Stable Differentiable Causal Discovery

Achille Nazaret ' > Justin Hong “'?> Elham Azizi'?3 David Blei ' *

Abstract

Inferring causal relationships as directed acyclic
graphs (DAGS) is an important but challenging
problem. Differentiable Causal Discovery (DCD)
is a promising approach to this problem, fram-
ing the search as a continuous optimization. But
existing DCD methods are numerically unstable,
with poor performance beyond tens of variables.
In this paper, we propose Stable Differentiable
Causal Discovery (SDCD), a new method that im-
proves previous DCD methods in two ways: (1)
It employs an alternative constraint for acyclic-
ity; this constraint is more stable, both theoreti-
cally and empirically, and fast to compute. (2)
It uses a training procedure tailored for sparse
causal graphs, which are common in real-world
scenarios. We first derive SDCD and prove its
stability and correctness. We then evaluate it with
both observational and interventional data and in
both small-scale and large-scale settings. We find
that SDCD outperforms existing methods in con-
vergence speed and accuracy, and can scale to
thousands of variables.

1. Introduction

Inferring cause-and-effect relationships between variables is
a fundamental challenge in many scientific fields, including
biology (Sachs et al., 2005), climate science (Zhang et al.,
2011), and economics (Hoover, 2006). Mathematically, a set
of causal relations can be represented with a directed acyclic
graph (DAG) where nodes are variables, and directed edges
indicate direct causal effects. The goal of causal discovery
is to recover the graph from the observed data. The data

“Equal contribution 'Department of Computer Science,
Columbia University, New York, USA *Irving Institute for Cancer
Dynamics, Columbia University, New York, USA *Department
of Biomedical Engineering, Columbia University, New York,
USA *Department of Statistics, Columbia University, New York,
USA. Correspondence to: Elham Azizi <ea2690@columbia.edu>,
David Blei <david.blei@columbia.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

can either be interventional, where some variables were
purposely manipulated, or purely observational, where there
has been no manipulation.

The challenge of causal discovery is that searching for the
true DAG underlying the data is an NP-hard problem. Exact
methods are intractable, even for modest numbers of vari-
ables (Chickering, 1996). Yet datasets in fields like biology
routinely involve thousands of variables (Dixit et al., 2016).

To address this problem, Zheng et al. (2018) introduced
differentiable causal discovery (DCD), which formulates
the DAG search as a continuous optimization over the
space of all graph adjacency matrices. An essential element
of this strategy is an acyclicity constraint, in the form of
a penalty, that guides an otherwise unconstrained search
toward acyclic graphs.

This optimization-oriented formulation often scales better
than previous methods, and it has opened opportunities to
harness neural networks (Lachapelle et al., 2019), incorpo-
rate interventional data (Brouillard et al., 2020), and use
matrix approximation techniques (Lopez et al., 2022). But,
while promising, existing DCD methods still struggle to
scale consistently beyond tens of variables, or they rely on
approximations that limit their applicability (see Section 5).

In this paper, we study the problems of DCD and improve
on it, so that it can scale more easily and apply to many
types of causal discovery problems. We trace the issues
with DCD to the instability of its objective function; in
particular, properties of the acyclicity constraint it uses to
find a DAG solution. We formalize this notion of stability,
show that previous DCD methods are unstable, and then
formulate a method that is stable and scalable.

In details, this paper makes several contributions. First, we
present a unifying theoretical view of existing acyclicity con-
straints, which explains their intrinsic numerical instability.
We then employ a constraint, the spectral acyclicity con-
straint (Lee et al., 2019), that is both faster to compute and
offers improved numerical stability. We prove its stability
and corroborate its good properties with experiments.

Finally, we develop Stable Differentiable Causal Discovery
(SDCD). SDCD is a two-stage optimization procedure for
causal discovery that is stable and computationally efficient.
In its first stage, it prunes edges without regard for acyclicity.

Stable Differentiable Causal Discovery

Stage 1
Edge Preselection

Stage 2
Differentiable Causal Discovery

—

True edge

Preselected
edge

e
Inferred
edge

Figure 1: Visual representation of the SDCD method.

In the second stage, it performs DCD with the spectral
acyclicity constraint described above. We prove that the
first stage of SDCD does not remove true edges, and we
show empirically that it is faster and more accurate than a
single-stage optimization. SDCD removes key barriers that
previously limited differentiable causal discovery to small
problem sizes and application contexts.

In sum, the main contributions of this work are:

* We develop a theoretical analysis of the acyclicity con-
straints used in DCD, and their numerical instabilities.

* We motivate an alternative acyclicity constraint with
superior stability, both theoretically and empirically.

* We propose the SDCD method for efficient DCD. It
leverages the stable constraint within a two-stage op-
timization procedure designed for training robustness.
We prove that SDCD does not compromise accuracy.

* We empirically study SDCD, and show that it effi-
ciently solves problems involving thousands of vari-
ables. Compared to previous methods, SDCD achieves
faster convergence and improved accuracy on observa-
tional and interventional data.

* Code is available at github.com/azizilab/sdcd.

Related Work. Causal discovery methods mainly fall into
two categories: constraint-based methods and score-based
methods (Glymour et al., 2019).

Constraint-based methods identify causal relationships by
testing for conditional independence among variables in the
data. For example, the PC algorithm (Spirtes et al., 2000)
finds the graphs which conform to all the independencies
present in the data. COmbINE is an extension to support
interventional data (Triantafillou & Tsamardinos, 2015).

On the other hand, score-based methods design a score
S(G) that is maximized by the true graph G*, and they
aim to find its maximizer G = arg maxgcpag S(G). Exist-
ing score-based methods differ in their choice of .S and of
the optimization method to maximize it. GES (Chickering,

2002) and GDS (Peters & Biihlmann, 2014) optimize the
BIC score of a Gaussian linear model by greedily adding or
removing edges. GIES modifies GES to support interven-
tional data (Hauser & Biihlmann, 2012), and CAM supports
non-linear additive models (Biihlmann et al., 2014).

Differentiable Causal Discovery (DCD), which our work
extends, is a type of score-based approach that reformu-
lates the search of the score maximizer into a continuous
optimization problem. It uses a numerical criterion to distin-
guish acyclic graphs from cyclic ones (called the acyclicity
constraint). It was initially introduced in (Zheng et al.,
2018) as NO-TEARS, which uses linear models, augmented
Lagrangian optimization, and a constraint based on the adja-
cency matrix exponential. Other works extend the methodol-
ogy to incorporate polynomial regression (Lee et al., 2019),
neural networks (Lachapelle et al., 2019; Zheng et al., 2020),
and support for interventional data (Brouillard et al., 2020).

Alternative acyclicity constraints (Lee et al., 2019; Ng et al.,
2020; Bello et al., 2022) have been proposed, as well as
optimization schemes different than augmented Lagrangian
(Ngetal., 2020; 2022; Bello et al., 2022). Deng et al. (2023)
introduced a hybrid approach combining gradient optimiza-
tion with combinatorial optimization, while Lippe et al.
(2021) explored removing the acyclicity constraint entirely.

Despite a rich literature, DCD has difficulty scaling to a
large number of variables, exhibiting long training times
and numerical instability. Wei et al. (2020); Ng et al. (2024)
identified those limitations, and Lee et al. (2019); Lopez
et al. (2022) addressed these problems with elegant approxi-
mations, but they resulted in poor accuracy.

Here, we provide a theoretical understanding of some algo-
rithmic issues with DCD and then use that understanding to
develop a better DCD method. Our proposed method builds
on ideas that have been partially studied in previous work,
including the acyclicity constraint of Lee et al. (2019) and
the penalty method of Ng et al. (2020). Lee et al. (2019)
uses the spectral acyclicity constraint for computational ef-
ficiency but otherwise does not expand on its advantages.
In this work, we provide a novel analysis of the constraint
and incorporate it into a new strategy that is more accu-
rate and scalable than existing DCD algorithms. Table 1
recapitulates research in DCD and how this work fits in.

2. Background and Notations

We review the Differentiable Causal Discovery (DCD) ap-
proach and define the notations used in the paper.

2.1. Background on Causal Discovery

Causal discovery is the task of learning cause-and-effect
relationships among a set of variables. In this work, we

https://github.com/azizilab/sdcd

Stable Differentiable Causal Discovery

Table 1: Comparison of Differentiable Causal Discovery methods including our proposed SDCD method. Expressive model
class refers to the capability to approximate any causal graph with non-linear structural equations.

Method Stable Scalable Can Use Expressive
Training Constraint Interventions Model Class
SDCD v O(d?) v v
DCDI X O(d?) v v
DCDFG X O(md) v X
DAGMA X O(d?) X v
NO-TEARS X O(d?) X X
NO-BEARS v O(d?) X X

consider variables that can be intervened on such that
they no longer are affected by their causal parents. These
interventions are called structural or perfect interventions
(Eberhardt & Scheines, 2007).

Causal Graphical Models. Causal graphical models
(CGMs) provide a mathematical framework for reasoning
about causal relationships between variables. Consider a
CGM over d variables and K possible interventions on it.

There are three components:

1. A directed acyclic graph (DAG), G* = (V, E), where
each node, j € V, represents a variable x;, and each
edge, (j, k) € E, indicates a direct causal relationship
from x; to @y

2. Alist of conditional distributions, pj(z; | T paG s 0),
which specify the distribution of each z; given its
causal parents Tpag® without intervention (the O in-
dicates no intervention).

3. A list of interventions, Z = {Iy, I, ..., [k}, where
Iy = & (no intervention) and the others I, C V define
the target variables of intervention k. Alongside is a
list of interventional distributions, p’, (2.,; k), for each
k > 0 and m € I, which define the distributions over
x,, after intervention k.

The joint distribution under intervention k writes:

prak) = [T pjlas lage:0) [T p(sik). @

JEV\Ik J€lk
Note p*(x; 0) is the joint on observational data.

Data. We observe n data points of the d variables
X = {(z%,...,2%)}, with labels T = {t;}", where
t' € {0, ..., K} indicates which intervention was applied to
2" (0 indicating no intervention). For example, in genomics,
Perturb-seq screens (Replogle et al., 2022) measure the ex-
pression of d genes across n cells, where each cell can be
edited once to change the expression of one of its genes.

Causal discovery with score-based methods. The goal
of causal discovery is to infer the graph G* from the data
(X,T). In particular, score-based methods assign a score
S(@G) to every possible graph G, where the score function
is designed so that it is maximized on the true graph G*.
Score-based methods aim to find the maximizer

G = argmax S(G).
GEDAG

(@)

Fix a model class that defines the conditional (and in-
terventional) distributions for each possible DAG G as
{p(- | G;0,k)}9. We can define the score S(G) to be the
maximum log-likelihood that can be achieved under graph
G with some regularization over the number of edges |G|
(Chickering, 2002):

1 n . _
Sile(G) = sgp - E logp(z* | G;0,t") | — AG]|. (3)
i=1

In the limit of infinite samples (n — o0), and under a few
assumptions, any maximizer G of Equation (3) is close
to the true G* (Brouillard et al., 2020). More precisely,
G and G* are I-Markov-equivalent: they share the same
skeleton, v-structures, and other restrictive properties at the
intervened variables in Z (Yang et al., 2018).

2.2. Differentiable Causal Discovery

The main challenge to a score-based method for causal dis-
covery is how to search over the large space of DAGs. Dif-
ferentiable Causal Discovery (DCD) reformulates this com-
binatorial search into a continuous optimization problem
over the space of all graphs, including cyclic ones (Zheng
et al., 2018). It introduces three key components.

