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Abstract

The reparameterization gradient has become a widely used method to obtain Monte
Carlo gradients to optimize the variational objective. However, this technique does
not easily apply to commonly used distributions such as beta or gamma without
further approximations, and most practical applications of the reparameterization
gradient fit Gaussian distributions. In this paper, we introduce the generalized repa-

rameterization gradient, a method that extends the reparameterization gradient to a
wider class of variational distributions. Generalized reparameterizations use invert-
ible transformations of the latent variables which lead to transformed distributions
that weakly depend on the variational parameters. This results in new Monte Carlo
gradients that combine reparameterization gradients and score function gradients.
We demonstrate our approach on variational inference for two complex probabilistic
models. The generalized reparameterization is e�ective: even a single sample from
the variational distribution is enough to obtain a low-variance gradient.

1 Introduction

Variational inference (��) is a technique for approximating the posterior distribution in probabilistic
models (Jordan et al., 1999; Wainwright and Jordan, 2008). Given a probabilistic model p.x; z/ of
observed variables x and hidden variables z, the goal of �� is to approximate the posterior p.z j x/,
which is intractable to compute exactly for many models. The idea of �� is to posit a family of
distributions over the latent variables q.zI v/ with free variational parameters v. �� then fits those
parameters to find the member of the family that is closest in Kullback-Leibler (��) divergence to
the exact posterior, v

⇤ D arg min
v

KL.q.zI v/jjp.z j x//. This turns inference into optimization, and
di�erent ways of doing �� amount to di�erent optimization algorithms for solving this problem.

For a certain class of probabilistic models, those where each conditional distribution is in an exponential
family, we can easily use coordinate ascent optimization to minimize the �� divergence (Ghahramani
and Beal, 2001). However, many important models do not fall into this class (e.g., probabilistic neural
networks or Bayesian generalized linear models). This is the scenario that we focus on in this paper.
Much recent research in �� has focused on these di�cult settings, seeking e�ective optimization
algorithms that can be used with any model. This has enabled the application of �� on nonconjugate
probabilistic models (Carbonetto et al., 2009; Paisley et al., 2012; Ranganath et al., 2014; Titsias and
Lázaro-Gredilla, 2014), deep neural networks (Neal, 1992; Hinton et al., 1995; Mnih and Gregor, 2014;
Kingma and Welling, 2014), and probabilistic programming (Wingate and Weber, 2013; Kucukelbir
et al., 2015; van de Meent et al., 2016).

One strategy for �� in nonconjugate models is to obtain Monte Carlo estimates of the gradient of the
variational objective and to use stochastic optimization to fit the variational parameters. Within this
strategy, there have been two main lines of research: black-box variational inference (����) (Ranganath
et al., 2014) and reparameterization gradients (Salimans and Knowles, 2013; Kingma and Welling,
2014). Each enjoys di�erent advantages and limitations.

���� expresses the gradient of the variational objective as an expectation with respect to the variational
distribution using the log-derivative trick, also called ��������� or score function method (Glynn,
1990; Williams, 1992). It then takes samples from the variational distribution to calculate noisy
gradients. ���� is generic—it can be used with any type of latent variables and any model. However,
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the gradient estimates typically su�er from high variance, which can lead to slow convergence.
Ranganath et al. (2014) reduce the variance of these estimates using Rao-Blackwellization (Casella
and Robert, 1996) and control variates (Ross, 2002; Paisley et al., 2012; Gu et al., 2016). Other
researchers have proposed further reductions, e.g., through local expectations (Titsias and Lázaro-
Gredilla, 2015) and importance sampling (Ruiz et al., 2016).
The second approach to Monte Carlo gradients of the variational objective is through reparameteriza-
tion (Price, 1958; Bonnet, 1964; Salimans and Knowles, 2013; Kingma and Welling, 2014; Rezende
et al., 2014). This approach reparameterizes the latent variable z in terms of a set of auxiliary random
variables whose distributions do not depend on the variational parameters (typically, a standard
normal). This facilitates taking gradients of the variational objective because the gradient operator can
be pushed inside the expectation, and because the resulting procedure only requires drawing samples
from simple distributions, such as standard normals. We describe this in detail in Section 2.
Reparameterization gradients exhibit lower variance than ���� gradients. They typically need only
one Monte Carlo sample to estimate a noisy gradient, which leads to fast algorithms. Further, for some
models, their variance can be bounded (Fan et al., 2015). However, reparameterization is not as generic
as ����. It is typically used with Gaussian variational distributions and does not easily generalize to
other common distributions, such as the gamma or beta, without using further approximations. (See
Knowles (2015) for an alternative approach to deal with the gamma distribution.)
We develop the generalized reparameterization (�-���) gradient, a new method to extend reparameter-
ization to other variational distributions. The main idea is to define an invertible transformation of the
latent variables such that the distribution of the transformed variables is only weakly governed by the
variational parameters. (We make this precise in Section 3.) Our technique naturally combines both
���� and reparameterization; it applies to a wide class of nonconjugate models; it maintains the black-
box criteria of reusing variational families; and it avoids approximations. We empirically show in two
probabilistic models—a nonconjugate factorization model and a deep exponential family (Ranganath
et al., 2015)—that a single Monte Carlo sample is enough to build an e�ective low-variance estimate
of the gradient. In terms of speed, �-��� outperforms ����. In terms of accuracy, it outperforms
automatic di�erentiation variational inference (����) (Kucukelbir et al., 2016), which considers
Gaussian variational distributions on a transformed space.

