
Unsupervised Representation Learning via Neural Activation Coding

Yookoon Park 1 Sangho Lee 2 Gunhee Kim 2 David M. Blei 1

Abstract

We present neural activation coding (NAC) as a
novel approach for learning deep representations
from unlabeled data for downstream applications.
We argue that the deep encoder should maximize
its nonlinear expressivity on the data for down-
stream predictors to take full advantage of its rep-
resentation power. To this end, NAC maximizes
the mutual information between activation pat-
terns of the encoder and the data over a noisy com-
munication channel. We show that learning for
a noise-robust activation code increases the num-
ber of distinct linear regions of ReLU encoders,
hence the maximum nonlinear expressivity. More
interestingly, NAC learns both continuous and
discrete representations of data, which we respec-
tively evaluate on two downstream tasks: (i) lin-
ear classification on CIFAR-10 and ImageNet-1K
and (ii) nearest neighbor retrieval on CIFAR-10
and FLICKR-25K. Empirical results show that
NAC attains better or comparable performance on
both tasks over recent baselines including Sim-
CLR and DistillHash. In addition, NAC pretrain-
ing provides significant benefits to the training of
deep generative models. Our code is available at
https://github.com/yookoon/nac.

1. Introduction
High dimensional data pose fundamental challenges for
machine learning such as the curse of dimensionality, and
thus often require tailored domain-specific architectures
with a large amount of supervision (Krizhevsky et al., 2012;
Vaswani et al., 2017). A good representation alleviates such
challenges by providing a low-dimensional view of the data
that captures high-level semantics and by rendering such in-
formation more easily accessible to downstream predictors

1Computer Science Department, Columbia University, New
York, USA 2Department of Computer Science and Engineering,
Seoul National University, Seoul, South Korea. Correspondence
to: David M. Blei <david.blei@columbia.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

(a) At initialization (b) After NAC training

Figure 1. Distinct linear regions of a simple ReLU network with 2
layers of width 4 on 2D toy data. The lines represent the activation
boundaries that divide the input space into distinct linear regions.
NAC maximizes the number of linear regions of the network on
the data, hence the maximum nonlinear expressivity.

(Bengio et al., 2013). Especially, unsupervised representa-
tion learning possesses a great potential since it provides a
means of exploiting abundant unlabeled data for enhancing
the performance on downstream applications (Devlin et al.,
2018; Chen et al., 2020a), even with limited amounts of
labels (Chen et al., 2020b).

We focus on the problem of learning deep representations
from unlabeled data for downstream predictors, a popular
scenario in unsupervised representation learning literature
(Wu et al., 2018; He et al., 2020; Chen et al., 2020a). In
this setting, the deep encoder network is pretrained on an
unlabeled dataset. The learned representation is then fed
into subsequent predictors for downstream tasks such as
classification. Most often, simple linear models are chosen
as the predictors (Wu et al., 2018; He et al., 2020; Chen
et al., 2020a) and the quality of the representation is evalu-
ated by how well these models perform on the downstream
applications. This evaluation protocol encodes the belief
that a good representation should disentangle complex high-
level semantics of the data and deliver them in a linearly
accessible way. The key question here is: how can we learn
the deep encoder to benefit the downstream predictors?

Self-supervised learning introduces pretext tasks with artifi-
cially generated pseudo-labels from unlabeled data (Doersch
et al., 2015; Noroozi & Favaro, 2016; Gidaris et al., 2018) to
train the encoder, expecting that the encoder would learn use-
ful structures of the data to better solve such tasks. Recently,

https://github.com/yookoon/nac

Unsupervised Representation Learning via Neural Activation Coding

contrastive learning of representation (Oord et al., 2018;
Wu et al., 2018; Chen et al., 2020a) based on the informa-
tion maximization (InfoMax) principle has quickly gained
popularity, leading significant improvements in learning un-
supervised representations of natural images. Specifically,
it formulates an instance-wise classification problem; as the
encoder learns to identify whether a pair of inputs is from
the same sample or not, the mutual information between the
representation and the data is maximized.

In this work, we present a novel perspective for unsuper-
vised representation learning: the encoder should attain max-
imum nonlinear expressivity on the data in order for down-
stream predictors to take full advantage of the encoder’s
nonlinear power. For a rectified activation (ReLU) network
which is piece-wise linear, the nonlinear expressivity of the
network is defined in terms of the number of distinct linear
regions it defines on the input domain (Pascanu et al., 2013;
Montufar et al., 2014; Raghu et al., 2017), where each lin-
ear region is associated with an activation pattern of the
encoder’s hidden units. Based on this observation, neural
activation coding (NAC) maximizes the mutual information
between the activation code and the data over a noisy com-
munication channel. We show that learning of a noise-robust
activation code for communication increases the number of
distinct linear regions of the network (Figure 1) and there-
fore maximizes its nonlinear expressivity. Moreover, NAC
learns both continuous and discrete representations of data
which we respectively evaluate on linear classification and
nearest neighbor retrieval on natural image datasets. Finally,
we show that NAC pretraining improves the training of deep
generative models by enhancing the encoder expressivity.