Model Class with Implicit Graph. First, DCD defines
a model class with no apparent underlying graph, where
each variable is conditioned on all others as p(- | 0, k)
[1pj(z;lz—;;0, k). Instead, 6 defines the graph G implic-
itly, such that if 6 renders x_; + p;(z;|z_;; 0, 0) invariant
to some xy C x_;, then there is no edge from [to j. The

Stable Differentiable Causal Discovery

induced adjacency matrix is denoted Ay. When 6 induces
an acyclic Ay, then p(- | 0, k) defines a valid CGM.

Acyclicity Function. Second, DCD introduces a differ-
entiable function h(Ap) that quantifies how “cyclic” Ay
is. h(Ap) is high when Ay contains cycles with large
edge weights, it is low when Ay contains cycles with small
weights, and h(Ap) = 0 when Ay contains no cycles.

Optimization. Finally, DCD reformulates Equation (3)
into a constrained optimization problem only over 6.

Sa,p(0). “

6= argmax
6
s.t. h(Ag) =0

It uses Ay in place of G, uses the constraint h(Ay) = 0 in
place of G € DAG, and uses a new objective S, g:

1<))
Sap(0) = — > logp(a';0,) — ol Agll — BlIO3, (5)

i=1

Sa,p 1s a relaxed version of Sy (Equation (3)) where the
discrete |G| is changed into an L1 regularization of Ay
(for @ > 0) and an L2 regularization of ¢ is included (for
B > 0). The supy in Spie (Equation (3)) is now removed,
as it merges with the arg max, of Equation (4).

With Equation (4) in hand, different methods for DCD solve
the constrained optimization in different ways. Some ap-
proaches use the augmented Lagrangian method (Zheng
et al., 2018; Lachapelle et al., 2019; Brouillard et al., 2020;
Lopez et al., 2022), some use the barrier method (Bello
et al., 2022), and others use h as a regularizing penalty (Ng
et al., 2020).

In all these approaches, the choices of h and the optimiza-
tion method dictate the optimization behavior and the ulti-
mate quality of the inferred graph. In the next section, we
highlight the importance of h.

3. Stable Acyclicity Constraint

In this section, we demonstrate how most existing acyclicity
constraints can lead to unstable numerical behaviors during
optimization, especially with large numbers of variables d.
We then motivate an alternative constraint, which we show
to be theoretically and empirically more stable.

3.1. Power Series Trace Constraints

We first introduce a family of constraints. It generalizes
existing constraints and reveals their similarities.

Definition 3.1 (The Power Series Trace Family). For any
non-negative coefficients (ay)ren- € RY,, consider the

o0
power series f,(z) = 3. apz.
k=1

Name ay fa ha VhaT,
hexp 1/k! exp(z) —1 Trexp(4) —d exp(A)
hiog 1/k log 1~ —logdet(I —A) (I —A)~!
hiny 1 . Tr(I — A)~* (I—A)~2

Bbimom () (+2)d—1 Tr(I+A)2—d dI+A)?

h, - - [Aa(A)] U,ludT/v; Uqg

Table 2: (Top) Existing PST constraints with their power
series and gradients. (Bottom) The spectral acyclicity con-
straint, which is not PST.

Then, for any matrix A € R%d with non-negative entries,
we define the Power Series Trace (PST) function

ha(A) = Tr[fo(A)] = > axTr [A¥]
k=1

The quantity h,(A) is closely related to the cycles in the
graph represented by A. In h4(A), each Tr [A*] equals the
total weight of all length-k cycles in A — where the weight
of a cycle is the product of its edge weights (Bapat, 2010).
The next theorem generalizes the result of Wei et al. (2020)
to show that most h, can be used to characterize acyclicity.

Theorem 3.2 (PST constraint). For any sequence
ag)ren+ € *,iwe ave ay, > 0 fora € |1,d|, then,

c R§0 h 0 ke [1,d], th
Sfor any matrix A € R‘éﬁd, we have

ha(A) =0« Ais acyclic,
ha(A) =0,
Vha(A) = he (A7) with al, = (k + 1)ag1.

We say that h, is a PST constraint.

The proof is in Appendix A.1. In particular, sequences
of strictly positive ay, satisfy the conditions for any d, so
several standard power series are PST constraints.

For example, the sequence a;” = Z; recovers the penalty

hexp(A) = Tr(exp(A)) — d originally proposed in Zheng
etal. (2018).

1 0o k.
If we define a;)® = ¢, then faoe = Y 50| - is the power

series of x — —log(1 —). With the identity Trlog A =
log det A (Withers & Nadarajah, 2010), where log A is the
matrix logarithm, we find that

hiog (A) = Tr(—log(I — A)) = —logdet(I — A).

This is precisely the constraint introduced in Ng et al. (2020);
Bello et al. (2022). Hence, even though it uses the matrix
determinant instead of the matrix trace, we uncover that
hiog 18 also a PST constraint.

Table 2 shows that other constraints such as hpinom = Tr((I+

A —d (Yuetal., 2019), hiyy = Tr((I — A)~1) —d (Zheng
et al., 2018) are also PST.

Stable Differentiable Causal Discovery

3.2. Limitations of PST constraints

In this section, we provide the criteria necessary for con-
straints to exhibit stable optimization behavior. We prove
that PST constraints do not satisfy these criteria and show
empirically that optimization with these constraints can be
slow or fail. As a solution, we suggest an alternative, non-
PST acyclicity constraint and demonstrate its stability.

Definition 3.3. An acyclicity constraint h is stable if these
three criteria hold for almost every A € RLX:

- E-stable. h(sA) = Os_00(9)
- V-stable. h(A) #0 = h(cA) = Q.0+ ()
- D-stable. h and V1 are defined almost everywhere.

E-stability ensures that h does not explode to infinity; V-
stability ensures h does not vanish rapidly to 0; D-stability
ensures that /i and its gradient are well defined.

These three criteria are all important for maximizing S, 3(6)
under the constraint 2(Ay) = 0. D-stability and E-stability
ensure the constraint remains well-defined and with bounded
values throughout the optimization procedure. The V-
stability is related to the nature of constrained optimization.
Methods like augmented Lagrangian, barrier functions, and
penalties use the constraint h to formulate an objective of
the form S, 5(0) —vh(Ag) — th(Ag)?. They then increase
~ and g until h(Ap) reaches 0. These increments ensure that
the penalty does not become negligible relative to S, 5(6).
But without V-stability, h(Ag) can shrink quickly very close
to 0, while Ay remains far from a DAG. So, for full conver-
gence, these methods must grow v and p to large values,
which can be either inefficient (it requires more training
epochs) or fail (as v or h(Ayp) eventually reach the limit of
machine precision). The studies in Section 5.2 demonstrate
these failure modes happen in practice.

We now show that PST constraints are unstable, especially
as d grows.

Theorem 3.4 (PST instability). For d > 2, any PST con-
straint h is both E-unstable and V-unstable. More precisely,

- E-unstable. 3A € Riﬁd, h(sA) = Q00 (59
- V-unstable. 3A € R%d, h(eA) = O._o+ (%)

Also, any PST constraint for which f, has a finite radius of
convergence is D-unstable (e.g., hiog, hiny).

Theorem 3.4 is proved in Appendix A.2. It shows that the
instability of the PST constraints worsens exponentially in
d. Figure 2 empirically corroborates the theorem with two
types of adjacency matrices encountered during DCD: a
cycle and some uniformly random noise. It shows that all
PST constraints escalate to infinity or vanish to zero as the
scale of noise € changes (Figure 2 left) or as the number
of variables d increases (Figure 2 right), reflecting their E-
instability and V-instability. In addition, the D-instability of

A(g, d): =—-—random weights in [0,e] = length-d/2 cycle of weights &
h: hp hexp = Ppinom hlog hiny
1015 4 e
10 / d=30 ; €=05
10799 K
/
= 5] !
S Bk %
W 100 et
<
= 1077
10-10
10715 4 : ; — . . ! :
0.0 02 04 0.6 2 10 leO 1000
&

Figure 2: Constraint behaviors when evaluated on uniform
random matrices in [0, €]*¢ (dashed) or a cycle of length
d/2 with weight € (solid). The y-axis shows the constraint’s
value, the x-axis is (left) the weights’ scale ¢ (right) the
number of variables d. Only the proposed h, (orange) re-
mains stable; others vanish to zero exponentially or escalate
to infinity (as soon as d > 10). The vertical dotted lines
indicate the constraint escaped its domain of definition. All
these failures were encountered during DCD experiments.

hiog and hjiny appears even in small € or d (vertical lines). We
encounter all three instabilities during causal discovery ex-
periments (Section 5.2), leading existing approaches to fail.

3.3. The Spectral Acyclicity Constraint

To overcome the limits of the PST constraint family, we
propose to use another type of constraint, one based on the
spectrum of A, which was first used in Lee et al. (2019).
This constraint draws from a characterization of DAG ma-
trices from graph theory - that A is acyclic if and only if all
its eigenvalues are zero (Cvetkovi€ et al., 1980).

We write A1 (A) € Cto A\y(A) € C, the d eigenvalues of A,
sorted from smallest to highest complex magnitude

Definition 3.5 (Spectral radius). The spectral radius
ho(A) = [Aa(A)l,
is the largest eigenvalue magnitude of A.

The next theorem shows that the spectral radius can be used
as an acyclicity constraint.

Theorem 3.6 (Cvetkovic et al. (1980); Lee et al. (2019)).
The spectral radius is an acyclicity constraint.

h,(A) =0« AisaDAG.

We refer to it as the spectral acyclicity constraint. It is
differentiable almost everywhere, with gradient

Vhy(A) = vaug [vg v,

where ug, vq are respectively the right and left eigenvectors
associated with \j(A) (Magnus, 1985).

Stable Differentiable Causal Discovery

Theorem 3.6 is proved in Appendix A.3. It implies that h,,
is D-stable. Next, we prove h,, is E-and-V-stable.

Theorem 3.7. h, is stable.

We refer to Appendix A.4 for the proof.

Remark 3.8. As a corollary of Theorem 3.7, h,, is not an-
other PST constraint (since it is stable).

We complete Figure 2 with the empirical behavior of 11,. As
theoretically expected, h, retains non-extreme values and is
suitable for constraint-based optimization.

To further understand the impact of the constraints’ stabil-
ity on optimization, we empirically study the optimization
path of the augmented Lagrangian and the penalty method
with each constraint in Appendix Figure 5. The instabili-
ties of PST constraints effectively slow their convergence
and require increasing y and pu to excessively large values.
In contrast, the optimization paths with h, take the least
number of iterations to converge, especially with the penalty
method. Moreover, the computation of i, can be done in
O(d?) time (See Appendix B.2), contrary to the PST con-
straints whose computations scale in O(d?).

We are ready to perform DCD with the stable h,,.

4. Stable Differentiable Causal Discovery

With the stable acyclicity constraint h, in hand, we now
introduce Stable Differentiable Causal Discovery (SDCD).
SDCD efficiently learns causal graphs in two stages.

4.1. The SDCD method

To solve the optimization problem (4) with the spectral
acyclicity constraint h,, SDCD optimizes the following
objective with gradient-based optimization:

6 = arg max Sa,38(0) =7 - h,(Ag), (6)
9

where h, is used as a penalty with coefficient v. SDCD
proceeds in two stages (See Figure 1).

Stage 1: Edge Preselection. First, SDCD solves Equa-
tion (6) without the constraint, by setting v = 0.

él = argmax Sq, g, (0) @)
Vj,Agjj:O

This stage amounts to solving simultaneously d independent
prediction problems of each variable given the others (the
constraint Ag j; = 0 prevents self-loops). The goal is to
identify nonpredictive edges and remove them in stage 2,
akin to feature selection.

SDCD selects the removed edges as Ry = {(j,1) € [1,d]? |

Aj, ;i < 71} where 7 is a threshold.