2 Background

Consider a probabilistic model p.x; z/, where z denotes the latent variables and x the observations.
We assume that the posterior distribution p.z j x/ is analytically intractable and we wish to apply ��.
We introduce a tractable distribution q.zI v/ to approximate p.z j x/ and minimize the �� divergence
DKL .q.zI v/ k p.z j x//with respect to the variational parameters v. This minimization is equivalently
expressed as the maximization of the so-called evidence lower bound (����) (Jordan et al., 1999),

L.v/ D Eq.zIv/ Œlogp.x; z/ � log q.zI v/ç D Eq.zIv/ Œf .z/çC H Œq.zI v/ç : (1)
We denote

f .z/ , logp.x; z/ (2)
to be the model log-joint density and H Œq.zI v/ç to be the entropy of the variational distribution. When
the expectation Eq.zIv/ Œf .z/ç is analytically tractable, the maximization of the ���� can be carried out
using standard optimization methods. Otherwise, when it is intractable, other techniques are needed.
Recent approaches rely on stochastic optimization to construct Monte Carlo estimates of the gradient
with respect to the variational parameters. Below, we review the two main methods for building such
Monte Carlo estimates: the score function method and the reparameterization trick.
Score function method. A general way to obtain unbiased stochastic gradients is to use the score
function method, also called log-derivative trick or ��������� (Williams, 1992; Glynn, 1990), which
has been recently applied to �� (Paisley et al., 2012; Ranganath et al., 2014; Mnih and Gregor, 2014).
It is based on writing the gradient of the ���� with respect to v as

r
v

L D Eq.zIv/ Œf .z/rv

log q.zI v/çC r
v

H Œq.zI v/ç ; (3)

and then building Monte Carlo estimates by approximating the expectation with samples from q.zI v/.
The resulting estimator su�ers from high variance, making it necessary to apply variance reduction
methods such as control variates (Ross, 2002) or Rao-Blackwellization (Casella and Robert, 1996).
Such variance reduction techniques have been used in ���� (Ranganath et al., 2014).
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Reparameterization. The reparameterization trick (Salimans and Knowles, 2013; Kingma and
Welling, 2014) expresses the latent variables z as an invertible function of another set of variables ✏,
i.e., z D T .✏I v/, such that the distribution of the new random variables q✏.✏/ does not depend on
the variational parameters v. Under these assumptions, expectations with respect to q.zI v/ can be
expressed as Eq.zIv/ Œf .z/ç D Eq✏.✏/ Œf .T .✏I v//ç, and the gradient with respect to v can be pushed
into the expectation, yielding

r
v

L D Eq✏.✏/

h
r

z

f .z/

ˇ̌
zDT .✏Iv/rv

T .✏I v/

i
C r

v

H Œq.zI v/ç : (4)

The assumption here is that the log-joint f .z/ is di�erentiable. The gradient r
z

f .z/ depends on the
model, but it can be computed using automatic di�erentiation tools (Baydin et al., 2015). Monte Carlo
estimates of the reparameterization gradient typically present much lower variance than those based
on Eq. 3. In practice, a single sample from q✏.✏/ is enough to obtain a low-variance estimate.1

The reparameterization trick is thus a powerful technique to reduce the variance of the estimator,
but it requires a transformation ✏ D T �1

.zI v/ such that q✏.✏/ does not depend on the variational
parameters v. For instance, if the variational distribution is Gaussian with mean � and covariance †,
a straightforward transformation consists of standardizing the random variable z, i.e.,

✏ D T �1
.zI �;†/ D †� 1

2
.z � �/: (5)

This transformation ensures that the (Gaussian) distribution q✏.✏/ does not depend on � or †.
For a general variational distribution q.zI v/, Kingma and Welling (2014) discuss three families
of transformations: inverse cumulative density function (���), location-scale, and composition.
However, these transformations may not apply in certain cases.2 Notably, none of them apply to the
gamma3 and the beta distributions, although these distributions are often used in ��.
Next, we show how to relax the constraint that the transformed density q✏.✏/ must not depend on the
variational parameters v. We follow a standardization procedure similar to the Gaussian case in Eq. 5,
but we allow the distribution of the standardized variable ✏ to depend (at least weakly) on v.

3 The Generalized Reparameterization Gradient

We now generalize the reparameterization idea to distributions that, like the gamma or the beta, do
not admit the standard reparameterization trick. We assume that we can e�ciently sample from the
variational distribution q.zI v/, and that q.zI v/ is di�erentiable with respect to z and v. We introduce
a random variable ✏ defined by an invertible transformation

✏ D T �1
.zI v/; and z D T .✏I v/; (6)

where we can think of ✏ D T �1
.zI v/ as a standardization procedure that attempts to make the

distribution of ✏ weakly dependent on the variational parameters v. “Weakly” means that at least
its first moment does not depend on v. For instance, if ✏ is defined to have zero mean, then its first
moment has become independent of v. However, we do not assume that the resulting distribution of ✏
is completely independent of the variational parameters v, and therefore we write it as q✏.✏I v/. We use
the distribution q✏.✏I v/ in the derivation of �-���, but we write the final gradient as an expectation
with respect to the original variational distribution q.zI v/, from which we can sample.
More in detail, by the standard change-of-variable technique, the transformed density is

q✏.✏I v/ D q .T .✏I v/I v/ J.✏; v/; where J.✏; v/ , jdet r✏T .✏I v/j ; (7)
is a short-hand for the absolute value of the determinant of the Jacobian. We first use the transformation
to rewrite the gradient of Eq.zIv/ Œf .z/ç in (1) as

r
v

Eq.zIv/ Œf .z/ç D r
v

Eq✏.✏Iv/ Œf .T .✏I v//ç D r
v

Z
q✏.✏I v/f .T .✏I v// d✏: (8)

1In the literature, there is no formal proof that reparameterization has lower variance than the score function
estimator, except for some simple models (Fan et al., 2015). Titsias and Lázaro-Gredilla (2014) provide some
intuitions, and Rezende et al. (2014) show some benefits of reparameterization in the Gaussian case.

2The inverse ��� approach sets T �1
.zI v/ to the ���. This leads to a uniform distribution over ✏ on the unit

interval, but it is not practical because the inverse ���, T .✏I v/, does not have analytical solution in general. We
develop an approach that does not require computation of (inverse) ���’s or their derivatives.

