyy2, . . . , yyyt} be observations generated according to the following noise model:

yyyt|x∗ ∼ Pois(αtxxx
∗) (130)

where αs is a known, positive, increasing sequence satisfying limt→∞
∑t

s=1 αs = O(t1+η) → ∞ with η being an
arbitrarily small positive number. Then, the posterior mean µµµt of the following Bayesian model,

xxx ∼ Γ(β1, β2), (131)

yyyt|xxx ∼ Pois(αtxxx), (132)

is consistent, namely:

lim
t→∞

µµµt = xxx∗, almost surely. (133)

Proof. We give a proof for the one dimensional case with the understanding that it extends to the multidimen-
sional case by applying the same argument to each coordinate individually. Under the Bayesian model (Equations
131 and 132), we have that the posterior

x|y1:t ∼ Γ

(
β1 +

t∑
s=1

ys, β2 +

t∑
s=1

αs

)
(134)

The posterior mean under this Bayesian Model is given by

µt ≡ E(x|y1:t) (135)

=
β1 +

∑t
s=1 ys

β2 +
∑t

s=1 αs

=
β1 +

∑t
s=1 Pois(αsx)

β2 +
∑t

s=1 αs

(136)

Where the last equality follows by equation (132). Now we have that:

E(µt) = E

(
β1 +

∑t
s=1 Pois(αsx)

β2 +
∑t

s=1 αs

)
=

β1 + E
(∑t

s=1 Pois(αsx
∗)
)

β2 +
∑t

s=1 αs

=
β1 +

∑t
s=1 αsx

∗

β2 +
∑t

s=1 αs

=
β1

β2 +
∑t

s=1 αs

+

∑t
s=1 αs

β2 +
∑t

s=1 αs

x∗

Assuming that
∑t

s=1 αs →∞, we see that β1

β2+
∑t

s=1 αs
→ 0 and

∑t
s=1 αs

β2+
∑t

s=1 αs
→ 1, showing E(µt)→ x∗. Next,

Var(µt) =
1

(β2 +
∑t

s=1 αs)2
Var

(
β1 +

t∑
s=1

Pois(αsx
∗)

)

=

∑t
s=1 αs

(β2 +
∑t

s=1 αs)2
x∗

Noting that
∑t

s=1 αs

(β2+
∑t

s=1 αs)
2 → 0, we have that Var(µt)→ 0. Thus showing E(µt)→ x∗ and Var(µt)→ 0, implies

that µt → x∗ in probability.

To obtain almost sure convergence, let at = β1

β2+
∑t

s=1 αs
and bt =

∑t
s=1 αs

β2+
∑t

s=1 αs
and consider the event At =

{|µµµt − (bt + atxxx)| > ϵ}. As in the Normal-Normal model, an application of Chebyshev’s inequality to these events
results in

∑∞
s=1 P(At) ≤ ϵ−2

∑∞
s=1 Var(µµµt) ≲ ϵ−2

∑∞
t=1(

∑t
s=1 αs)

−1 < ∞ (for this to happen (
∑t

s=1 αs)
−1 =

Ω(t−(1+η)) where η is an arbitrarily small number). Now, from the Borel-Cantelli Lemma, it follows that
at most finitely many events from the collection {At}∞t=1 can occur. In other words, with probability 1, we
have that for all ϵ > 0 there is a T ∈ N such that for all s > T we have |µµµs − (bs + asxxx)| < ϵ. Therefore,
lims→∞ |µµµs − (bs + asxxx)| = lims→∞ |µµµs − xxx| < ϵ. This means that with probability 1, µµµs → xxx, as desired.
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A.4.3 Gamma-Poisson PMM Objective

The Gamma-Poisson PMM objective follows by the following straightforward calculation

L(φφφ) ∝ −Exxx,µµµ1,...,µµµt
log qφφφ(µµµ1, ...,µµµt) (137)

= −
∑
t

Exxx,µµµt,µµµt−1
log qφφφ(µµµt|µµµt−1) (138)

∝ −
∑
t

Exxx,µµµt,µµµt−1 log
∏
n

Pois (µtn; fφφφ(µµµt−1, t)n) (139)

= −
∑
t,n

Exxx,µµµt,µµµt−1
µtn log fφφφ(µµµt−1, t)n − fφφφ(µµµt−1, t)n (140)
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A.4.4 Connection between Gamma-Poisson PMMs and SDEs