Stage 2: Differentiable Causal Discovery. Next, SDCD
re-solves Equation (6), this time with the constraint and with
masking the removed edges from stage 1,

Saz 0> (0) = 12hp(Ag). (8)

0y = arg max

0
Y(j,1)ER1,Ap ;=0

The term +, is initialized at 0 and is increased by a constant,
vs, after each epoch. Like other DCD methods, SDCD
forms the final graph Gspep by selecting the edges in Aéz
with weight above a threshold 75. The details of the algo-
rithm can be found in Appendix B.2.

Remark 4.1. In both stages, the constraints Ag ;; = 0 are
straightforward to enforce by masking the elements in 6
corresponding to Ag,j; (i.e., fixing them at 0).

Compared to other methods, SDCD innovates in two ways:
(1) by using the constraint h, with the penalty method and
(2) by using a two-stage optimization that preselects edges
in stage 1 and optimize the DCD objective only on those in
stage 2. Without explicit masking, stage 2 would be similar
to the barrier or penalty method (Ng et al., 2020; Bello et al.,
2022), with stage 1 only providing a warm start.

Motivations for stage 1. Dedicating stage 1 to removing
unlikely edges is motivated by the hypothesis that real-life
causal graphs are sparse. For example, individual genes in
biological systems are typically regulated by a few other
genes rather than all other genes (Lambert et al., 2018).
A similar hypothesis underlies work in sparse mechanism
shift (Scholkopf et al., 2021). Hence, stage 1 will likely
remove many false edges and facilitate stage 2. Alternative
approaches for variable selection (e.g., markov boundaries
(Loh & Biihlmann, 2014; Wang & Chan, 2012), skeletons
(Tsamardinos et al., 2006), preliminary neighborhood selec-
tion (Biihlmann et al., 2014; Lachapelle et al., 2019)) can
be motivated for the same reasons. Here, we found a simple
modification to the objective function can effectively serve
this purpose. In practice, we find that stage 1 improves con-
vergence speed and accuracy (Section 5, Table 7). Notably,
we find that stage 1 improves the stability of the training
in stage 2, even when PST constraints are used in place
of the spectral one (Table 8). For this reason, stage 1 may
also serve as a beneficial preprocessing step for other causal
discovery methods. In Theorem 4.2 below, we prove that
stage 1 does not remove true causal parents.

4.2. Theoretical guarantees

We analyze SDCD’s time complexity in Appendix B.2.3.
We now provide correctness guarantees for the two stages of
SDCD. We show that theoretically, stage 1 does not remove
true causal parents, and so, stage 2 returns an optimal graph.

As done in the field (e.g., Chickering (2002); Brouillard
et al. (2020)), the results focus on the “theoretical” G that

Stable Differentiable Causal Discovery

would be obtained with infinite data and if Equations (7)
and (8) were solved exactly, in their non-relaxed form. We
study SDCD in practice in Section 5.

With infinite data, Equation (7)’s unrelaxed version writes,

K

61 = argmax ZW’“*(IEM[Ingj (zjlz_;;0,0)]—AAg], (9)

Vo =0 f0 T

where 7y, is the proportion of data coming from intervention
k. The next theorem characterizes the graph G, = Ajp, in
terms of Markov boundaries in the true graph G*. A Markov
boundary for j is a minimal set of variables that render j
independent of all the others. In a causal graph, each j has
a unique Markov boundary, consisting of j’s parents, j’s
children, and j’s children’s parents (Neapolitan et al., 2004).

Theorem 4.2. Under regularity assumptions detailed in
1

Appendix A.5, the candidate parents paJG of j selected by
stage I are precisely the Markov boundary of j in the true

graph G*, That is, P%Gl = PagG* U ChJC';* U pag*c*.
5

The assumptions of Theorem 4.2 and its proof are detailed in
Appendix A.5. The assumptions are reasonable: p* should
be in the model class {py}, the expectations should be well
defined, and “faithfulness” should hold (that is, G* doesn’t
have superfluous edges).

Theorem 4.2 gives two guarantees: (1) stage 1 does not
remove causal parents and (2) stage 1 returns only a subset
of the edges, not all of them. For instance, if G* is sparse
such that each node has at most k parents, then only O(dk?)
edges are returned, which is essentially linear in d for small
k (see Appendix A.7).

Theorem 4.2 implies that Brouillard et al. (2020, Theorem
1) still applies, and we deduce that stage 2 remains optimal
under the stated assumptions (see Appendix A.6).

The theoretical results are reassuring. In the next section, we
study SDCD’s empirical performance to examine the impact
of finite data, nonconvex optimization, and relaxations.

S. Empirical studies

We compare SDCD to state-of-the-art baselines on multiple
datasets. We find that SDCD achieves significantly better
scores in both observational and interventional settings, par-
ticularly excelling at recovering sparser graphs. SDCD is
the only method to scale to thousands of variables without
sacrificing accuracy.

5.1. Evaluation Setup

Baselines for interventional data. For datasets with inter-
ventional data, we compare SDCD against DCDI (Brouil-

lard et al., 2020), DCD-FG (Lopez et al., 2022), and GIES
(Hauser & Biihlmann, 2012).

Baselines for observational data. When the dataset con-
tains only observational data, we include the interventional
methods and further compare against NO-TEARS (Zheng
etal., 2018), NO-BEARS (Lee et al., 2019), DAGMA (Bello
et al., 2022), and SCORE (Rolland et al., 2022). In addition,
we report sortnregress (Reisach et al., 2021), a trivial base-
line that should be outperformed (see Robustness Checks).
We further included NOCURL (Yu et al., 2021) and AVICI
(Lorch et al., 2022) in Appendix D.

Metrics. We evaluate performance using the structural
Hamming distance (SHD) between the true G* and each
method’s output graph. SHD is standard in causal discovery.
It quantifies the minimum number of edge additions, dele-
tions, and reversals needed to transform one graph into the
other. Lower SHDs indicate better reconstructions of G*.

Robustness Checks. Previous works detailed common
issues with the SHD metric (Tsamardinos et al., 2006) and
data simulation processes (Reisach et al., 2021). We include
additional metrics and baselines recommended by previous
works to ensure our evaluation is robust. Further details and
results are detailed in Appendix C.4.

Data. We simulate observational and interventional data for
a wide range of d (number of variables), varying the graph
density with s (the average number of parents per node),
and varying the number of variables that are intervened on.
The simulations proceed as done in Brouillard et al. (2020);
Bello et al. (2022), by sampling a random graph, modeling
its conditionals with random neural networks, setting its
interventional distribution to Gaussian, and drawing samples
from the obtained model. More details are in Appendix C.1.
In all experiments, the number of observational samples is
fixed at 10, 000, and an additional 500 samples are added
for each perturbed variable.

To further validate the results against the strongest base-
line, we evaluate SDCD on the simulated data generated
in Brouillard et al. (2020) (DCDI) and compare our results
against their reported SHD values.

Setting. Consistent with prior work (e.g., DAGMA,
NOTEARS), we do not conduct hyperparameter optimiza-
tion for the experiments. Instead, we fix a single set of
parameters for all experiments (see Appendix C.2). The
training time on CPU is measured on an AMD 3960x with
4-core per method; on GPU on an AMD 3960x with 16-core
and an Nvidia A5000.

SDCD Modeling Assumptions. We use neural net-
works (NNs) to parameterize the model class, as done
in Lachapelle et al. (2019); Zheng et al. (2020). Each
pj(z; | ®—;;0, k) is a Gaussian distribution over z; with

Stable Differentiable Causal Discovery

--- # of edges =4 DCDI
SDCD

—4- NOBEARS DAGMA

—4-SCORE

sortnregress

4+~ NOTEARS —4¢- DCDFG GIES

200 300 400 500
d

Figure 3: SHD across simulations on observational data
with increasing numbers of variables d. SDCD achieves the
best SHDs. It is the only method scaling above 200 variables
with nontrivial SHD. Missing data points imply the method
failed to run. Error bars indicate std on 30 random datasets
for d < 50 and five for d > 50 (175 total). Lower is better.

mean and variance given by an NN as a function of all the
other x_;. More details about the NN architecture are in
Appendix B.1. Also, SDCD is amenable to other model
classes, such as normalizing flows (Brouillard et al., 2020).

5.2. Observational Data Experiments

We evaluate all eight methods on a wide range of number
of variables d, with a fixed average number of edges per
variable s = 4, and repeat the experiments over 30 random
datasets. Figure 3 reports the results and detailed tables are
provided in Appendix D with additional baselines.

SDCD outperforms the other methods in accuracy at every
scale and speed. It can be explained by SDCD’s stability.

Failures of other methods. DCDI is competitive on small
d but crashes for d > 40 — as discussed in 3.2, for d = 50,
NaNs appear during training when hey, underflows due to
V-instability; for d > 50 NaNs appear right at initialization
when hey, overflows due to E-instability. DAGMA fails to
converge within 6 hours for as few as 30 variables due to the
learned adjacency matrix escaping the domain of definition
of hiog, caused by D-instability. DAGMA attempts to stay
within the domain of definition of hj,g by reducing the
learning rate near the singularities, but this is often not
sufficient and it significantly slows down training. NO-
TEARS and NO-BEARS perform similarly to the trivial
baseline sortnregress, confirming the findings of Reisach
et al. (2021). DCD-FG scales well but has exceptionally
high SHD due to predicting very dense graphs — which we
attribute to its low-rank approximation.

Finally, we note that most methods outperform the SHD of
the empty graph (it is the number of edges, as dashed line).

To show that SDCD’s performance is robust to a compre-

- ==+ Number of true edges = dxs 6 = Edge Density = 25/ (d-1)

120 - s=2 | s=4 | s=6
== SDCD 6 =21% 5=42% 5=63%
s DCDI
80
o - g
wn o
QO Ao 4 4 =
a0, Jerlga Yy
oL 28— 1
1807 5=13% | 5=27% | 5=41%
120 . .
[a) B &
I w
@ 60_!jil_;&éi +éi g—g-&'*ﬁ*= ée e
= & - = = -
ol— L —
2407 5=10% | 5=20% | 5=30%
160 . . i
) & o
% go!iiﬁgi ial i -I-_E*é!@ L
T = = o3 &I %‘ é D @

O % % % 1 0 % %% 1 0% % % 1
Fraction of variables intervened on

Figure 4: SHD across simulations with an increasing
proportion of variables intervened on, varying the total
number of variables d (columns) and average edges per
variable s (rows). SDCD is the only method to consistently
improve with interventional data and has the best SHDs for
sparse graphs (edge density § < 45%). Each boxplot over
5 random datasets (45 datasets total).

hensive set of scenarios, we provide additional metrics for
these experiments in Appendix C.4 and Figures 7 and 10.

The runtimes associated with Figure 3 are presented in Ap-
pendix Figure 6. SDCD-GPU runs under 15 minutes for
all values of d in Figure 3 experiments (e.g., d = 500). In
Appendix Figure 8, we further demonstrate that SDCD can
scale up to 4,000 variables under 2h45.

5.3. Interventional Data Experiments

Next, we compare SDCD, DCDI, DCD-FG, and GIES over
datasets with an increasing proportion of intervened vari-
ables. We show the results for SDCD and DCDI in Fig-
ure 4 and all methods in the Appendix (DCD-FG and GIES
performed consistently worse). As expected, the methods
generally improve with more interventional data, although
SDCD is the only method to do so consistently. We find
that SDCD performs the best in most scenarios, particularly
on sparser graphs. We characterize the edge density of a
graph, 4, as the ratio of true edges to the maximum number
of edges possible in a DAG.