Our main contributions are summarized as follows:

• We propose neural activation coding (NAC) as a novel
approach for unsupervised representation learning. In
contrast to contrastive learning approaches that are
based on InfoMax principle, NAC maximizes the non-
linear expressivity of the encoder by formulating a
communication problem over a noisy channel using
the activation code of the encoder.

• NAC is able to learn both continuous and discrete rep-
resentations of data, which we respectively evaluate
on (i) linear classification on CIFAR-10 and ImageNet-
1K and (ii) nearest neighbor search on CIFAR-10 and
FLICKR-25K. We show NAC attains comparable or
better performance to recent competitive methods, in-
cluding SimCLR (Chen et al., 2020a) and DistillHash
(Yang et al., 2019).

• By maximizing the nonlinear expressivity of encoder,
we demonstrate that NAC pretraining significantly ben-
efits the training of variational autoencoders.

• NAC does not require `2-normalization for learning
good representations, questioning the prevalent be-
lief (Wu et al., 2018; Wang & Isola, 2020) that `2-
normalization plays a key role in unsupervised repre-
sentation learning.

2. Related Works
Nonlinear complexity of deep neural networks. Pascanu
et al. (2013); Montufar et al. (2014); Raghu et al. (2017);
Serra et al. (2018); Arora et al. (2018); Hanin & Rolnick
(2019) have studied nonlinear expressivity of deep neural
networks (DNNs). In particular, a network with rectified
activation (ReLU(x) = max(0, x)) is a piece-wise linear
function and divides the input space distinct locally linear
regions. Accordingly, the nonlinear expressivity of the net-
work is represented by the number of distinct linear regions
it defines on the input domain. In contrast to the previ-
ous works that have either sought theoretical bounds on
the the number of linear regions in DNNs or empirically
analyzed the nonlinear expressiveness of DNNs when being
trained on a supervised task, we propose a way to explic-
itly maximize the nonlinear expressivity of the encoder for
representation learning.

Self-supervised representation learning. A prevalent ap-
proach for representation learning is to formulate pretext
tasks with pseudo labels generated from the unlabeled data
(Doersch et al., 2015; Noroozi & Favaro, 2016; Gidaris et al.,
2018). Among others, contrastive learning (Wu et al., 2018;
Oord et al., 2018; Tian et al., 2019; He et al., 2020; Chen
et al., 2020a;c) methods have recently led the state-of-the-art
advances in linear classification and transfer learning on nat-
ural image datasets. Specifically, the approach of Wu et al.
(2018); He et al. (2020); Chen et al. (2020a) generates two
different views of an example (e.g. random crops of an im-
age); the views of the same example are treated as positive
samples while the views generated from distinct examples
are treated as negative samples. The encoder is trained to
solve the instance discrimination problem of classifying the
positive pair from the negatives. This maximizes the cosine
similarity of positive pairs in the representation space, while
pushing the representations of different examples away from
each other.

Although contrastive representation learning has achieved
significant advances on natural image data, it is not yet well
understood exactly why it has been so successful in learning
representations for downstream predictors. One explanation
is the information maximization (InfoMax) principle (Oord
et al., 2018; Bachman et al., 2019), which states that the rep-
resentation should contain maximum information about the
data. Notably, contrastive learning optimizes a lower-bound
to the mutual information (MI) between the representation
and the data (Poole et al., 2019). However, Tschannen et al.

Unsupervised Representation Learning via Neural Activation Coding

(2020) argue the success of contrastive approach cannot be
attributed to the InfoMax principle alone but strongly rely
on the properties of MI estimators and architectural choices.
In this work, we present a new approach for representation
learning that maximizes the nonlinear expressivity of the
encoder for downstream predictors.

Unsupervised deep hashing. Deep hashing aims to learn
binary representations (i.e., hash codes) of data using
deep neural networks (Salakhutdinov & Hinton, 2009;
Krizhevsky & Hinton, 2011; Lin et al., 2016; Hu et al.,
2017; Yang et al., 2018; 2019). The binary nature of the
code admits efficient computation of nearest neighbor search
algorithms for large-scale data, with minimal memory foot-
print. Lin et al. (2016) treat images and their rotated ones
as similar pairs and learn rotation invariant hash mapping.
Hu et al. (2017) is similar to NAC in that it maximizes the
mutual information between the hash code and the data.
However, they ignore higher-order interactions between the
code bits in order to derive an approximation to the MI.
On the other hand, NAC lower-bounds the MI using vari-
ational inference and subsampling, and further promotes
noise-robustness of the code by introducing a noisy commu-
nication channel. More recently, Yang et al. (2018; 2019)
exploit similarity of deep features to construct pseudo la-
bels for hash code learning and achieve the state-of-the-art
performance on natural image datasets.

3. Approach
3.1. Activation Code in ReLU Networks

Consider a deep neural network (DNN) with ReLU activa-
tion ReLU(x) = max(0, x):

a(l) = W(l)h(l−1) + b(l), (1)

h(l) = ReLU(a(l)), l = 1, 2, . . . , L (2)

where ReLU is applied element-wise and L is the number
of layers. We set h(0) = x. The DNN is a piece-wise
linear function that segments the input space into a set of
distinct locally linear regions (Figure 1) (Pascanu et al.,
2013; Montufar et al., 2014; Raghu et al., 2017).