3Composition is only available when it is possible to express the gamma as a sum of exponentials, i.e., its
shape parameter is an integer, which is not generally the case in ��.
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We now express the gradient as the sum of two terms, which we name g

rep and g

corr for reasons that
we will explain below. We apply the log-derivative trick and the product rule for derivatives, yielding

r
v

Eq.zIv/ Œf .z/ç D
Z
q✏.✏I v/r

v

f .T .✏I v// d✏

„ ƒ‚ …
g

rep

C
Z
q✏.✏I v/f .T .✏I v//r

v

log q✏.✏I v/d✏

„ ƒ‚ …
g

corr

;

(9)

We rewrite Eq. 9 as an expression that involves expectations with respect to the original variational
distribution q.zI v/ only. For that, we define the following two auxiliary functions that depend on the
transformation T .✏I v/:

h.✏I v/ , r
v

T .✏I v/; and u.✏I v/ , r
v

logJ.✏; v/: (10)
After some algebra (see the Supplement for details), we obtain

g

rep D Eq.zIv/
⇥
r

z

f .z/h

�
T �1

.zI v/I v

�⇤
;

g

corr D Eq.zIv/
⇥
f .z/

�
r

z

log q.zI v/h

�
T �1

.zI v/I v

�
C r

v

log q.zI v/C u

�
T �1

.zI v/I v

��⇤
:

(11)

Thus, we can finally write the full gradient of the ���� as
r

v

L D g

rep C g

corr C r
v

H Œq.zI v/ç ; (12)

Interpretation of the generalized reparameterization gradient. The term g

rep is easily recognizable
as the standard reparameterization gradient, and hence the label “rep.” Indeed, if the distribution
q✏.✏I v/ does not depend on the variational parameters v, then the term r

v

log q✏.✏I v/ in Eq. 9
vanishes, making g

corr D 0. Thus, we may interpret g

corr as a “correction” term that appears when the
transformed density depends on the variational parameters.
Furthermore, we can recover the score function gradient in Eq. 3 by choosing the identity transfor-
mation, z D T .✏I v/ D ✏. In such case, the auxiliary functions in Eq. 10 become zero because the
transformation does not depend on v, i.e., h.✏I v/ D 0 and u.✏I v/ D 0. This implies that g

rep D 0

and g

corr D Eq.zIv/ Œf .z/rv

log q.zI v/ç.
Alternatively, we can interpret the �-��� gradient as a control variate of the score function gradient.
For that, we rearrange Eqs. 9 and 11 to express the gradient as

r
v

Eq.zIv/ Œf .z/ç D Eq.zIv/ Œf .z/rv

log q.zI v/ç

C g

rep C Eq.zIv/
⇥
f .z/

�
r

z

log q.zI v/h

�
T �1

.zI v/I v

�
C u

�
T �1

.zI v/I v

��⇤
;

where the second line is the control variate, which involves the reparameterization gradient.
Transformations. Eqs. 9 and 11 are valid for any transformation T .✏I v/. However, we may expect
some transformations to perform better than others, in terms of the variance of the resulting estimator.
It seems sensible to search for transformations that make g

corr small, as the reparameterization gradient
g

rep is known to present low variance in practice under standard smoothness conditions of the log-joint
(Fan et al., 2015).4 Transformations that make g

corr small are such that ✏ D T �1
.zI v/ becomes

weakly dependent on the variational parameters v. In the standard reparameterization of Gaussian
random variables, the transformation takes the form in (5), and thus ✏ is a standardized version of
z. We mimic this standardization idea for other distributions as well. In particular, for exponential
family distributions, we use transformations of the form (su�cient statistic � expected su�cient
statistic)=(scale factor). We present several examples in the next section.

3.1 Examples

For concreteness, we show here some examples of the equations above for well-known probability
distributions. In particular, we choose the gamma, log-normal, and beta distributions.
Gamma distribution. Let q.zI˛; ˇ/ be a gamma distribution with shape ˛ and rate ˇ. We use a
transformation based on standardization of the su�cient statistic log.z/, i.e.,

✏ D T �1
.zI˛; ˇ/ D log.z/ �  .˛/C log.ˇ/p

 1.˛/
;

4Techniques such as Rao-Blackwellization could additionally be applied to reduce the variance of g

corr. We
do not apply any such technique in this paper.
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where .�/ denotes the digamma function, and k.�/ is its k-th derivative. This ensures that ✏ has zero
mean and unit variance, and thus its two first moments do not depend on the variational parameters ˛
and ˇ. We now compute the auxiliary functions in Eq. 10 for the components of the gradient with
respect to ˛ and ˇ, which take the form

h˛.✏I˛; ˇ/ D T .✏I˛; ˇ/
 
✏ 2.˛/

2

p
 1.˛/

C  1.˛/

!
; hˇ .✏I˛; ˇ/ D �T .✏I˛; ˇ/

ˇ

;

u˛.✏I˛; ˇ/ D
 
✏ 2.˛/

2

p
 1.˛/

C  1.˛/

!
C  2.˛/

2 1.˛/
; uˇ .✏I˛; ˇ/ D � 1

ˇ

:

The terms g

rep and g

corr are obtained after substituting these results in Eq. 11. We provide the final
expressions in the Supplement. We remark here that the component of g

corr corresponding to the
derivative with respect to the rate equals zero, i.e., g

corr
ˇ D 0, meaning that the distribution of ✏ does

not depend on the parameter ˇ. Indeed, we can compute this distribution following Eq. 7 as

q✏.✏I˛; ˇ/ D e

˛ .˛/
p
 1.˛/

Ä.˛/

exp
⇣
✏˛

p
 1.˛/ � exp

⇣
✏

p
 1.˛/C  .˛/

⌘⌘
;

where we can verify that it does not depend on ˇ.
Log-normal distribution. For a log-normal distribution with location � and scale � , we can
standardize the su�cient statistic log.z/ as

✏ D T �1
.zI�; �/ D log.z/ � �

�

:

This leads to a standard normal distribution on ✏, which does not depend on the variational parameters,
and thus g

corr D 0. The auxiliary function h.✏I�; �/, which is needed for g

rep, takes the form
h�.✏I�; �/ D T .✏I�; �/; h� .✏I�; �/ D ✏T .✏I�; �/:

Thus, the reparameterization gradient is given in this case by
g

rep
� D Eq.zI�;�/ Œzrzf .z/ç ; g

rep
� D Eq.zI�;�/

⇥
zT �1

.zI�; �/rzf .z/
⇤
:

This corresponds to ���� (Kucukelbir et al., 2016) with a logarithmic transformation over a positive
random variable, since the variational distribution over the transformed variable is Gaussian. For a
general variational distribution, we recover ���� if the transformation makes ✏ Gaussian.
Beta distribution. For a random variable z ⇠ Beta.˛; ˇ/, we could rewrite z D z

0
1=.z

0
1 C z

0
2/ for

z

0
1 ⇠ Gamma.˛; 1/ and z0

2 ⇠ Gamma.ˇ; 1/, and apply the gamma reparameterization for z0
1 and

z

0
2. Instead, in the spirit of applying standardization directly over z, we define a transformation to

standardize the logit function, logit .z/ , log.z=.1 � z// (sum of su�cient statistics of the beta),

✏ D T �1
.zI˛; ˇ/ D logit .z/ �  .˛/C  .ˇ/

�.˛; ˇ/

:

This ensures that ✏ has zero mean. We can set the denominator to the standard deviation of logit .z/.
However, for larger-scaled models we found better performance with a denominator �.˛; ˇ/ that
makes g

corr D 0 for the currently drawn sample z (see the Supplement for details), even though the
variance of the transformed variable ✏ is not one in such case.5 The reason is that g

corr su�ers from
high variance in the same way as the score function estimator does.

3.2 Algorithm

We now present our full algorithm for �-���. It requires the specification of the variational family
and the transformation T .✏I v/. Given these, the full procedure is summarized in Algorithm 1. We
use the adaptive step-size sequence proposed by Kucukelbir et al. (2016), which combines �������
(Tieleman and Hinton, 2012) and Adagrad (Duchi et al., 2011). Let g.i/k be the k-th component of the
gradient at the i -th iteration, and ⇢.i/k the step-size for that component. We set

⇢

.i/
k D ⌘ ⇥ i�0:5C ⇥

✓
⌧ C

q
s

.i/
k

◆�1
; with s

.i/
k D �.g

.i/
k /

2 C .1 � �/s.i�1/k ; (13)

where we set  D 10

�16, ⌧ D 1, � D 0:1, and we explore several values of ⌘. Thus, we update the
variational parameters as v

.iC1/ D v

.i/ C ⇢.i/ ı r
v

L, where ‘ı’ is the element-wise product.
5Note that this introduces some bias since we are ignoring the dependence of �.˛; ˇ/ on z.
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Algorithm 1: Generalized reparameterization gradient algorithm
input :data x, probabilistic model p.x; z/, variational family q.zI v/, transformation z D T .✏I v/

output :variational parameters v

Initialize v

repeat

Draw a single sample z ⇠ q.zI v/

Compute the auxiliary functions h
�
T �1

.zI v/I v

�
and u

�
T �1

.zI v/I v

�
(Eq. 10)

Estimate g

rep and g

corr (Eq. 11, estimate the expectation with one sample)
Compute (analytic) or estimate (Monte Carlo) the gradient of the entropy, r

v

H Œq.zI v/ç

Compute the noisy gradient r
v

L (Eq. 12)
Set the step-size ⇢.i/ (Eq. 13) and take a gradient step for v

until convergence

3.3 Related work

A closely related �� method is ����, which also relies on reparameterization and has been incorporated
into Stan (Kucukelbir et al., 2015, 2016). ���� applies a transformation to the random variables such
that their support is on the reals and then uses a Gaussian variational posterior on the transformed
space. For instance, random variables that are constrained to be positive are first transformed through
a logarithmic function and then a Gaussian variational approximating distribution is placed on the
unconstrained space. Thus, ���� struggles to approximate probability densities with singularities,
which are useful in models where sparsity is appropriate. In contrast, the �-��� method allows
to estimate the gradient for a wider class of variational distributions, including gamma and beta
distributions, which are more appropriate to encode sparsity constraints.
Schulman et al. (2015) also write the gradient in the form given in Eq. 12 to automatically estimate
the gradient through a backpropagation algorithm in the context of stochastic computation graphs.
However, they do not provide additional insight into this equation, do not apply it to general ��, do
not discuss transformations for any distributions, and do not report experiments. Thus, our paper
complements Schulman et al. (2015) and provides an o�-the-shelf tool for general ��.

4 Experiments

We apply �-��� to perform mean-field �� on two nonconjugate probabilistic models: the sparse
gamma deep exponential family (���) and a beta-gamma matrix factorization (��) model. The sparse
gamma ��� (Ranganath et al., 2015) is a probabilistic model with several layers of latent locations
and latent weights, mimicking the architecture of a deep neural network. The weights of the model
are denoted by w.`/kk0 , where k and k0 run over latent components, and ` indexes the layer. The latent
locations are z.`/nk , where n denotes the observation. We consider Poisson-distributed observations
xnd for each dimension d . Thus, the model is specified as

z

.`/
nk ⇠ Gamma

 
˛z ;

˛zP
k0 z

.`C1/
nk0 w

.`/
k0k

!
; xnd ⇠ Poisson

 X
k0
z

.1/
nk0w

.0/
k0d

!
:

We place gamma priors over the weights w`kk0 with rate 0:3 and shape 0:1, and a gamma prior with
rate 0:1 and shape 0:1 over the top-layer latent variables z.L/nk . We set the hyperparameter ˛z D 0:1,
and we use L D 3 layers with 100, 40, and 15 latent factors.
The second model is a beta-gamma �� model with weights wkd and latent locations znk . We use this
model to describe binary observations xnd , which are modeled as

xnd ⇠ Bernoulli

 
sigmoid

 X
k

logit .znk/ wkd

!!
;

where logit .z/ D log.z=.1 � z// and sigmoid .�/ is the inverse logit function. We place a gamma
prior with shape 0:1 and rate 0:3 over the weights wkd , a uniform prior over the variables znk , and
we use K D 100 latent components.
Datasets. We apply the sparse gamma ��� on two di�erent databases: (i) the Olivetti database at
AT&T,6 which consists of 400 (320 for training and 80 for test) 64 ⇥ 64 images of human faces in a 8

6
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

6

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


Dataset �-��� ���� ����
Olivetti 5 1 0:1

���� 0:5 5 1

����� 5 5 0:1

Omniglot 5 � 0:1

Dataset �-��� ���� ����
Olivetti 0:46 12:90 0:17

���� 0:83 20:95 0:25

����� 1:09 25:99 0:34

Omniglot 5:50 � 4:10

Table 1: (Left) Step-size constant ⌘, reported for completeness. (Right) Average time per iteration in
seconds. �-��� is 1-4 times slower than ���� but above one order of magnitude faster than ����.
bit scale (0 � 255); and (ii) the collection of papers at the Neural Information Processing Systems
(����) 2011 conference, which consists of 305 documents and a vocabulary of 5715 e�ective words
in a bag-of-words format (25% of words from all documents are set aside to form the test set).
We apply the beta-gamma �� on: (i) the binarized ����� data,7 which consists of 28 ⇥ 28 images of
hand-written digits (we use 5000 training and 2000 test images); and (ii) the Omniglot dataset (Lake
et al., 2015), which consists of 105 ⇥ 105 images of hand-written characters from di�erent alphabets
(we select 10 alphabets, with 4425 training images, 1475 test images, and 295 characters).
Evaluation. We apply mean-field �� and we compare �-��� with ���� (Ranganath et al., 2014) and
���� (Kucukelbir et al., 2016). We do not apply ���� on the Omniglot dataset due to its computational
complexity. At each iteration, we evaluate the ���� using one sample from the variational distribution,
except for ����, for which we use 20 samples (for the Omniglot dataset, we only use one sample). We
run each algorithm with a fixed computational budget of CPU time. After that time, we also evaluate
the predictive log-likelihood on the test set, averaging over 100 posterior samples. For the ���� data,
we also compute the test perplexity (with one posterior sample) every 10 iterations, given by

exp

 
�Pdocs

P
w2doc.d/ logp.w j #held out in doc.d//

#held out words

!
:

Experimental setup. To estimate the gradient, we use 30 Monte Carlo samples for ����, and only 1
for ���� and �-���. For ����, we use Rao-Blackwellization and control variates (we use a separate
set of 30 samples to estimate the control variates). For ���� and �-���, we use beta and gamma
variational distributions, whereas ���� uses Gaussian distributions on the transformed space, which
correspond to log-normal or logit-normal distributions on the original space. Thus, only �-��� and
���� optimize the same variational family. We parameterize the gamma distribution in terms of
its shape and mean, and the beta in terms of its shape parameters ˛ and ˇ. To avoid constrained
optimization, we apply the transformation v0 D log.exp.v/� 1/ to the variational parameters that are
constrained to be positive and take stochastic gradient steps with respect to v0. We use the analytic
gradient of the entropy terms. We implement ���� as described by Kucukelbir et al. (2016).
We use the step-size schedule in Eq. 13, and we explore the parameter ⌘ 2 f0:1; 0:5; 1; 5g. For each
algorithm and each dataset, we report the results based on the value of ⌘ for which the best ���� was
achieved. We report the values of ⌘ in Table 1 (left).
Results. We show in Figure 1 the evolution of the ���� as a function of the running time for
three of the considered datasets. ���� converges slower than the rest of the methods, since each
iteration involves drawing multiple samples and evaluating the log-joint for each of them. ���� and
�-��� achieve similar bounds, except for the ����� dataset, for which �-��� provides a variational
approximation that is closer to the posterior, since the ���� is higher. This is because a variational
family with sparse gamma and beta distributions provides a better fit to the data than the variational
family to which ���� is limited (log-normal and logit-normal). ���� seems to converge slower;
however, we do not claim that ���� converges slower than �-��� in general. Instead, the di�erence
may be due to the di�erent step-sizes schedules that we found to be optimal (see Table 1). We also
report in Table 1 (right) the average time per iteration8 for each method: ���� is the slowest method,
and ���� is the fastest because it involves simulation of Gaussian random variables only.
However, �-��� provides higher likelihood values than ����. We show in Figure 2a the evolution of
the perplexity (lower is better) for the ���� dataset, and in Figure 2b the resulting test log-likelihood
(larger is better) for the rest of the considered datasets. In Figure 2b, we report the mean and standard
deviation over 100 posterior samples. ���� cannot fit the data as well as �-��� or ���� because it is
constrained to log-normal and logit-normal variational distributions. These cannot capture sparsity,

7
http://yann.lecun.com/exdb/mnist

8On the full ����� with 50; 000 training images, �-��� (����) took 8:08 (2:04) seconds per iteration.
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(a) ���� (Olivetti dataset).
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(b) ���� (����� dataset).
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(c) ���� (Omniglot dataset).
Figure 1: Comparison between �-���, ����, and ���� in terms of the variational objective function.
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(a) Perplexity (���� dataset).

Dataset �-��� ���� ����
Olivetti �4:48 ˙ 0:01 �9:74˙ 0:08 �4:63˙ 0:01

����� �0:0932˙ 0:0004 �0:0888 ˙ 0:0004 �0:189˙ 0:009

Omniglot �0:0472 ˙ 0:0001 � �0:0823˙ 0:0009

(b) Average test log-likelihood per entry xnd .