5.4. Ablation Experiments

We performed ablation studies to judge the impact of each
innovation implemented in SDCD. We evaluated modifica-
tions of SDCD where (1) only stage 2 is performed without

Stable Differentiable Causal Discovery

stage 1 and where (2) in stage 2, the spectral constraint is
substituted for alternative PST acyclicity constraints. As the
results show in Tables 7 and 8, both stages are essential to
the success of SDCD.

5.5. Experiment against the best baseline

In Supplementary Table 3 we report the results of SDCD
on the simulated data presented in (Brouillard et al., 2020)
alongside their original DCDI results. SDCD outperforms
DCDI on all its sparse datasets (s = 1). Only for datasets
where d = 10,5 = 4, does SDCD perform worse than
DCDI. However, we find the edge density (0 = 88.9%) of
these graphs to be unrepresentative of realistic scenarios.

6. Conclusion

With SDCD, we addressed the limitations of existing DCD
methods by applying an acyclicity constraint and a two-
stage procedure that each promotes stability. We show it im-
proves in all regimes and can scale to thousands of variables,
enabling new applications for DCD in data-rich settings.

Future work could aim to provide a deeper theoretical under-
standing of the impact of the acyclicity constraint’s stability
on gradient-based optimization, particularly how the con-
straint’s non-convexity affects training.

Acknowledgments

A.N. was supported by funding from the Eric and Wendy
Schmidt Center at the Broad Institute of MIT and Harvard,
and the Africk Family Fund. J.H. was supported by grant
number 2022-253560 from the Chan Zuckerberg Initiative
DAF, an advised fund of the Silicon Valley Community
Foundation, and the Irving Institute for Cancer Dynamics.
E.A. was supported by the National Institute of Health (NIH)
NCI grant ROOCA230195 and NHGRI grant ROITHG012875.
D.B. was funded by NSF 2127869, NSF 2311108, ONR
N00014-17-1-2131, ONR N00014-15-1-2209, the Simons
Foundation, and Open Philanthropy.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References

Bapat, R. B. Graphs and matrices, volume 27. Springer,
2010.

Bello, K., Aragam, B., and Ravikumar, P. DAGMA:

Learning DAGs via M-matrices and a Log-Determinant
Acyclicity Characterization. In Neural Information Pro-
cessing Systems, 2022.

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien,
S., and Drouin, A. Differentiable causal discovery from
interventional data. In Neural Information Processing
Systems, 2020.

Biihlmann, P., Peters, J., and Ernest, J. CAM: Causal addi-
tive models, high-dimensional order search and penalized
regression. The Annals of Statistics, 42(6):2526-2556,
2014.

Chickering, D. M. Learning Bayesian networks is NP-
complete. Learning from Data: Artificial Intelligence
and Statistics V, pp. 121-130, 1996.

Chickering, D. M. Optimal structure identification with
greedy search. Journal of Machine Learning Research, 3
(Nov):507-554, 2002.

Cvetkovié, D. M., Doob, M., and Sachs, H. Spectra of
Graphs: Theory and Application. Academic Press, 1980.

Deng, C., Bello, K., Aragam, B., and Ravikumar, P. K.
Optimizing notears objectives via topological swaps. In
International Conference on Machine Learning, pp. 7563—
7595. PMLR, 2023.

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P, Jerby-
Arnon, L., Marjanovic, N. D., Dionne, D., Burks, T., Ray-
chowdhury, R., et al. Perturb-seq: dissecting molecular
circuits with scalable single-cell rna profiling of pooled
genetic screens. Cell, 167(7):1853-1866, 2016.

Eberhardt, F. and Scheines, R. Interventions and causal
inference. Philosophy of Science, 74(5):981-995, 2007.

Glymour, C., Zhang, K., and Spirtes, P. Review of causal
discovery methods based on graphical models. Frontiers
in genetics, 10:524, 2019.

Hauser, A. and Bithlmann, P. Characterization and greedy
learning of interventional markov equivalence classes of
directed acyclic graphs. Journal of Machine Learning
Research, 13(1):2409-2464, 2012.

Hoover, K. D. Causality in Economics and Econometrics,
pp. 1-13. Palgrave Macmillan UK, 2006.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Lachapelle, S., Brouillard, P, Deleu, T., and Lacoste-Julien,
S. Gradient-based neural DAG learning. In International
Conference on Learning Representations, 2019.

Stable Differentiable Causal Discovery

Lambert, S. A., Jolma, A., Campitelli, L. F,, Das, P. K., Yin,
Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R., and
Weirauch, M. T. The human transcription factors. Cell,
172(4):650-665, 2018.

Lee, H.-C., Danieletto, M., Miotto, R., Cherng, S. T., and
Dudley, J. T. Scaling structural learning with NO-BEARS
to infer causal transcriptome networks. In Pacific Sympo-
sium on Biocomputing, 2019.

Lippe, P., Cohen, T., and Gavves, E. Efficient neural causal
discovery without acyclicity constraints. arXiv preprint
arXiv:2107.10483, 2021.

Loh, P.-L. and Biihlmann, P. High-dimensional learning of
linear causal networks via inverse covariance estimation.
The Journal of Machine Learning Research, 15(1):3065—
3105, 2014.

Lopez, R., Hiitter, J.-C., Pritchard, J., and Regev, A. Large-
scale differentiable causal discovery of factor graphs. In
Neural Information Processing Systems, 2022.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and
Scholkopf, B. Amortized inference for causal structure
learning. Advances in Neural Information Processing
Systems, 35:13104-13118, 2022.

Magnus, J. R. On differentiating eigenvalues and eigenvec-
tors. Econometric theory, 1(2):179-191, 1985.

Neapolitan, R. E. et al. Learning Bayesian Networks. Pren-
tice Hall, 2004.

Ng, I., Ghassami, A., and Zhang, K. On the role of sparsity
and DAG constraints for learning linear DAGs. In Neural
Information Processing Systems, 2020.

Ng, 1., Lachapelle, S., Ke, N. R., Lacoste-Julien, S., and
Zhang, K. On the convergence of continuous constrained
optimization for structure learning. In International Con-
ference on Artificial Intelligence and Statistics, 2022.

Ng, L., Huang, B., and Zhang, K. Structure learning with
continuous optimization: A sober look and beyond. In
Causal Learning and Reasoning, pp. 71-105. PMLR,
2024.

Peters, J. and Bithlmann, P. Identifiability of gaussian
structural equation models with equal error variances.
Biometrika, 101(1):219-228, 2014.

Peters, J., Mooij, J. M., Janzing, D., and Scholkopf, B.
Causal discovery with continuous additive noise models.
Journal of Machine Learning Research, 15:2009-2053,
2014.

10

Reisach, A. G, Seiler, C., and Weichwald, S. Beware of the
simulated DAG! causal discovery benchmarks may be

easy to game. In Neural Information Processing Systems,
2021.

Replogle, J. M., Saunders, R. A., Pogson, A. N., Hussmann,
J. A., Lenail, A., Guna, A., Mascibroda, L., Wagner,
E. J., Adelman, K., Lithwick-Yanai, G., et al. Map-
ping information-rich genotype-phenotype landscapes
with genome-scale perturb-seq. Cell, 185(14):2559-2575,
2022.

Rolland, P., Cevher, V., Kleindessner, M., Russell, C., Janz-
ing, D., Scholkopf, B., and Locatello, F. Score matching
enables causal discovery of nonlinear additive noise mod-
els. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
18741-18753. PMLR, 2022.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and
Nolan, G. P. Causal protein-signaling networks derived
from multiparameter single-cell data. Science, pp. 523—
529, 2005.

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Toward causal
representation learning. Proceedings of the IEEE, pp.
612-634, 2021.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,
prediction, and search. MIT press, 2000.

Triantafillou, S. and Tsamardinos, I. Constraint-based
causal discovery from multiple interventions over overlap-
ping variable sets. Journal of Machine Learning Research,
16(1):2147-2205, 2015.

Tsamardinos, 1., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing bayesian network structure learning
algorithm. Machine learning, 65:31-78, 2006.

Wang, Z. and Chan, L. Learning bayesian networks from
markov random fields: an efficient algorithm for linear
models. ACM Transactions on Knowledge Discovery
from Data (TKDD), 6(3):1-31, 2012.

Wei, D., Gao, T., and Yu, Y. Dags with no fears: A closer
look at continuous optimization for learning bayesian

networks. Advances in Neural Information Processing
Systems, 33:3895-3906, 2020.

Withers, C. S. and Nadarajah, S. Log Det A= Tr Log A.
International Journal of Mathematical Education in Sci-
ence and Technology, 2010.

Stable Differentiable Causal Discovery

Yang, K., Katcoff, A., and Uhler, C. Characterizing and
learning equivalence classes of causal dags under inter-
ventions. In International Conference on Machine Learn-
ing, 2018.

Yu, Y., Chen, J., Gao, T., and Yu, M. DAG-GNN: DAG
structure learning with graph neural networks. In Inter-
national Conference on Machine Learning, 2019.

Yu, Y., Gao, T., Yin, N., and Ji, Q. Dags with no curl:
An efficient dag structure learning approach. In Inter-
national Conference on Machine Learning, pp. 12156—
12166. Pmlr, 2021.

Zhang, D.D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J.,
and An, Y. The causality analysis of climate change and
large-scale human crisis. In Proceedings of the National
Academy of Sciences, 2011.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
DAGs with NO TEARS: Continuous optimization for
structure learning. In Neural Information Processing
Systems, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing,
E. Learning sparse nonparametric dags. In International
Conference on Artificial Intelligence and Statistics, 2020.

11

Supplementary Materials: Stable Differentiable Causal Discovery

A. Theoretical Results

A.1. Proof of Theorem 3.2

Before proving Theorem 3.2, we precisely define an acyclic matrix and prove a few lemmas.
Definition A.1 (Cyclic and acyclic matrices). Take a matrix A € R?g)d.

We say that A has a cycle of length k if and only if:

) . et 1 1o = 1k
(ig, ..., i) € [1,k]"", such that, { Ve e [1,k], Ai, i >0 (10)

We say that A is cyclic if it contains at least one cycle. We note that if A contains a cycle of length & for £ € N* (the set
of strictly positive integers), then A also contains a cycle of length &’ for &’ € [1, d] (this follows from the pigeon hole
principle).

We say that A is acyclic if it does not contain any cycle (or equivalently if it does not contain any cycle of length k& < d).

Lemma A.2. For any matrix A €]R%d,

o Tr [Ak} > 0 forany k
e A has a cycle of length k if and only if Tr [Ak'} >0

o AY =0 ifand only if A is acyclic.

Proof. Fix a matrix A € RES?. We have,

k
Tr [A¥] = Z HAZ_M. (11)

(80)E€[L,d]*H €=1
iozik:i

Each addend is non-negative so Tr [Ak] > 0. Furthermore, the total sum is strictly positive if and only if at least one addend
is strictly positive. This happens if and only if A has a cycle of length k by definition.

Similarly, we have

k
(A% = > | = (12)

(0;---yia) €[1,d] T £=1
i0=%4=]J

If Af’j > 0, then one addend is strictly positive and so there exists (ig, ...,iq) € [1,d]¢"! such that iy = iy = j and

Hif:l As—1,¢ > 0. By the pigeon-hole principle, two i, are identical, which provides a cycle. Reciprocally, if (io, ..., %)
is a cycle of length k, then by repeating (i, ..., ik, ¢1, %2.-id mod k) Until having a path of length d 4+ 1, we have that
(A0 0 wos . > 0. Hence, A4 = 0 if and only if A is acyclic. O

‘We recall Theorem 3.2.

