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Abstract

Variational inference has become a widely
used method to approximate posteriors in
complex latent variables models. However,
deriving a variational inference algorithm gen-
erally requires significant model-specific anal-
ysis. These efforts can hinder and deter us
from quickly developing and exploring a vari-
ety of models for a problem at hand. In this
paper, we present a “black box” variational
inference algorithm, one that can be quickly
applied to many models with little additional
derivation. Our method is based on a stochas-
tic optimization of the variational objective
where the noisy gradient is computed from
Monte Carlo samples from the variational dis-
tribution. We develop a number of methods
to reduce the variance of the gradient, always
maintaining the criterion that we want to
avoid difficult model-based derivations. We
evaluate our method against the correspond-
ing black box sampling based methods. We
find that our method reaches better predictive
likelihoods much faster than sampling meth-
ods. Finally, we demonstrate that Black Box
Variational Inference lets us easily explore a
wide space of models by quickly constructing
and evaluating several models of longitudinal
healthcare data.

1 Introduction

Probabilistic models with latent variables have become
a mainstay in modern machine learning applications.
With latent variables models, we posit a rich latent
structure that governs our observations, infer that struc-
ture from large data sets, and use our inferences to sum-
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marize observations, draw conclusions about current
data, and make predictions about new data. Central
to working with latent variable models is the problem
of computing the posterior distribution of the latent
structure. For many interesting models, computing
the posterior exactly is intractable: practitioners must
resort to approximate methods.

One of the most widely used methods for approximate
posterior estimation is variational inference (Wain-
wright and Jordan, 2008; Jordan et al., 1999). Varia-
tional inference tries to find the member of a family of
simple probability distributions that is closest (in KL
divergence) to the true posterior distribution.

For a specific class of models, those where the condi-
tional distributions have a convenient form (and where
a convenient variational family exists), this optimiza-
tion can be carried out with a closed-form coordinate
ascent algorithm (Ghahramani and Beal, 2001). For
generic models and arbitrary variational families, how-
ever, there is no closed-form solution: computing the
required expectations becomes intractable. In these
settings, practitioners have resorted to model-specific al-
gorithms (Jaakkola and Jordan, 1996; Blei and Lafferty,
2007; Braun and McAuliffe, 2007) or generic algorithms
that require model specific computations (Knowles and
Minka, 2011; Wang and Blei, 2013; Paisley et al., 2012).

Deriving these algorithms on a model-by-model basis
is tedious work. This hinders us from rapidly exploring
modeling assumptions when solving applied problems,
and it makes variational methods on complicated dis-
tributions impractical for many practitioners. Our goal
in this paper is to develop a “black box” variational
inference algorithm, a method that can be quickly ap-
plied to almost any model and with little effort. Our
method allows practitioners to quickly design, apply,
and revise models of their data, without painstaking
derivations each time they want to adjust the model.

Variational inference methods frame a posterior esti-
mation problem as an optimization problem, where the
parameters to be optimized adjust a variational “proxy”
distribution to be similar to the true posterior. Our
method rewrites the gradient of that objective as the
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expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Hoffman et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Hoffman et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar effort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This differs from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for difficult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , Eq�.z/Œlogp.x; z/ � log q.z/�: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.
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Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and ht .x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let �t be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

xtC1  xt C �tht .xt /:

This converges to a maximum of f .x/ when �t , the
learning rate, follows the Robbins-Monro conditions,P1

tD1 �t D 1P1
tD1 �

2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒs� � q

end for
� = tth value of a Robbins Monro sequence

� = �C � 1
S

PS
sD1 r� log q.zŒs� j�/.logp.x; zŒs�/�

log q.zŒs� j�//
t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r�L D EqŒr� log q.zj�/.logp.x; z/ � log q.zj�//�:
(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r� log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r�L �
1

S

SX
sD1

r� log q.zsj�/.logp.x; zs/ � log q.zsj�//;

where zs � q.zj�/:
(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; zs/. This algorithm
significantly reduces the effort needed to implement
variational inference in a wide variety of models.
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3 Controlling the Variance

We can use Algorithm 1 to maximize the ELBO, but
the variance of the estimator of the gradient (under
the Monte Carlo estimate in Eq. 3) can be too large
to be useful. In practice, the high variance gradients
would require very small steps which would lead to
slow convergence. We now show how to reduce this
variance in two ways, via Rao-Blackwellization and
easy-to-implement control variates. We exploit the
structure of our problem to use these methods in a
way that requires no model-specific derivations, which
preserves our goal of black-box variational inference.