Figure 2: Comparison between �-���, ����, and ���� in terms of performance on the test set. �-���
outperforms ���� because the latter has not converged in the allowed time, and it also outperforms
���� because of the variational family it uses.
which is an important feature for the considered models. We can also conclude this by a simple visual
inspection of the fitted models. In the Supplement, we compare images sampled from the �-��� and
the ���� posteriors, where we can observe that the latter are more blurry or lack some details.

5 Conclusion

We have introduced the generalized reparameterization gradient (�-���), a technique to extend the
standard reparameterization gradient to a wider class of variational distributions. As the standard
reparameterization method, our method is applicable to any probabilistic model that is di�erentiable
with respect to the latent variables. We have demonstrated the generalized reparameterization gradient
on two nonconjugate probabilistic models to fit a variational approximation involving gamma and
beta distributions. We have also empirically shown that a single Monte Carlo sample is enough to
obtain a noisy estimate of the gradient, therefore leading to a fast inference procedure.
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1 Derivation of the Generalized Reparameterization Gradient

Here we show the mathematical derivation of the generalized reparameterization gradient. Firstly,
recall the definition of the functions

h.✏I v/ , r
v

T .✏I v/; (1)

u.✏I v/ , r
v

logJ.✏; v/; (2)

which are provided in the main text.
We start from the following expression of the gradient, also derived in the main text:

r
v

Eq.zIv/ Œf .z/ç D
Z
q✏.✏I v/r

v

f .T .✏I v// d✏

„ ƒ‚ …
g

rep

C
Z
q✏.✏I v/f .T .✏I v//r

v

log q✏.✏I v/d✏

„ ƒ‚ …
g

corr

; (3)

We can write the former term, g

rep, as

g

rep D
Z
q✏.✏I v/r

v

f .T .✏I v// d✏ (4)

D
Z
q .T .✏I v/I v/ J.✏; v/r

v

f .T .✏I v// d✏ (5)

D
Z
q .T .✏I v/I v/ J.✏; v/r

z

f .z/
ˇ̌
zDT .✏Iv/rv

T .✏I v/d✏ (6)

D
Z
q.zI v/r

z

f .z/h
�
T �1.zI v/I v

�
dz (7)

D Eq.zIv/
⇥
r

z

f .z/h
�
T �1.zI v/I v

�⇤
; (8)

where we have first replaced the variational distribution on the transformed space with its form as a
function of q.zI v/, i.e., q✏.✏I v/ D q .T .✏I v/I v/ J.✏; v/. We have then applied the chain rule, and
finally we have made a new change of variables back to the original space z (thus multiplying by the
inverse Jacobian).
For the latter, g

corr, we have that

g

corr D
Z
q✏.✏I v/f .T .✏I v//r

v

log q✏.✏I v/d✏ (9)

D
Z
q .T .✏; v/I v/ J.✏; v/f .T .✏I v//r

v

.log q .T .✏I v/I v/C logJ.✏; v// d✏ (10)

D
Z
q .T .✏I v/I v/ J.✏; v/f .T .✏I v// .r

v

log q .T .✏I v/I v/C r
v

logJ.✏; v// d✏: (11)
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The derivative r
v

log q .T .✏I v/I v/ can be obtained by the chain rule. If z D T .✏I v/, then
r

v

log q .T .✏I v/I v/ D r
z

log q.zI v/r
v

T .✏I v/ C r
v

log q.zI v/. We substitute this result in the
above equation and revert the change of variables back to the original space z (also multiplying by the
inverse Jacobian), yielding

g

corr D
Z
q.zI v/f .z/

�
r

z

log q.zI v/h
�
T �1.zI v/I v

�
C r

v

log q.zI v/C u
�
T �1.zI v/I v

��
dz

D Eq.zIv/
⇥
f .z/

�
r

z

log q.zI v/h
�
T �1.zI v/I v

�
C r

v

log q.zI v/C u
�
T �1.zI v/I v

��⇤
;

(12)

where we have used the definition of the functions h.✏I v/ and u.✏I v/.

2 Particularization for the Gamma Distribution

For the gamma distribution we choose the transformation

z D T .✏I˛; ˇ/ D exp.✏
p
 1.˛/C  .˛/ � log.ˇ//: (13)

Thus, we have that

J.✏; ˛; ˇ/ D j det r✏T .✏I˛; ˇ/j D T .✏I˛; ˇ/
p
 1.˛/: (14)

The derivatives of log q.zI˛; ˇ/ with respect to its arguments are given by

@

@z
log q.zI˛; ˇ/ D ˛ � 1

z
� ˇ; (15)

@

@˛
log q.zI˛; ˇ/ D log.ˇ/ �  .˛/C log.z/; (16)

@

@ˇ
log q.zI˛; ˇ/ D ˛

ˇ
� z: (17)

Therefore, the auxiliary functions h.✏I˛; ˇ/ and u.✏I˛; ˇ/ for the components of the gradient with
respect to ˛ and ˇ can be written as

h˛.✏I˛; ˇ/ D @

@˛
T .✏I˛; ˇ/ D T .✏I˛; ˇ/

 
✏ 2.˛/

2
p
 1.˛/

C  1.˛/

!
; (18)

hˇ .✏I˛; ˇ/ D @

@ˇ
T .✏I˛; ˇ/ D �T .✏I˛; ˇ/

ˇ
; (19)

u˛.✏I˛; ˇ/ D @

@˛
logJ.✏; ˛; ˇ/ D

 
✏ 2.˛/

2
p
 1.˛/

C  1.˛/

!
C  2.˛/

2 1.˛/
; (20)

uˇ .✏I˛; ˇ/ D @

@ˇ
logJ.✏; ˛; ˇ/ D � 1

ˇ
: (21)