Lemma 1. (Ito’s Lemma for Poisson Processes) Let Nt be a non-homogenous Poisson Process with rate function
λ(t). Then if we let f(Nt, t), it follows that dft, satisfies the Stochastic Differential Equation

df(Nt, t) = (f(Nt + 1, t)− f(Nt, t))dNt +
∂f(Nt, t)

∂t
dt (141)

Since this version of Ito’s lemma isn’t as widespread as it’s counterpart for Brownian Motion, we provide a proof
below:

Proof. The infinitesimal characterization of the Poisson Process tells us that dNt = 0 with probability 1−λ(t)dt+
o(dt) and that dNt = 1 with probability λ(t)dt+ o(dt). This means that

f(Nt + dNt, t) =

{
f(Nt + 1, t) with probability 1− λ(t)dt

f(Nt, t) with probability λ(t)dt
(142)

As a result,

df(Nt, t) = f(Nt + dNt, t+ dt)− f(Nt, t) (143)

= f(Nt + dNt, t) +
∂f(Nt + dNt, t)

∂t
dt− f(Nt, t) (144)

= dNt

(
f(Nt + 1, t) +

∂f(Nt + 1, t)

∂t
dt− f(Nt, t)

)
+ (1− dNt)

(
∂f(Nt, t)

∂t
dt

)
(145)

=

(
f(Nt + 1, t)− f(Nt, t) +

(
∂f(Nt + 1, t)

∂t
− ∂f(Nt, t)

∂t

)
dt

)
dNt +

∂f(Nt, t)

∂t
(146)

= (f(Nt + 1, t)− f(Nt, t)) dNt +
∂f(Nt, t)

∂t
dt+ o(dt) (147)

Completing the proof.

Theorem A.5. (Gamma-Poisson SDE) Consider the update rule of the posterior mean µt for the Gamma-
Poisson PMM shown in equation 32. Let f : [0, 1] → R+ and consider 0 = t1 < t2 < . . . < tT = 1 a partition
of the unit interval. Moreover, define the sequence α1, . . . , αT by αs = f(ts)δts. In the continuum limit T →∞
and maxs δts → 0, we have that the discrete updates of µt converge to a Merton jump process characterized by
the following Stochastic Differential Equation (SDE):

dµµµ(t) =

(
L′(t) +

A′(t)

A(t)
(µµµ(t)− L(t))

)
dt+A(t)dNNN(t) (148)

Where NNN(t) is a Cox Process with random base measure xxxdt with xxx ∼ p∗(xxx).

Proof. We give a proof for the one dimensional case with the understanding that it extends to the multidimen-
sional case by applying the same argument to each coordinate individually. Note that the posterior mean of the
Gamma Poisson model in equation 32 is given by

µk|x =
α

β +
∑k

s=1 αs

+

∑k
s=1 Pois(xδts)

β +
∑k

s=1 αs

(149)

Fixing a partition of the unit interval 0 = t1 < t2 < ... < tT = 1 and reindexing αk ≡ αtk ≡ f(tk)δtk as
a function of continuous time, it is not hard to see that the numerator of the second term converges to N(t)
—a non-homogeneous Poisson Process with rate function λ(t) = xdt. Using this characterization, we view the
posterior mean µ(t) = f(Nt, t) = L(t) + A(t)N(t) as a function of the non-homogeneous Poisson Process and
apply Ito’s Lemma for Poisson processes (Lemma 1) to obtain

dµ(Nt, t) = (L(t) +A(t)(N(t) + 1)− (L(t) +A(t)N(t))) dN(t) + (A′(t) + L′(t)N(t)) dt (150)

= (L′(t) +A′(t)N(t))dt+A(t)dN(t) (151)
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Substituting N(t) = (µ(t)− L(t))/A(t), we obtain

dµ(t) =

(
L′(t) +

A′(t)

A(t)
(µ(t)− L(t))

)
dt+A(t)dN(t) (152)

Completing the proof
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A.5 Details of the InverseGamma-Gamma PMM

Notation If xxx ∈ Rd we write xxx ∼ Γ(β1, β2) to mean that each coordinate of the vector xxx is sampled from a
Gamma distribution with shape and scale parameters β1 and β2, respectively. Similarly, we write yyy ∼ Γ(αs,xxx) to

mean yi
iid∼ Γ(a, xi). Note that unlike the Gamma-Poisson model, we use a different parametrization

of the Gamma distribution throughout this section. We use the same parametrization for the
inverse Gamma distribution.