12

Stable Differentiable Causal Discovery

Theorem 3.2 (PST constraint). For any sequence (ag)gen+ € Rg%, if we have ay, > 0 for all k € [1,d], then, for any

matrix A € Riﬁd, we have

ha(A) =0« Ais acyclic,
ha(A) > 0,
Vha(A) = he (A7) with al, = (k + 1)ag1.

We say that h, is a PST constraint.

Proof. Fix amatrix A € ch)d and a sequence (a)gen+ € RI;*O such that a;, > 0 for any k € [1,d].

By definition, we have,

+oo
ha(A) = Tr [Z apAF (13)
k=1
+oo
= Z apTr [Ak] (14)
k=1
(15)

1. By Lemma A.2, Tr [A*] > 0 and so hq(A) > 0. This proves the second property.

2. Then, hq(A) = 0 if and only if Tr [A*] = 0 for all k for which a;, > 0. Since a;, > 0 for any k € [1, d] we conclude
that if h,(A) = 0, then A does not contain cycles of length k& < d, so A is acyclic by Definition A.1. Reciprocally, if A
is acyclic, it does not contain cycles of any length, so i,(A) = 0.

3. Finally, if we write r, the radius of convergence of f,, then h, converge absolutely over the set of matrices with

h,(A) < r, so it is differentiable with gradient given by: Vha(A) = 3% apk(AT)k,

This concludes the proof.

A.2. Proof of Theorem 2

We recall Theorem 3.4.
Theorem 3.4 (PST instability). For d > 2, any PST constraint h is both E-unstable and V-unstable. More precisely, -
E-unstable. 3A € RLS? h(sA) = Qi 00(s?)

- V-unstable. 3A € RL h(eA) = O+ (e7)

Also, any PST constraint for which f, has a finite radius of convergence is D-unstable (e.g., hiog, hinv).

Proof. Take a PST constraint h, for some (ay)y € R‘%d with ag, > 0 for k € [1,d].
We will show the E-unstable and V-unstable results using a particular adjacency matrix C'

Define C as the adjacency matrix of the cycle 1 — 2 — ... — d — 1 with edges weights of 1. That is:

0 1 0 0

01 0 ... 0
oo 6

: L0

0 1

1 0 0]

d ifk=0 modd

d k]l
We have C —IdandTr[C] —{ 0 ifk#0 modd °

13

Stable Differentiable Causal Discovery

We obtain for any w € R>o,
+oo
he(wC) = d Z aggw'®. (17)

=1

« In particular, we have for any s > 0, h, (wC) = dags? = Q4 005% (since ag > 0). This proves the E-instability.

* Define u = min(1, r,/2) where r, is the radius of convergence of f,.

Then, for any ¢ € [0, u?],

—+00
ha(eC) =d Y ame™ (18)
/=1
—+oo
=etd (Z ams“l)d) (19)
=1
“+oo
<eld <Z agduz(e_l)d> (20)

=1
—+oo
<eld (Z agqu + ad) (21)
=1
< eld (fa(uC) + aq) . (22)
= 0.0+ (e") (23)
Where we obtain Equation (21) by noting that 2(¢ — 1) > ¢ and u < 1. Finally, since u < 74, f,(uC') is finite. Hence
the result.
The D-instability result follows from the definition of the radius of convergence. O
A.3. Proof of Theorem 3

We recall Theorem 3.6.
Theorem 3.6 (Cvetkovic et al. (1980); Lee et al. (2019)). The spectral radius is an acyclicity constraint.

h,(A) =0« AisaDAG.
We refer to it as the spectral acyclicity constraint. It is differentiable almost everywhere, with gradient
Vh,(A) = vauy Jvg ua,
where ug, vgq are respectively the right and left eigenvectors associated with \y(A) (Magnus, 1985).

The two properties stated in Theorem 3.6 are standard results.

Proof.

* We provide proof for the statement /,(A) = 0 < Ais a DAG for the sake of completeness.

d

= 1If h,(A) = 0 then all eigenvalues \;(A) are zeros. But since Tr [AF] = 375,

any k£ > 1 and by Lemma A.2, A is acyclic.

A;j(A)*, we have Tr [A*] = 0 for

< Assume A is acyclic, then A? = 0 by Lemma A.2. But then all eigenvalues are 0 (as for eigenvalue \;(A) and
associated eigenvector v;(A), we have A%v;(A) = \;(A4)%;(A) = 0.

14

Stable Differentiable Causal Discovery

Hence, h, is a valid acyclicity constraint.

* Magnus (1985) shows that h, is differentiable at every A that has mutually distinct eigenvalues, with the formula
provided in Theorem 3.7. The set of matrices with all distinct eigenvalues is dense in the set of matrices (Horn &
Johnson, 2012)[Theorem 2.4.7.1], which proves the result

A.4. Proof of Theorem 4

‘We recall Theorem 3.7.
Theorem 3.7. h,, is stable.

Proof. We prove each stability criterion.

* E-stable: For any s > 0 and matrix A, h,(sA) = |s|h,(A) = Os—s 40 (5).
* V-stable:For any € > 0 and matrix A such that h,(A) > 0, h,(c¢A) = |e|h,(A) = Q.0+ (€).
* D-stable: Every matrix has eigenvalues (C is algebraically closed), so h, is well defined everywhere. In addition,

Theorem 3.6 proved that h, was differentiable almost everywhere.

Hence, h,, is a stable constraint. O

A.5. Proof for Stage 1

In this section, we guarantee that if the optimization problem solved in stage 1 is solved exactly, without relaxation and with
infinite data, then stage 1 does not remove any true causal parent.

The optimization problem solved in stage 1 is given in Equation (7) as

. 1 & S
01 = argmax Sy, g, (0) = argmax EZlogp(a?”;H,tl) — o || Agll1 — Ba]l0]I3-
VJGAQGJFO VJ}A;),J'FO =1

With infinite data ?[t* ~ p*(x%;t%), the optimization problem writes,

K
6y = argmax > m E [logp(x; 0, k)] — axl|Aglls — B2l6]3- (24)

vial. —oh=0 p*(x;k)
where 7, is the proportion of data coming from intervention k.
Furthermore, in its non-relaxed form, Equation (24) above writes
K
0, = argmax Zwkp E [logp(x;0,k)] — A As|, (25)

0 *(z3k)
Vj,Ag ;;=0k=0

where the L1 and L2 regularization are reverted back into the number of edges | Ay| regularization (for some A > 0).
Since we are interested in the graph induced by 6, that we write G; = Ay, we can rewrite Equation (25) as

K
G = argmax sup Z’/Tk E [logp(x;0,k)] — NG, (26)
. G 2] =0 p*(x;k)
without self-loops G=A¢y *=

15

Stable Differentiable Causal Discovery

Finally, since there are no constraint over G other than no self-loops, Equation (26) can be solved as d independent
optimization problems, each one determining the parents of j in the graph G,

. K
pajc-’v1 = argmax sup Zwk E [logpj(z;|lz—;;0,k)] — A|S], (27)
Sclid]\{j} ¢ Ay k=0 p*(z;k)
S=pa;

Furthermore, whenever j € I, our model class has p;(x;|z_;,0,k) = p;(z;]0;), k) — we know we have perfect
interventions and the interventions are known. So the ;) is not related to the coordinates of 6 that define Ag. That is to
say, Equation (27) is equivalent to

K
pajc-’vl = argmax sup Z 7w, E [logp,(xjlz_;;0,k)] — S|, (28)
SclLd\s}y 0, 1o p* (k)
=pa; -
We recall Theorem 4.2.
Theorem 4.2. Under regularity assumptions detailed in Appendix A.5, the candidate parents pajc-’v1 of j selected by stage 1

a*
A g
ch].

are precisely the Markov boundary of j in the true graph G*, That is, paf1 = paf* U ch]G* Up

The assumptions are similar to the ones detailed in Brouillard et al. (2020) to guarantee that differentiable causal discovery
can identify causal graphs.

The assumptions are:

e 1y > 0 — we observe some observational data,
e 30, s.t. Vk,p*(- ; k) = p(- ; 0, k) — the model class can express the true model p*,

* The observational distribution p*(x; 0) is faithful to the graph G* (that is any edge in G* indeed result in a nonzero
cause-and-effect relation in the distribution p*(z;0). See Neapolitan et al. (2004) for more details.

* The true distributions p*(x; k) and any distribution of the model class p(x; 8, k) have strictly positive density p*(z; k) >
0, p(x; 6, k) > 0. This avoids technical difficulty when forming conditional distributions (e.g., p* (zj|z1; k)).

* The expectations [E,,- ;.1 [log p*(z; k)] are well defined (they are finite). This enables us to consider the likelihood
expectations in the first place.

¢ The regularization strength X is strictly positive and small enough (see the proof for how small).

Proof. Fix j € [1, 7]

For clarity of notations, we rewrite Equation (28) as

K
paujG1 = argmax supZﬂk E [logp;(z;lzs; 0, k)] — AlS], (29)
sclLd\{s} 0 =5 P (k)
JE1x

where the condition S = paj‘e is fully captured by the notation p;(z;|xg; 6, k).

Then, define
(T = Sl;p Z Ep+ (25 [Tr log pj (2]2s; 6, k)] — A|S]. (30)
k

A
Further, define B = bojc-;* to be the Markov boundary of node j in the true causal graph G*.
We will show that ¢)(B) > ¢(T') for any other T C [1,d]\ {j}.

16

Stable Differentiable Causal Discovery

We compute,

Y(B) — (1) = sup > kB (aiky log pj (22550, k)] — Sup > kB (aiy log pj (a5 273 0, k)] 31)

jgkfk &1k
— A|B| 4+ AT
= —i%f Z TkEp (k) [DKL (P;(xj‘xfﬁk) | pj(xj|$B§97k))] (32)
k
JE 1k
ink 32 By (D (0 s loy: k) ||y a5 30, 1))
i
JE1k
= A(|B| = |T)
= i%f Z ThEpe w0y [Drr (0 (x)l2—55 k) | pj(aj; 0730, k)] (33)
i
J&1k
+ AT = |B).
The line 32 comes from E,- (.. [logp;(z;|lzp;0,k)] = ~Epe o, ik) [DKL (p;(:vj|x,j;k) | pj(z;lzm;0, k))} +

Ep+ (23k) [logp;(a:j lz_j; k)] where we added and substracted the logp®) term (the Ep+(2;x) is decomposed into
Ep(o_ k) Ep (2;:k)> Where the second expectation is in the KL divergence). We use the assumption of strictly positive
density here to define the conditional pj (z;|x_;; k) without technical difficulties.

The line 33 comes from the assumption of sufficient model class capacity and the definition of the Markov boundary. Indeed,
we first have p (z |z —;; k) = p}(z;|zp; k) by definition of the Markov boundary B, and since the model class is expressive

enough, there exists ¢ such that D1, (p}(z;|x_;; k) || pj(x;|zp; 0, k) = 0.
We further have:
V(B) = (T) = moif By o _s0) [Dicr (p] (w153 0) || pj(w5]27:0,0))] + MIT| — | BI) (34)

pj(zjler;0)

= moE, o | D (x5 10 (x5 ;0 infE ..oy [log —————— 35
0By o_ 0y [P (0} (25125 0) || pj(z;]er;0)] + mo BBy @0 |log .0y (35)
+ (T - |B])

> w0Bp o0y [Prcr (05 (21285 0) || p} (25205 0))] +A(T] — |B]). (36)

n(T)

. *(xjlxT;0 «
where line 36 follows from E,,« (;..0) {log %} =Ep(ar) [Drr (0} (2j|2z7)||pj (25273 6,0))] > 0.

Let’s finally define u = min ({% | T ¢ [1,d]\{j} and (T) > 0 and | B| > |T\} U {1}) and fix any A €]0, u[.
Let’s assume now that ¢(T") > ¢(B) for some T' C [1,d]\{;}, and show that we obtain contradictions.
First, we would have A(|B| — |T'|) > n(T). In particular we deduce that | B| > |T| (since n(T") > 0).