For layer l, we define the activation code as the binary string

c(l) = sgn(a(l)) ∈ {−1, 1}D, (3)

where D is the number of hidden units in a layer. The acti-
vation code represents the activation pattern of the network
that uniquely identifies a linear region. Hereafter, we fo-
cus on the last layer activation code c(L) and will drop the
superscript when there is no ambiguity.

The DNN maps each training data point xi ∈ {x1, ...,xN}
to an activation codeword ci (Equations (1) to (3)). The

distance between two codewords ci, cj ∈ {−1, 1}D is mea-
sured using the Hamming distance:

dH(ci, cj) =
D − ci · cj

2
, (4)

which counts the number of different bits between the two
codewords. ci · cj denotes the dot product of the two code-
words. The distance is the minimum number of distinct
linear regions that one has to traverse along a path from
xi to xj . Therefore, the average distance or separability
between the codewords serves as a measure of the effective
number of linear regions on the data (Raghu et al., 2017).

While we limit our attention to ReLU in this work, similar
analyses may apply to a broad class of other activation func-
tions. For example, Leaky ReLU and MaxOut are already
piece-wise linear functions. Exponential linear units (ELUs)
and Gaussian error linear units (GELUs) can be seen as
smooth approximations to ReLU. Sigmoid and hyperbolic
tangent (tanh) activations also have distinct modes of op-
eration; they behave like a linear function near the origin
but gradually saturate to constant functions further away
from the origin. Hence, they can be considered as smooth
approximations to piece-wise linear functions too.

3.2. Neural Activation Coding

For a ReLU encoder, the distribution of that activation code-
words {c1, ..., cN} has significant implications for down-
stream applications as the nonlinear expressivity of the en-
coder is determined as the number of distinct activation
codewords (Pascanu et al., 2013; Montufar et al., 2014;
Raghu et al., 2017), For example, if a set of data are mapped
to the same codeword on the DNN, it means that they lie
in the same linear region of the encoder. Therefore, down-
stream linear models won’t be able to express any nonlin-
ear relationships between these examples. This suggests
that a good encoder network should attain high nonlinear
expressivity by mapping the data to as many unique acti-
vation codewords as possible. This is the key motivation
behind Neural Activation Coding (NAC) which proposes
to maximize the nonlinear expressivity of the encoder for
representation learning.

NAC maximizes the mutual information (MI) between
the activation code and the data over a noisy communi-
cation channel X → C → C̃. Suppose the message
xi ∈ {x1, ...,xN} is selected uniformly at random from
the dataset. The sender first encodes the message xi into the
activation codeword ci (Equations (1) to (3)) and transmits it
through the noisy channel. The receiver tries to reconstruct
the message from the noisy code c̃i. In order for the receiver
to correctly decode the message with high probability, the
codewords {c1, ..., cN} should be easily separable; in other
words maximally distant from each other (MacKay, 2003).
The amount of information that the receiver gains from the

Unsupervised Representation Learning via Neural Activation Coding

11

-1 -1

1− p

p

p

1− p

Figure 2. A symmetric noise channel used in NAC. Each bit of
code is independently flipped with probability p.

communication is quantified as the mutual information be-
tween the noisy activation code and the data: I(X, C̃). Thus
maximizing I(X, C̃) leads to noise-robust codewords that
are maximally distant from each other, which translates to
maximum nonlinear expressivity of the the encoder.

Symmetric noise channel. We consider a symmetric noise
channel where the bits of c are randomly flipped with prob-
ability p (Figure 2) to create a noisy code c̃. The total
number of flipped bits is given by the Hamming distance
dH(c̃, c) = (D − c̃ · c)/2. The conditional probability of
transmitted message c̃ given a codeword ci is

P (c̃|ci) = pdH(c̃,ci)(1− p)D−dH(c̃,ci) (5)

= p(D−c̃·ci)/2(1− p)(D+c̃·ci)/2 (6)

= exp((c̃ · ci)
1

2
log

1− p
p

+
D

2
log p(1− p)). (7)

Accordingly, the marginal distribution of the message is

Pθ(c̃) =
∑
j,c

Pdata(xj)Pθ(c|xj)P (c̃|c) (8)

=
1

N

N∑
j=1

exp((c̃ · cj)
1

2
log

1− p
p

+
D

2
log p(1− p)),

where θ denotes the parameters of the encoder and the data
distribution is assumed to be uniform (Pdata(xj) = 1/N)
over the training examples. The activation code is a deter-
ministic function of the input i.e., Pθ(cj |xj) = 1.

The mutual information between the message and data is

I(X, C̃) = Ex,c̃

[
log

Pθ(c̃|ci)
Pθ(c̃)

]
(9)

=
1

N

N∑
i=1

Ec̃|ci

[
log

exp((c̃ · ci) 12 log
1−p
p)

1
N

∑
j exp((c̃ · cj)

1
2 log

1−p
p)

]
,

which follows from Equations (7) and (8). Note that
log 1−p

p > 0 for p < 0.5 (i.e., the channel has non-zero ca-

pacity). From the denominator, we see maximizing I(X, C̃)
will minimize the similarity (i.e., maximize the Hamming
distance) between the codewords and consequently maxi-
mize the number of distinct linear regions of the encoder.