We consider the following noisy observation model

xxx ∼ p∗(xxx) (153)

yyys|xxx ∼ Γ(αs,xxx) (154)

∀s ∈ {1, ..., t} (155)

The corresponding Bayesian Model is given by

xxx ∼ InvΓ(β1, β2) (156)

yyys|xxx ∼ Γ(αs,xxx) (157)

∀s ∈ {1, ..., t} (158)

The posterior distribution of this Bayesian model is given by

xxx|yyy1:t ∼ InvΓ

(
β1 +

t∑
s=1

αs, β2 +

t∑
s=1

yyyt

)
(159)

For β1 > 1 the posterior mean is well-defined and is given by

E(xxx|yyy1:t) =
β2 +

∑t
s=1 yyyt

β1 +
∑t

s=1 αs

(160)

A.5.1 Online Bayesian Update

We rewrite the posterior mean of the InverseGamma-Gamma model to obtain the online Bayesian inference
update rule. To simplify notation, let At = β1 +

∑t
s=1 αs, then

µµµt = E(xxx|yyy1:t) (161)

=
β2 +

∑t−1
s=1 yyys + yyyt
At

(162)

=
At−1

At
µµµt−1 +

yyyt
At

. (163)

A.5.2 Consistency of the InverseGamma-Gamma Model

Theorem A.6. (Concentration of posterior mean) Let {yyy1, . . . , yyyt} be observations generated according to equa-
tion (157). Suppose αt a known, positive, increasing sequence satisfying limt→∞

∑t
s=1 αs = Ω(t1+η) for all

η > 0. Then, the posterior mean µµµt of the Bayesian model in equations (156) and (157) is consistent, namely:

lim
t→∞

µµµt = xxx, almost surely, (164)

with respect to the joint distribution of (xxx,yyy1, yyy2, . . .) in equations (153) and (154).

Proof. The proof of consistency is identical to the consistency proofs of the Normal-Normal and Gamma-Poisson
PMMs. We omit the proof for brevity.
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A.5.3 InverseGamma-Gamma PMM Objective

The InverseGamma-Gamma PMM objective choosing qφφφ(µµµ1, ...,µµµt) according to equations (10) and (11)) is given
by

L(φφφ) ∝ −Exxx,µµµ1,...,µµµt
log qφφφ(µµµ1, ...,µµµt) (165)

= −
∑
t

Exxx,µµµt,µµµt−1
log qφφφ(µµµt|µµµt−1) (166)

∝ −
∑
t

Exxx,µµµt,µµµt−1 log
∏
n

Γ (µtn;αt, fφφφ(µµµt−1, t)n) (167)

=
∑
t,n

Exxx,µµµt,µµµt−1
µtnαt log fφφφ (µµµt−1, t)n +

µtn

fφφφ (µµµt−1, t)n
(168)
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B Additional Experiments and Experimental Details

B.1 Experiments

For all experiments, we estimate the Posterior Mean Matching objectives by using a batch of samples and Monte
Carlo estimates of the expectations. The PMM objective is then minimized using Gradient Descent.

B.1.1 Neural Network Architectures

Cifar-10 We use the Dhariwal UNet (Dhariwal and Nichol, 2021) implementation and architecture from Karras
et al. (2022) and train it on the PMM objective with a batch size of 512 across 4 H100 GPUs for 637000 for
the Normal-Normal model and for 1200000 iterations for the Gamma-Poisson Model. In both cases, we use the
Adam Optimizer with a learning rate of 10−4 and no warmup. The samples were taken from an Exponential
Moving Average of the Neural Network with a decay parameter of 0.9999.

AFHQ We use the Dhariwal UNet (Dhariwal and Nichol, 2021) implementation and architecture from Karras
et al. (2022) and train it on the PMM objective with a batch size of 624 across 4 H100 GPUs for 848000 steps
for the Normal-Normal model. In both cases, we use the Adam Optimizer with a learning rate of 10−4 and no
warmup. The samples were taken from an Exponential Moving Average of the Neural Network with a decay
parameter of 0.9999.