Now, two possibilities:

1. If (T) > 0, then |B| > |T| and by definition of A\, A > X which is absurd.

2.0If n(T) = 0, then mEp(,_;.0) (D1 (p;‘ (zj]zB;0) || P} (2)|zT; 0)] = o This implies that
Dk (pj(x;|zp;0) || pj(2;]er;0)) = 0 forall (z_;); since p*(x_;; 0) has positive density and 7o > 0. Hence, the
conditional p7(z;|z; 0) and pj (z;|xr; 0) are identical. Since B was the Markov boundary of z, that makes 7" also a
Markov blanket of ;. But then, by minimality of the Markov boundary in a faithful graph, we have B C T'. Remember
that we had deduced |B| > |T|. So B =T.

This ends the proof, where A\ €]0, u]. O

17

Stable Differentiable Causal Discovery

A.6. Proof for Stage 2

Since stage 1 does not remove any true causal parents, theorem 1 of Brouillard et al. (2020) remains valid.

A.7. Lemma: Asymptotic Bound on number of edges returned in Stage 1
We denote the Markov boundary of j in G* by bOJG*, and recall that bOJG* = paJG* U chf* U pacck’;;* \{j}-

The following lemma upper-bounds the theoretical number of edges returned by stage 1 when each node has at most &
parents.

Lemma A.3. Assume G* is sparse such that each node has at most k parents. Then, the total size of all the Markov
boundaries is upper-bounded by dk(k + 2) = O(dk?).

Proof. First, note that if each node has at most k parents, then |E| < dk. Finally,

D 160§ = [bof | (37)

JeEV JjeEV
<> [pal| + [eh§ | + [pa§e- | (38)
jev J
<IE[+IE[+ > > Ipaf | (39)

JEV chh]G*

< 2kd + Z Z Ipa$” | (40)

kEV jepa§™

< 2kd + dk? (41)

18

Stable Differentiable Causal Discovery

B. Methods
B.1. Model Details

In SDCD, the conditional distributions, p; (x;|z_;; 0, k), are modeled as Gaussian distributions where the mean and variance
are learned by a neural network that takes in all of the other z_; as input. The initial layer of the network applies d
independent linear transformations followed by a sigmoid nonlinearity to the input and outputs d hidden states of size 10.
Each of the d hidden states corresponds to the features then used to predict each variable. Each hidden state is fed into
two linear layers: one to predict the mean parameter of the conditional and one to predict the variance parameter of the
conditional. For the variance, a softplus operation is applied to the output of the linear layer to constrain the variance to be
strictly positive.

B.2. Algorithm Details
B.2.1. SPECTRAL ACYCLICITY CONSTRAINT ESTIMATION

As described in Theorem 3.6, the gradient of the spectral acyclicity constraint can be computed as h,(A) = vdu; / v;ud,
where ug4, vg are the right and left eigenvectors of A respectively. Using the power iteration method, which involves a fixed
number of matrix-vector multiplications, 4, v4 can be estimated in O(d?). Specifically, the updates are as follows:

iy ATud iy Ay

d =) Vg =
[all2 [[vall2
where u4, vg4 are initialized as u((il)7 v&l) = [ﬁ, ceey ﬁ] at the very first epoch of SDCD. In our implementation, we use

15 iterations to estimate the spectral acyclicity constraint value.

Importantly, we re-use the estimates of uy4 and v, from one epoch to another, as we don’t expect A (and its eigenvectors) to
change drastically.

Hence, at each epoch, we initialize u4, v4 using their last epoch’s value and perform 15 power iterations.

B.2.2. SDCD ALGORITHM

The SDCD algorithm follows a two-stage procedure. In the first stage, the coefficient of the spectral acyclicity constraint, -,
is fixed at zero. We use an Adam optimizer with a learning rate, 71, specific to stage 1 to perform minibatch gradient-based
optimization. The coefficients corresponding to the L1 and L2 penalties, a; and 1, respectively, are fixed throughout
training. The stage 1 training loss is written as:

El(X,a,Oél,ﬁl) = SCY17B1 (0)

1 n] ,
= = logp(as0,1) — an| A — 5110]
i=1

To prevent the model from learning implicit self-loops, the weights corresponding to the predicted variable are masked out
for every hidden state output by the initial neural network layer. Thus, the prediction of each variable is prevented from
being a function of the same variable.

In interventional regimes, the log-likelihood terms corresponding to the prediction of intervened variables are zeroed out.
The intervened variables do not have to be modeled as we assume perfect interventions.

Stage 1 is run for a fixed number of epochs. By default, stage 1 also has an early stopping mechanism that uses the
reconstruction loss of a held-out validation set of data (sampled uniformly at random from the training set) as the early
stopping metric. If the validation reconstruction loss does not achieve a new minimum after a given number of epochs, the
stage 1 training loop is exited.

At the end of stage 1, the learned input layer weights are used to compute a set of removed edges, R, for stage 2. Let
W € R¥*x10 represent the input layer weights. Then, each value of the implicitly defined weighted adjacency matrix is
computed as the L2 vector norm for the corresponding set of weights (i.e., Ag; ;j := |[|W; ;.||2). This weighted adjacency
matrix is discretized with a fixed threshold, 71, such that each edge, (3, j), is removed if it falls below the threshold (i.e.,
Agij < T1).

19

Stable Differentiable Causal Discovery

In stage 2, the spectral acyclicity constraint is introduced. Like stage 1, we use an Adam optimizer with learning rate, 72,
and perform minibatch gradient-based optimization. Once again, the L1 and L2 coefficients, ca, 52, are fixed throughout
training. Rather than a fixed -y, SDCD takes an increment value, v© € R™, determining the rate at which -y increases every
epoch. The training loss for stage 2 is as follows:

‘C2(X79aRaa27ﬁ27’y) = Sa27ﬂ2(9) - ’th(Ae)

1 &))
= > logp(a';0,t) — o Aglly — B2ll0lI3 — YR, (Ap).
=1

The same masking strategy as in stage 1 is used to prevent self-loops in Ay. However, the input layer weights corresponding
to edges (7, j) € R are also masked.

Like before, the reconstruction loss terms corresponding to intervened variables are removed from the loss.

To reduce the sensitivity of stage 2 to the choice of ¥y and to prevent the acyclicity constraint term from dominating the
loss, the linear increment schedule is frozen when Ay achieves a DAG at the final threshold, 7. In practice, the DAG check
is performed every 20 epochs. If the adjacency matrix returns to being cyclic throughout training, the v increment schedule
restarts to increase from where it left off.

The early stopping metric is computed similarly to stage 1, but in stage 2, the early stopping can only kick in when ~ has
been frozen. If the v schedule is resumed due to Ay reintroducing a cycle, the early stopping is reset.

Lastly, once stage 2 is complete, Ay is computed and thresholded according to a fixed threshold, 2. All values exceeding
the threshold (i.e., Ay, i, j > 7o) are considered edges in the final graph prediction.

The thresholded adjacency matrix may contain cycles if stage 2 runs to completion without hitting early stopping. To ensure
a DAG, we follow a greedy edge selection procedure detailed in Algorithm 2.

Pseudocode for a simplified SDCD algorithm (excludes ~y freezing and early stopping) is provided in Algorithm 1.

B.2.3. TIME AND SPACE COMPLEXITY

The time complexity of each iteration of SDCD is O(d?). The forward pass in stage 1 can be computed in O(d?) time.
On the other hand, each of the d prediction problems can be computed independently. This allows for parallelizing the d
problems, each taking O(d) time. Stage 2 also takes O(d?) time as the spectral acyclicity constraint and the forward pass
both take O(d?) time to compute. Thus, the time complexity of each iteration in both stages is O(d?).

If the sparsity pattern of the underlying causal graph is known beforehand such that each variable has at most k parents, we
can further tighten the time complexity of SDCD. By Appendix A.7, we know the size of the set of remaining edges after
stage 1is O(dk?). Using sparse matrix multiplication, the spectral acyclicity constraint can be done in O(dk?), which is
effectively linear in d if £ < d. However, this improvement only becomes significant when d > 10, 000 (from experiments
not reported in this paper).

The space complexity of the algorithm is O(d?), as the number of parameters in the input layer scale quadratically in the
number of features.

20

Stable Differentiable Causal Discovery

Algorithm 1 SDCD

Require: o1, € RT, 31,8, € R, ~vT € RT,
T1,To € R+,’I71,772 S R+,E1,E2 ezt
Aéo) - 6G><G
9@3‘6 < RandomGaussianlInit()
e+ 0
while e < F; do
9(e+1) .= AdamUpdate(0(?), VL (X,0) a1, B1),m1)
e+—e+1
end while
R:= Threshold(AéEl), To)
AéEl) + (Qéxa
9(_]”23 < RandomGaussianInit()
v 0
while e < Fy + E5 do
0(ct1) .= AdamUpdate(0(©), VL (X, 0, R, az, B2, 7), 72)
Yev+T
e+ e—+1
end while
output DAGTrim(A(gEQ), T2)

Algorithm 2 DAGTrim

Require: Ay € RPXP 7 c Rt
E <+ () {Initialize the set of final edges.}
C « [(i,4) € [1,d]* | (Ag,; > 7] {Candidate edges above threshold 7.}
Sort C by decreasing Ag ; ;.
for each (i,j) € C'do
if the graph with edges E U {(4,)} is still acyclic then
E + EU{(i,7)} {We add the edge if it does not create a cycle.}
end if
end for

21

Stable Differentiable Causal Discovery

C. Empirical Studies Details
C.1. Simulation Details

To judge the performance of SDCD against existing methods over both interventional and observational data, we generated
simulated data according to the following procedure:

* Draw a random undirected graph from the Erdds-Rényi distribution.

* Convert the undirected graph into a DAG G* by setting the direction of each edge i — j if (i) < 7(j), where 7 is a
random permutation of the nodes.

* Form d possible sets of interventions that target one variable at a time: I; = {j} and Iy = 0.

. a* .
* Draw a set of random fully connected neural networks MLPO) . RIPa; | _y R100 1, each one with one 100-
dimensional hidden layer. Each neural network parametrizes the mean of the observational conditional distributions:

p;k (ij | Tpal™) O) ~N (/.L = MLP(J) (xpa.c*)a g = 05) .

* For intervention distribution k£ > 1, perform a hard intervention on variable &k and set

P} (k) ~ N(0,0.1).

* Draw the data according to the model, with 10,000 observational samples and 500 extra interventional samples per
target variable.

¢ Standardize the data.

‘We consider several values of d to simulate different scenarios.

C.2. Choice of Hyperparameters

We fixed the hyperparameters as follows: «; = le—2,8; = 2e—4,1m; = 2e—3,77 = 0.2, := be—4,5y :=
5¢—3,m2 := le—3,7y" := 0.005,75 := 0.1. We found that these selections worked well empirically across multiple
simulated datasets and were used in all experiments without simulation-specific fine-tuning.

Each stage was run for 2000 epochs with a batch size of 256, and the validation loss was computed over a held-out fraction
of the training dataset (20% of the data) every 20 epochs for early stopping. In stage 2, the DAG check of the implicit
adjacency matrix was performed every 20 epochs before the validation loss computation.