3.1 Rao-Blackwellization

Rao-Blackwellization (Casella and Robert, 1996) re-
duces the variance of a random variable by replacing it
with its conditional expectation with respect to a subset
of the variables. Note that the conditional expectation
of a random variable is a random variable with respect
to the conditioning set. This generally requires analyt-
ically computing problem-specific integrals. Here we
show how to Rao-Blackwellize the estimator for each
component of the gradient without needing to compute
model-specific integrals.

In the simplest setting, Rao-Blackwellization replaces
a function of two variables with its conditional expec-
tation. Consider two random variables, X and Y , and
a function J.X; Y /. Our goal is to compute its expec-
tation EŒJ.X; Y /� with respect to the joint distribution
of X and Y .

Define OJ .X/ D EŒJ.X; Y /jX�, and note that EŒ OJ .X/� D
EŒJ.X; Y /�. This means that OJ .X/ can be used in
place of J.X; Y / in a Monte Carlo approximation of
EŒJ.X; Y /�. The variance of OJ .X/ is

Var. OJ .X// D Var.J.X; Y // � EŒ.J.X; Y / � OJ .X//2�:

Thus, OJ .X/ has lower variance than J.X; Y /.

We return to the problem of estimating the gradient
of L. Suppose there are n latent variables z1Wn and we
are using the mean-field variational family, where each
random variable zi is independent and governed by its
own variational distribution,

q.z j�/ D
Qn
iD1 q.zi j�i /; (4)

where �1Wn are the n variational parameters charac-
terizing the member of the variational family we seek.
Consider the ith component of the gradient. Let q.i/ be
the distribution of variables in the model that depend
on the ith variable, i.e., the Markov blanket of zi and zi ;
and let pi .x; z.i// be the terms in the joint that depend
on those variables. We can write the gradient with

respect to �i as an iterated conditional expectation
which simplifies to

r�iL D
Eq.i/ Œr�i log q.zi j�i /.logpi .x; z.i// � log q.zi j�i //�:

(5)

The derivation of Eq. 5 can be found in the supplement.
This equation says that we can Rao-Blackwellize each
component of the gradient with respect to variables
outside of the its Markov blanket without needing to
compute model-specific conditional expectations.

We construct a Monte Carlo estimator for the gradient
of �i using samples from the variational distribution,

1

S

SX
sD1

r�i log qi .zsj�i /.logpi .x; zs/ � log qi .zsj�i //;

where zs � q.i/.zj�/:
(6)

These noisy gradients can be used to maximize the
ELBO. In our empirical study, Figure 2, we plot the
variance of this estimator along with that of Eq. 3.

3.2 Control Variates

As we saw above, variance reduction methods work
by replacing the function whose expectation is being
approximated by Monte Carlo with another function
that has the same expectation but smaller variance.
That is, to estimate EqŒf � via Monte Carlo we com-

pute the empirical average of Of where Of is chosen so

EqŒf � D EqŒ Of � and VarqŒf � > VarqŒ Of �.

A control variate (Ross, 2002) is a family of functions
with equivalent expectation. Recently, control variates
have been of interest for variational inference (Paisley
et al., 2012) and for general optimization problems that
occur in machine learning (Wang et al., 2013).

Consider a function h, which has a finite first moment,
and a scalar a. Define Of to be

Of .z/ , f .z/ � a.h.z/ �EŒh.z/�/: (7)

This is a family of functions, indexed by a, and note
that EqŒ Of � D EqŒf � as required. Given a particular
function h, we can choose a to minimize the variance
of Of .

First we note that variance of Of can be written as

Var. Of / D Var.f /C a2Var.h/ � 2aCov.f; h/:

This equation implies that good control variates have
high covariance with the function whose expectation is
being computed.
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Taking the derivative of Var. Of / with respect to a and
setting it equal to zero gives us the value of a that
minimizes the variance,

a� D Cov.f; h/=Var.h/: (8)

We now apply this method to Black Box Variational
Inference. To maintain the generic nature of the algo-
rithm, we want to choose a control variate that only
depends on the variational distribution and for which
we can easily compute its expectation. Meeting these
criteria, we choose h to be the score function of the
variational approximation, r� log q.z/, which always
has expectation zero. (See the appendix.)

We apply our control variates to estimate each entry of
the Rao-Blackwellized gradient. More formally, in our
above notation, the control variates for the d th entry
of the gradient are

fd .z/ D r�d log q.zj�i /.logpi .x; z/ � log qi .x; z//;

hd .z/ D r�d log q.zj�i /;

when the d th entry belongs to the ith factor.