FFHQ We use the Dhariwal UNet (Dhariwal and Nichol, 2021) implementation and architecture from Karras
et al. (2022) and train it on the PMM objective with a batch size of 1248 across 8 H100 GPUs for four days
for the Normal-Normal model. In both cases, we use the Adam Optimizer with a learning rate of 10−4 and no
warmup. The samples were taken from an Exponential Moving Average of the Neural Network with a decay
parameter of 0.9999.

B.1.2 PMM Hyperparameters

We report the choice of hyperparameters used for the PMM models trained in the experimental section in Table
5. For the text8 PMM model we report the BPC using the staircase schedule and we use the time-dependent
schedule for the experiments on OpenWebText.

B.2 Language Modeling

B.2.1 Neural Network Architectures

The Dirichlet-Categorical PMM language model is based on the transformer architecture of the original GPT-2
model (Radford et al., 2019). The only difference is that we replace LayerNorm with Adaptive LayerNorm to
condition on the timestep. This is similar to what is done with Diffusion Transformer (Peebles and Xie, 2022).
As far as network size goes, we set the network hyperparameters (number of transformer blocks, etc.) to match
the ones from the SEDD and MDLM papers:

• hidden size: 768

• cond dim: 128

• length: 1024

• n blocks: 12

• n heads: 12

Like other diffusion language models, we do not tie the word embeddings at the input layer with the weights of
the last linear transformation.
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Table 5: Hyperparameter Choices with Equations

Model Number of Steps Prior Parameters Noise Schedule

Gamma-Poisson 3000
α = 0.1

γ = 2

0 ≤ t ≤ 1

ts =
s

3000
, s ∈ {0, . . . , 3000}

αts = f(ts) dt

f(t) =
13

250
e

t
13

Normal-Normal 3000 b = 2

0 ≤ t ≤ 1

ts =
s

3000
, s ∈ {0, . . . , 3000}

αts = f(ts) dt

f(t) =
13

250
e

t
13

Dirichlet-Categorical ∞ K →∞

0 ≤ t ≤ 1

ωtc = f(t) dt

fc(t) = 0.01(1 + 2000t), (time-dependent)

fc(t) = 3.5(1 + 100

⌊
t

0.985

⌋
), (staircase)

fc(t) = σ

(
t− c/C

0.01

)
/0.01, (semi-AR)

B.2.2 Evaluation Details

Text modeling The baselines for the Text8 dataset are taken from Lou et al. (2024). It is possible to evaluate
the number of nats per character of a PMM model using the following two facts: (a) If the step size is small
enough then the probability that two tokens are unmasked at the same time-step is zero and (b) we can compute
the expected negative log likelihood per character at the moment this character is unmasked. Since we compute
the average log probability only over the unmasking events, the NPC (nats per character) computation reduces
to

NPC = −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c

1 (µµµt−1,c = 1/V )αtc∑
tc 1 (µµµt−1,c = 1/V )αtc

log f (xc)
φφφ (µµµt−1)c (169)

As a sanity check, note that an autoregressive schedule corresponds to 1 (µµµt−1,c = 1/V )αtc = δtc and that
µµµtc = (xxx1, ...,xxxc,mask, ...,mask) with probability 1, therefore, the PMM model may be viewed as a conditional
probability of the next token, given the previous tokens (aka. simply an autoregressive language model). Sub-
stituting this into the NPC formula we obtain

NPC = −
∑
tc

Ex,µµµt−1,−c,µµµt−1,c

δtc
C

log f (xc)
φφφ (µµµt−1)c (170)

= −
∑
c

E log f (xc)
φφφ (µµµc−1)c (171)

= − 1

C

∑
c

E log f (xc)
φφφ ((xxx1, ...,xxxc−1,mask, ...,mask))c (172)

Which, as expected, is just the nats per bit of an autoregressive language model. Converting this to bits is simply
a matter of dividing by a factor of log 2.

We report the text8 results using a staircase schedule and the openwebtext evaluations using the time-dependent
schedules shown in table 5. The models were trained across 4 H100 GPUs for five days. This corresponded
to roughly 980000 gradient steps for the text8 model and 940000 gradient steps for openwebtext. Both models
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where trained using the Adam optimizer with no learning rate warmup, a learning rate of 3×10−4 and (β1, β2) =
(0.9, 0.98).