C.3. Baseline Methods

Here, we provide details on the baseline methods and cite which implementations were used for the experiments. For DCDI
and DCDFG, we used the implementations from https://github.com/Genentech/dcdfg, using the default
parameters for optimization. For DCDFG, we used 10 modules in our benchmarks, as reported in the paper experiments.
For GIES, we used the Python implementation from https://github.com/juangamella/gies, using the default
parameters. For DAGMA, we used the original implementation from https://github.com/kevinsbello/dagma
with the default parameters. For NOTEARS, we used the implementation from https://github.com/xunzheng/
notears, and for NOBEARS, we used the implementation from https://github.com/howchihlee/BNGPU.
For NOTEARS and NOBEARS, we found the default thresholds for determining the final adjacency matrix performed
poorly or did not return a DAG, so for each of these baselines, we followed the same procedure described in Lopez et al.
(2022): we find the threshold that returns the largest possible DAG via binary search. sortnregress (Reisach et al., 2021) is a
trivial baseline meant to ensure that the causal graph cannot be easily inferred from the variance pattern across the variables.
For this baseline, we used the implementation in https://github.com/Scriddie/Varsortability.

22

https://github.com/Genentech/dcdfg
https://github.com/juangamella/gies
https://github.com/kevinsbello/dagma
https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
https://github.com/howchihlee/BNGPU
https://github.com/Scriddie/Varsortability

Stable Differentiable Causal Discovery

C.4. Robustness Checks

Below, we discuss three categories of issues that commonly arise when evaluating causal discovery methods and address
each issue with a diagnostic metric.

Sparsity. Particularly when the true causal graph is sparse, SHD may favor sparser predictions since, in the extreme case,
the empty graph achieves an SHD equal to the number of true edges. To show the relative performance of the benchmarked
methods with respect to this trivial solution, we indicate the number of true edges for each simulated setting in Figure 3 and
Figure 4. We find that most methods outperform this baseline. Additionally, we report the F1 score and the recall of the
predictions (see Figures 7 and 10), two metrics that suffer when a method predicts many false negatives. We find that SDCD
still outperforms other methods with these metrics.

Identifiability. In settings with incomplete or no interventional data, the true causal graph may be unidentifiable, meaning
multiple Z-Markov equivalent graphs can maximize the score (Brouillard et al., 2020). Therefore, graphs in the same
Markov equivalence class as the true causal graph may have positive SHD values despite being optimal with respect to the
available data. As proposed in Peters et al. (2014), we also compute an adapted version of the SHD to compare the Markov
equivalence class of the methods’ results against the true Markov equivalence class instead of the graphs themselves. This
metric, called SHD-CPDAG, is computed as the SHD between the completed partially directed acyclic graph (CPDAG) of
the predicted graph and the CPDAG of the true graph. Unlike the regular SHD metric, this metric is zero if two graphs are in
the same equivalence class. We report it alongside SHD for our experiments in Figure 7 to better represent the results in
scenarios with an unidentifiable causal graph. We find very similar results.

Simulation issues. As discussed in Reisach et al. (2021), certain simulation processes used for causal discovery
benchmarking exhibit an issue where the order of the variables, when sorted by sample variance, reflects the true causal
ordering of the graph. As a result, methods that exploit this phenomenon to accurately infer the causal graph may be
misrepresented. To ensure that our simulation process does not suffer from this issue and that the methods are being properly
evaluated, we take two complementary steps recommended in Reisach et al. (2021): (i) we standardize the data before
being input into any of the evaluated methods so that no artificial sample variance information can be exploited, and (2)
we include the trivial baseline, sortnregress (Reisach et al., 2021), which is designed to exploit sample variance artifacts
from a flawed simulation, and should be outperformed by an effective, scale-invariant algorithm. We find that sortnregress
performs poorly, which confirms that our normalization scheme removes simulation artifacts, and we find that SDCD and its
competing methods beat sortnregress by a wide margin.

23

Stable Differentiable Causal Discovery

D. Supplementary Figures and Tables

0.04
0.03 4\
0.0241

0.01 4

With

Penalty

With Augmented Lagrangian

Threshold to DAG

0.00

Ok

50k

100k 150k

Epoch

Figure 5: The effect of constraints on the learned graph throughout training. The training with penalty h,+ (dashed purple,
exactly h, with a hard mask on the diagonal as to prevent self-loops, as implemented in SDCD) converges the fastest toward
a DAG. (left) training with h as a regularization penalty. (right) training with h as an augmented Lagrangian constraint.
Threshold to DAG is the smallest 7 at which all edges with weight > 7 form a DAG.

s d) Method SDCD DCDI-G DCDI-DSF
1 10 22.2% L 0.7+1.2 1.3+1.9 0.9+1.3
NL-Add 0.6+o0.7 5.2+7.5 4.2+5.6
NL-NN 0.7+o.7 2.3+3.6 7.0+10.7
20 10.5% L 1.4+3.4 5.4+4.5 3.6+2.7
NL-Add 4.1+3.0 21.8+30.1 4.3+1.9
NL-NN 3.0+25 13.9420.3 8.3+4.1
4 10 88.9% L 5.2+43.5 3.3+2.1 3.7+2.3
NL-Add 4.8+2.1 4.3+2.4 5.5+2.4
NL-NN 7.3+3.0 2.4+1.6 1.6+1.6
20 42.1% L 18.8+10.5 23.7+5.6 16.6+6.4
NL-Add 18.0+7.3 35.2+13.2 26.7+16.9
NL-NN 14.9+1.9 16.8+8.7 11.8+2.1

Table 3: Means and standard deviations of SHD scores over simulations from Brouillard et al. (2020). The “Method”
column refers to the model used to simulate the causal relationships. “L” refers to linear model, “NL-Add” refers to
nonlinear, additive model, and “NL-NN” refers to nonlinear, non-additive (neural network) model. We refer to Brouillard
et al. (2020) for the simulation details. The results are reported alongside the values presented in the original paper. s refers
to the expected number of edges per node, d denotes the number of nodes, and the edge density, J, is computed as the
fraction of @, the maximum number of edges for a DAG. The lowest average SHD values are set in bold.

24

Stable Differentiable Causal Discovery

——SDCD —— NOTEARS — DCDFG

DAGMA - - SDCD-GPU

EEE (0NN BN el N el

50

—DCDI — NOBEARS —— GIES
1.5h 5h
e * 4h 4
E 1hA
> 3h
£
E£30m -+
© _
= 7. —
Om T T 4'1'"__'?
10 20 30 40 50
d

d

200 300 400 500

Figure 6: Training runtimes across simulations from Figure 3. SDCD on GPU (dashed) scales to 500 variables in under 20
minutes. Error bars indicate std on 5 random datasets for d < 50 and 3 random datasets for d > 50.

SDCD SDCD-GPU DCDI DCDFG GIES DAGMA NOTEARS NOBEARS SCORE sortnregress AVICI NOCURL
d
10 14.7 +5.5 NT 24.3 +3.9 24.6 +6.0 27.8 +3.9 25.3 +6.2 353 +1.9 33.5 +3.0 14.4 +4.0 28.6 +4.7 2352 3323
20 357 +62 NT 31.7 6.5 108.0 +14.3 1234 +123 62.0+12.0 754 +40 74.2 +3.0 118.6 +85 81.6 +6.3 60.93 82.37
30 53.8 +11.9 NT 55.5 +10.7 258.8 £32.6 NA 89.4 +10.9 113.1 +a8 113.7 +3.3 2759 +21.0 134.6 £8.4 97.13 134.60
40 64.0=+137 NT 102.4 +21.6 426.6 +73.7 NA 1153 +13.4 147960 151.1 +3.4 4543 528 1729 +12.2 135.83 179.93
50 69.9 +12.3 68.3 £13.3 NA 660.8 +126.1 NA NA 183.4 +7.4 192.0 +3.5 619.4 +59.7 216.6 +12.4 170.83 240.93
100 92.7 +9.1 89.7 +11.0 NA 1807.3 7882 NA NA 3273 +7.5 389.0 +3.6 NA 4213 +120 366.50 513.07
200 2253 +137 228.0+183 NA 5657.3 +2982.6 NA NA 619.0 +4.2 770.0 £7.8 NA 824.0 +19.0 NT NT
300 350.0 £12.5 360.0 £nan NA 7284.7 +5072.3 NA NA NA 1149.0 +14.0 NA 1190.7 +26.3 NT NT
400 466.3 +62.4 471.7 +68.0 NA 3779.7 +507.3 NA NA NA 15347 +31 NA 1585.0 +59.3 NT NT
500 621.7 +10.7 621.0 +105 NA 7252.7 +3284.6 NA NA NA 1915.7 +188 NA 1974.3 +346 NT NT

Table 4: Detailed results of SHD means and standard deviations from Figure 3. SDCD-GPU was only run for d > 50. All
other NA values correspond to failed runs (possibly from timeout after 6h, e.g., GIES, or from training error, e.g., DCDI).
NT corresponds to the method not having been tested on that particular example.

SHD-CPDAG

=

o

o
I

0.5 '

F1 Score

0.25 A

0 -
10

20

d

---# of edges

+=SDCD

—-DCDI

4~ NOTEARS

—4-NOBEARS

4+ DCDFG
sortnregress

GIES

DAGMA

40 50 - SCORE

Figure 7: F1 and SHD-CPDAG metrics across simulations from Figure 3, observational data with increasing numbers of
variables d. Missing data points imply the method failed to run. Error bars indicate std on 30 random datasets.

25

Stable Differentiable Causal Discovery

SDCD-GPU --- # of edges

16000 A /’/z' ° 150m -
12000 - £120m 1
T 8000 - o 90m 4
ol 'S 60m A
4000 17 ;_E 30m A

0 0

1000 2000 3000 4000 1000 2000 3000 4000
d d

Figure 8: SDCD on GPU (dashed) scales to 4000 variables under 3 hours while maintaining competitive SHD. Error bars
indicate std on 3 random datasets for d = 1000, 2000 and 2 random datasets for d = 3000, 4000.

d SDCD-GPU

1000 1438.7 +59.2
2000 3356.7 +£70.0
3000 5172.5 +89.8
4000 7567.0 +£343.7

Table 5: Detailed results of SHD means and standard deviations from Figure 8.

26

Stable Differentiable Causal Discovery

In addition to SHD, we computed precision and recall metrics over the predicted edges with respect to the true edges for
both observational and interventional scenarios. The precision is the fraction of true edges among all the predicted edges.
The recall is the fraction of true edges that have been correctly predicted.

SDCD 4 NOTEARS -4~ DCDFG GIES —$-SCORE
—4-DCDI —$-NOBEARS sortnregress DAGMA
- ; ® =,
T
® ® - ®
0.0 T T T T T T T T T ?
10 20 30 40 50 50 200 300 400 500
d d

Figure 9: Precision across simulations from Figure 3, observational data with increasing numbers of variables d. The
SDCD(-CPU) and SDCD-GPU lines overlap, indicating consistent results. Missing data points imply the method failed to
run. Error bars indicate std on 30 random datasets for d < 50 and 5 random datasets for d > 50.

SDCD —4~NOTEARS —4-DCDFG GIES —$-SCORE
—4-DCDI —$-NOBEARS sortnregress DAGMA
!
h
sA\|]
L~

50 200 300 400 500
d

Figure 10: Recall across simulations from Figure 3, observational data with increasing numbers of variables d. The
SDCD(-CPU) and SDCD-GPU lines overlap, indicating consistent results. Missing data points imply the method failed to
run. Error bars indicate std on 30 random datasets for d < 50 and 5 random datasets for d > 50.

27

Stable Differentiable Causal Discovery

SDCD-GPU

1.0 - 1.0 -
s 0.8 - _ 0.8 -
@ 0.6 1 § 0.6 1
0.4 20.4 1
0.2 0.2 -

0.0 T T T T 0.0 T T T T

1000 2000 3000 4000 1000 2000 3000 4000
d d

Figure 11: Precision and recall across simulations from Figure 8, observational data with increasing numbers of variables d.
Error bars indicate std on 3 random datasets for d = 1000, 2000 and 2 random datasets for d = 3000, 4000.