The optimal scalings for the control variates are given
by Eq. 8. We estimate the necessary variance and
covariances on a small number of samples. Given the
estimated scalings Oad the control variate Monte Carlo
estimate of the gradient using S samples is

Or�dL ,
1

S

SX
sD1

r�d log qi .zsj�i /

.logpi .x; zs/ � log qi .zs/ � Oad /: (9)

This estimator uses both Rao-Blackwellization and
control variates. We show in the empirical study that
this generic control variate further reduces the variance
of the estimator.

3.3 Black Box Variational Inference (II)

Putting together the noisy gradient, Rao-
Blackwellization, and control variates, we present
Black Box Variational Inference (II). It takes samples
from the variational approximation to compute noisy
gradients with Eq. 9. These noisy gradients are
then used in a stochastic optimization procedure to
maximize the ELBO.

We summarize the procedure in Algorithm 2. Algo-
rithm 2 is easily used on many models. It only requires
samples from the variational distribution, computations
about the variational distribution, and easy computa-
tions about the model.

Algorithm 2 Black Box Variational Inference (II)

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize �1Wn randomly, t D 1.
repeat
// Draw S samples from the variational ap-
proximation
for s D 1 to S do
zŒs� � q

end for
for d D 1 to D do

for s D 1 to S do
fd Œs� D r�d log qi .zŒs� j�i /.logpi .x; zŒs�/ �
log qi .zŒs� j�i //
hd Œs� D r�d log qi .zŒs� j�i /

end for
Oa�
d
D

OCov.fd ;hd /
OVar.hd /

, Estimate from a few samples

Or�dL , 1
S

PS
sD1 fi Œs� � Oadhi Œs�

end for
� = tth value of a Robbins Monro sequence
� D �C � Or�L
t D t C 1

until change of � is less than 0.01.

4 Extensions

We extend the main algorithm in two ways. First, we
address the difficulty of setting the step size sched-
ule. Second, we address scalability by subsampling
observations.

4.1 AdaGrad

One challenge with stochastic optimization techniques
is setting the learning rate. Intuitively, we would like
the learning rate to be small when the variance of the
gradient is large and vice-versa. Additionally, in prob-
lems like ours that have different scales1, the learning
rate needs to be set small enough to handle the small-
est scale. To address this issue, we use the AdaGrad
algorithm (Duchi et al., 2011). Let Gt be a matrix
containing the sum across the first t iterations of the
outer products of the gradient. AdaGrad defines the
learning rate as

�t D �diag.Gt /
�1=2: (10)

This is a per-component learning rate since diag.Gt /
has the same dimension as the gradient. Note that
since AdaGrad only uses the diagonal of Gt , those
are the only elements we need to compute. AdaGrad
captures noise and varying length scales through the
square of the noisy gradient and reduces the number

1Probability distributions have many parameterizations.
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of parameters to our algorithm from the standard two
parameter Robbins-Monro learning rate.

4.2 Stochastic Inference in Hierarchical
Bayesian Models

Stochastic optimization has also been used to scale
variational inference in hierarchical Bayesian models to
massive data (Hoffman et al., 2013). The basic idea is
to subsample observations to compute noisy gradients.
We can use a similar idea to scale our method.

In a hierarchical Bayesian model, we have a hyper-
parameter �, global latent variables ˇ, local latent
variables z1:::n, and observations x1:::n having the log
joint distribution

logp.x1:::n;z1:::n; ˇ/ D logp.ˇj�/

C

nX
iD1

logp.zi jˇ/C logp.xi jzi ; ˇ/: (11)

This is the same definition as in Hoffman et al. (2013),
but they place further restrictions on the forms of the
distributions and the complete conditionals. Under
the mean field approximating family, applying Eq. 9
to construct noisy gradients of the ELBO would re-
quire iterating over every datapoint. Instead we can
compute noisy gradients using a sampled observation
and samples from the variational distribution. The
derivation along with variance reductions can be found
in the supplement.

5 Empirical Study

We use Black Box Variational Inference to quickly
construct and evaluate several models on longitudinal
medical data. We demonstrate the effectiveness of our
variance reduction methods and compare the speed
and predictive likelihood of our algorithm to sampling
based methods. We evaluate the various models using
predictive likelihood to demonstrate the ease at which
several models can be explored.

5.1 Longitudinal Medical Data

Our data consist of longitudinal data from 976 patients
(803 train + 173 test) from a clinic at CUMC who have
been diagnosed with chronic kidney disease. The data
are obtained from CUMC under IRB protocol. These
patients visited the clinic a total of 33K times. During
each visit, a subset, determined by the doctor, of 17
measurements (labs) were collected.