Unconditional generation In evaluating unconditional generation, we use the pre-trained checkpoints from
Sahoo et al.(Sahoo et al., 2024b) to produce unconditional samples for the following models:

• auto-regressive GPT-2 like transformer (Radford et al., 2019),

• SEDD model(Lou et al., 2024),

• and MDLM model(Sahoo et al., 2024a).

The checkpoints can be found at the MLDM(Sahoo et al., 2024b) GitHub3 repository, under the Checkpoints4

section in the linked Google Drive. We used the following bash commands to generate a 1024 from each model:

# AR uncond i t i o n a l g en e r a t i on
CUDA VISIBLE DEVICES=0, python main

. py \
mode=sample eva l \
eval . checkpo int path=${

checkpo int path }
l oade r . b a t ch s i z e=16 \
l oade r . e v a l b a t c h s i z e=16 \
sampling . num sample batches=64 \
data=openwebtext−s p l i t \
model=small−ar \
paramete r i za t i on=ar \
backbone=ar \
model . l ength=1024

# SEDD uncond i t i o n a l g en e r a t i on
CUDA VISIBLE DEVICES=0, python main

. py \
mode=sample eva l \
eval . checkpo int path=${

checkpo int path } \
l oade r . b a t ch s i z e=16 \
l oade r . e v a l b a t c h s i z e=16 \
sampling . num sample batches=64 \
sampling . p r ed i c t o r=ana l y t i c \
sampling . s t ep s=1000 \
data=openwebtext−s p l i t \
model=smal l \
paramete r i za t i on=sedd \
backbone=d i t \
model . l ength=1024 \
t ime cond i t i on ing=True

# MDLM uncond i t i o n a l g en e r a t i on
CUDA VISIBLE DEVICES=1, python main

. py \
mode=sample eva l \
eval . checkpo int path=${

checkpo int path } \
l oade r . b a t ch s i z e=16 \
l oade r . e v a l b a t c h s i z e=16 \
sampling . num sample batches=64 \
sampling . p r ed i c t o r=ddpm cache \
sampling . s t ep s=1000 \
data=openwebtext−s p l i t \
model=smal l \
paramete r i za t i on=subs \
backbone=d i t \
model . l ength=1024

Please make sure to set the “checkpoint path” variable in the bash script and link to the correct checkpoint. To
install a correct environment from within one can run the MDLM codebase, create a new Python environment
and install the following packages using miniconda:

conda i n s t a l l pytorch t o r chv i s i o n torchaudio pytorch−cuda=12.4 −c pytorch −c nv id ia
conda i n s t a l l nv id ia / l a b e l /cuda −12 . 4 . 0 : : cuda−t o o l k i t
conda i n s t a l l l i g h tn i n g e inops huggingface hub t rans fo rmer s timm −c conda−f o r g e
pip i n s t a l l r i c h omegaconf f l a sh −attn
pip i n s t a l l hydra−core −−upgrade

3https://github.com/kuleshov-group/mdlm
4https://github.com/kuleshov-group/mdlm?tab=readme-ov-file#checkpoints

https://github.com/kuleshov-group/mdlm
https://github.com/kuleshov-group/mdlm?tab=readme-ov-file#checkpoints
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C Additional Figures

C.1 Convergence of the posterior mean

(a) Normal PMM

Figure C.1: Convergence of the posterior mean µµµt to target samples xxx ∼ p∗(xxx) as t increases for the Normal-
Normal Posterior Mean Matching (PMM) model.
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D Sample text outputs from the Dir.-Cat. model

Disclaimer: Language models’ outputs have not been safeguarded or filtered.

D.1 OpenWebText Examples

Sample 1. “be a great film?

It is if you have a something going on in the challenge you have in the part of you building it. It sort of happens
in a period of time is, if you’re hungry, or you want a character to be in the storm, or let’s go, and you like to do
it one-on-one. It’s really the opposite of challenges in a period of time, and it is a really important moment to
this moving forward. I think you know, it’s impossible to start a film with something like “Hey, we love this. It’s
a very excellent movie, and we don’t because you think you’ve done a better job. How are you to it.” You know,
you’re prepared for it, you know. “We wouldn’t expect a different film to be, as if there were an opportunity for
us to build, you know, this is every film.”