3.3. Data Augmentation

Data augmentations play a significant role in self-supervised
learning of natural image representations (Chen et al., 2020a;
Hénaff et al., 2020; Wu et al., 2018). Common augmenta-
tion methods for images include horizontal flipping, random
cropping, color jittering, etc. We incorporate data augmen-
tations into NAC by modifying the communication channel
as X→ X̃→ C→ C̃, where X̃ is the augmented version
of X as a result of applying stochastic data augmentations.
The mutual information is now

I(X, C̃) = Ex,c̃

[
log

Pθ(c̃|x)
Pθ(c̃)

]
. (10)

Both the numerator and the denominator in Equation (10) is
no longer tractable since it requires marginalization over x̃.
We therefore construct lower-bounds for each term using (i)
variational inference and (ii) subsampling, respectively as
described below.

Variational inference. We lower-bound the numerator us-
ing an amortized variational distribution Qφ(c̃|x):

Ex,c̃[logQφ(c̃|x)] (11)
= Ex,c̃[logPθ(c̃|x)]−DKL(Pθ(c̃|x)‖Qφ(c̃|x))]
≤ Ex,c̃[logPθ(c̃|x)], (12)

where the expectation is taken over Pθ(x, c̃), and the in-
equality stems from the non-negativity of KL-divergence.
From the bound, see that maximizing Equation (11) in
turn minimizes DKL(Pθ(c̃|x)‖Qφ(c̃|x))], driving the vari-
ational distribution closer to the true conditional. We adopt
a mean-field approach by setting Qφ(c̃|x) as a product of
Bernoulli distributions (mind that here c̃d ∈ {−1, 1}):

Qφ(c̃|x) =
D∏
d=1

q
(1+c̃d)/2
d (1− qd)(1−c̃d)/2, (13)

where D is the dimension of the code. We introduce an
inference network φ to output the logit rd = log qd

1−qd for
each bit and then apply sigmoid function to obtain qd =
σ(rd). The expectation of Equation (11) is evaluated as

Ex,c̃[logQφ(c̃|x)] (14)

= Ex,c̃

[
1

2

D∑
d=1

c̃d log
qd

1− qd
+ log qd(1− qd)

]
(15)

=
1

2
Ex,c̃

[
c̃ · rφ(x) + 1 · log σ(rφ(x))(1− σ(rφ(x)))

]
,

where rφ(x) is the D-dimensional logit vector, and 1 is the
same-sized one vector. The sigmoid and the log functions
are applied element-wise.

Unsupervised Representation Learning via Neural Activation Coding

Subsampling. On the other hand, the denominator of
Equation (10) can be lower-bounded using 2K subsam-
ples c1, c2, . . . , c2K (Poole et al., 2019; Chen et al., 2020a).
Specifically, we first sample K examples x1,x2, . . . ,xK ∼
Pdata(x) and draw two augmented versions per each exam-
ple x̃2k−1, x̃2k ∼ Paug(x̃|xk). Finally, the encoder network
maps the augmented samples x̃1, x̃2, . . . , x̃2K to activation
codewords c1, c2, . . . , c2K . The bound is constructed as

Ec̃

[
log

1

Pθ(c̃)

]
(16)

≤ Ec̃,c1,...c2K

[
log

1
1

2K

∑2K
k=1 P (c̃|ck)

]
(17)

= Ec̃,c1,...c2K

[
log

1
1

2K

∑2K
k=1 exp((c̃ · ck)

1
2 log

1−p
p)

]
.

NAC objective. Combining the two bounds above (Equa-
tions (11) and (16)), we arrive at our objective

LNAC = Ex,c̃,c1,...,c2K

[
log

Qφ(c̃|x)
1

2K

∑2K
k=1 Pθ(c̃|ck)

]
, (18)

which is a lower-bound to the mutual information I(X, C̃).

3.4. Optimization

The objective of Equation (18) involves discrete codewords
and does not admit gradient-based optimization. To cir-
cumvent this issue, we adopt continuous relaxation (Cao
et al., 2017) and replace the discrete code c = sgn(a) ∈
{−1, 1}D with a soft approximation z = tanh(a) ∈
[−1, 1]D where a is the last preactivation of the encoder:

L̃NAC (19)

=
1

2
Ex,z̃

[
z̃ · rφ(x) + 1 · log σ(rφ(x))(1− σ(rφ(x)))

]

− Ez̃,z1,...,z2K
[log

1

2K

2K∑
k=1

exp((z̃ · zk)
1

2
log

1− p
p

)].

We apply stochastic gradient optimization by sampling a
mini-batch of examples x1,x2, . . . ,xK ∼ Pdata(x) at each
iteration. The gradients with respect to the parameters of
the encoder θ and the inference network φ are computed
using backpropagation on Equation (19).

3.5. Model Architecture

Figure 3 overviews the NAC architecture. The encoder takes
the augmented data x̃ as input and produces the representa-
tion h. Following Chen et al. (2020a), Chen et al. (2020c),
we attach a projection head at the end of the encoder. It

ResNet
encoder

projection
head

inference
network

ResNet
encoder projection

head

inference
network

x"!"#$

x"

h!"#$
c"!"#$

r!"#$

c"!"#$ & r!"#$

x"!" h!"

r!"
c"!" & r!"

c!"#$

c"!"c!"