Thus, we finally obtain that the components of g

rep corresponding to the derivatives with respect to ˛
and ˇ are given by

g

rep
˛ D Eq.zI˛;ˇ/

"
@

@z
f .z/ ⇥ z

 
T �1.zI˛; ˇ/ 2.˛/

2
p
 1.˛/

C  1.˛/

!#
; (22)

g

rep
ˇ D Eq.zI˛;ˇ/


@

@z
f .z/ ⇥ �z

ˇ

�
; (23)

while the components of g

corr can be similarly obtained by substituting the expressions above into
Eq. 12. Remarkably, we obtain that

g

corr
ˇ D 0: (24)
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3 Particularization for the Beta Distribution

For a random variable z ⇠ Beta.˛; ˇ/, we could rewrite z D z0
1=.z

0
1 C z0

2/ for z0
1 ⇠ Gamma.˛; 1/

and z0
2 ⇠ Gamma.ˇ; 1/, and apply the above method for the gamma-distributed variables z0

1 and
z0
2. Instead, in the spirit of applying standardization directly over z, we define a transformation to

standardize the logit function. This leads to

z D T .✏I˛; ˇ/ D 1

1C exp.�✏� �  .˛/C  .ˇ//
: (25)

This transformation ensures that ✏ has mean zero. However, in this case we do not specify the form of
� , and we let it be a function of ˛ and ˇ. This allows us to choose � in such a way that g

corr D 0 for
the sampled value of z, which we found to work well (even though this introduces some bias). For
simplicity, we write � D exp.�/.
Thus, we have that

J.✏; ˛; ˇ/ D j det r✏T .✏I˛; ˇ/j D T .✏I˛; ˇ/.1 � T .✏I˛; ˇ//�: (26)
The derivatives of log q.zI˛; ˇ/ with respect to its arguments are given by

@

@z
log q.zI˛; ˇ/ D ˛ � 1

z
� ˇ � 1
1 � z ; (27)

@

@˛
log q.zI˛; ˇ/ D  .˛ C ˇ/ �  .˛/C log.z/; (28)

@

@ˇ
log q.zI˛; ˇ/ D  .˛ C ˇ/ �  .ˇ/C log.1 � z/: (29)

Therefore, the auxiliary functions h.✏I˛; ˇ/ and u.✏I˛; ˇ/ for the components of the gradient with
respect to ˛ and ˇ can be written as

h˛.✏I˛; ˇ/ D @

@˛
T .✏I˛; ˇ/ D T .✏I˛; ˇ/.1 � T .✏I˛; ˇ//

✓
 1.˛/C ✏�

@�

@˛

◆
; (30)

hˇ .✏I˛; ˇ/ D @

@ˇ
T .✏I˛; ˇ/ D T .✏I˛; ˇ/.1 � T .✏I˛; ˇ//

✓
� 1.ˇ/C ✏�

@�

@ˇ

◆
; (31)

u˛.✏I˛; ˇ/ D @

@˛
logJ.✏; ˛; ˇ/ D .1 � 2T .✏I˛; ˇ//

✓
 1.˛/C ✏�

@�

@˛

◆
C @�

@˛
; (32)

uˇ .✏I˛; ˇ/ D @

@ˇ
logJ.✏; ˛; ˇ/ D .1 � 2T .✏I˛; ˇ//

✓
� 1.ˇ/C ✏�

@�

@ˇ

◆
C @�

@ˇ
: (33)

Note that the term ✏� above can be computed from z without knowledge of the value of � as
✏� D T �1.zI˛; ˇ/� D logit.z/� .˛/C .ˇ/

� � D logit .z/ �  .˛/C  .ˇ/.
Thus, we finally obtain that the components of g

rep corresponding to the derivatives with respect to ˛
and ˇ are given by

g

rep
˛ D Eq.zI˛;ˇ/


@

@z
f .z/ ⇥ z.1 � z/

✓
 1.˛/C .logit .z/ �  .˛/C  .ˇ//

@�

@˛

◆�
; (34)

g

rep
ˇ D Eq.zI˛;ˇ/


@

@z
f .z/ ⇥ z.1 � z/

✓
� 1.ˇ/C .logit .z/ �  .˛/C  .ˇ//

@�

@ˇ

◆�
; (35)

where we are still free to choose @�=@˛ and @�=@ˇ. We have found that the choice of these values
such that g

corr
˛ D g

corr
ˇ D 0 works well in practice. Thus, we set the derivatives of � such that the

relationships
@

@z
log q.zI˛; ˇ/ ⇥ h˛

�
T �1.zI˛; ˇ/I˛; ˇ

�
C @

@˛
log q.zI˛; ˇ/C u˛

�
T �1.zI˛; ˇ/I˛; ˇ

�
D 0;

(36)
@

@z
log q.zI˛; ˇ/ ⇥ hˇ

�
T �1.zI˛; ˇ/I˛; ˇ

�
C @

@ˇ
log q.zI˛; ˇ/C uˇ

�
T �1.zI˛; ˇ/I˛; ˇ

�
D 0;

(37)
hold for the sampled value of z. This involves solving a simple linear equation for @�=@˛ and
@�=@ˇ.
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4 Particularization for the Dirichlet Distribution

For a Dirichlet.˛/ distribution, with ˛ D Œ˛1; : : : ; ˛K ç, we can apply the standardization

z D T .✏I ˛/ D exp
⇣
†1=2✏ C �

⌘
; (38)

where the mean � is a K-length vector and the covariance † is a K ⇥ K matrix,1;2 which are
respectively given by

� D Eq.zI˛/ Œlog.z/ç D

2
64
 .˛1/ �  .˛0/

:::
 .˛K/ �  .˛0/

3
75 (39)

and
.†/ij D Cov.log.zi /; log.zj // D

⇢
 1.˛i / �  1.˛0/ if i D j;
� 1.˛0/ if i ¤ j:

(40)

Here, we have defined ˛0 D P
k ˛k . The covariance matrix † can be rewritten as a diagonal matrix

plus a rank one update, which can be exploited for faster computations:

† D diag

0
B@
2
64
 1.˛1/
:::

 1.˛K/

3
75
1
CA �  1.˛0/11

>: (41)

Note that, since † is positive semidefinite, †1=2 can be readily obtained after diagonalization. In
other words, if we express † D VDV

>, where V is an orthonormal matrix and D is a diagonal matrix,
then †1=2 D VD

1=2
V

>.
Given the transformation above, we can write

J.✏;˛/ D j det r✏T .✏I ˛/j D det.†1=2/
Y
i

Ti .✏I ˛/: (42)

The derivatives of log q.zI ˛/ with respect to its arguments are given by

@

@zi
log q.zI ˛/ D ˛i � 1

zi
; (43)

@

@˛i
log q.zI ˛/ D  .˛0/ �  .˛i /C log.zi /: (44)

Therefore, the auxiliary functions h.✏I ˛/ and u.✏I ˛/ can be written as

h.✏I ˛/ D r˛T .✏I ˛/ D

2
666664

T1.✏I ˛/

✓
@.†1=2

1W /

@˛1
✏ C @�1

@˛1

◆
� � � T1.✏I ˛/

✓
@.†1=2

1W /

@˛K
✏ C @�1

@˛K

◆

:::
: : :

:::

TK.✏I ˛/

✓
@.†1=2

KW /
@˛1

✏ C @�K

@˛1

◆
� � � TK.✏I ˛/

✓
@.†1=2

KW /
@˛K

✏ C @�K

@˛K

◆

3
777775
;

(45)

u.✏I ˛/ D r˛ logJ.✏;˛/ D

2
666664

@ log det.†1=2/
@˛1

CP
i

✓
@.†1=2

iW /

@˛1
✏ C @�i

@˛1

◆

:::

@ log det.†1=2/
@˛K

CP
i

✓
@.†1=2

iW /

@˛K
✏ C @�i

@˛K

◆

3
777775
: (46)

1Instead, we could define a transformation that ignores the o�-diagonal terms of the covariance matrix. This
would lead to faster computations but higher variance of the resulting estimator.

2We could also apply the full-covariance transformation for the beta distribution.
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The intermediate derivatives that are necessary for the computation of the functions h.✏I ˛/ and
u.✏I ˛/ are:

@�

@˛i
D

2
66666664

� 1.˛0/
� 1.˛0/

:::
 1.˛i / �  1.˛0/

:::
� 1.˛0/

3
77777775

(47)

@ log det.†1=2/

@˛i
D trace

 
†�1=2 @†

1=2

@˛i

!
; (48)

and @†1=2

@˛i
is the solution to the Lyapunov equation

@†

@˛i
D @†1=2

@˛i
†1=2 C †1=2 @†

1=2

@˛i
; (49)

where

@†

@˛i
D diag

0
BBBBBBB@

2
66666664

0
0
:::

 2.˛i /
:::
0

3
77777775

1
CCCCCCCA

�  2.˛0/11

>: (50)

Putting all this together, we finally have the expressions for the generalized reparameterization
gradient:

g

rep D Eq.zI˛/
⇥
h> �T �1.zI ˛/I ˛

�
r

z

f .z/
⇤
; (51)

g

corr D Eq.zI˛/
h
f .z/

⇣
h> �T �1.zI ˛/I ˛

�
r

z

log q.zI v/C r˛ log q.zI ˛/C u
�
T �1.zI ˛/I ˛

� ⌘i
;

(52)

5 Experimental Results

5.1 Using more than 1 sample

We now study the sensitivity of the generalized reparameterization gradient with respect to the number
of samples of the Monte Carlo estimator. For that, we choose the Olivetti dataset, and we apply
the generalized reparameterization approach using 2, 5, 10, and 20 Monte Carlo samples. At each
iteration, we compute the evidence lower bound (����) and the average sample variance of the gradient
estimator. We report these results in Figure 1 for the first 200 iterations of the inference procedure. As
expected, increasing the number of samples is beneficial because it reduces the resulting variance. The
gap between the curves with 10 and 20 samples is negligible, specially after 100 iterations. A larger
number of samples seems to be particularly helpful in the very early iterations of inference.

5.2 Reconstructed images

Here, we show some reconstructed observations for the three datasets involving images, namely, the
binarized �����, the Olivetti dataset, and Omniglot. We plot the reconstructed images as follows: we
first draw one sample from the variational posterior, and then we compute the mean of the observations
for that particular sample of latent variables.
Figure 2 shows the results for the Olivetti dataset. The true observations are shown in the left panel,
whereas the corresponding reconstructed images are shown in the center panel (for �-���) and the
right panel (for ����). We can observe that the images obtained from �-��� are more detailed (e.g.,
we can distinguish the glasses, mustache, or facial expressions) than the images obtained from ����.
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Figure 1: Performance of �-��� for di�erent number of Monte Carlo samples.

We argue that this e�ect is due to the variational family used by automatic di�erentiation variational
inference (����), which cannot capture well sparse posterior distributions, for which samples close to
0 are common.
This behavior is similar in the case of the digits from ����� or the characters from Omniglot. We
show these images in Figures 3 and 4, respectively. Once again, images sampled from the �-���
posterior are visually closer to the ground truth that images sampled from the ���� posterior, which
tend to be more blurry, or even unrecognizable in a few cases.

(a) True observations. (b) Reconstructed (�-���). (c) Reconstructed (����).

Figure 2: Images from the Olivetti dataset. ���� provides less detailed images when compared to
�-���.
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(a) True observations. (b) Reconstructed (�-���). (c) Reconstructed (����).

Figure 3: Images from the binarized ����� dataset. ���� provides more blurry images when
compared to �-���.

(a) True observations. (b) Reconstructed (�-���). (c) Reconstructed (����).

Figure 4: Images from the Omniglot dataset. ���� provides more blurry images when compared to
�-���.

7


	Introduction
	Background
	The Generalized Reparameterization Gradient
	Examples
	Algorithm
	Related work

	Experiments
	Conclusion