Well, I mean, it’s true and the film is an absolute amazing film. The film is beautiful. But how can it be and
where do we put it? It’s very different from the storm. We know that’s the way we want this film to be, we want
it to be adaptable. Or it is going to be, you know, and we’re supposed to, we don’t understand. You know, you
want things like these to play very large roles in life. It’s a part of us, in itself, but you don’t like it because
you’ve ignored it. It’s something you don’t, you know. we do. You know. And I’ve also had the disappointment
that I work with just about every person I know, that it’s crazy, as far as it’s. And we’re so certain we’re wrong,
and it’s a terrible thing. Much of our passion is art, and much of that is art, and artistry is art. And we put a
lot of work into the storm. It’s real. And that’s what we want and aspire to be.

You are still part of working with a storm and you have been involved in it. What’s the type of work you love
for the storm?

It seems there’s a lot of work that we put together, though. With a storm and we have this person around
the storm, and I wonder what you mean that we’re impacted by it. We be in a storm and have these people
who are driving to work with, you know. You know, the storm really really just worked, I mean. It was fun to
experience. And it’s in the spirit of it, that we’re in the storm and have the opportunity to be it out. So I think
you know, there’s a lot of work Donnie Stan. Don’t have to change the storm, Donnie Stan, you’re in the storm.
The film is set in a moment like “we love the storm. We really don’t follow up on this movie’s ideas. This is a
great move, the next movie is going to be that’s. And I loved this film, good enough. I was on the board for
writing something. So we did the film for the storm. And really, we don’t have to change it. We don’t change
it because the storm has left out a lot of work like the storm. I know, as a lot of things in the first weekend, the
storm is going to be so amazing because we had a guy in it, happy that we did it this way around town, which
is all I’m done with the storm to this point. I think he’s got up and told up to him, you know.

But you don’t is what you’re up to about the storm?

Heh. We’ll take the storm off from day one. I’ll find the storm for me. It can be done right away.

Why not prepare the film for the storm?

Well, we know the weather really doesn’t like the weather. Nobody knows so much. It’s amazing to the most
part. I love the storm. I’m very excited by the storm and it leaves out a lot of work. I have never seen an storm
before. This is a storm movie that I’ve never seen before. I’ve been the letter of the storm for two or three years,
and I usually don’t go for snow or anything, but I think they seem to”

Sample 2 “he did a great job developing a young, mature team, and Reggie . . . who could be a good lead for
Baby for those to come together.

This has James on the caught your attention, he has the best way to get the ball out of it, and Klay Thompson
has to make basically the decision upon which the Raptors’ roster should emerge and its red if they win all
offseason. They both have the physical game and athleticism to produce at 18. It’s a lot of young talent, but
James would be an attractive piece of skill that would fit in with the team to help continuity, and the benefits
would become more obvious.

Why for James to walk makes one of these decisions?
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Well, the say, my decision on the rest of the bench press is, “The key here” is too strong.

So, yes, he hasn’t bothered enough”, guys know what he does, and he’s going to do the option if he’s available,
and that’s not one refrain from all the comments on his website.

It’s also he is different, which doesn’t apply to the rookie. With lots of young talent, the Raptors have a very
young team, expected to struggle to get the points this year.

James is also at 26/4/14 and I do like how him did have missed 29/10/32.

With James on James, James can help fill the void created. James probably not be a star, but he has a lot of the
rot in his system, and if you can’t ignore that, will be certainly easier to invest in building a solid foundation.

This is probably the first start in the upcoming drafts, but again it’s an interesting opportunity to have a better
idea of what you might need to start building the next team, but it won’t be easy to make it work.

Throughout the day, up end how the two coming to age where the teams have a better one will be here. There
will be a lot of room to learn when looking at a young Raptors fan. Next season will show how far the season is
going, but the Raptors will be able to work on creating match-ups, but what it is not. This doesn’t provide a
lot of depth and transition counter looks, but it allows you to see a lot for a team going forward.

A transition is a tough one. Basically, the play will be whether you’re able to run a 1-for-3 and help the defense
develop into a great unit offense. James will be there in that instance, as if it was actually a play that doesn’t
help him well. In real life he should be at age 31.

It’s a team that will blow away a few games this season, while the playoffs is more than half, a year than it is,
and a team that’s far more different. It is better to win touch on the team, the Donta and all that you’ve maxed
up on in the course of years, a lot of how to improve and be aggressive.

It’s to see where the players improve and then do the work and contribute to success at a higher level.