Linear
classifier

Nearest
neighbor

Figure 3. The NAC architecture. The inference network takes the
encoder representation from one pathway and predict the logits
for the other pathway. The negative samples are not depicted
here. After training, the encoder representation and the activation
code are respectively applied to linear classification and nearest
neighbor search.

is an MLP with one hidden layer that maps the encoder
presentation h to the lower-dimensional feature z. The ac-
tivation code c is obtained by applying a sign function on
z. Similarly, the inference network shares the same encoder
backbone and predicts the logit vector r from the encoder
representation h. The logit r defines the variational distri-
bution Qφ(c̃|x) (Equation (13)). However, directly using
the encoder representation h from the same path allows
the inference network to easily cheat. Therefore, we build
two independent pathways by sampling two augmented
versions of data x̃2k−1, x̃2k ∼ P (x̃|xk). The inference net-
work takes the encoder representation of one pathway (e.g.,
h2k−1) and outputs the logits for the other pathway (e.g.
r2k) and vice versa (Figure 3).

For ImageNet experiments, we incorporate the momentum
queue (MQ) (He et al., 2020) in order to reduce the memory
overhead. The momentum queue maintains M momentum
features v1, ...,vM from previous iterations. In addition,
we introduce a momentum model r̂φ(x) for the inference
network as well. In our experiments, we find that the dis-
crepancy between the norms of current model features and
momentum features causes instability during the training
of NAC-MQ models and add `2-regularization term on the
norm of the feature z in order to stabilize the training:

L̃NAC-MQ (20)

=
1

2
Ex,z̃

[
z̃ · r̂φ(x) + 1 · log σ(r̂φ(x))(1− σ(r̂φ(x)))

]

− Ez,z̃

[
log

1

M

M∑
m=1

exp((z̃ · vm)
1

2
log

1− p
p

) + λ‖z‖22

]
,

where λ controls the strength of `2 regularization. We use
λ = 0.1 in our experiments.

Unsupervised Representation Learning via Neural Activation Coding

3.6. Comparison to Contrastive Learning

We compare NAC to the contrastive learning objective of
SimCLR (Chen et al. (2020a)) and highlight a few distin-
guishing traits. The SimCLR objective for example xi is

L(i)
SimCLR = log

exp((ui · u′i)/τ)∑2K
k=1 I[k 6=i] exp((ui · uk)/τ)

, (21)

where uk =
zk
‖zk‖

for k = 1, . . . , 2K. (22)

where ui,u
′
i are the features of two augmented versions of

the same image (i.e., a positive pair) and u1, . . . ,u2K are
the negative samples. I is an indicator function. Notably,
contrastive learning `2-normalizes the features so that they
lie on the unit hypersphere and use a temperature parameter
τ to control the concentration of the distribution.

For comparison, we can rewrite the relaxed NAC objective
in Equation (19) as

L̃(i)
NAC = log

exp((z̃i · rφ(xi))/2)∑2K
k=1 exp((z̃i · zk)

1
2 log

1−p
p)

. (23)

We see that both methods take similar forms that incentivize
minimizing the feature similarity between the negatives and
maximizing the similarity for the positive pair. However,
SimCLR uses the sample feature of the same example as the
positive, while NAC lets the inference network to predict
the distribution Pθ(z̃|x) to guide the feature.

Moreover, NAC does not apply `2-normalization to the fea-
tures (Equation (22)) but still learns good representations
of data, even though the role of `2-normalization has been
considered crucial in self-supervised representation learning
(Wu et al., 2018; Chen et al., 2020a; Wang & Isola, 2020).
We hypothesize that leaving out explicit normalization may
be beneficial since it allows the model to represent uncer-
tainty of its predictions in the norm of its features. To see
this, we rewrite the NAC objective (Equation (23)) using
the `2-normalized features as

L̃(i)
NAC = log

exp((ũi · rφ(xi))/2)‖z̃i‖∑2K
k=1 exp((ũi · zk)

1
2 log

1−p
p)‖z̃i‖

(24)

where ũk =
z̃k
‖z̃k‖

for k = 1, . . . , 2K. (25)

Equation (24) can be interpreted as a softmax distribution
where the norm of feature ‖z̃i‖ dynamically controls the
concentration of the distribution. When the encoder is con-
fident, it outputs large ‖z̃i‖ to make the distribution sharp.
Otherwise, it assigns small ‖z̃i‖ to smooth the distribution
reflecting its uncertainty. This is not possible for SimCLR
that enforces the features to be on the unit hypersphere; thus,
its performance is sensitive to tuning of the temperature pa-
rameter τ (Wu et al., 2018; Chen et al., 2020a).

Finally, contrastive representation learning (Oord et al.,
2018; Poole et al., 2019; Chen et al., 2020a) maximizes
the MI between the representation and the data I(X,Z). In
contrast, the goal of NAC is in maximizing the nonlinear ex-
pressivity of the encoder for downstream predictors. This is
achieved by maximizing the MI between the activation code
and the data I(X, C̃) over a noisy communication channel.
The noisy channel promotes noise-robust codewords which
leads to high nonlinear encoder expressivity.