28

Stable Differentiable Causal Discovery

- ==+ Number of true edges = dxs 6 = Edge Density = 2s / (d-1)
s SDCD s=2 s=4 s=6 s=8
EEm DCDI 150 - 6=21% /| 6=42% 6§=63%J] T 6=84%
I DCDFG i
== GEes |4 B A & T | ey @
; g
100 A , T é @ % é ﬁ !? = |
2 é iﬁ !ﬁ ___ i | ,q F T
n [S)
50 4 .

ol ——=— = -
200 5E13% 65=27% 5=41% 5="55%
| i ! | |
8 Bos @ I P T
TR (AR (RRK (R
100] S — | . lg
................................... &] - G 5 - = = h b ‘*
-! j {.i _. K * 3 j & - q ? &
o= -+ - - - -+ - - - - -
600 1 65=10%] 5=20%] 5=30%] 5=41%
400 - ‘ * * I i £ ! i ’ ! i “le - b & e
o e [S L O — %
mzoo_ | [| i . . . o

3 TP P I SR L R,

) k]]

0 Y Y% 3% 1 0 Y% Y% 3% 1 0 Y% Y 3% 1 0 Y Y % 1
Fraction of interventions

Figure 12: SHD across simulations with an increasing proportion of variables intervened on, varying the total number of
variables d (columns) and average edges per variable s (rows). Extended version of Figure 4 with DCDFG and GIES and
s = 8. Boxplots over 5 random datasets.

29

Stable Differentiable Causal Discovery

Fraction of Variables

s d 9 SDCD DCDI DCDFG GIES
Intervened on
0.00 18.0 +6.5 24.8 +4.6 1123 4258 80.3 +26.1
0.25 13.4 +5.7 274 +8.6 99.0 +7.8 70.0 +36.8
2 20 21% 0.50 94 +5.4 254 485 109.0 £31.4 69.7 +41.9
0.75 9.0 +2.1 19.8 +4.8 76.0 +14.2 62.7 +22.0
1.00 9.0 +2.8 18.8 +3.3 98.0 +19.7 65.7 +18.5
0.00 24.6 +9.6 56.0 +32.9 183.0 £102.1 NA
0.25 26.8 +13.1 60.4 +40.9 204.3 514 NA
30 13% 0.50 21.8 +9.0 56.2 +26.6 206.7 +84.3 NA
0.75 16.2 +3.4 43.2 +17.8 207.0 £119.7 NA
1.00 18.2 +2.2 31.7 6.1 283.7 +152 NA
0.00 44.2 +4.1 109.2 +27.6 465.0 +131.8 NA
0.25 334 +36 123.8 +62.1 372.7 +84.3 NA
40 10% 0.50 33.0 £3.5 105.6 £38.8 479.7 +103.5 NA
0.75 27.6 +3.4 76.0 +24.4 469.3 +126.6 NA
1.00 27.0 £7.5 63.0 +26.9 333.7 +135.5 NA
0.00 36.0 +6.4 31.2 +4.1 104.0 +3.5 110.7 +25.3
0.25 32.2 +6.6 33.0 +3.6 105.7 +4.2 110.7 £20.0
4 20 42% 0.50 34.6 +106 304 +7.6 107.7 +9.5 101.3 +22.3
0.75 25.8 +8.8 29.6 +8.2 102.0 +6.1 105.7 +22.8
1.00 22.4 +7.1 25.8 +6.4 107.0 +10.4 105.3 +12.2
0.00 54.0 +9.8 57.6 7.9 234.7 429 NA
0.25 43.8 +10.3 67.0 4.0 269.3 £36.7 NA
30 27% 0.50 39.2 +8.6 724 +155 262.0 +15.7 NA
0.75 35.0 +9.9 722 107 2327 +240 NA
1.00 29.0 +6.5 60.3 +5.7 236.0 +428 NA
0.00 69.0 £11.7 99.0 +30.7 460.0 +47.8 NA
0.25 56.8 +15.4 107.0 £39.2 438.3 +73.1 NA
40 20% 0.50 50.4 +13.0 105.6 +41.6 457.7 +21.2 NA
0.75 41.4 +107 97.8 +33.9 4263 +526 NA
1.00 344 +11.3 93.5 +16.3 458.7 +55.3 NA
0.00 51.2 475 56.6 +10.4 112.0 +12.3 117.7 +11.9
0.25 44.0 +6.5 37.8 £10.2 92.3 +17.0 117.3 116
6 20 63% 0.50 42.2 +86 29.0 £108 97.0 +11.5 112.7 +7.6
0.75 38.8 +8.3 25.2 +10.0 94.0 +11.5 91.3 +16.6
1.00 34.0 +5.1 23.8 +7.7 93.3 +1.5 86.0 +7.9
0.00 85.4 +6.5 75.8 +4.4 256.7 +30.6 NA
0.25 79.8 £12.5 69.2 +15.4 260.7 £12.4 NA
30 41% 0.50 694 +148 80.6 +17.2 2573 +186 NA
0.75 67.0 £12.2 86.2 £23.3 245.3 +23.7 NA
1.00 57.4 +11.3 82.0 +5.3 259.7 +19.5 NA
0.00 95.4 +27.7 107.8 £36.3 460.3 +63.3 NA
0.25 75.6 +23.6 130.2 £43.3 401.0 +112.8 NA
40 30% 0.50 63.6 +17.0 146.0 +51.7 370.0 +87.1 NA
0.75 57.4 +19.6 128.3 +16.3 387.7 +81.1 NA
1.00 47.2 +12.2 114.5 £31.8 469.0 +28.2 NA
0.00 53.6 +10.2 82.8 +14.5 117.7 114 111.7 +16.5
0.25 51.0 +8.1 58.2 +12.6 108.3 +19.7 96.7 +15.8
8 20 84% 0.50 47.0 £5.3 41.4 +138 100.7 +7.6 91.0 £23.5
0.75 40.8 +6.7 26.0 £3.8 73.7 +8.1 86.0 +31.2
1.00 43.0 +9.0 19.8 +4.9 81.7 +22.4 79.7 +10.8
0.00 111.8 498 93.4 +13.3 255.0 +271 NA
0.25 90.8 £7.5 75.6 +8.2 2427 +146 NA
30 55% 0.50 89.6 +13.2 788 122 255.0 +221 NA
0.75 77.6 +9.3 81.2 £9.4 226.3 +15.1 NA
1.00 71.0 4.6 81.6 +12.5 2223 +13.0 NA
0.00 150.4 +16.9 151.0 4+23.1 450.0 +445 NA
0.25 127.0 +12.4 1884 4274 452.0 +7.0 NA
40 41% 0.50 113.4 +202 200.0 £33.9 4243 +43.0 NA
0.75 1044 +21.3 193.0 £14.1 426.7 +34.6 NA
1.00 92.0 +17.6 190.0 £nan 422.0 £18.1 NA

Table 6: Detailed results of SHD means and standard deviations from Figure 12. GIES failed to run on d > 30.

30

Stable Differentiable Causal Discovery

. ‘- -_-4Number of true edges = dxi6 6 =Edge Deniitsy =2s/(d-1)
ooy 1.076=21% B 5=42% 16-63% 16.=84% S._ - &
o ORI RS S

Zg 0.61 l I |] | * : g -y ﬁ ﬁ 1];] ﬁ *@E
£ 041 ﬁ ﬂ iq g E_ ’@ 4 ’qj 1 % iﬁ e | °
0.2 1 - . .
0.0 t———F—+ — ——— ——
1.076=13% 16=27% 16=41% 16 =55%
0.8 A - = L u} T 1 & & = = {a & q l, =
s 0.6-! ‘* i A T'_r i # vy s P | a
2 & B w
9 0.4 . -) i . i o i 3
CL0.2— i s BB {9 & * Boeld ®]
0.0 t—r—+—+ — —— ——
1.016=10% 16 =20% 16 =30% ; 16 =41%
IS T B P g o8 f q !l P 0 1 s & -
2064 i B il ! l T : " e e e -y
2 L
£0418 * ! | | X i i I 1. « # 8 =
0.2 1 1 e &8 & 8 & - 8
& = - a !

0 . O T
0 Ya Y 3 1 0 Y% Y% 34 1 0 Ya Y 3 1 0 Y% Y 34 1
Fraction of interventions

Figure 13: Precision across simulations from Figure 12 increasing proportion of variables intervened on, varying the total
number of variables d (columns) and average edges per variable s (rows). Boxplots over 5 random datasets.

31

Stable Differentiable Causal Discovery

. sbCD

s DCDI
= DCDFG
3 GIES

Recall

Recall

Recall

0.8 1
0.6 1
0.4 1
0.2 1
0.0

+ Number of true edges =d xs
s=6

s=4

6 = Edge Density = 2s/ (d-1)
s=8

q,!{'i 1

LRI AT

1.0 -
&

0.8 1
0.6 1
0.4 1
0.2 1
0.0

'!i = 1a

P

0€e=p

1.0 q
0.8 1
0.6 1
0.4 1

0.2 1

6=10%

ER S

NERRF

6=20% 6=30% 6=41%

-
—m=
I
'
i
HIH
or=p

0.0

Ya

Y1

0 Ya Y% 3 1 0 Ya ¥ 34 1 0 Ya Y% 3 1
Fraction of interventions

Figure 14: Recall across simulations from Figure 12 increasing proportion of variables intervened on, varying the total
number of variables d (columns) and average edges per variable s (rows). Boxplots over 5 random datasets.

32

Stable Differentiable Causal Discovery

Name d=10 d=20 d=30 d=40
SDCD 14.7 40.3 54.3 69.0
SDCD-warm 14.7 40.7 55.0 68.7
SDCD-warm-nomask 19.3 69.7 156.0 272.7
SDCD-no-s1 193 683 1553 2723
SDCD-no-s1-2 16.3 56.7 95.0 135.0
DCDI 24.0 357 56.7 87.0

Table 7: Ablation study for SDCD stage 1. We observe that the described version of SDCD performs the best out of all
variations. SDCD-warm performs competitively but generally provides little benefit. SDCD-warm-nomask performs much
worse than SDCD, demonstrating that enforcing the mask during stage 2 is important. We report mean SHD over three
random seeds of observational data (no interventions) with a fixed number of edges per variable, s = 4, for a range of
numbers of variables, d. SDCD-warm refers to starting stage 2 of SDCD, where the input layer is ported over from stage 1
instead of re-learned. SDCD-warm-nomask performs the same warmstart as SDCD-warm but does not enforce the mask in
stage 2. SDCD-no-s1 only performs stage 2. SDCD-no-s1-2 only does stage 2, but sets (aw, 82) to the default values from
stage 1 (aq, 51). We report these values alongside DCDI. The lowest SHD values are bolded for each value of d.

Name d=10 d=20 d=30 d=40 d=50

SDCD 13.33 33.47 54.07 70.80 76.60
SDCD-exp 11.60 4433 69.07 85.07 89.93
SDCD-log 11.20 52.00 87.47 117.87 116.00

Table 8: Ablation study for SDCD stage 2 (choice of the constraint). We observe that SDCD performs the best out of the
three variations. Additionally, the variations using the PST constraints do not crash for any of the runs, even for those with
d = 50. We attribute this improved stability (as compared to DCDI and DAGMA) to stage 1 since there are fewer non-zero
parameters contributing to the value of the constraint. We report mean SHD over five random seeds of observational data
(no interventions) with a fixed number of edges per variable, s = 4, for a range of numbers of variables, d. SDCD-exp is
SDCD except using the hex, constraint in place of the h,, and SDCD-log uses the hy,, constraint.

33