The data are observational and consist of measurements
(lab values) taken at the doctor’s discretion when the
patient is at a checkup. This means both that the

labs at each time step are sparse and that the time
between patient visits are highly irregular. The labs
values are all positive, as the labs measure the amount
of a particular quantity such as sodium concentration
in the blood.

Our modeling goal is to come up with a low dimen-
sional summarization of patients’ labs at each of their
visits. From this, we aim to to find latent factors that
summarize each visit as positive random variables. As
in medical data applications, we want our factors to
be latent indicators of patient health.

We evaluate our model using predictive likelihood. To
compute predictive likelihoods, we need an approximate
posterior on both the global parameters and the per
visit parameters. We use the approximate posterior on
the global parameters and calculate the approximate
posterior on the local parameters on 75% of the data in
the test set. We then calculate the predictive likelihood
on the other 25% of the data in the validation set using
Monte Carlo samples from the approximate posterior.

We initialize randomly and choose the variational fami-
lies to be fully-factorized with gamma distributions for
positive variables and normals for real valued variables.
We use both the AdaGrad and doubly stochastic ex-
tensions on top of our base algorithm. We use 1,000
samples to estimate the gradient and 100 samples to
estimate the control variate scaling. We set the batch
size at 25 for all our experiments.

5.2 Model

To meet our goals, we construct a Gamma-Normal
time series (Gamma-Normal-TS) model. We model our
data using weights drawn from a Normal distribution
and observations drawn from a Normal, allowing each
factor to both positively and negative affect each lab
while letting factors represent lab measurements. The
generative process for this model with hyperparameters
denoted with � is

Draw W � Normal.0; �w/, an L �K matrix
For each patient p: 1 to P

Draw op �Normal.0; �o/, a vector of L
Draw xp1 = GammaE.�x ; �x/
Draw lp1 �Normal.Wxp1 C op; �l /, a vector of L.
For each visit v: 2 to vp

Draw xpv �GammaE.xpv�1; �x/
Draw lpv �Normal.Wxpv C op; �l /, a vector of L.

We set �w , �o, �x to be 1 and �l to be .01. In our
model, GammaE is the expectation/variance parame-
terization of the (L-dimensional) gamma distribution.
(The mapping between this parameterization and the
more standard one can be found in the supplement.)
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Figure 1: Comparison between Metropolis-Hastings
within Gibbs and Black Box Variational Inference on
the Gamma-Normal-TS model. The x axis is time and
the y axis is the log predictive likelihood of the held
out set. Black Box Variational Inference reaches better
predictive likelihoods faster than Gibbs sampling. Vari-
ational inference overfits slightly in the 20 hour period.
The Gibbs sampler’s progress slows considerably after
5 hours.

Black Box Variational Inference allows us to make
use of non-standard parameterizations for distributions
that are easier to reason about. This is an important
observation, as the standard set of families used in
variational inference tend to be fairly limited. In this
case, the expectation parameterization of the gamma
distribution allows the previous visit factors to define
the expectation of the current visit factors. Finally, we
emphasize that coordinate ascent variational inference
and Gibbs sampling are not available for this algorithm
because the required conditional distributions do not
have closed form.

5.3 Sampling Methods

We compare Black Box Variational Inference to
a standard sampling based technique, Metropolis-
Hastings (Bishop, 2006), that also only requires the
joint distribution.2

Metropolis-Hastings works by sampling from a proposal
distribution and accepting or rejecting the samples
based on the likelihood. Standard Metropolis-Hastings
can work poorly in high dimensional models. We find
that it fails for the Gamma-Normal-TS model. Instead,
we compare to a Gibbs sampling method that uses
Metropolis-Hastings to sample from the complete con-

2Methods that involve a bit more work such as Hamil-
tonian Monte Carlo could work in this setting, but as our
technique only requires the joint distribution and could
benefit from added analysis used in more complex methods,
we compare against a similar methods.

ditionals. For our proposal distribution we use the same
distributions as found in the previous section, with the
mean equal to the value of the previous parameter.

We compute predictive likelihoods using the posterior
samples generated by the MCMC methods on held out
data in the test set.

We compared our method to Metropolis-Hastings inside
Gibbs on the Gamma-Normal-TS model. We used a
fixed computational budget of 20 hours. Figure 1 plots
predictive likelihood versus time on the held out set for
both methods. We found similar results with different
random initializations of both methods. Black Box
Variational Inference gives better predictive likelihoods
and gets them faster.3

5.4 Variance Reductions

We next studied how much variance is reduced by our
variance reduction methods. In Figure 2, we plot the
variance of various estimators of the gradient of the
variational approximation for a factor in the patient
time-series versus iteration number. We compare the
variance of the Monte Carlo gradient (Eq. 3) to that
of the Rao-Blackwellized gradient (Eq. 6) and that
of the gradient using both Rao-Blackwellization and
control variates (Eq. 9). We allow the estimators with-
out control variates to leverage the samples used by
the control variate estimator to estimate the scalings.
We found that Rao-Blackwellization reduces the vari-
ance by several orders of magnitude. Applying control
variates reduces the variance further. This reduction
in variance drastically improves the speed at which
Black Box Variational Inference converges. In fact, in
the time allotted, Algorithm 1—the algorithm without
variance reductions—failed to make much progress.