4. Experiments
We assess the quality of continuous and discrete represen-
tations learned by NAC on two downstream tasks respec-
tively: (i) linear classification on CIFAR-10 and ImageNet-
1K. (ii) nearest neighbor search using the activation hash
code on CIFAR-10 and FLICKR-25. In addition, we explore
whether deep generative models can benefit from enhanced
encoder expressivity from NAC pretraining. We show that
NAC attains better or comparable performance to recent
methods including SimCLR (Chen et al., 2020a) and Dis-
tillHash (Yang et al., 2019) on the downstream tasks and
provides significant improvement for the training of varia-
tional autoencoders (VAEs) (Kingma & Welling, 2014).

4.1. Experimental Details

Following previous works (Chen et al., 2020a; He et al.,
2020; Chen et al., 2020c), we use ResNet architecture with
ReLU activation as our encoders. The projection head is
an MLP with one hidden layer with ReLU activation. The
feature/code dimension is set to 128. The inference network
has the identical structure to the projection head. For opti-
mization, we use LARS optimizer (You et al., 2017) with
linear warmup for the first 10 epochs followed by cosine
learning rate decay. We apply the same set of data augmen-
tations including horizontal flipping, random cropping and
resizing, color distortions and Gaussian blur used in Chen
et al. (2020a;c). We set weight decay to 10−6. For multi-
GPU training, we adopt batch shuffling (He et al., 2020) to
prevent the information leak in batch normalization layers.

CIFAR-10. We use a batch size of 1000 and train the en-
coder for 1000 epochs. Following Chen et al. (2020a), we
exclude Gaussian blur in CIFAR-10 experiments. The learn-
ing rate is set to 3.0 with momentum 0.9. For the models
with momentum queue, we set the size of the queue to 50000
and the moving average decay to 0.99.

ImageNet. We use a batch size of 512 and train the encoder
for 200 epochs. The learning rate is set to 1.7 following
the square root scaling rule (0.075 ×

√
batch size) (Chen

et al., 2020a) with momentum 0.9. For the models with
momentum queue, we set size of the queue to 65536 and the
moving average decay to 0.999, following (He et al., 2020).

Unsupervised Representation Learning via Neural Activation Coding

Table 1. Linear evaluation accuracy (top-1) on CIFAR-10 dataset
using ResNet-50 encoders. Trained for 1000 epochs.

Model Accuracy (%)

Contrastive Learning Methods:
InsDis (Wu et al., 2018) 80.8 *

SimCLR (Chen et al., 2020a) 92.8 †

MoCo-v2 (Chen et al., 2020c) 91.6 †

NAC 93.9
NAC + Momentum Queue 93.8
* Obtained using ResNet-18 encoder and kNN classifier
† Re-implemented for multi-GPU training.

Table 2. Linear evaluation accuracy (top-1) on ImageNet 1K
dataset using ResNet-50 encoders. Trained for 200 epochs.

Model Accuracy (%)

Contrastive Learning Methods:
InsDis (Wu et al., 2018) 54.0
CMC (Tian et al., 2019) 60.0
LocalAgg (Zhuang et al., 2019) 60.2
Moco (He et al., 2020) 60.6
SimCLR (Chen et al., 2020a) 66.6
Moco-v2 (Chen et al., 2020c) 67.5

NAC + Momentum Queue 65.0

4.2. Linear Image Classification

For downstream classification, the projection head is de-
tached from the encoder, and the encoder representation is
fed into a linear classifier. The encoder network is kept fixed
and only the linear model is learned using the supervision.
We measure the top-1 classification accuracy of the clas-
sifiers on the test set. It is a popular evaluation procedure
for assessing the quality of continuous deep representations
(Hénaff et al., 2020; He et al., 2020; Wu et al., 2018).

The linear classifier is trained using Nesterov optimizer with
momentum 0.9 for 100 epochs where the learning rate is
searched among {0.01, 0.1, 1.0, 10.0}. We do not apply any
regularization on the classifier. For CIFAR-10 experiments,
we re-implement SimCLR (Chen et al., 2020a) and MoCo-
v2 (Chen et al., 2020c) for multi-GPU training and report
the corresponding results for fair comparison.

Table 1 summarizes the downstream linear classification
results on CIFAR-10. The NAC outperforms the state-of-
the-art baselines by over 1%p. We find that the MoCo-v2
attains slightly worse results than the SimCLR on CIFAR-
10, while the NAC + Momentum Queue shows comparable
performance to the vanilla NAC.

Table 2 shows the linear classification results on ImageNet.
NAC falls slightly behind the state-of-the-art baselines in
ImageNet 1K but there is room for additional improvements
as we have not run extensive hyperparameter search due to
computational constraints.

4.3. Nearest Neighbor Search Using Deep Hash Codes

The goal of deep hashing is to utilize deep neural networks
to learn binary vector code c (i.e., hash codes) of high-
dimensional data x for efficient nearest neighbor retrieval
(Krizhevsky et al., 2012; Erin Liong et al., 2015; Do et al.,
2016). Hamming distance is used for ranking and the binary
nature of the code admits efficient nearest neighbor search
for large-scale datasets with minimal memory footprint. The
retrieved image is considered relevant if it belongs to the
same class as the query image. The hash code table is
populated using the training images and the test images
are used as queries. The performance is measured using
mean Average Precision (mAP) (Luo et al., 2020), which
computes the average area under the precision-recall curve.
For NAC, the activation code of the projection head is used
as the hash code. We compare NAC against recent deep
hashing methods (Lin et al., 2016; Yang et al., 2018; 2019) .