Ease can’t stand up on James and James this year.

This is about doing a build team which a lot of teams will have. If you don’t go on the wrong side. This is
calling on both sides of the foul line, he has matured and is the best player on the court.

J.J.

Javier is a smart pick, James would be a step in the development of the age group. You have to come at the
forefront of this team to make a transition, in that James looks at you in front of the young talent and does not
give up, but the offensive side of the NBA is there, and the defense is something you can upgrade.

Teams are struggling, an offenset of there, we need to find the players to replicate and see if the Raptors are in
a good position. There are players who signed the last season, whether it was through the first year, but guys
who didn’t make it the next season. You know, there are plenty of guys who are lucky “new players”, too. They
play in the game and a can run, so they just know the game can be won.

We need to help the offense improve. However, defense can get better. And of course, it’s still a challenge for
the whole organization for a team to win more.

Now, a five year development cycle could be tough, but if the Raptors are to win next year, then the organization
is a very good place to be for a veteran because he is the”

Sample 3 “We show that the weapon’s components which have been added, were found in ancient art, with
a form of spear on the front. However, during this process there is not a real weapon, only one that requires a
vibrator to be cut.

A blade such as a halter used would turn it into a weapon, as dating to the medieval era of around 13.000 AD.
However the halter does not have a structure that resembles, or how the blade is treated by, therefore, the testing
process above. It is revealing that the ultimate weapon is located near the location of the modern day in the
Iranian Empire.iver this there to require a sample for the next final stage of testing.

Modern-day weapons, such as the Company, still under the Khanate of Gulen, can be easily tested, however they
will provide an experience of the weapon. When done it is a very early proof of production through meticulous



Posterior Mean Matching: Generative Modeling through Online Bayesian Inference

analysis.

Israelis’s pin plate is a very large pin pin. This pin pin is used by the blade. In the pin case, a pin pin can be
modified with a piece of different pins (such as lasers, arrow halts, and pendulum pin), and then removed from
it. The extract is impossible to cut from bar, they removed the 1.S. pin pin, and the pin tool is a 1.S. pin pin. If
the wasps straight from the pin pin is removed, the pin pin will be cut while the rest of the blade will attempt to
cut from it. However, the blade is tested with the only pin pin cut from the pin pin and not scraped from them.

Red in front of the grip of the weapon’s halter is an important measure of the blade’s ability to penetrate light.
The blade is able to change its its grip by hand movement. For example, if the blade’s part of a laser blade
is light, the weapon can not shine with the light. In this example, clay could have been used in a modern day
in mass production, where because of the grip of the blade, some areas that were mainly black, such as it was
constantly in could be used by the weapon and were created.

Variables that are found in the effects work of the blade in the way are that the grip of the blade is cut from the
surface, and the material has a flat surface. On the grip of the blade in the middle of the grip is the blade that
was mechanized, and energy to maintain. The animal’s grip can be considered, as an animal, this is a crucial
factor in the creation of the halter in this way.

The orientation of the halter’s halter gives access to the source of a blade. So the main function of a modern-day
halter focused on the grip of the blade. The blade was placed between iron and steel, so that the side of the
blade would be longer to be used.

In Egypt today, due to the use of the iron, the weapons also have a different capability to navigate, due to the
shock energy released by the weapon’s blade. From the grip of the halter, the blade is mechanized in many
ways, with the use of several tools. This takes labor, because of the blade being aligned to the blade. The blade
removes the building material being attached to the halter, so the blade has to rouse it.

A fatal blow in halter is a fatal blow in the blade. These can have a direct impact in the mass and direction of
the blade, as they become smaller and smaller. Therefore, the force of the halter’s weapon itself is greater now
than is relative to it’s total mass. This can have a direct impact into the blade’s power output.

The force of the halter is the force of the blade itself.

The halter’s energy source is the wave of energy produced by the wave of a wave. It requires different forms of
energy to be used, such as energy. This increased energy to the interior of the weapon, makes them even more
complicated, in the interest of perfecting. Especially in Iran, to simply use the one. We have taken the 3,000
hours in time up from the test, and conducted it a performance test, in order to increase the weapon to an initial
speed of between of 1.5 and 4.000 times more, in order to put it back to the next stage.

After a period of 28,000,000 hours the halter slowly disintegrated. Now the test is ready to catch them. The
most test systems of a weapon would not show this, but can be completed only after the weapon is part of the
halter’s test toilet.