5.5 Exploring Models

We developed Black Box Variational Inference to make
it easier to quickly explore and fit many new models
to a data set. We demonstrate this by considering a
sequence of three other models for our data: Gamma,
Gamma-TS, and Gamma-Normal.

Gamma. We model the latent factors that summa-
rize each visit in our models as positive random vari-
ables; as noted above, we expect these to be indicative
of patient health. The Gamma model is a positive-
value factor model where all of the factors, weights,
and observations have positive values. The generative
process for this model is

3Black Box Variational Inference also has better pre-
dictive mean-squared error on the labs than Gibbs style
Metropolis-Hastings.
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Figure 2: Variance comparison for the first component
of a random patient on the following estimators: Eq. 3,
the Rao-Blackwellized estimator Eq. 6, and the Rao-
Blackwellized control variate estimator Eq. 9. We find
that Rao-Blackwellizing the naive estimator reduces
the variance by several orders of magnitude. Adding
control variates reduces the variance even further.

Draw W � Gamma.˛w ; ˇw/, an L �K matrix
For each patient p: 1 to P

Draw op �Gamma.˛o; ˇo/, a vector of L
For each visit v: 1 to vp

Draw xpv �Gamma.˛x ; ˇx/
Draw lpv �GammaE.Wxpv C op; �o/, a vector of L.

We set all hyperparameters save �o to be 1. As in the
previous model, �o is set to 0.01.

Gamma-TS. We can link the factors through time
using the expectation parameterization of the gamma
distribution. (Note this is harder with the usual natural
parameterization of the gamma.) This changes xpv to
be distributed as GammaE.xpv�1; �v/. We draw xp1
as above. In this model, the expected values of the
factors at the next visit is the same as the value at
the current visit. This allows us to propagate patient
states through time.

Gamma-Normal. Similar to the above, we can
change the time-series Gamma-Normal-TS (studied
in the previous section) to a simpler factor model. This
is similar to the Gamma model, but a normal prior.

These combinations lead to a set of four models that
are all nonconjugate and for which standard varia-
tional techniques are difficult to apply. Our variational
inference method allows us to compute approximate
posteriors for these models to determine which provides
the best low dimensional latent representations.

We determined convergence using change in log predic-
tive likelihood on a validation set. We set the AdaGrad
step to 0:5 for the Gamma models and 1 for the others.

Model Predictive Likelihood
Gamma-Normal -31.2

Gamma-Normal-TS -30.0
Gamma-Gamma -146

Gamma-Gamma-TS -132

Table 1: A comparison between several models for our
patient health dataset. We find that taking into account
the longitudinal nature of the data in the model leads
to a better fit. The Gamma models perform relatively
poorly. This is likely due to the fact that some labs
are negatively correlated as the Gamma models cannot
capture such relationships.

Model Comparisons. Table 1 details our models
along with their predictive likelihoods. From this we
see that time helps in modeling our longitudinal health-
care data. We also see that the Gamma-Gamma mod-
els perform poorly. This is likely because they cannot
capture the negative correlations that exist between dif-
ferent medical labs. More importantly, by using Black
Box Variational Inference we were able to quickly fit
and explore a set of complicated non-conjugate mod-
els. Without a generic algorithm, approximating the
posterior of any of these models is a project in itself.

6 Conclusion

We developed and studied Black Box Variational In-
ference, a new algorithm for variational inference that
drastically reduces the analytic burden. Our main ap-
proach is a stochastic optimization of the ELBO by
sampling from the variational posterior to compute a
noisy gradient. Essential to its success are model-free
variance reductions to reduce the variance of the noisy
gradient. Our method works wells on new models, while
requiring minimal analytic work by the practitioner.

There are several natural directions for future improve-
ments to this work. First, software libraries can be
created with score functions for a wide variety of vari-
ational families (each score function is simply the log
gradient of the variational distribution with respect to
the variational parameters). Second, we believe that
number of samples could be set dynamically. Finally,
carefully-selected samples from the variational distribu-
tion (e.g., with quasi-Monte Carlo methods) are likely
to significantly decrease sampling variance.
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