The hash code performance on CIFAR-10 is summarized
in Table 3. For reference, we also evaluate the performance
of contrastive methods of SimCLR (Chen et al., 2020c) and
MoCo-v2 (Chen et al., 2020c) by discretizing the models’
output using a sign function. Following Yang et al. (2019),
we use a VGG16 encoder and train the models on 10% of
the dataset for fair comparison. We train the encoder from
scratch, while the deep hashing baselines finetune a pre-
trained VGG16 encoder. NAC outperforms all the baselines
by significant margins as it learns maximally separable
codewords by promoting noise-robustness. Interestingly,
the contrastive learning methods of SimCLR and Moco-v2
surpass the deep hashing baselines, even though they are
not explicitly designed for learning hash codes. This may
be attributed to the use of strong data augmentations that
these models incorporate during training.

Table 4 shows the results on FLICKR-25K. Following Yang
et al. (2019), we start from a VGG16 encoder pretrained on
ImageNet-1K classification and finetune the model using
NAC. Against the deep hashing baselines, NAC attains the
highest mAP. However, as ImageNet pretraining already
provides a strong baseline for FLICKR-25K, we find that
the performance margins are not as significant as in the
CIFAR-10 results.

4.4. Encoder Pretraining for Deep Generative Models

The deep generative models of variational autoencoders
(VAEs) (Kingma & Welling, 2014) take the encoder-decoder
architecture where the decoder defines the generative distri-

Unsupervised Representation Learning via Neural Activation Coding

Table 3. Retrieval performance of unsupervised hash code (128
bit) on CIFAR-10. The baselines results for deep hashing methods
are excerpted from (Yang et al., 2019). The models are trained on
10% of the data using VGG16 encoders.

Model mAP (%)

Deep hashing methods
DeepBit (Lin et al., 2016) 25.3
SSDH (Yang et al., 2018) 26.0
DistillHash (Yang et al., 2019) 29.0

Contrastive learning methods
MoCo-v2 (Chen et al., 2020c) 32.3
SimCLR (Chen et al., 2020a) 34.2

NAC 40.5

Table 4. Retrieval performance of unsupervised hash code (128 bit)
on FLICKR-25K. The baselines results for deep hashing methods
are excerpted from (Yang et al., 2019). The models are trained on
5000 images using VGG16 encoders pretrained on ImageNet-1K.

Model mAP (%)

DeepBit (Lin et al., 2016) 59.3
SSDH (Yang et al., 2018) 66.2
DistillHash (Yang et al., 2019) 70.0

NAC 70.8

bution given a latent variable, and the encoder predicts the
posterior distribution of the latent variable. However, VAEs
suffer from suboptimality of the encoder (Cremer et al.,
2018; Marino et al., 2018; Kim et al., 2018), which leads
to biased learning signals. This problem is exacerbated by
several factors, namely: (i) the encoder is randomly initial-
ized, leading to the cold start problem. (ii) the encoder is
never trained to the optimality. This may be mitigated with
additional optimization steps, but they come with significant
computational overheads. (iii) To make the problem worse,
the learning target for the encoder constantly changes as the
decoder is jointly updated with the encoder.

Although even linear models can learn complex functions
when combined with pretrained encoders, we hypothesize
that NAC pretraining for the encoder can benefit VAEs by
maximizing the encoder’s nonlinear expressivity. Specifi-
cally, we pretrain the encoder using NAC and only randomly
initialize the linear output layer to predict the posterior dis-
tribution of the latent variable. This allows us to apply
higher learning rates on the linear output layer to speed up
the training of the encoder and consequently improve the
quality of amortized inference. We also finetune the encoder
by backpropagating through the linear output layer.

Table 5. Comparison of VAE performance using random initial-
ization and unsupervised pretraining on CIFAR-10. The loglikeli-
hoods are estimated with importance sampling. Trained for 100
epochs.

Encoder Loglikelihood KL divergence

Random init. -3202 33.0
SimCLR + finetune -3174 38.9
MoCo-v2 + finetune -3103 32.2
NAC + finetune -2865 71.8

0.01 0.05 0.10 0.20 0.30 0.40 0.45
Flip probability

82

84

86

88

90

92

94

Ac
cu

ra
cy

Classification accuracy
Nearest neighbor mAP

10

20

30

40

50

60

70

m
AP

Figure 4. CIFAR-10 downstream performance using ResNet-18
encoders with different flip probabilities. The dashed lines denote
the values of p that attains the best accuracy on respective tasks.

Table 5 summarizes the results on CIFAR-10 using ResNet-
18 architecture. We compare the NAC pretraining against
random initialization and pretraining using self-supervised
methods. Using the NAC pretraining achieves significantly
higher loglikelihood and KL divergence compared to the
baselines. This suggests that maximizing the encoder ex-
pressivity using NAC facilitates more active use of latent
variable and significantly enhances the training of VAEs.