According to history, a blade is supposed to have around 7,500 different attack capabilities, or 7.”

Sample 4 “ the role-playing video games that are created and played in a new and different way.

And it’s a content based games that go from a game. as a simple website game, a public service game.

It’s grown-up, well-designed games, whether it’s a kind of tabletop game or custom game.

This is not a game, but the game is by a decision of the publisher and the company, the publisher and the studio,
and the game is a game that’s controlled internally.

This’s the industry standard. It’s the game industry standard.

Tekland said, “it’s not what you want in terms of a player in a game.”

Advertisement

-Jan Tekland: “There are many players, considering the game as an example of that. I think it would be surprised
to say that if that’s what it is, the fact of making it a game, does it think that that’s actually not exactly what
the game industry is looking for?
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And that’s exactly why it’s a game not a game industry. Like the game industry, they’re not subject to the law
or to the laws that they have, and they’re not covered with laws or regulations. So that’s a process but the way
to do it.

Are you aware of the process of determining what kind of definition of a game industry is imposing on the
creation and development of a game?

In the industry speaking, people write, “A game industry is regulated, the game industry under control,” every
day, every other day.

And his point about that being abstract?

Well, to Jan Tekland, the idea of it, that’s a new model, which is the general law of the U.S. at least. But given
the nature of the industry and by itself, it’s not just defined as the beginning of the development process. What
is the game definition of the game.

First of course, obviously, the game industry’s not planned. The definition of that the way it is determined by
the nature of the game. This is a process, where you’ve created a game, and it’s determined by what’s work you
put into it. So it’s regulated, regulated, grown out of it over the years. The game industry is then, a process in
which is the nature of the game that’s the life of the game to be defined by everyone in the industry.

“It is not a game,” said Tekland. “What we don’t agree on, is that we need some help to find a way.”’ vice
president, Erik R. Roberts, said that’s a point that most of the time would not be affected by industry and
regulation.

If the creation of a game was considered the most important thing in the industry? Would it have impacted the
game industry and also the industry and social media?

-Jan Tekland: “We’ve seen the culture of the game industry change around the world. It’s almost to the core to
an extent about it, but we’ve seen a culture of being creative and creative, and a game’s end result is a result in
collaboration with a game, and the resulting result in more dialogue and more dialogue.

It’s not how you create your own game. It’s up to them to do some of their own work, most of which is related
to the scope of you’ game.

It was a game problem or a game-related problem? How would they used to have dialogue on a game?

The game industry is more responsible for handling the game as it is now. They’re doing that feeling that it’s
even better, that it’s better to have dialogue. And the game is better with a lot of dialogue. There’s a common
sense of that coming to some of the industry.

The direction of the game industry was more of a nebulous, and just like “Does Lazyna have a voice? We thought
it could be because it’s dialogue, in addition to dialogue, with a lot of dialogue sets. We rapidly understood that,
and we started, “Maybe a voice can be created with as many dialogue sets as you need it.” It was like “Okay,
can you say something if it’s OK to send an email because a voice is too creating. It’s the voice to choose.” then
we started to create some kind of dialogue, and we fall”

D.2 text8 Examples

Sample 1 “one nine seven nine hebdo falls captain millards break the rain for seven two five two zero zero
spots three eight superstar one seven three nine where black in the hills and without snow however the big city
scenes appear for two days on the guys in two ”

Sample 2 “red lebanon online december eight one nine four nine but to a poor that tooks a day in field a clap
has complained that due to the local retraction of an air cap as well before geing to colder regions in one nine
six eight eugene stown kit recorded this n”

Sample 3 “y in the first religious mythologies a white run era from central asia series of heros age has solved d
with sexism and it is not unangry or conscious of them as tended this anthous play is therefore some era bringing
tigers specialize to them like that of”
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Sample 4 “one nine three eight a master lived shadow riders advanced his text was exchanged in asteroid
models for the first star books and ran for the post war mansmitten by one of ry card s ties in the art by one
nine four one andrew vol lohdzug this star could be ”
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(a) Normal PMM

Figure C.2: CIFAR 10 samples. FID = 2.46 with 500 NFEs
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(a) Normal PMM

Figure C.3: FFHQ samples. FID = 3.89 with 500 NFEs
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