4.5. The Effect of Noisy Communication Channel

The noisy communication channel in NAC controls the over-
all difficulty of task with the bit flip probability p of the
channel. Figure 4 plots the effect of the flip probability on
the downstream classification and nearest neighbor search
on CIFAR-10 . Interestingly, while the smaller noise prob-
ability of p = 0.1 is favorable for linear classification, the
nearest neighbor performance peaks at the higher noise level
of p = 0.4, suggesting discrete hash code benefits more
from improved noise-robustness. On the other hand, the
continuous representation suffers as the task becomes too
difficult, agreeing with the findings of Chen et al. (2020a).
Note that in the limit p→ 0.5, the transmitted code becomes
completely random, making the task impossible to solve.

Unsupervised Representation Learning via Neural Activation Coding

5. Conclusion
We proposed Neural Activation Coding (NAC) for unsuper-
vised representation learning. NAC maximizes the nonlinear
expressivity of the encoder by formulating a communication
problem over a noisy communication channel using the ac-
tivation code of the encoder. Through empirical evaluations,
we demonstrated that NAC can improve the performance of
downstream applications as well as enhance the training of
deep generative models. As future work, it is worthwhile
to explore the use of NAC on other data domains such as
natural language.

Acknowledgements
This work is supported by ONR N00014-17-1-2131, ONR
N00014-15-1-2209, NIH 1U01MH115727-01, NSF CCF-
1740833, DARPA SD2 FA8750-18-C-0130, Amazon and
Simons Foundation. Sangho Lee and Gunhee Kim are sup-
ported by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2017-0-01772, Video Tur-
ing Test, No.2019-0-01082, SW StarLab).

We thank Christian A. Naesseth for helpful discussion.

References
Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Under-

standing deep neural networks with rectified linear units.
In ICLR, 2018.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. In Advances in Neural Information Processing
Systems, pp. 15535–15545, 2019.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from a
continuous space. In CoNLL, 2016.

Cao, Z., Long, M., Wang, J., and Yu, P. S. Hashnet: Deep
learning to hash by continuation. In CVPR, 2017.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big self-supervised models are strong semi-
supervised learners. arXiv preprint arXiv:2006.10029,
2020b.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020c.

Cremer, C., Li, X., and Duvenaud, D. Inference suboptimal-
ity in variational autoencoders. In ICML, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Do, T.-T., Doan, A.-D., and Cheung, N.-M. Learning to
hash with binary deep neural network. In ECCV, 2016.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
ICCV, 2015.

Erin Liong, V., Lu, J., Wang, G., Moulin, P., and Zhou,
J. Deep hashing for compact binary codes learning. In
CVPR, 2015.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised
representation learning by predicting image rotations. In
ICLR, 2018.

Hanin, B. and Rolnick, D. Complexity of linear regions in
deep networks. In ICML, 2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, 2020.

Hénaff, O. J., Srinivas, A., De Fauw, J., Razavi, A., Doersch,
C., Eslami, S., and Oord, A. v. d. Data-efficient image
recognition with contrastive predictive coding. In ICML,
2020.

Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama,
M. Learning discrete representations via information
maximizing self-augmented training. In ICML, 2017.

Kim, Y., Wiseman, S., Millter, A. C., Sontag, D., and Rush,
A. M. Semi-amortized variational autoencoders. In ICML,
2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

Krizhevsky, A. and Hinton, G. E. Using very deep au-
toencoders for content-based image retrieval. In ESANN,
volume 1, pp. 2. Citeseer, 2011.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, 2012.

Unsupervised Representation Learning via Neural Activation Coding

Lin, K., Lu, J., Chen, C.-S., and Zhou, J. Learning com-
pact binary descriptors with unsupervised deep neural
networks. In CVPR, 2016.

Luo, X., Chen, C., Zhong, H., Zhang, H., Deng, M., Huang,
J., and Hua, X. A survey on deep hashing methods. arXiv
preprint arXiv:2003.03369, 2020.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

Marino, J., Yisong, Y., and Mandt, S. Iterative amortized
inference. In ICML, 2018.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. On
the number of linear regions of deep neural networks. In
NeurIPS, 2014.

Noroozi, M. and Favaro, P. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV,
2016.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pascanu, R., Montufar, G., and Bengio, Y. On the number
of response regions of deep feed forward networks with
piece-wise linear activations. In ICLR, 2013.

Poole, B., Ozair, S., Oord, A. v. d., Alemi, A. A., and
Tucker, G. On variational bounds of mutual information.
In ICML, 2019.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural
networks. In ICML, 2017.

Salakhutdinov, R. and Hinton, G. Semantic hashing. In-
ternational Journal of Approximate Reasoning, 50(7):
969–978, 2009.

Serra, T., Tjandraatmadja, C., and Ramalingam, S. Bound-
ing and counting linear regions of deep neural networks.
In ICML, 2018.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. arXiv preprint arXiv:1906.05849, 2019.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. In ICLR, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In ICML, 2020.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised fea-
ture learning via non-parametric instance discrimination.
In CVPR, 2018.

Yang, E., Deng, C., Liu, T., Liu, W., and Tao, D. Semantic
structure-based unsupervised deep hashing. In IJCAI,
2018.

Yang, E., Liu, T., Deng, C., Liu, W., and Tao, D. Distillhash:
Unsupervised deep hashing by distilling data pairs. In
CVPR, 2019.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Zhuang, C., Zhai, A. L., and Yamins, D. Local aggregation
for unsupervised learning of visual embeddings. In CVPR,
2019.

